
1436 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Efficient Sparse Modeling With
Automatic Feature Grouping

Leon Wenliang Zhong and James T. Kwok

Abstract— For high-dimensional data, it is often desirable to
group similar features together during the learning process. This
can reduce the estimation variance and improve the stability of
feature selection, leading to better generalization. Moreover, it
can also help in understanding and interpreting data. Octagonal
shrinkage and clustering algorithm for regression (OSCAR) is a
recent sparse-modeling approach that uses a �1-regularizer and a
pairwise �∞-regularizer on the feature coefficients to encourage
such feature grouping. However, computationally, its optimization
procedure is very expensive. In this paper, we propose an efficient
solver based on the accelerated gradient method. We show that
its key proximal step can be solved by a highly efficient simple
iterative group merging algorithm. Given d input features, this
reduces the empirical time complexity from O(d2 ∼ d5) for the
existing solvers to just O(d). Experimental results on a number
of toy and real-world datasets demonstrate that OSCAR is a
competitive sparse-modeling approach, but with the added ability
of automatic feature grouping.

Index Terms— Accelerated gradient descent, feature grouping,
sparse modeling, structured sparsity.

I. INTRODUCTION

REAL-WORLD data are often high dimensional and con-
tain spurious features. Sparse modeling, which selects a

relevant subset of features while learning the model, is thus
becoming indispensable. It has been widely used in diverse
application areas such as computer vision [1], image analysis
[2], [3], signal processing [4], and bioinformatics [5].

Lasso [6] is the most popular sparse-modeling algorithm.
It uses the squared error and an �1-regularizer. As is well
known, this regularizer induces sparsity in the solution. How-
ever, in the presence of highly correlated features, it tends
to arbitrarily select only one of them [7]. Consequently,
estimation can be unstable, and the resultant model difficult
to interpret.

Another deficiency with lasso is that it cannot find feature
groups. In general, feature grouping can reduce the estimator’s
variance [8] and improve the stability of feature selection [9].
It also helps to gain additional insight on the underlying data
generation process, which is useful, for example, in the finding

Manuscript received October 5, 2011; revised May 10, 2012; accepted
May 10, 2012. Date of publication July 12, 2012; date of current version
August 1, 2012. This work was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region under Grant
614311.

The authors are with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Kowloon, Hong Kong
(e-mail: wzhong@cse.ust.hk; jamesk@cse.ust.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2012.2200262

of coregulated genes [10] and understanding of protein–protein
interaction networks [8]. Note that this is different from the
group lasso and its variants [11], which require the feature
groups be known in advance and may not be feasible in
many applications. Moreover, group lasso cannot encourage
coefficients in the same group to have similar magnitudes.

A simple approach to find feature groups is by first perform-
ing clustering on the data, and then input the cluster centers
as new features to a supervised learner [12], [13]. However,
this clustering step cannot take supervised information into
account. A more desirable approach is to perform feature
clustering and classifier training simultaneously. Dettling and
Bühlmann [10] used a heuristic strategy that grows and
prunes the feature groups incrementally. Jörnsten and Yu [9]
combined feature clustering and classification into a single
minimum description length code, and then use a search
procedure to find the best model.

The explicit search for feature groups is a combinatorial
optimization problem. Alternatively, one can encourage group
formation by using an appropriate regularizer in the optimiza-
tion problem. A well-known approach is the elastic net [7],
which uses a combination of �1- and �2-regularizers. Let βi s
be the feature coefficients of the regression model. The elastic
net encourages βi to be close to β j for highly correlated
features i, j . Empirically, this is better than lasso in grouping
features, but is still less effective than the above grouping
methods [13]. In situations where the features are ordered in
some meaningful way, the fused lasso [14] directly encourages
the successive feature coefficients to be similar by using the
regularizer

∑d
i=2 |βi − βi−1|. However, oftentimes such an

ordering does not exist naturally. One then needs to estimate it
by hierarchical clustering or multidimensional scaling, which
incurs additional overhead and may also introduce error.

