IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 10, OCTOBER 2008

HOD process. Therefore, there is a tradeoff between memory and com-
puting time. HOD provides a direct solution for the learning algorithm.
In comparison, tuning the MC algorithm to provide lower error rates by
increasing the number of samples will result in less iterations to reach
convergence, but that will come at the expense of a higher computation
time. In the end, the time needed to attain smaller error values makes
the decimation method a better choice.
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Matrix-Variate Factor Analysis and Its Applications

Xianchao Xie, Shuicheng Yan, James T. Kwok, and
Thomas S. Huang

Abstract—Factor analysis (FA) seeks to reveal the relationship between
an observed vector variable and a latent variable of reduced dimension.
It has been widely used in many applications involving high-dimensional
data, such as image representation and face recognition. An intrinsic limi-
tation of FA lies in its potentially poor performance when the data dimen-
sion is high, a problem known as curse of dimensionality. Motivated by the
fact that images are inherently matrices, we develop, in this brief, an FA
model for matrix-variate variables and present an efficient parameter es-
timation algorithm. Experiments on both toy and real-world image data
demonstrate that the proposed matrix-variant FA model is more efficient
and accurate than the classical FA approach, especially when the observed
variable is high-dimensional and the samples available are limited.

Index Terms—Conditional expectation maximization (EM), face recog-
nition, factor analysis (FA), matrix.

I. INTRODUCTION

Factor analysis (FA) [14] is a canonical statistical method for mod-
eling the covariance structure of high-dimensional data. It has been
widely used for data representation and object recognition. For example,
Hinton et al. [8] used a mixture of factor analyzers for the recognition
of handwritten digits. Tipping and Bishop [4], [16] proposed a special
FA model, called probabilistic principal component analysis (PPCA),
and there are many other generalizations for data representation and
visualization. In the vision literature, probabilistic visual learning and
Bayesian face recognition [13] are also closely related to FA.

Several methods have been proposed to perform parameter estimation
for the FA model [1], [5]. Though these methods often guarantee a
numerically correct and stable solution, statistically speaking, the
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estimated covariance matrix usually performs poorly, especially when
the ratio of sample size and the number of variables is not large. This
problem is commonly known as the “curse of dimensionality,” and
various techniques have been proposed to alleviate this effect [7].

In this brief, we propose an extension of FA for 2-D data [matrix-
variate factor analysis (MVFA)], together with an efficient parameter
estimation procedure based on the expectation/conditional maximiza-
tion (ECM) algorithm [12]. The key difference between classical FA
and MVFA lies in the way the data are represented. While classical FA
works with 1-D vectors, MVFA directly operates on the image data,
namely, the matrices. Therefore, the observations do not need to be
first transformed into vectors and the implicit structural information
can be well preserved. MVFA also brings faster parameter estimation
and higher classification performance.

II. FACTOR ANALYSIS

Given a p-dimensional observation ¢, FA tries to explain the rela-
tionship among the variables in ¢ by relating them to a ¢g-dimensional
latent variable = as

t=p+Wz+te (1

where W is a p X ¢ matrix, p is the mean, and e is the error. Both ¢
and x here are vector variates.

In applications such as image processing and computer vision, the
data (images or image patches) are often high dimensional (e.g., over
tens of thousands), and the loading matrix W consists of an enormous
number of parameters. The estimation of these parameters can be
computationally infeasible even on modern computers. In addition,
for the estimated parameter to be statistically reliable, an impractically
large amount of data may also be needed. Therefore, with insufficient
training samples, both the curse of dimensionality and small sample
size problem set in and degrade the performance of conventional FA.

III. MATRIX-VARIATE FACTOR ANALYSIS

In this section, we propose an extension of FA, the MVFA, to deal
with 2-D data. The motivation originates from observing that in image
applications, the data (images) are matrices and thus the implicit struc-
tural information can be used to improve the convention model (1)
and lead to higher accuracy. The advantage of matrix representation
over vector representation comes from that the spatial relationships
(column/row information, and the neighboring relationship) are well
preserved. Another motivation comes from previous works on face hal-
lucination [11], where a higher resolution image matrix can be directly
inferred from a lower resolution image matrix with proper noise mod-
eling. This leads us to employ a low-dimensional matrix as the latent
variable of the observed (image) matrix. Though there have been pre-
vious works on exploring the 2-D property of image data, such as the
work on generalized low-rank approximations of matrices (GLRAM)
[19], MVFA is the first method that explicitly considers a probabilistic
model.

