
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 2, FEBRUARY 2011 199

Domain Adaptation via Transfer
Component Analysis
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Abstract— Domain adaptation allows knowledge from a source
domain to be transferred to a different but related target
domain. Intuitively, discovering a good feature representation
across domains is crucial. In this paper, we first propose to find
such a representation through a new learning method, transfer
component analysis (TCA), for domain adaptation. TCA tries to
learn some transfer components across domains in a reproducing
kernel Hilbert space using maximum mean miscrepancy. In the
subspace spanned by these transfer components, data properties
are preserved and data distributions in different domains are
close to each other. As a result, with the new representations in
this subspace, we can apply standard machine learning methods
to train classifiers or regression models in the source domain
for use in the target domain. Furthermore, in order to uncover
the knowledge hidden in the relations between the data labels
from the source and target domains, we extend TCA in a
semisupervised learning setting, which encodes label information
into transfer components learning. We call this extension semi-
supervised TCA. The main contribution of our work is that we
propose a novel dimensionality reduction framework for reducing
the distance between domains in a latent space for domain
adaptation. We propose both unsupervised and semisupervised
feature extraction approaches, which can dramatically reduce the
distance between domain distributions by projecting data onto the
learned transfer components. Finally, our approach can handle
large datasets and naturally lead to out-of-sample generalization.
The effectiveness and efficiency of our approach are verified by
experiments on five toy datasets and two real-world applications:
cross-domain indoor WiFi localization and cross-domain text
classification.

Index Terms— Dimensionality reduction, domain adaptation,
Hilbert space embedding of distributions, transfer learning.

I. INTRODUCTION

DOMAIN adaptation aims at solving a learning problem
in the target domain by utilizing training data in the
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source domain, even when these domains may have different
distributions. This is an important learning problem because
labeled data are often difficult to come by, making it desirable
to make the best use of any related data available. For
example, in indoor WiFi localization which requires regression
learning, the labeled training data are difficult and expensive
to obtain [1]. Moreover, once calibrated, these data can be
easily outdated because the WiFi signal strength may be a
function of many dynamic factors including time, device, and
space [2]. To reduce the recalibration effort, we might want
to adapt a localization model trained in one time period (the
source domain) for a new time period (the target domain), or to
adapt the localization model trained on one mobile device (the
source domain) for a new mobile device (the target domain).

Domain adaptation can be considered as a special setting of
transfer learning which aims at transferring shared knowledge
across different but related tasks or domains [3]–[5]. A major
computational problem in domain adaptation is how to reduce
the difference between the distributions of the source and
target domain data. Intuitively, discovering a good feature
representation across domains is crucial [3], [6]. A good
feature representation should be able to reduce the difference
in distributions between domains as much as possible, while
at the same time preserving important properties (such as
geometric properties, statistical properties, or side information
[7]) of the original data, especially for the target domain
data. Recently, several approaches have been proposed to
learn a common feature representation for domain adaptation
[8]–[10]. Daumé III [8] designed a heuristic kernel to augment
features for solving some specific domain adaptation problems
in natural language processing. Blitzer et al. [9] proposed the
structural correspondence learning (SCL) algorithm, motivated
from [11], to induce correspondences among features from the
different domains. This method depends on the heuristic selec-
tions of pivot features appearing frequently in both domains.
Although it is experimentally shown that SCL can reduce the
difference between domains based on the A-distance measure
[6], the heuristic criterion of pivot feature selection may be
sensitive to different applications.

Most previous feature-based domain adaptation methods do
not minimize the distance in distributions between domains
explicitly. Recently, von Bünau et al. [12] proposed stationary
subspace analysis (SSA) to match distributions in a latent
space. However, SSA is focused on the identification of a
stationary subspace, without considering the preservation of
properties such as data variance in the subspace. Pan et al.
[10] proposed a new dimensionality reduction method called
maximum mean discrepancy embedding (MMDE) for domain
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adaptation. MMDE aims at learning a shared latent space
underlying the domains where distance between distributions
can be reduced while the data variance can be preserved. How-
ever, MMDE suffers from two major limitations: 1) MMDE is
transductive, and does not generalize to out-of-sample patterns
[13], and 2) MMDE learns the latent space by solving a semi-
definite program (SDP), which is computationally expensive.

In this paper, we propose a new feature extraction approach,
called transfer component analysis (TCA), for domain adap-
tation. It tries to learn a set of common transfer components
underlying both domains such that the difference in data
distributions of the different domains, when projected onto this
subspace, can be dramatically reduced and data properties can
be preserved. Standard machine learning methods can then
be used in this subspace to train classification or regression
models across domains. More specifically, if two domains
are related to each other, there may exist several common
components (or latent variables) underlying them. Some of
these may cause the data distributions between domains to
be different, while others may not. Meanwhile, some of these
components may capture the intrinsic structure or discrimi-
native information underlying the original data, while others
may not. Hence, our goal is to discover those components
that do not cause distribution change very much across the
domains and can well preserve the structure or task-relevant
information of the original data.

Our main contribution is on proposing a novel dimen-
sionality reduction method to reduce the distance between
domains via projecting data onto a learned transfer subspace.
Once the subspace is found, one can use any method for
subsequent classification, regression, and clustering. Further-
more, TCA and its semisupervised extension SSTCA are
much more efficient than MMDE and can handle the out-
of-sample extension problem [13]. The rest of this paper is
organized as follows. In Section II, we first introduce the
domain adaptation problem and traditional dimensionality re-
duction methods and describe the Hilbert space embedding for
distances and dependence measure between distributions. Our
proposed feature extraction methods for domain adaptation are
presented in Sections III and IV. In Section V, we conduct a
series of experiments on some toy datasets and two real-world
application problems to verify the effectiveness and efficiency
of the proposed methods. Finally, we conclude our work in
Section VI.

II. PREVIOUS WORKS AND PRELIMINARIES

A. Domain Adaptation

We consider a domain as consisting of two main compo-
nents: a feature space of inputs X and a marginal probability
distribution of inputs P(X), where X = {x1, . . . , xn} ∈ X is
a set of learning samples. For example, if our learning task
is document classification, and each term is taken as a binary
feature, then X is the space of all document vectors. In general,
if two domains are different, they may have different feature
spaces or different marginal probability distributions. In this
paper, we focus on the setting where there are only one source
and one target domain sharing the same feature space. We also

assume that some labeled data DS are available in the source
domain, while only unlabeled data DT are available in the
target domain. More specifically, let the source domain data
be DS = {(xS1, yS1), . . . , (xSn1

, ySn1
)}, where xSi ∈ X is the

input and ySi ∈ Y is the corresponding output. Similarly, let
the target domain data be DT = {xT1, . . . , xTn2

}, where the
input xTi is also in X .