Recently, interest has focused on the more challenging
problem where features are not ordered [8], [15]–[17]. Similar
to the fused lasso, they all try to pull two feature coefficients
βi , β j together. For example, Wu et al. [16] proposed an
�1 + �∞ regularizer. However, the �∞-norm only penalizes
those features with maximum absolute value. Shen and Huang
proposed the grouping pursuit [8], which uses the regularizer∑

j< j ′ G(β j −β j ′) where G(z) = λ (a regularization parame-
ter) if |z| > λ; and |z| otherwise. While the fused lasso only
requires the successive coefficients to be similar, grouping pur-
suit requires all (β j , β j ′) pairs to be similar. Computationally,
as G(·) is nonconvex, this leads to a sequence of expensive
difference of convex programs. Moreover, it cannot obtain
sparse solutions. The clustered lasso [17] uses the regularizer

2162–237X/$31.00 © 2012 IEEE

ZHONG AND KWOK: EFFICIENT SPARSE MODELING WITH AUTOMATIC FEATURE GROUPING 1437

λ1‖β‖1 + λ2
∑

i< j |βi − β j |, and can be viewed as a sparse
convex variant of [8]. However, given d features, its solver
handles the O(d2) pairwise penalty terms explicitly, and thus
is not scalable for large d . Moreover, its convergence analysis
assumes that the sample covariance is nonsingular, which may
not be feasible especially when the dataset is high dimensional.

In this paper, we will focus on the octagonal shrinkage and
clustering algorithm for regression (OSCAR) method [15].
With a novel pairwise �∞ norm on the feature coefficients,
it encourages both sparsity and equality of coefficients for
highly correlated features. Feature groups are automatically
discovered simultaneously with regression shrinkage, without
the need to prespecify the grouping structure as in group lasso.
Moreover, since the coefficients for the grouped features are
tied, the resultant model has smaller model complexity and is
less prone to overfitting.

Despite these advantages, the optimization problem of
OSCAR, though still convex, is much more challenging.
Bondell and Reich [15] proposed two solvers which unfor-
tunately are not scalable for large d , and their experiments
are limited to small feature sets. Alternatively, as OSCAR’s
pairwise �∞ norm is simply the sum of �∞ norms over groups
of two variables, one can use the network flow algorithm
recently proposed in [18]. However, this algorithm is designed
for general overlapping groups but not tailored for OSCAR.
Because of the O(d2) number of groups in OSCAR, each iter-
ation will involve solving a maxflow problem on a canonical
graph G = (V , E) with |V | = |E | = O(d2), and results in a
complexity of O(d5) [19].

In this paper, we propose an accelerated gradient algorithm
[20] that is tailored for OSCAR’s optimization problem. By
using a simple group merging algorithm, the key proximal
step can be solved exactly and efficiently in O(d log(d))
time. Empirically, it is even faster and scales only as O(d).
Hence, the proposed algorithm is particularly efficient on high-
dimensional datasets. Compared with the other sparse models,
the proposed method achieves comparable accuracy with state-
of-the-art methods on both regression and classification prob-
lems, but with the added ability of automatic feature grouping.

The rest of this paper is organized as follows. In Section II,
we first give a brief review on OSCAR and accelerated
gradient methods. Section III then describes the proposed
solver. Experimental results are presented in Section IV, and
Section V gives some concluding remarks. A preliminary
conference version of this paper has been reported in [21].
All the proofs are in the Appendix.

II. RELATED WORK

A. OSCAR [15]

Let X ∈ R
n×d be the input data matrix (with each row

being an instance) and y ∈ R
n be the corresponding output.

We assume that y is centered (i.e.,
∑n

i=1 yi = 0) and each
column of X is standardized (i.e., for column j ,

∑n
i=1 xi j = 0

and var(xi j) = 1). OSCAR is formulated as the following
optimization problem:

min
β
‖y − Xβ‖2 + λ1‖β‖1 + λ2

∑

i< j

max{|βi |, |β j |} (1)

Fig. 1. Constraint regions for lasso and OSCAR.

where β = [β1, β2, . . . , βd]T , and λ1, λ2 are regularization
parameters. The OSCAR regularizer thus consists of two parts:
an �1-regularizer which encourages sparsity as in lasso and
a pairwise �∞-regularizer which encourages every coefficient
pair |βi |, |β j | to be equal (Fig. 1). This can encourage highly
correlated features to be grouped together [15]. On sorting the
indices such that |β1| ≥ |β2| ≥ · · · ≥ |βd |, the regularizer can
also be rewritten as

∑d
i=1[λ1 + (d − i)λ2]|βi |.