Denote the observation 7" by an n X m random matrix. MVFA rep-
resents 1" by a low-rank decomposition

T=Z24+UXV'+E )
where the superscript ' denotes matrix (or vector) transpose, = is the
mean, X is the n x 7 latent matrix (withn < nand m < m), U
(n x n)and V (m x m) are factor loading matrices, and E is the
error/noise. MVFA thus tries to explain the structure of the observed
data T" by using a mean effect and a common factor matrix of reduced
size. Similar low-rank approximations have been successfully and pop-
ularly used in various areas, such as information retrieval [3] and ma-
chine learning [6]. The novelty here lies in expressing the relationship
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between the observed T and the underlying X directly in matrix form,
which is more coherent with human perception.

In conventional FA, the data matrix 7" has to be converted to an
nm-dimensional vector ¢, and the latent matrix X has to be converted
to an nm-dimensional vector # as in (1). The number of parameters
associated with W is thus nmnm. With MVFA, the total number
of parameters in U and V' is only nn 4+ mm. As will be shown in
Section IV-B3, the time complexity is also reduced. Thus, by control-
ling the size of the latent matrix X, the number of parameters can be
greatly reduced and parameter estimation becomes more efficient.

As in FA, we may have two kinds of models. In the first kind, we re-
gard X as a random matrix, while in the second, X is not random and
varies from one sample to another. In this brief, we will focus on the
first kind. In particular, we assume that X has nm independent identi-
cally distributed (i.i.d.) normally distributed random variables that are
independent of E. We also assume that each element e, of E is i.i.d.
normal random variable with zero mean and variance o2, .

IV. PARAMETER ESTIMATION USING EXPECTATION/CONDITIONAL
MAXIMIZATION

In this section, we develop an expectation—-maximization (EM)-
based method [5] for parameter estimation. Without loss of generality,
we assume that the data is centered, and the model in (2) reduces to

T=UXV'+E. 3)
Here, we will focus on the isotropic noise model where
2. = @)

Extension to the anisotropic model is straightforward and omitted here
due to the lack of space. An intuitive explanation of this model is that a
high-resolution image is bilinearly interpolated from a low-resolution
image plus extra noise, which is often used in image scale normaliza-
tion.

A. Density Function and Log-Likelihood

Assuming that X and E are independent matrices consisting of
random normal variables, we then have

HTX) = (T oo { = Sn(X730) (077

:

Fori =1,...,N,letT; be the observed (i.i.d.) data matrix and X; the
corresponding latent matrix. The complete-data log-likelihood is

N
nm s 1 i 1 ;
L.=— 2 TInJ + 5‘01‘()&,")&1') + 202tr(Ti’Ti)
1 o als ok T4 1 I IV
——=tr(X;UTV)+ ——tr(VX,UUX; V)| (5)
o2 202
and the marginal density for the observed data 7" is
. N
o0 = [prx)ax =] [sr.x)ix. ©
=1

Notice that there is an intrinsic indeterminacy in maximum-likeli-
hood estimation, as any rotation of U or V' will not change the ob-
served-data likelihood in (6). To resolve this ambiguity, we assume that
the singular value decompositions of U and V" are of the form Uo,¢n A
and V,rin Ao, respectively, where the orthogonal matrices on the right
of the singular value decompositions are identity matrices and A, and
A, are diagonal matrices. As will be shown later, this parametrization
has two merits. First, it simplifies our computations because most steps
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now only involve diagonal matrices (Section IV-B). Second, it allows
the use of parameter expansion (PX, Section IV-B3), a technique ac-
celerating the convergence of the EM algorithm.

B. Using ECM for MVFA

As in [16], we view X as “missing” and adopt an EM-based ap-
proach as our computational tool. One difficulty here is that the com-
plete-data problem does not have a close solution, imposing substantial
difficulty in implementing the standard M-step in the EM algorithm.
Therefore, we will use the ECM algorithm proposed in [12]. The ECM
algorithm is a powerful generalization of the EM algorithm. It consists
of two steps: the expectation (E-step) and the conditional maximization
(CM-step).