Let P(X S) and Q(XT ) (or P and Q in short) be the
marginal distributions of X S = {xSi } and XT = {xTi } from
the source and target domains, respectively. In general, P and
Q can be different. Our task is to predict the labels yTi s
corresponding to inputs xTi s in the target domain. The key
assumption in most domain adaptation methods is that P �= Q,
but P(YS |X S) = P(YT |XT ).

The problem of covariate shift adaptation is also related
to domain adaption. To address this problem, importance
reweighting is a major technique [14]–[18]. Huang et al. [14]
proposed a kernel-based method, known as kernel mean
matching (KMM) to reweight instances in a reproducing kernel
Hilbert space (RKHS). Sugiyama et al. [15] proposed an-
other importance reweighting algorithm, known as Kullback–
Leibler importance estimation procedure (KLIEP), which is
integrated with cross validation to perform model selection
automatically. Bickel et al. [16] proposed to integrate the
distribution correcting process into a kernelized logistic regres-
sion. Kanamori et al. [17] proposed a method called uncon-
strained least-squares importance fitting (uLSIF) to estimate
the importance efficiently by formulating the direct importance
estimation problem as a least-squares function fitting problem.
The main difference between these methods and our proposed
method is that we aim to match data distributions between
domains in a latent space, where data properties can be
preserved, instead of matching them in the original feature
space. Recently, Sugiyama et al. [18] further extended the
uLSIF algorithm by estimating importance in a nonstationary
subspace, which performs well even when the dimensionality
of the data domains is high. However, this method is focused
on estimating the importance in a latent space instead of learn-
ing a latent space for adaptation. Note that, besides covariate
shift adaptation, importance estimation techniques have also
been applied to various applications, such as independent com-
ponent analysis [19], outlier detection [20], and change-point
detection [21].

Besides reweighting methods, von Bünau et al. [12]
proposed to match distributions in a latent space. More
specifically, they theoretically studied the conditions under
which a stationary space can be identified from a multivariate
time series. They also proposed the SSA procedure to find
stationary components by matching the first two moments
of the data distributions in different epochs. However, SSA
is focused on how to identify a stationary subspace without
considering how to preserve data properties in the latent space.
As a result, SSA may map the data to some noisy factors which
are stationary across domains but completely irrelevant to the
target supervised task. Then classifiers trained on the new
representations learned by SSA may not get good performance
for domain adaptation. We will show a motivating example in
Section III.
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B. Hilbert Space Embedding of Distributions

1) Maximum Mean Discrepancy (MMD): Given samples
X = {xi} and Y = {yi } drawn from two distributions, there
exist many criteria [such as the Kullback–Leibler (KL) diver-
gence] that can be used to estimate their distance. However,
many of these estimators are parametric or require an inter-
mediate density estimate. Recently, a nonparametric distance
estimate was designed by embedding distributions in an RKHS
[22]. Gretton et al. [23] introduced the MMD for comparing
distributions based on the corresponding RKHS distance. Let
the kernel-induced feature map be φ. The empirical esti-
mate of MMD between {x1, . . . , xn1} and {y1, . . . , yn2} is
MMD(X, Y )=‖1/n1

∑n1
i=1 φ(xi )−1/n2

∑n2
i=1 φ(yi )‖2

H where
‖ · ‖H is the RKHS norm. Therefore, the distance between
two distributions is simply the distance between the two mean
elements in a RKHS. It can be shown [22] that, when the
RKHS is universal, MMD will asymptotically approach zero
if and only if the two distributions are the same.

2) Hilbert–Schmidt Independence Criterion (HSIC): Re-
lated to the MMD, the HSIC [24] is a simple yet powerful
nonparametric criterion for measuring the dependence between
the sets X and Y . As its name implies, it computes the
Hilbert–Schmidt norm of a cross-covariance operator in the
RKHS. An (biased) empirical estimate can be easily obtained
from the corresponding kernel matrices, as HSIC(X, Y ) =
(1/(n − 1)2)tr(H K H Kyy) where K , Kyy are kernel matrices
defined on X and Y , respectively, H = I − (1/n)11� is the
centering matrix, and n is the number of samples in X and
Y . Similar to MMD, it can also be shown that if the RKHS
is universal, HSIC asymptotically approaches zero if and only
if X and Y are independent [25]. Conversely, a large HSIC
value suggests strong dependence.

C. Embedding Using HSIC

In embedding or dimensionality reduction, it is often de-
sirable to preserve the local data geometry while at the
same time maximally align the embedding with available
side information (such as labels). For example, in colored
maximum variance unfolding (colored MVU) [7], the local
geometry is captured in the form of local distance constraints
on the target embedding K , while the alignment with the side
information (represented as kernel matrix Kyy) is measured by
the HSIC criterion. Mathematically, this leads to the following
SDP:

max
K�0

tr(H K H Kyy) subject to constraints on K . (1)

In particular, (1) reduces to MVU [26] when no side
information is given (i.e., Kyy = I ).

III. TCA

As mentioned in Section II-A, most domain adaptation
methods assume that P �= Q, but P(YS |X S) = P(YT |XT ).
However, in many real-world applications, the conditional
probability P(Y |X) may also change across domains due to
noisy or dynamic factors underlying the observed data. In this
paper, we use the weaker assumption that P �= Q, but there

exists a transformation φ such that P(φ(X S)) ≈ P(φ(XT ))
and P(YS |φ(X S)) ≈ P(YT |φ(XT )). Standard supervised
learning methods can then be applied on the mapped source
domain data φ(X S), together with the corresponding labels
YS , to train models for use on the mapped target domain data
φ(XT ).

A key issue is how to find this transformation φ. Since we
have no labeled data in the target domain, φ cannot be learned
by directly minimizing the distance between P(YS |φ(X S))
and P(YT |φ(XT )). Here, we propose to learn φ such that:
1) the distance between the marginal distributions P(φ(X S))
and P(φ(XT )) is small, and 2) φ(X S) and φ(XT ) preserve
important properties of X S and XT . We then assume that such
a φ satisfies P(YS |φ(X S)) ≈ P(YT |φ(XT )). We believe that
domain adaptation under this assumption is more realistic,
though also more challenging. Finally, a classifier f trained
on φ(X S) and YS is used to make predictions on φ(XT ).

A. Minimizing Distance Between P(φ(X S)) and P(φ(XT ))

Assume that φ is the feature map induced by a universal
kernel. As shown in Section II-B.1, the distance between two
distributions P and Q can be empirically measured by the
distance between the empirical means of the two domains
Dist(X ′

S, X ′
T ) = ∥

∥1/n1
∑n1

i=1 φ(xSi ) − 1/n2
∑n2

i=1 φ(xTi )
∥
∥2
H.