In [15], (1) is considered in the equivalent form
minβ ‖y − Xβ‖2: (1 − c)‖β‖1 + c

∑
i< j max{|βi |, |β j |} ≤ t ,

for the appropriate values of c and t . Two solvers are proposed.
The first one splits each β j into positive and negative parts,
as β j = β+j − β−j (β+j ≥ 0, β−j ≥ 0), and then introduces
d(d − 1)/2 variables η j k (1 ≤ j < k ≤ d) for the pairwise
maxima. This leads to a huge quadratic programming (QP)
with (d2+3d)/2 variables and d2+d+1 linear constraints. The
second solver uses a sequential QP (SQP) algorithm in which
constraints are gradually added. It starts with a QP problem
with 2d + 1 constraints. At each iteration, a new constraint
is added and the new QP is solved. This is iterated until a
solution is found. However, the total number of constraints
can be O(d!) in the worse case. Hence, both solvers cannot
be used on high-dimensional data.

B. Accelerated Gradient Methods

Gradient methods are well known for their simplicity and
scalability. However, a major drawback is that they have
slow convergence, especially when the objective function is
nonsmooth. In the past decades, attempts have been made to
accelerate gradient methods. Nesterov pioneered the “optimal
method” for smooth optimization, which achieves the optimal
convergence rate for a black-box model [22]. Subsequent
works [20] extended this for composite optimization

min
β

f (β)+ r(β) (2)

where f (β) is convex with Lipschitz continuous gradient and
r(β) is convex but nonsmooth. Recently, accelerated gradient
methods have been successfully used in many learning prob-
lems, where f (β) is usually taken as the loss and r(β) as
the regularizer. Examples include lasso [20] and its variants
[18], [23], trace norm minimization [24], and other sparsity-
inducing norms [25].

While gradient methods perform descent by simply
using the (sub)gradient of the nonsmooth objective in (2),
accelerated methods solve the following optimization problem

1438 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Algorithm 1 FISTA Algorithm for OSCAR

1: Initialize: β̂
1 ← β0 ∈ R

n, τ1 ← 1, t ← 1.
2: repeat
3: β t ← arg minβ Q(β; β̂t

). {proximal step (which is
solved by using Algorithm 2)}

4: τt+1← 1+
√

1+4τ 2
t

2 .

5: β̂
t+1← β t +

(
τt−1
τt+1

)
(β t − β t−1).

6: t ← t + 1.
7: until convergence (the stopping criterion can be based on

the duality gap computed in Algorithm 3).
8: Output β t.

(often called the proximal step):
arg min

β
Q(β; β̂t

) ≡ f (β̂
t
)+ (β − β̂

t
)T∇ f (β̂

t
)

+ L

2
‖β − β̂

t‖2 + r(β) (3)

where β̂
t

is the current estimate at iteration t , and L is the
Lipschitz constant1 of ∇ f (β). Note that Q(β; β̂ t

) is a linear
approximation of the smooth component f (β) while leaving
the nonsmooth component r(β) intact. Problem (3) is also a
common construct in the proximal methods [25] and many
recent stochastic (sub)gradient methods [26].

The subsequent update step depends on the specific accel-
erated algorithm. In this paper, we will adopt the fast iter-
ative shrinkage-thresholding algorithm (FISTA) [20], which
is shown in Algorithm 1. While traditional gradient methods
have a slow convergence rate of O(1/

√
N), where N is the

number of iterations, FISTA converges as O(1/N2). However,
this requires that the crucial proximal step in (3) to be solved
efficiently and exactly.

C. OSCAR and Structured Sparsity-Inducing Norm

The OSCAR regularizer is an example of structured
sparsity-inducing norm [25], [27]. Recently, Mairal et al. [18]
considered structured norms of the general form

∑

g∈G
ηg‖βg‖∞ (4)

where G is an arbitrary set of overlapping groups of indices in
{1, 2, . . . , d}, βg is the subvector of β indexed by group g, and
ηg is the corresponding weight. They developed an efficient
algorithm (called ProxFlow) which is based on accelerated
gradient methods. As discussed in Section II-B, its success
thus relies on the efficient computation of the proximal step.
It is shown in [18] that the dual of this step can be reformulated
as a quadratic min-cost flow algorithm on a canonical graph
G(V , E), where |V | = |G|+d and |E | = |G|+∑

g∈G |g|+d .
The worst case complexity for solving this maxflow problem
is O(|V |2|E |(1/2)) [19], though empirically it can be much
faster.