1) E-Step: The E-step of the ECM algorithm is the same as that
of the EM algorithm. We compute the expectation of the log-likeli-
hood in (5) with respect to (w.r.t.) the distribution p(X|T, U, V, ¢?).
This reduces to computing the expectation of the complete-data
sufficient statistics X; and XX, w.r.t. the conditional distribution
p(Xi|T;, ULV, 02) for each X;.

Let vec( - ) be the vectorization operator, which concatenates the
rows of the matrix argument and then transposes the result to a
column vector, and let ¢ be the Kronecker product. Using the fact that
vec(ABC) = (C' ® A)vec(B) for matrices A, B, and C, the matrix
model (3) can be rewritten as

T‘rr — V‘,rX‘u + E‘u (7)
where T” = vec(T') (and similarly, for X” and E") and
W=vVaU )]

is the factor score. Equation (7) now involves only vector variates, and
the E-step becomes straightforward. As shown in [16], we have

(XHy=M'W'T! 9
(XPXPYy =M™+ (X)) (X7 (10)

where M = W'W 4621 and I is the 7 X 7iin identity matrix.
These statistics are computed by using the parameters at their current
values.

Instead of a direct implementation, we can have a more efficient way
of computing (9). Using the properties of the Kronecker product, it can
be easily shown that

M=A29A +0Lin 11)
wW'TY = (U/ & V/)T,'U = Vec(U/TZ'V). (12)

Thus, we first compute (12), which takes O(nm min(n, m)) time by
using an appropriate order for the multiplications. Because M ™" is
diagonal, computing (9) also takes only O(nm min(n, m)) time.

The computation of (10) appears to require O((71)”) time. How-
ever, as will be shown shortly, only the diagonal elements of the ma-
trices in (10) are used in the CM-step. Thus, the computations here can
also be simplified.

2) CM-Step: Unlike the M-step in the EM algorithm, each
CM-step consists of several simple conditional maximization steps.
The idea is to sequentially update subsets of the parameters, analo-
gous to the Gauss—Seidel iterations or the cyclic coordinate ascent
method. Here, the parameters are partitioned into three groups:
(Usrtns Au)y (Viren, Ay), and o?. The ECM algorithm then replaces
the original M-step of EM with three CM-steps.

In the first CM-step, we maximize the expectation of L. w.r.t.
(Usrtns Av), with (Voren, A,) and o2 being fixed at their current
values. Based on (5), this is equivalent to minimizing

L¢ = —2tr(AySUppn) + tr(A2H) (13)

where S = SN (X)) V'T/ and H = 3" (X;A2X)). Suppose that
the QR decomposition of S’ is S’ = QR, where R is a matrix with
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elements r;; = 0 fori > j and r;; < 0 and () is an orthogonal matrix.
Substituting this into (13) and noticing that Q' Uy is still a matrix
with orthonormal column vectors, we have

N I,
Z:rorth = Q |: 0 :|

because Ay SUorin = (Aw R')(Q'Uoren), A is a diagonal matrix with
nonnegative elements and 7;; < 0. After obtaining U1, we can easily
obtain

A = diag( STy )diag(H) ™"

Note that only the diagonal elements of the matrices in (10) are used
here; the implementation of the E-step can thus be simplified as men-
tioned in Section IV-B1.

The second CM-step maximizes the expectation of L. w.r.t.
(Viorths Ay), with U = U,pn Ay and o2 fixed. The computations are
essentially the same as those in the first step.

The third CM-step maximizes the expectation of L. w.r.t. 2, with
U =UsihAw and V = V. on A, fixed at the values derived from the
above two steps. As in [16], we obtain

N
PLISE Z{tr(ﬂm —2t:({ X)) U'T;V)
=1

nmN
+r((VXU'UX:V'))}

3) Remarks: The merits of the ECM algorithm are its simplicity and
stability, even when the complete-data problem is complicated. More-
over, it guarantees that the likelihood function is always increasing. Be-
sides, it can be easily seen that the so-called “space-filling” condition!
is satisfied here. Thus, the ECM algorithm also converges to a local op-
timum under the same conditions that guarantee the convergence of EM
[12]. A diagrammatic comparison of the graph representation for the
(vector-based) FA algorithm PPCA and the proposed MVFA is shown
in Fig. 1.