Therefore, a desired nonlinear mapping φ can be found
by minimizing this quantity. However, φ is usually highly
nonlinear and a direct optimization of minimizing the quantity
with respect to φ can get stuck in poor local minima.

1) MMDE: Instead of finding the nonlinear transformation
φ explicitly, we first revisit a dimensionality reduction-based
domain adaptation method called MMDE [10]. It embeds
both the source and target domain data into a shared low-
dimensional latent space using a nonlinear mapping φ, and
then learns the corresponding kernel matrix K by solving
an SDP. Specifically, let the Gram matrices defined on the
source domain, target domain, and cross-domain data in the
embedded space be KS,S, KT ,T , and KS,T , respectively. The
key idea is to learn

K =
[

KS,S KS,T
KT ,S KT ,T

]

∈ R
(n1+n2)×(n1+n2) (2)

i.e., the kernel matrix defined on all the data, by minimizing
the distance (measured w.r.t. the MMD) between the projected
source and target domain data while maximizing the embedded
data variance. By virtue of the kernel trick, it can be shown that
the MMD distance in Section III-A can be written as tr(K L),
where K = [φ(xi )

�φ(x j )], and Li j = 1/n2
1 if xi , x j ∈ X S ,

else Li j = 1/n2
2 if xi , x j ∈ XT , otherwise, Li j = −(1/n1n2).

The objective function of MMDE can then be written as

max
K�0

tr(K L) − λtr(K ) subject to constraints on K (3)

where the first term in the objective minimizes the distance
between distributions, while the second term maximizes the
variance in the feature space, and λ ≥ 0 is a tradeoff parameter.

However, there are several limitations of MMDE. First,
it is transductive and cannot generalize to unseen patterns.
Second, the resultant kernel learning problem has to be solved
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by expensive SDP solvers. Finally, in order to construct low-
dimensional representations of X ′

S and X ′
T , the obtained K has

to be further post-processed by PCA [10]. This may discard
potentially useful information in K .

2) Parametric Kernel Map for Unseen Patterns: In this sec-
tion, we propose an efficient framework to find the nonlinear
mapping φ based on kernel feature extraction. It avoids the use
of SDP and thus its high computational burden. Moreover, the
learned kernel can be generalized to out-of-sample patterns.
Besides, instead of using a two-step approach as in MMDE,
we propose a unified kernel learning method which utilizes an
explicit low-rank representation.

First, note that the kernel matrix K in (2) can be decom-
posed as K = (K K −1/2)(K −1/2K ), which is often known as
the empirical kernel map [27]. Consider the use of a matrix
W̃ ∈ R

(n1+n2)×m that transforms the empirical kernel map
features to an m-dimensional space (where m 
 n1 + n2).
The resultant kernel matrix is then

K̃ = (K K −1/2W̃ )(W̃�K −1/2K ) = K W W� K (4)

where W = K −1/2W̃ . In particular, the corresponding kernel
evaluation between any two patterns xi and x j is k̃(xi , x j ) =
k�

xi
W W�kx j where kx = [k(x1, x), . . . , k(xn1+n2 , x)]� ∈

R
n1+n2 . Hence, this kernel k̃ facilitates a readily parametric

form for out-of-sample kernel evaluations.
On using the definition of K̃ in (4), the MMD distance

between the empirical means of the two domains X ′
S and X ′

T
can be rewritten as

Dist(X ′
S, X ′

T ) = tr((K W W� K )L) = tr(W�K L K W ). (5)

In minimizing (5), a regularization term tr(W�W ) is usually
needed to control the complexity of W . As will be shown later,
this regularization term can also avoid the rank deficiency of
the denominator in the generalized eigenvalue decomposition.

B. Preserving Properties of XS and XT

In domain adaptation, learning the transformation φ by only
minimizing the distance between P(φ(X S)) and P(φ(XT ))
may not be enough. Fig. 1(a) shows a simple 2-D example,
where the source domain data is in red and the target domain
data is in blue. For both domains, x1 is the discriminative
direction that separates the positive and negative samples,
while x2 is a noisy dimension with small variance. By focusing
only on minimizing the distance between P(φ(X S)) and
P(φ(XT )), one would select the noisy component x2, which
however is completely irrelevant to the target supervised task.

Hence, besides reducing the distance between the two
marginal distributions, φ should also preserve data properties
that are useful for the target supervised learning task. An
obvious choice is to maximally preserve the data variance,
as performed by PCA and KPCA. Note from (4) that the
embedding of the data in the latent space is W�K , where the
i th column [W�K ]i provides the embedding coordinates of xi .
Hence, the variance of the projected samples is W� K H K W ,
where H = In1+n2 − (1/n1 + n2)11� is the centering matrix,
1 ∈ R

n1+n2 is the column vector with all 1’s, and In1+n2 ∈
R

(n1+n2)×(n1+n2) is the identity matrix.
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Fig. 1. Motivating examples for the TCA formulation. (a) Only minimizing
the distance between P(φ(XS)) and P(φ(XT )). (b) Only maximizing the
data variance.

However, focusing only on the data variance is again not
desirable in domain adaptation. An example is shown in
Fig. 1(b), where the direction with the largest variance (x1)
cannot be used to reduce the distance of distributions across
domains and is not useful in boosting the performance for
domain adaptation.

C. Unsupervised TCA

Combining the observations in Sections III-A and III-B, we
develop a new dimensionality reduction method for domain
adaptation such that in the latent space spanned by the learned
components, the variance of the data can be preserved as much
as possible and the distance between different distributions
across domains can be reduced. The kernel learning problem
then becomes

minW tr(W�K L K W ) + μ tr(W�W )

s.t. W�K H K W = Im (6)

where μ > 0 is a tradeoff parameter, and Im ∈ R
m×m is

the identity matrix. For notational simplicity, we will drop the
subscript m from Im in the sequel.

Though this optimization problem involves a nonconvex
norm constraint W�K H K W = I , it can still be solved ef-
ficiently by the following trace optimization problem:

Proposition 1: Problem (6) can be reformulated as

max
W

tr((W�(K L K + μI )W )−1W�K H K W ). (7)

Proof: The Lagrangian of (6) is

tr(W�(K L K + μI )W ) − tr((W� K H K W − I )Z) (8)

where Z is a diagonal matrix containing Lagrange multipli-
ers. Setting the derivative of (8) w.r.t. W to zero, we have
(K L K + μI )W = K H K W Z . Multiplying both sides on
the left by W T , and then on substituting it into (8), we
obtain minW tr((W�K H K W )†W�(K L K + μI )W ). Since
the matrix K L K +μI is nonsingular, we obtain an equivalent
trace maximization problem (7).