1In other words, ‖∇ f (β)−∇ f (β̃)‖ ≤ L‖β − β̃‖ for every β, β̃.

Obviously, (4) admits the OSCAR regularizer in (1) as
a special case, and thus ProxFlow can be readily used for
its optimization. However, because of the O(d2) number
of groups in OSCAR’s pairwise �∞-regularizer, the canon-
ical graph in ProxFlow’s maxflow problem has |V | =
|E | = O(d2). Consequently, each proximal step takes
O(|V |2|E |(1/2)) = O(d5) time. As will be shown in Sec-
tion IV, empirically this is only as fast as the QP and SQP
solvers in [15].

Recently, Bach [28] proposed an interesting connection
between structured sparsity-inducing norms and submodular
functions. Specifically, the OSCAR regularizer r(β) can be
viewed as the Lovász extension of the submodular function
R(A) = λ2(d|A| −∑|A|

i=1 i)+ λ1|A|, where A ⊆ {1, 2, . . . , d}
is a subset of indices. Thus, the proximal step can be cast as
submodular function minimization, in which standard solvers
can be used. However, these solvers either have high com-
plexity [e.g., O(d6)] or no complexity bound at all (e.g., the
minimum-norm-point algorithm). Moreover, as these solvers
are generic, they can be rather inefficient for a specific model
such as OSCAR.

III. EFFICIENT PROXIMAL STEP FOR OSCAR

The OSCAR objective in (1) can be decomposed into the
form of (2), with

f (β) = ‖y − Xβ‖2 (5)

which is smooth, and

r(β) = λ1‖β‖1 + λ2

∑

i< j

max{|βi |, |β j |} (6)

which is nonsmooth. The following proposition shows that the
proximal step (3) can be written in a more compact form. All
the proofs are given in the Appendix.

Proposition 1: With f (·) in (5) and r(·) in (6), the proximal
step (3) can be rewritten as

min
z≥0

F(z) ≡ (z− a)T z+ r̂(z) (7)

where z = [z1, z2, . . . , zd]T and a = [a1, a2, . . . , ad]T, with

zi = |βi | (8)

ai = 2

L

∣
∣
∣Lβ̂ t

i − [∇ f (β̂
t
)]i

∣
∣
∣ (9)

and

r̂(z) = 2

L

⎛

⎝λ1

d∑

i=1

zi + λ2

∑

i< j

max{zi , z j }
⎞

⎠. (10)

Without loss of generality, we assume that the indices i ∈
{1, 2, . . . , d} have been permuted such that

a1 ≥ a2 ≥ · · · ≥ ad ≥ 0. (11)

Since (z−a)T z is strongly convex, we immediately obtain the
following corollary.

Corollary 1: Problem (7) has a unique optimal solution.

ZHONG AND KWOK: EFFICIENT SPARSE MODELING WITH AUTOMATIC FEATURE GROUPING 1439

A. Properties of the Optimal Solution of (7)

Since the OSCAR regularizer encourages |βi | = |β j | (or,
equivalently, zi = z j), we expect some of z1, . . . , zd will be
lumped into groups. Let z∗ be the optimal solution of (7). In
this section, we present the three properties of this optimal z∗,
namely:

1) z∗i s are in nonincreasing order (Proposition 2);
2) the value in each group of z∗ can be easily determined

(Proposition 3);
3) the groups in z∗ are “coherent” (Proposition 4).

1) z∗i s are Nonincreasing: With the ai s sorted in decreasing
order, the following proposition shows that z∗i s will also be
arranged in the same order.

Proposition 2: At the optimal solution

z∗1 ≥ z∗2 ≥ · · · ≥ z∗d ≥ 0. (12)

Moreover, if ai = a j , then z∗i = z∗j .
As z∗i is the i th largest value in {z∗1, z∗2, . . . , z∗d }, it can be

seen that its contribution to (10) is (2/L)(λ1+λ2(d−i))z∗i . We
can then replace z ≥ 0 in (7) by the more explicit constraint
in (12). The resultant optimization problem is

minz F(z) =
d∑

i=1

F̄i (zi) (13)

s.t. z1 ≥ z2 ≥ · · · ≥ zd ≥ 0

where F̄i (zi) = (zi − ai)zi + wi zi and wi = (2/L)(λ1 + λ2
(d − i)).