Computational Complexity Analysis: We first consider the
computational complexity of MVFA. For each sample, it takes
O(nm min(n, m)) time for evaluating (9) and O(77n) time for eval-
uating (10), assuming that only the diagonal elements of (X! X;')
(which are those actually used in the CM-steps) are computed.
Therefore, the total per-iteration time complexity for the E-step is
O(Nnm min(7, m)). Asforthe CM-step, ittakes O( Nnm min (7, m)
time for the evaluation of S and O( N nm ) time for (14), assuming proper
orders are followed in the implementation. Hence, the total per-iteration
computational complexity of MVFA is O(Nnm min(n, m)).

On the other hand, the per-iteration complexity of conventional FA
is O(Nnmnm) [16], and is thus much larger. On problems of huge
scale, it cannot even be implemented within tolerable time and memory
limitations.

Speedup Using Parameter Expansion: As is well known, the con-
vergence of EM-type algorithms can sometimes be slow. In this section,
we use PX [10] as a covariance adjustment technique for accelerating
the ECM algorithm of Section IV-B. We introduce two auxiliary diag-
onal matrices I',, and T',,. The expanded model is then parameterized
as

(14)

T|X",0 ~ N(u’ + WX, 0% L,m)
X[©~N(O,L,®Ty)

where W =V @ U.

It is known that the fraction of missing information is related to the
variance of parameters given the complete data relative to that given
the observed data [10]. By using auxiliary parameters, extra variance is
introduced into the complete model while the observed model remains

5)
16)

Loosely speaking, this means unconstrained maximization is allowed over
the whole parameter space [12].
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Fig. 1. Graph representation of (a) PPCA and (b) MVFA. An example of the factor loading matrices and latent/observation variables (based on training samples
from the XM2VTS face database) is shown next to the corresponding symbols. For simplicity, the data is assumed to have been centered. Moreover, the column
vectors W of matrix W' are reshaped into matrices for ease of display. Note that the W, characterizes the global information of an image while U; and V;

characterize the column and row information, respectively.
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Fig. 2. (a) Log-likelihood values versus the number of iterations for the three methods on the first toy data set. (b) Normalized estimation errors for MVFA and

PPCA obtained in the 30 repetitions.

the same, which in turn allows the algorithm based on the expanded
model to enjoy a faster convergence.

The modified algorithm will be called the PX-ECM algorithm.
Again, it has two steps: PX-E-step and PX-ECM-step. The major
difference is that the parameters of the expanded model are now
partitioned as (Uorin, Aw, Tw), (Vortn, Aw, Ty, and o2, and we need
to reduce the expanded parameters at the end of each iteration. It can
be shown that the time complexity of a single iteration remains at
O(nm min(n,m)). Due to the lack of space, interested readers are
referred to [10] for details.

V. EXTENSIONS OF THE BASIC MODEL

In this section, we follow the approach in [8] and [15] and extend
the model in (3) to a mixture of matrix-variate factor analyzers. As-
sume that we have a mixture of M factor analyzers, indexed by w,
taking values of & = 1,..., M for each observed data matrix. Here,
w = k means that the data point is generated from component k. We
denote the mixing parameter by © = [71, ..., war] with T = P(wy).
Moreover, we denote the parameters for each distribution of the mix-
ture components by Uy, Vi, and o3, respectively.

The log-likelihood of the observed data becomes P(T)

o [P(TIX,w E)P(X|w = k)P(w k) dX. As in
Section III, we again assume that the factor score matrix X consists of
independent normally distributed random variables, and the noise is
isotropic in each component.

Basically, the same ECM algorithm can be used for parameter estima-
tion as in Section III. The difference is that we now have both X and w

as missing data in the E-step. Moreover, in the CM-step, we here have to
update M groups of (Uorth, Au, Vorths Av, o?) parameters instead of
just one. The complete algorithm is omitted here for space limitation.
The mixture of matrix-variate factor analyzers is, indeed, a reduced-
dimension mixture of Gaussian distributions with parameters (U, Vi ).
For each component, its X, is a matrix of lower dimensions, and so the
proposed model achieves the goal of dimensionality reduction.