Similar to kernel Fisher discriminant analysis [28], the W
solutions in (7) are the m leading eigenvectors of (K L K +
μI )−1 K H K , where m ≤ n1 + n2 − 1. In the sequel, this will
be referred to as TCA.
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IV. SSTCA

As discussed in [6], a good representation should: 1) reduce
the distance between the distributions of the source and target
domain data, and 2) minimize the empirical error on the
labeled data in the source domain. However, the unsupervised
TCA proposed in Section III-C does not consider the label
information in learning the components. Moreover, in many
real-world applications (such as WiFi localization), there exists
an intrinsic low-dimensional manifold underlying the high-
dimensional observations. The effective use of manifold in-
formation is an important component in many semisupervised
learning algorithms [29].

In this section, we extend the unsupervised TCA in Sec-
tion III-C to the semisupervised learning setting. Motivated
by the kernel target alignment [30], [31], a representation that
maximizes its dependence with the data labels may lead to
better generalization performance. Hence, we can maximize
the label dependence instead of minimizing the empirical
error (Section IV-A.2). Moreover, we encode the manifold
structure into the embedding learning so as to propagate label
information from the labeled (source domain) data to the
unlabeled (target domain) data (Section IV-A.3). Note that in
traditional semisupervised learning settings, the labeled and
unlabeled data are from the same domain. However, in the
context of domain adaptation here, the labeled and unlabeled
data are from different domains.

A. Optimization Objectives

In this section, we delineate three desirable properties for
this semisupervised embedding, namely: 1) maximal align-
ment of distributions between the source and target domain
data in the embedded space; 2) high dependence on the label
information; and 3) preservation of the local geometry.

1) Objective 1: Distribution Matching: As in the unsuper-
vised TCA, our first objective is to minimize the MMD (5)
between the source and target domain data in the embedded
space.

2) Objective 2: Label Dependence: Our second objective is
to maximize the dependence (measured w.r.t. HSIC) between
the embedding and labels. Recall that, while the source domain
data are fully labeled, the target domain data are unlabeled.
We propose to maximally align the embedding [which is
represented by K̃ in (4)] with

K̃ yy = γ Kl + (1 − γ )Kv (9)

where γ ≥ 0. Here, [Kl ]i j = kyy(yi , y j ) if i, j ≤ n1,
otherwise [Kl ]i j = 0, serves to maximize label dependence
on the labeled data, while Kv = I , serves to maximize the
variance on both the source and target domain data, which is
in line with MVU [26]. By substituting K̃ (4) and K̃ yy (9)
into HSIC (Section II-B.2), our objective is thus to maximize

tr(H (K W W�K )H K̃yy) = tr(W�K H K̃yy H K W ). (10)

Note that γ is a tradeoff parameter that balances the label
dependence and data variance terms. Intuitively, if there are
sufficient labeled data in the source domain, the dependence
between features and labels can be estimated more precisely

via HSIC, and a large γ may be used. Otherwise, when there
are only a few labeled data in the source domain and a large
number of unlabeled data in the target domain, we may use a
small γ . Empirically, simply setting γ = 0.5 works well on
all the datasets. The sensitivity of the performance to γ will
be studied in more detail in Sections V-B and V-C.

3) Objective 3: Locality Preserving: As reviewed in Sec-
tions II-C and III-A.1, colored MVU and MMDE preserve
the local geometry of the manifold by enforcing distance
constraints on the desired kernel matrix K . More specifically,
let N = {(xi , x j )} be the set of sample pairs that are k-nearest
neighbors of each other, and di j = ‖xi − x j‖ be the distance
between xi , x j in the original input space. For each (xi , x j ) in
N , a constraint Kii + K j j − 2Kij = d2

i j will be added to the
optimization problem. Hence, the resultant SDP will typically
have a very large number of constraints.

To avoid this problem, we make use of the locality pre-
serving property of the manifold regularizer [32]. First, we
construct a graph with the affinity mij = exp(−d2

i j /2σ 2) if
xi is one of the k nearest neighbors of x j , or vice versa. Let
M = [mij ]. The graph Laplacian matrix is L = D − M ,
where D is the diagonal matrix with entries dii = ∑n

j=1 mij .
Intuitively, if xi , x j are neighbors in the input space, the
distance between the embedding coordinates of xi and x j

should be small. Note that the data’s embedding in R
m is

W�K , where the i th column [W�K ]i provides the embedding
coordinates of xi . Hence, our third objective is to minimize

∑

(i, j )∈N
mij

∥
∥
∥[W�K ]i − [W�K ] j

∥
∥
∥

2 = tr(W�KLK W ). (11)

B. Formulation and Optimization Procedure

Combining all three objectives, we thus want to find a W
that maximizes (10) while simultaneously minimizing (5) and
(11). The final optimization problem can be written as

minW tr(W�K L K W )+μ tr(W�W )+ λ

n2 tr(W�KLK W )

s.t. W� K H K̃yy H K W = I (12)

where λ ≥ 0 is another tradeoff parameter, and n2 =
(n1 + n2)

2 is a normalization term. For simplicity, we use
λ to denote λ/n2 in the rest of this paper. Similar to the
unsupervised TCA, (12) can be formulated as the following
trace problem:

max
W

tr

{(
W� K (L + λL)K W + μI

)−1(
W�K H K̃yy H K W

)}

.

We call this semisupervised transfer component analysis
(SSTCA). It is Well known that it can be solved by eigen-
decomposing (K (L + λL)K + μI )−1 K H K̃yy H K .

The procedure for both the unsupervised and semisuper-
vised TCA is summarized in Algorithm 1.

C. Computational Issues

The kernel learning algorithm for domain adaptation in [10]
relies on SDPs. As there are O((n1 +n2)

2) variables in K̃ , the
overall time complexity is O((n1 +n2)

6.5) [33]. This becomes



204 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 2, FEBRUARY 2011

Algorithm 1: TCA

Input: Source domain data set DS = {(xSi , ysrci )}n1
i=1, and

target domain data set DT = {xTj }n2
j=1.

Output: Transformation matrix W .
1: Construct kernel matrix K from {xSi }n1

i=1 and {xTj }n2
j=1

based on (2), matrix L from (3), and centering matrix H .
2: (Unsupervised TCA) Eigendecompose the matrix

(K L K + μI )−1 K H K and select the m leading
eigenvectors to construct the transformation matrix W .

3: (Semisupervised TCA) Eigendecompose matrix
(K (L + λ)LK + μI )−1 K H K̃yy H K and select the m
leading eigenvectors to construct the transformation
matrix W .