Remark 1: This is a standard QP and can be solved by
an off-the-shelf QP solver. However, as will be shown in
Section III-B, an efficient closed-form solution for the optimal
z∗ can be obtained without the need of a numerical solver.

2) Common Value in Groups: The following gives a formal
definition of “groups.”

Definition 1: Given {z1, . . . , zd }, the set of indices Is:t =
{i ∈ Z : s ≤ i ≤ t}, where s, t ∈ Z, is called a group (denoted
Gs:t) if:

a) zi = z j for all i, j ∈ Is:t ;
b) zs−1 �= zs if s �= 1;
c) zt �= zt+1 if t �= d .
Proposition 3: For a group Gs:t in the optimal z∗, the

common value for each element in Gs:t is given by

z = zs = · · · = zt = max{vs:t , 0} (14)

where

vs:t ≡
∑

i∈Gs:t (ai −wi)

2(t − s + 1)
. (15)

3) Coherence: Another important property is that the
groups in z∗ must be coherent in the following sense.

Definition 2: A group Gs:t is coherent if there is no integer
u ∈ {s, s + 1, . . . , t − 1} such that vs:u > vu+1:t .

Intuitively, one cannot split a coherent group into two such
that their group values are in descending order.

Proposition 4: For any group Gs:t in z∗, if its common value
z∗s = · · · = z∗t = vs:t ≥ 0, then Gs:t is coherent.

Now we are ready to give the sufficient and necessary
conditions for the optimal z∗.

Algorithm 2 Solving of the Proximal Step [Here, v(G) of a
Group G Denotes its Group Value as Defined in (15)]

1: Compute a in (9), and sort the {ai }di=1 in decreasing order.
2: for i = 1, 2, . . . , d do
3: define group Gi:i = {i}.
4: end for
5: Initialize stack S = {G1:1}, and let Gtop be the group at the

top of S.
6: for i = 2, 3, . . . , d do
7: Ḡ ← Gi:i .
8: while S is not empty and v(Ḡ) ≥ v(Gtop) do
9: Ḡ ← Ḡ ∪ Gtop. {merge Ḡ with Gtop}

10: remove Gtop from the top of S. {pop}
11: end while
12: add Ḡ to the top of S. {push}
13: end for
14: Compute z∗ from the obtained groups by (14), (15).

Theorem 1: z∗ is the optimal solution of (13) if and only
if it satisfies Propositions 2–4.

B. Algorithm

Algorithm 2 shows how to obtain the optimal z∗. Initially,
every index s ∈ {1, 2, . . . , d} forms a group Gs:s = {s} of
its own. Starting from the first group, the algorithm examines
the group values of two consecutive groups. If they are not
in decreasing order, the groups are merged and pushed to the
stack. The following proposition shows that the merged group
is still coherent.

Proposition 5: Given two consecutive coherent groups Gs:u
and Gu+1,t . If vs:u ≤ vu+1:t , the merged group Gs:t is also
coherent.

Hence, when Algorithm 2 terminates, the groups are
arranged in decreasing order (and so are z∗1, z∗2, . . . , z∗d),
and thus satisfies Proposition 2. After obtaining the group
structure, the common value for entries in each group of z∗ is
simply the group value given by (14), and thus Proposition 3 is
also satisfied. Moreover, Proposition 5 ensures that the merged
group is coherent, thus satisfying Proposition 4.

After obtaining z∗, the magnitude of the optimal β∗ can be
recovered from (8) as |β∗i | = z∗i , while its sign is chosen as

sign(βi) = sign(Lβ̂ t
i −[∇ f (β̂

t
)]i) as shown in the Appendix.

Since there are d groups initially and each merge operation
reduces the number of groups by one, there are at most d − 1
merge operations. As each merge operation and other stack
operations take O(1) time, the complexity of Algorithm 2 is
dominated by the initial sorting of ai s, which takes O(d log d)
time. This is much faster than the QP-based and SQP-based
solvers in Section II-A, and the network flow algorithms for
general structured sparse models in Section II-C.