VI. EXPERIMENTS

In this section, we perform a number of experiments on both toy and
real-world data sets. For simplicity, isotropic noise is always assumed.

A. Toy Data Sets

In this section, experiments are performed on two toy data sets that
are generated according to (2).

1) Convergence: The first data set consists of 2000 50 x 50 patterns,
and the latent matrix X in (2) is of size 10 x 10. We compare the con-
vergence properties of the following optimization methods for MVFA:
1) the ECM algorithm (Section IV-B); 2) the ECM algorithm with PX
as discussed in Section IV-B3; and 3) an implementation based on di-
rect parametrization of U and V. Denote all the parameters together
by 6. In the experiment, 6 is initialized randomly, and iterations stops
when [|#¢) — #0F || < 107 or the maximum number of iterations
(set to 1000) is reached.

Fig. 2(a) shows how the log-likelihood improves with each iteration.
It is evident that the ECM algorithm with PX converges most quickly
in about 50 steps. On the other hand, the other two methods require
nearly 1000 steps to achieve comparable likelihood values.
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TABLE I
CLASSIFICATION ACCURACIES (IN PERCENT) OF MVFA AND PPCA
ON THE MNIST DATABASE

#training samples : # testing samples
70:430 | 60:440 [ 50:450 [ 40:460 | 30:470
922 92.4 92.0 91.2 91.0
91.8 86.8 77.8 55.6 45.7

MVFA
PPCA

2) Quality of Estimated Parameters: The second data set consists of
2000 20 x 20 patterns, and the latent matrix X in (2) is of size 5 x 5. We
train both the MVFA model and the traditional (vector-based) PPCA
model [16]. For faster convergence, PX is used in both models. We
compare the estimated parameters with its ground truth. As mentioned
in Section IV-B, there can be arbitrary rotations in the U and V" esti-
mates. Hence, we compute the normalized estimation error (||W W’ —
WW'|»)/(IWW'||r), where || - ||  denotes the Frobenius norm and
W =V @ U (8) for MVFA. The experiment is repeated 30 times.

Fig. 2(b) shows the errors obtained from the 30 repetitions. Two
dashed lines are also added to show the maximum of the MVFA values
and the minimum of the PPCA values obtained. As can be seen, MVFA
is superior in terms of accuracy. It also runs faster than PPCA (1745
s versus 11620 s, on a 3.0-GHz Pentium-4 PC with 512-MB memory,
running Matlab 7.0), which agrees with our time complexity analysis
in Section IV-B3.

B. Real-World Data Sets

1) Statistical Classification: In this section, we perform classifica-
tion experiments on the MNIST database [9] of handwritten digits. A
total of 5000 28 x 28 images (500 per digit) are used. Instead of using
the raw pixel intensities as features (dimensions are too small for fur-
ther dimension reduction), we first extract 40 Gabor features, with five
scales and eight directions, in the down-sampled positions. Each image
is then re-encoded as a matrix of size (14 x5 = 70) x (14 x 8 = 112).

One MVFA/PPCA model is trained for each class (digit). A test
sample is classified to the class whose model produces the highest like-
lihood. We study the performance by varying the numbers of training
and test samples (with the total fixed at 500 for each digit). For both
MVFA and PPCA, all possible dimensionalities of the latent variables
are tried and the best results reported.

As can be seen from Table I, MVFA significantly outperforms PPCA,
especially when there are few training samples. Moreover, MVFA has
a more stable performance as the number of training samples varies.

2) Dimensionality Reduction: In this section, experiments are per-
formed on the XM2VTS and CMU PIE (pose, illumination, and expres-
sion) face databases.2 There are 295 subjects (classes) in the XM2VTS
database. We use a total of 875 images from the first three sessions
for training and 295 images from the fourth session for testing. For
the CMU PIE database, there are 68 classes. We use five near-frontal
poses and four illuminations (indexed as 08, 10, 11, and 13), resulting
in a total of 20 images per person. Twelve of them are for training, and
the remaining eight are for testing. All the images are normalized to
64 x 64 by fixing the locations of the two eyes.