4: return transformation matrix W .

computationally prohibitive even for small-sized problems. In
contrast, our proposed kernel learning method requires only
a simple and efficient eigenvalue decomposition. This takes
only O(m(n1 + n2)

2) time when m nonzero eigenvectors are
to be extracted [34].

V. EXPERIMENTS

In this section, we first verify the motivations of our
proposed methods for domain adaptation on some toy
datasets.

A. Synthetic Data

As discussed in Section II-A, the optimization objec-
tive needs to include a number of criteria. In this section,
we perform experiments to demonstrate the effectiveness of
TCA/SSTCA in learning a 1-D latent space from the 2-D
data. For TCA, we use the linear kernel on inputs, and fix
μ = 1. For SSTCA, we use the linear kernel on both inputs
and outputs, and fix μ = 1, γ = 0.5.

1) Only Minimizing Distance between Distributions: As
discussed in Section III-B, it is not desirable to learn the
transformation φ by only minimizing the distance between
the marginal distributions P(φ(X S)) and P(φ(XT )). Here, we
illustrate this by using the synthetic data from the example in
Fig. 1(a) [which is also reproduced in Fig. 2(a)]. We compare
TCA with the method of SSA [12], which is an empirical
method to find an identical stationary latent space of the source
and target domain data.

As can be seen from Fig. 2(b), the distance between distri-
butions of different domain data in the 1-D space learned by
SSA is small. However, the positive and negative samples are
overlapped together in this latent space, which is not useful for
making predictions on the mapped target domain data. On the
other hand, as can be seen from Fig. 2(c), though the distance
between distributions of different domain data in the latent
space learned by TCA is larger than that learned by SSA, the
two classes are now more separated. We further apply the one-
nearest-neighbor (1-NN) classifier to make predictions on the
target domain data in the original 2-D space, and latent spaces
learned by SSA and TCA. As can be seen from Fig. 2(a)–(c),
TCA leads to significantly better accuracy than SSA.

2) Only Maximizing the Data Variance: As discussed in
Section III-B, learning the transformation φ by only maximiz-
ing the data variance may not be useful in domain adaptation.
Here, we reproduce Fig. 1(b) in Fig. 2(d). As can be seen
from Fig. 2(e) and (f), the variance of the mapped data in the
1-D space learned by PCA is very large. However, the distance
between the mapped data across different domains is still large
and the positive and negative samples are overlapped together
in the latent space, which is not useful for domain adaptation.
On the other hand, though the variance of the mapped data
in the 1-D space learned by TCA is smaller than that learned
by PCA, the distance between different domain data in the
latent space is reduced and the positive and negative samples
are more separated in the latent space.

3) Label Information: In this experiment, we demonstrate
the advantage of using label information in the source domain
data to improve classification performance [Fig. 2(g)]. Since
the focus is not on locality preserving, we set the λ in
SSTCA to zero. Consequently, the difference between SSA
and SSTCA is in the use of label information. As can be
seen from Fig. 2(h), the positive and negative samples overlap
significantly in the latent space learned by TCA. On the other
hand, with the use of label information, the positive and
negative samples are more separated in the latent space learned
by SSTCA [Fig. 2(i)], and thus classification also becomes
easier.

However, in some applications, it may be possible that the
discriminative direction of the source domain data is quite
different from that of the target domain data. An example is
shown in Fig. 2(j). In this case, encoding label information
from the source domain (as SSTCA does) may not help or
even hurt the classification performance as compared to the
unsupervised TCA. As can be seen from Fig. 2(k) and (l),
positive and negative samples in the target domain are more
separated in the latent space learned by TCA than in that
learned by SSTCA.

In summary, when the discriminative directions across
different domains are similar, SSTCA can outperform TCA
by encoding label information into the embedding learning.
However, when the discriminative directions across different
domains are different, SSTCA may not improve the per-
formance or even performs worse than TCA. Nevertheless,
compared to nonadaptive methods, both SSTCA and TCA can
obtain better performance.

4) Manifold Information: In this experiment, we demon-
strate the advantage of using manifold information to im-
prove classification performance. Both the source and domain
data have the well-known two-moon manifold structure [29]
[Fig. 2(m)]. SSTCA is used with and without Laplacian
smoothing [by setting λ in (12) to 1000 and 0, respectively].
As can be seen from Fig. 2(n) and (o), Laplacian smoothing
can indeed help improve classification performance when
the manifold structure is available underlying the observed
data.

B. Cross-Domain Indoor WiFi Localization

With the increasing availability of 802.11 WiFi networks
in cities and buildings, locating and tracking a user or cargo
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Fig. 2. Illustrations of the proposed TCA and SSTCA on five synthetic datasets. The leftmost column shows data in the original 2-D input space, while the
other columns show the projected data in the 1-D latent spaces learned by different methods. Accuracy of the 1-NN classifier in the original input/latent space
is shown inside brackets. (a) Dataset 1 (acc: 82%). (b) 1-D projection by SSA (acc: 60%). (c) 1-D projection by TCA (acc: 86%). (d) Dataset 2 (accuracy:
50%). (e) 1-D projection by PCA (acc: 48%). (f) 1-D projection by TCA (acc: 82%). (g) Data set 3 (acc: 69%). (h) 1-D projection by TCA (acc: 56%). (i)
1-D projection by SSTCA (acc: 79%). (j) Dataset 4 (accuracy: 60%). (k) 1-D projection by TCA (acc: 90%). (l) 1-D projection by SSTCA (acc: 68%). (m)
Dataset 5 (acc: 70%). (n) 1-D projection by SSTCA without Laplacian smoothing (acc: 83%). (o) 1-D projection by SSTCA with Laplacian smoothing (acc:
91%).
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with wireless signal strength or received signal strength (RSS)
is becoming a reality [1], [2]. The objective of indoor WiFi
localization is to estimate the location yi of a mobile device
based on the RSS values xi = (xi1 , xi2 , . . . , xik ) received from
k access points, which periodically send out wireless signals
to others. In the following, we consider the 2-D coordinates
of a location, and indoor WiFi localization is intrinsically a
regression problem. However, it is expensive to calibrate a
localization model in a large environment. Moreover, the RSS
values are noisy and can vary with time [2]. As a result,
even in the same environment, the RSS data collected in
one time period may differ from those collected in another.
Hence, domain adaptation is necessary for indoor WiFi local-
ization.

1) Experimental Setup: We use a public dataset from the
2007 IEEE ICDM Contest (the second task). This contains
a few labeled WiFi data collected in time period T1 (the
source domain) and a large amount of unlabeled WiFi data
collected in time period T2 (the target domain). Here, “label”
refers to the location information for which the WiFi data are
received. WiFi data collected from different time periods are
considered as different domains. The task is to predict the
labels of the WiFi data collected in time period T2. For more
details on the dataset, readers may refer to the contest report
article [2].

Denote the data collected in time period T1 and time period
T2 by DS and DT , respectively. In the experiments, we have
|DS | = 621 and |DT | = 3, 128. Furthermore, we randomly
split DT into Du

T (the label information is removed in training)
and Do

T . All the source domain data (621 instances in total) are
used for training. As for the target domain data, 2328 patterns
are sampled to form Do

T , and a variable number of patterns
are sampled from the rest 800 patterns to form Du

T .
In the transductive evaluation setting, our goal is to learn

a model from DS and Du
T , and then evaluate the model

on Du
T . In the out-of-sample evaluation setting, our goal

is to learn a model from DS and Du
T , and then evaluate

the model on Do
T (out-of-sample patterns). For each ex-

periment, we repeat 10 times and then report the average
performance using the average error distance (AED): AED =(∑

(xi ,yi )∈D | f (xi) − yi |
)

/N . Here, xi is a vector of RSS
values, f (xi) is the predicted location, yi is the corresponding
ground truth location, while D = Du

T in the transductive
setting, and D = Do

T in the out-of-sample evaluation setting.
The following methods will be compared. For parameter

tuning of all methods, 50 labeled data are sampled from the
source domain as a validation set. 1) Traditional regression
models that do not perform domain adaptation. These include
the (supervised) regularized least square regression (RLSR),
which is trained on DS only, and the (semisupervised) Lapla-
cian RLSR (LapRLSR) [32], which is trained on both DS

and Du
T but without considering the difference in distributions.

2) A traditional dimensionality reduction method: Kernel PCA
(KPCA) [27]. It first learns a projection from both DS and Du

T
via KPCA. RLSR is then applied on the projected DS to learn a
localization model. 3) Importance reweighting methods: KMM
and KLIEP. They use both DS and Du

T to learn weights of

the patterns in DS , and then train an RLSR model on the
weighted data. Following [14], we set the ε parameter in
KMM as B/

√
n1, where n1 is the number of training data in

the source domain. For KLIEP, we use the likelihood cross-
validation method in [15] to automatically select the kernel
width. Preliminary results suggest that the final performance
of KLIEP can be sensitive to the initialization of the kernel
width. Thus, its initial value is also tuned on the validation
set. 4) A state-of-the-art domain adaptation method. SCL [9]1

It learns a set of new cross-domain features from both DS and
Du

T , and then augments features on the source domain data in
DS with the new features. A RLSR model is then trained.
5) The proposed TCA and SSTCA. First, we apply
TCA/SSTCA on both DS and Du

T to learn transfer compo-
nents, and map data in DS to the latent space. Finally, a RLSR
model is trained on the projected source domain data. There
are two parameters in TCA, kernel width2 σ and parameter μ.
We first set μ = 1 and search for the best σ value (based on
the validation set) in the range [10−5, 105]. Afterwards, we fix
σ and search for the best μ value in [10−3, 103]. For SSTCA,
we use linear kernel for kyy in (9) on the labels, and there are
four tunable parameters (σ , μ, λ, and γ ). We set σ and μ in the
same manner as TCA. Then, we set γ = 0.5 and search for the
best λ value in [10−6, 106]. Afterwards, we fix λ and search
for γ in [0, 1]. 6) Methods that only perform distribution
matching in a latent space: SSA [12] and TCAReduced,
which replaces the constraint W�K H K W = I in TCA by
W�W = I . Hence, TCAReduced aims to find a transforma-
tion W that minimizes the distance between different distri-
butions without maximizing the variance in the latent space.
7) A closely related dimensionality reduction method, MMDE.
This is a state-of-the-art method on the ICDM-09 contest
dataset [35].

2) Comparison to Dimensionality Reduction Methods: We
first compare TCA and SSTCA with some dimensionality
reduction methods, including KPCA, SSA and TCAReduced
in the out-of-sample setting. The number of unlabeled patterns
in Du

T is fixed at 400, while the dimensionality of the latent
space varies from 5 to 50.

Fig. 3(a) shows the results. As can be seen, TCA and
SSTCA outperform all the other methods. Moreover, note
that KPCA, though simple, can lead to significantly improved
performance. This is because the WiFi data are highly noisy,
and thus localization models learned in the denoised latent
space can be more accurate than those learned in the original
input space. However, as mentioned in Section V-A, KPCA
can only denoise but cannot ensure that the distance between
data distributions in the two domains is reduced. Thus, TCA
performs better than KPCA. In addition, though TCAReduced
and SSA aim to reduce distance between domains, they may
lose important information of the original data in the latent
space, which in turn may hurt performance of the target learn-
ing tasks. Thus, they do not obtain good performance. Finally,
we observe that SSTCA obtains better performance than

1The pivot features are selected by mutual information while the number
of pivots and other SCL parameters are determined by the validation data.

2Here, we use the Laplacian kernel k(xi , x j ) = exp
(−‖xi − x j ‖/σ

)
.
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TABLE I

DATA DESCRIPTION: THE 20-NEWSGROUPS DATASETS

Task # Fea. # Doc.
Source Domain Target Domain
# Pos. # Neg. # Pos. # Neg.

Comp versus Sci (C versus S) 38 065 6000 1500 1500 1500 1500
Rec versus Talk (R versus T) 30 165 6000 1500 1500 1500 1500
Rec versus Sci (R versus S) 29 644 6000 1500 1500 1500 1500
Sci versus Talk (S versus T) 33 151 6000 1500 1500 1500 1500

Comp versus Rec (C versus R) 40 827 6000 1500 1500 1500 1500
Comp versus Talk (C versus T) 45 514 6000 1500 1500 1500 1500

TCA. As demonstrated in previous research [35], the manifold
assumption holds on the WiFi data. Thus, the graph Laplacian
term in SSTCA can effectively exploit label information from
the labeled data to the unlabeled data across domains.

3) Comparison with Nonadaptive Methods: In this exper-
iment, we compare TCA and SSTCA with learning-based
localization models that do not perform domain adaptation,
including RLSR, LapRLSR, and KPCA. The dimensionalities
of the latent spaces for KPCA, TCA and SSTCA are fixed at
15. These values are determined based on the first experiment
in Section V-B.2.

Fig. 3(b) shows the performance when the number of
unlabeled patterns in Du

T varies. As can be seen, even with
only a few unlabeled data in the target domain, TCA and
SSTCA can perform well for domain adaptation.