Here, we use MVFA/PPCA for dimensionality reduction. One
MVFA/PPCA model is trained for the whole training set. For an obser-
vation T, we use the expectation of the latent variable E(X|T = Tp)
as the lower dimensional representation of Ty for MVFA. Similarly,
we use E(z|t = to) for PPCA, where to = vec(Tp). The nearest
neighbor classifier3 is used in the low-dimensional space for classifica-
tion. For comparison, we also report the results from PCA, GLRAM,

2Available at http://www.face-rec.org/databases/
3For MVFA, the obtained E( X |T = Ty) is still a matrix, and so the Frobe-
nius norm is used to compute the distance for the nearest-neighbor classifier. On

the other hand, the other methods only produce vectors in the latent space and
so the usual Euclidean distance can be used.
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TABLE II
CLASSIFICATION ACCURACIES (IN PERCENT) BY USING VARIOUS
DIMENSIONALITY REDUCTION METHODS

| [ MVFA [ PPCA | GLRAM | PCA [ wio |

XM2VTS 78.6 76.6 71.2 69.5 | 68.5
CMU PIE 87.3 78.3 65.1 63.5 | 63.5

and that directly based on original raw features, which is referred to as
w/o in Table II. As in Section IV-B, all possible dimensionalities for
the latent variables are tried and the best results are reported.

Results are shown in Table II. As can be seen, the low-dimensional
representations obtained by MVFA are consistently superior than the
others.

3) Remarks: Recall that our focus here is on the advantages of
using a matrix representation (instead of a vector representation) in
FA. Hence, for simplicity, we have only considered MVFA as an un-
supervised learning method, and did not compare it with supervised
face recognition algorithms such as Fisherfaces [2] and other linear
discriminant analysis (LDA)-based methods. Moreover, discriminant
analysis can certainly be added to both PPCA and MVFA as a postpro-
cessing step for recognition purposes. However, this is not done here as
it will blur the contributions of the FA and discriminant analysis steps
and thus make the various FA algorithms difficult to compare. Besides,
we did not compare with the Tensorface, because the Tensorface [17]
is restricted to situations where the images for all poses, illumination
conditions, and expressions for each person are available. MVFA, on
the other hand, is more flexible and does not have such prerequisite on
the training data.

VII. CONCLUSION AND FUTURE WORK

In this brief, we proposed a new covariance analysis technique called
MVFA for the analysis of 2-D data (such as images). MVFA has several
advantages over conventional vector-based FA. First, it utilizes the ob-
servation matrix directly, which is consistent with human perception.
Second, MVFA is more accurate than FA in terms of parameter estima-
tion and classification performance. Third, MVFA is computationally
more efficient.

However, one disadvantage of MVFA is that the estimates may
have bias if the model assumption is violated. To resolve this problem,
one possibility is to extend this to an additive model, as T = = +

~_ Ux X,V + E. From the perspective of the dictionary method
[7], each component then shares an MVFA formulation. This extension
will be further studied in the future. Moreover, as demonstrated in
[16], there exists a strong relationship between PPCA and PCA. An
interesting research topic is to explore the underlying relationship
between MVFA and the recently proposed GLRAM algorithm [19].
Another interesting future work is to extend this work to tensor-variate
FA for handing general tensor data of arbitrary order [18], with MVFA
as a special case for second-order tensor data, namely, matrices.
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Nonlinear Knowledge-Based Classification

Olvi L. Mangasarian and Edward W. Wild

Abstract—In this brief, prior knowledge over general nonlinear sets is
incorporated into nonlinear kernel classification problems as linear con-
straints in a linear program. These linear constraints are imposed at arbi-
trary points, not necessarily where the prior knowledge is given. The key tool
in this incorporation is a theorem of the alternative for convex functions
that converts nonlinear prior knowledge implications into linear inequal-
ities without the need to kernelize these implications. Effectiveness of the
proposed formulation is demonstrated on publicly available classification
data sets, including a cancer prognosis data set. Nonlinear kernel classifiers
for these data sets exhibit marked improvements upon the introduction of
nonlinear prior knowledge compared to nonlinear kernel classifiers that do
not utilize such knowledge.

Index Terms—Kernel classification, linear programming, prior knowl-
edge, theorem of the alternative.

[. INTRODUCTION

Prior knowledge has been used effectively in improving classifica-
tion both for linear [8] and nonlinear [7] kernel classifiers as well as
for nonlinear kernel approximation [19]. In all these applications, prior
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knowledge was converted to linear inequalities that were imposed on a
linear program. The linear program generated a linear or nonlinear clas-
sifier, or a linear or nonlinear function approximation, all of which were
more accurate than the corresponding results that did not utilize prior
knowledge. However, whenever a nonlinear kernel was utilized in these
applications, kernelization of the prior knowledge was not a transparent
procedure that could be easily related to the original sets over which
prior knowledge was given. In contrast, in [20], no kernelization of the
prior knowledge sets was used in order to incorporate that knowledge
into a nonlinear function approximation. We will use a similar approach
here to incorporate prior knowledge into a nonlinear classifier without
the need to kernelize the prior knowledge. Furthermore, the region in
the input space on which the prior knowledge is given is completely
arbitrary in this work, whereas in all previous classification work, prior
knowledge had to be restricted to convex polyhedral sets. The present
approach is possible through the use of a fundamental theorem of the
alternative for convex functions that we describe in Section II of this
brief, whereas previous work utilized such a theorem for linear inequal-
ities only. An interesting, novel approach to knowledge-based support
vector machines that modifies the hypothesis space rather than the op-
timization problem is given in [14]. In another recent approach, prior
knowledge is incorporated by adding additional points labeled based
on the prior knowledge to the data set [17]. A somewhat different ap-
proach for prior knowledge incorporation consists of the generation of
additional points based on prior knowledge. This was employed in [17]
and [22] where virtual examples were created as well as in [5] and [10].

In Section III, we describe our linear programming formulation that
incorporates nonlinear prior knowledge into a nonlinear kernel, while
Section IV gives numerical examples that show prior knowledge can
improve a nonlinear kernel classification significantly. Section V con-
cludes this brief.

‘We describe our notation now. All vectors will be column vectors un-
less transposed to a row vector by a prime ’. The scalar (inner) product
of two vectors « and y in the n-dimensional real space R" will be de-
noted by 2'y. Forz: € R",||z||1 denotes the 1-norm: (}_7"_, |;|) while
||z|| denotes the 2-norm: (3", ()° )'/2_ The notation A € R"*"
will signify a real m X n matrix. For such a matrix, A" will denote the
transpose of A, A; will denote the ith row of A, and A.; will denote the
jthcolumn of A. A vector of ones in a real space of arbitrary dimension
will be denoted by e. Thus, fore € R™ andy € R™, the notation e’y
will denote the sum of the components of y. A vector of zeros in a real
space of arbitrary dimension will be denoted by 0. For A € R"™*" and
B € R"™* akernel K(A, B) maps R™*" x R™** into R™**. In
particular, if 2 and y are column vectors in R", then K (', y) is a real
number, K (x', B') is arow vector in R™, and K (A, B') isanm x m
matrix. We will make no assumptions whatsoever on our kernels other
than symmetry, thatis, K (¢',y)" = K (y', 2), and in particular, we will
not assume or make use of Mercer’s positive-definiteness condition
[23], [24], [4]. The base of the natural logarithm will be denoted by =. A
frequently used kernel in nonlinear classification is the Gaussian kernel
[24], [2] whose ¢jthelement, i = 1,...,m, j =1,..., k, is given by
(K(A,B));; = c=mlIA =B where A € R™*™, B € R"™**, and
1t 1s a positive constant. We represent data as vectors for convenience,
and the approach we describe below works with any data for which a
suitable kernel can be found. The abbreviation “s.t.” stands for “subject
to.”

II. CONVERSION OF NONLINEAR PRIOR KNOWLEDGE
INTO LINEAR CONSTRAINTS

The problem that we wish to impart prior knowledge to consists of
classifying a data set in R"™ represented by the mn rows of the matrix

1045-9227/$25.00 © 2008 IEEE

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 5, 2008 at 04:31 from IEEE Xplore. Restrictions apply.