4) Comparison with Domain Adaptation Methods: In this
section, we compare TCA and SSTCA with some state-of-
the-art domain adaptation methods, including KMM, KLIEP,
SCL, and SSA. We fix the dimensionalities of the latent space
in TCA and SSTCA at 15, while we fix the dimensionalities of
the latent space in SSA and TCAReduced at 50. For training,
all the source domain data are used and varying amounts of
the target domain data are sampled as |Du

T |.
Results are shown in Fig. 3(c). As can be seen, domain adap-

tation methods that are based on feature extraction (including
SCL, TCA, and SSTCA) perform much better than instance
reweighting methods (including KMM and KLIEP). This is
again because the WiFi data are highly noisy, and so matching
distributions directly based on the noisy observations may not
be useful. Indeed, SCL may suffer from the bad choice of pivot
features due to the noisy observations. On the other hand, TCA
and SSTCA match distributions in the latent space, where the
WiFi data have been implicitly denoised.

5) Comparison with MMDE: In this section, we compare
TCA and SSTCA with MMDE in the transductive setting. The
latent space is learned from DS and a subset of the unlabeled
target domain data sampled from Du

T . The performance is then
measured on Du

T .
Fig. 4(a) shows the results for different dimensionalities of

the latent space with |Du
T | = 400, while Fig. 4(b) shows the

results for different amounts of unlabeled target domain data,
with the dimensionalities of MMDE, TCA, and SSTCA fixed
at 15. As can be seen, MMDE outperforms TCA and SSTCA.
This may be due to the limitation that the kernel matrix used in
TCA/SSTCA is parametric. However, as mentioned in Section
IV-C, MMDE is computationally expensive because it involves
an SDP. This is confirmed in the training time comparison in

Fig. 4(c). In practice, TCA or SSTCA may be a better choice
than MMDE.

6) Sensitivity to Parameters: In this section, we investigate
the effects of the parameters on the regression performance.
These include the kernel width σ in the Laplacian kernel,
tradeoff parameter μ, and for SSTCA, the two additional
parameters γ and λ. The out-of-sample evaluation setting is
used. All the source domain data are used, and we sample
2328 samples from the target domain data to form Do

T , and
another 400 samples to form Du

T . The dimensionalities of the
latent spaces in TCA and SSTCA are fixed at 15. As can be
seen from Fig. 5, both TCA and SSTCA are insensitive to
various settings of the parameters.

C. Cross-Domain Text Classification

1) Experimental Setup: In this section, we perform cross-
domain text classification experiments on a preprocessed
dataset of the 20-Newsgroups [36]. In this experiment, we
follow the preprocessing strategy in [37] to create six datasets
from this collection. For each dataset, two top categories are
chosen, one as positive and the other as negative. We then split
the data based on subcategories. Different subcategories are
considered as different domains, and the binary classification
task is defined as top category classification. This splitting
strategy ensures that the domains of labeled and unlabeled
data are related, since they are under the same top categories.
Besides, the domains are also ensured to be different, since
they are drawn from different subcategories. The six data sets
created are “comp versus sci,” “rec versus talk,” “rec versus
sci,” “sci versus talk,” “comp versus rec,” and “comp versus
talk” (Table I).

From each of these six datasets, we randomly sample 40%
of the documents from the source domain as DS , and sample
40% from the target domain to form the unlabeled subset Du

T ,
and the remaining 60% in the target domain to form the out-of-
sample subset Do

T . Hence, in each cross-domain classification
task, |DS | = 1200, |Du

T | = 1200, and |Do
T | = 1800. We run

10 repetitions and report the average results. All experiments
are performed in the out-of-sample setting. The evaluation
criterion is the classification accuracy.

Similar to Section V-B, we perform a series of experiments
to compare TCA and SSTCA with the following methods.
1) Linear support vector machine (SVM) in the original input
space. 2) KPCA. A linear SVM is then trained in the latent
space. 3) Three domain adaptation methods: KMM, KLIEP,
and SCL. Again, a linear SVM is used as the classifier
in the latent space. We experiment with the radial basis
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Fig. 3. Comparison of TCA, SSTCA and the various baseline methods in the inductive setting on the WiFi data. (a) Results on dimensionality reduction
methods. (b) Comparison with nonadaptive methods. (c) Comparison with domain adaptation methods.
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Fig. 5. Sensitivity analysis of the TCA/SSTCA parameters on the WiFi data. (a) Varying σ of the Laplacian kernel. (b) Varying μ. (c) Varying γ in SSTCA.
(d) varying λ in SSTCA.

function (RBF), Laplacian, and linear kernels for feature
extraction or reweighting in KPCA, KMM, TCA and SSTCA.
Note that we do not compare with SSA because it results in
“out of memory” on computing the covariance matrices. For
SSTCA, kernel kyy in (9) is the linear kernel. The μ parameters
in TCA and SSTCA are set to 1, and the λ parameter in
SSTCA is set to 0.0001.

2) Results: Results are shown in Table II. As can be seen,
we can obtain a similar conclusion as in Section V-B. Overall,
feature extraction methods outperform instance-reweighting
methods. In addition, on tasks such as “R versus T,” “C
versus T,” “C versus S,” and “C versus R,” the performance of
PCA is comparable to that of linear TCA. However, on tasks
such as “R versus S” and “S versus T,” linear TCA performs
much better than PCA. This agrees with our motivation and
the previous conclusion on the WiFi experiments, namely that
mapping data from different domains to a latent space spanned
by the principal components may not work well, as PCA
cannot guarantee a reduction in distance of the two domain
distributions. In general, one may notice two main differences
between the results on the WiFi data and those on the text

data. First, the linear kernel performs better than the RBF
and Laplacian kernels here. This agrees with the well-known
observation that the linear kernel is often adequate for high-
dimensional text data. Moreover, TCA performs better than
SSTCA on the text data. This may be because the manifold
assumption is weaker in the text domain than in the WiFi
domain.

We also test how the various parameters in TCA and
SSTCA affect the classification performance. For this test, we
use linear kernels for both the inputs and outputs, and the
dimensionalities of the latent spaces are fixed at 10. Thus, the
remaining free parameters are μ for TCA, and μ, γ and λ for
SSTCA. Due to the limitation of space, we do not show the
detailed results of these experiments. Similar to the results on
the WiFi data, both TCA and SSTCA are insensitive to the
setting of μ. In addition, there is a wide range of λ for which
the performance of SSTCA is quite stable. However, different
from the WiFi results in Fig. 5(d) where SSTCA performs
well when λ ≤ 102, on the text datasets SSTCA performs
well only when λ is very small (λ ≤ 10−4). This indicates that
manifold regularization may not be useful on this text data.
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TABLE II

CLASSIFICATION ACCURACIES (%) OF THE VARIOUS METHODS (THE NUMBER INSIDE PARENTHESES IS THE STANDARD DEVIATION)

method #dim task
C versus S R versus T R versus S S versus T C versus R C versus T

SVM all 68.26 (1.23) 72.33 (2.32) 75.86 (1.55) 76.70 (1.05) 81.59 (1.36) 90.51 (0.70)

TCA

linear 10 70.41 (6.84) 87.67 (2.12) 82.83 (3.07) 84.51 (5.04) 89.79 (2.54) 88.67 (3.01)
kernel 20 69.04 (5.07) 81.52 (8.86) 83.86 (3.24) 82.23 (2.64) 89.73 (4.04) 92.03 (2.05)

30 69.01 (2.39) 77.26 (15.81) 84.44 (2.29) 79.81 (4.20) 91.81 (2.38) 92.23 (2.41)
Laplacian 10 69.12 (13.27) 78.68 (8.23) 79.58 (8.12) 69.02 (5.31) 82.29 (2.57) 90.01 (1.02)

kernel 20 69.37 (11.22) 79.57 (4.31) 78.71 (9.22) 74.71 (3.01) 85.59 (1.59) 92.68 (1.12)
30 68.58 (11.21) 80.43 (4.64) 76.69 (9.52) 74.40 (2.49) 87.89 (2.22) 92.63 (0.84)

RBF 10 74.88 (3.51) 82.51 (7.65) 78.34 (6.58) 81.65 (4.08) 82.69 (2.24) 89.15 (0.69)
kernel 20 72.60 (5.60) 77.47 (2.62) 78.09 (6.88) 79.54 (1.89) 83.51 (3.32) 90.77 (0.83)

30 71.64 (5.49) 77.62 (3.75) 80.11 (7.73) 79.50 (1.91) 83.71 (2.27) 91.58 (0.64)

SSTCA

linear 10 68.64 (3.00) 75.11 (11.93) 81.46 (3.59) 73.75 (7.55) 85.99 (3.22) 91.38 (2.22)
kernel 20 64.28 (3.48) 60.69 (14.87) 77.45 (5.30) 78.19 (4.17) 86.71 (3.36) 91.81 (2.13)

30 65.08 (3.12) 66.30 (16.74) 77.98 (4.19) 72.79 (5.75) 85.81 (3.23) 93.38 (2.02)
Laplacian 10 75.29 (3.92) 79.84 (5.03) 72.70 (10.69) 73.10 (2.10) 85.26 (2.25) 91.72 (0.64)

kernel 20 71.99 (4.73) 81.77 (3.44) 72.99 (9.99) 74.94 (2.28) 84.28 (1.27) 92.47 (0.74)
30 69.71 (4.99) 82.09 (4.42) 72.34 (10.82) 74.67 (1.79) 85.30 (1.80) 92.73 (0.76)

RBF 10 73.76 (3.25) 74.50 (7.85) 78.51 (7.50) 77.61 (1.49) 83.09 (.0287) 90.35 (1.18)
kernel 20 70.87 (7.51) 75.49 (6.67) 79.28 (7.20) 79.46 (1.27) 80.02 (.0287) 90.62 (0.83)

30 70.16 (5.98) 77.03 (5.56) 79.06 (7.60) 79.88 (1.52) 81.30 (.0287) 90.21 (0.96)

KPCA

linear 10 68.66 (6.59) 88.26 (5.85) 68.59 (10.00) 81.42 (6.67) 87.33 (3.56) 91.24 (1.84)
kernel 20 69.18 (6.27) 82.59 (7.07) 71.46 (7.41) 80.22 (3.81) 89.49 (3.34) 93.44 (1.92)

30 70.55 (2.81) 80.94 (11.63) 78.90 (8.33) 77.92 (4.32) 91.36 (1.51) 93.66 (1.81)
Laplacian 10 44.43 (8.01) 81.52 (9.00) 54.42 (7.33) 80.37 (.0252) 58.87 (4.97) 58.47 (2.35)

kernel 20 49.08 (10.46) 55.67 (6.35) 50.42 (1.01) 72.67 (.0252) 75.71 (6.83) 73.94 (3.75)
30 45.24 (8.17) 63.13 (7.76) 50.43 (1.03) 69.36 (.0252) 75.07 (10.64) 74.18 (4.24)

RBF 10 53.82 (6.23) 78.50 (4.23) 51.64 (2.11) 79.92 (.0252) 57.84 (3.74) 56.82 (2.03)
kernel 20 47.66 (8.19) 60.94 (10.97) 50.49 (1.00) 79.37 (.0252) 67.73 (5.53) 62.36 (3.84)

30 47.82 (8.37) 69.13 (9.66) 51.86 (3.82) 72.31 (.0252) 67.66 (4.48) 64.76 (5.14)
SCL all+50 68.29 (1.22) 72.38 (2.36) 75.87 (1.48) 76.73 (1.00) 81.60 (1.35) 90.61 (0.64)

KMM
linear kernel all 69.81 (1.27) 72.86 (1.53) 75.29 (1.85) 76.38 (1.32) 78.17 (1.29) 88.06 (1.33)

Laplacian kernel all 69.64 (1.27) 73.10 (1.67) 76.62 (1.23) 75.83 (1.27) 77.81 (1.21) 85.92 (0.70)
RBF kernel all 69.65 (1.24) 73.07 (1.48) 76.63 (1.14) 76.43 (1.17) 77.28 (1.18) 84.30 (1.00)

KLIEP all 68.55 (1.36) 72.23 (1.20) 75.53 (1.17) 75.11 (0.81) 77.94 (1.09) 85.12 (0.99)

In this case, using unsupervised TCA for domain adaptation
may be a better choice than using SSTCA.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel feature extraction
method, TCA, for domain adaptation. It learns a set of transfer
components in a RKHS such that when projecting domain data
onto the latent space spanned by the transfer components, the
distance between domains can be reduced. In order to capture
the label dependence in transfer components learning, we
further proposed a semisupervised feature extraction method,
i.e., SSTCA, which can reduce the distance in data distribu-
tions between domains and maximize label dependence in a
latent space simultaneously. Compared to the previous domain
adaptation methods, TCA and SSTCA match distributions in
a denoised latent space instead of the original feature space.
Experiments on toy datasets and two real-world applications
verify the efficiency and effectiveness of the proposed TCA
and SSTCA.

In the future, we plan to continue our work by pursuing
several avenues. First, we plan to adaptively estimate the
number of transfer components in TCA and SSTCA. Second,
in order to speed up kernel learning for domain adaptation,
TCA and SSTCA propose to use parametric kernels for the
MMD measure, we plan to develop an efficient algorithm for
kernel choice in TCA and SSTCA. Moreover, we also plan to
extend TCA and SSTCA to a multidomain setting.
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