The number of iterations for FISTA to obtain an ε-optimal
solution is O(1/

√
ε) [20]. The time to compute the gradient

of ‖y − Xβ‖2 is usually O(nd). Hence, the total time is
O((1/

√
ε)(d(n + log d)). Typically, n � log d , and the time

thus scales linearly w.r.t. d .

1440 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Algorithm 3 Computing the Duality Gap for a Given β

1: Compute γ̃ = 2XT (Xβ − y).
2: Sort |γi |s in decreasing order and store it as γ .
3: Compute r∗(XT∇ f̃ (Xβ)) using Proposition 6, and subse-

quently α(β) in (17).
4: Output the duality gap in (16).

C. Computing the Duality Gap

The duality gap is often used as a stopping criterion in
convex optimization. To compute the duality gap, first notice
that r(·) in (6) is a norm [18]. The dual of OSCAR is then
[25]: maxα − f̃ ∗(α): r∗(XT α) ≤ 1, where α ∈ R

n is the dual
variable, r∗(γ) = maxr(β)≤1 γ T β is the dual norm of r(·), and
f̃ ∗(α) is the Fenchel conjugate2 of f̃ (θ) = ‖y − θ‖2, which
can be easily shown to be f̃ ∗(α) = (1/4)‖α‖2 + αT y. For a
solution β, the duality gap is given by [25]

f (β)+ r(β)+ f̃ ∗(α(β)) (16)

where

α(β) = min

{

1,
1

r∗(XT∇ f̃ (Xβ))

}

∇ f̃ (Xβ) (17)

and ∇ f̃ (Xβ) = 2(Xβ − y). To compute r∗(γ) in (17), we
assume that the indices have been sorted as |γ1| ≥ · · · ≥ |γd |.
The following proposition shows that r∗(γ) can then be easily
computed.

Proposition 6: r∗(γ) = max j=1,...,d(
∑ j

i=1 |γi |)/(∑ j
i=1 λ1+

(d − i)λ2).
Algorithm 3 shows the procedure for computing the duality

gap. The most expensive step is in the sorting of |γi |s, which
takes O(d log(d)) time.

IV. EXPERIMENTS

A. Efficiency of the Proposed Solver

In this section, we first demonstrate the efficiency of the
proposed OSCAR solver, which will be called FastOSCAR.
We use the regression model y = Xβ∗+ε, where β∗ ∈ R

d , and
ε ∼ N(0, σ 2I). Following [15], we employ the five synthetic
problems in Section IV. These datasets have been popularly
used (e.g., [6], [7]) and represent various possible real-world
scenarios. Data matrices for the first four are generated as
X ∼ N (0, C), where C = [ci j] is the covariance matrix. For
the fifth data, the inputs are generated as

xi = Z1 + εi , Z1 ∼ N (0, 1) i = 1, . . . , 0.1d

xi = Z2 + εi , Z2 ∼ N (0, 1) i = 0.1d + 1, . . . , 0.2d

xi = Z3 + εi , Z3 ∼ N (0, 1) i = 0.2d + 1, . . . , 0.3d

xi ∼ N (0, 1) i = 0.3d + 1, . . . , d

where εi ∼ N (0, 0.16). Values of σ, C, and β∗ for the five
problems are given as follows.

1) σ = 3, ci j = 0.7|i− j | and β∗ =
[3, 3, . . .
︸ ︷︷ ︸

0.1d

, 2, 2, . . .
︸ ︷︷ ︸

0.1d

, 1.5, 1.5, . . .
︸ ︷︷ ︸

0.1d

, 0, 0, . . .
︸ ︷︷ ︸

0.7d

]T.

2The Fenchel conjugate of f̃ (θ) is defined as f̃ ∗(α) = supθ αT θ − f̃ (θ).

TABLE I

VALUES OF THE EXPONENT η IN THE EMPIRICAL TIME COMPLEXITIES

O(dη) ON THE FIVE SYNTHETIC DATASETS

datasets
1 2 3 4 5

QP 4.35 4.26 5.22 4.49 2.78
SQP 3.50 3.20 3.73 2.56 2.74

ProxFlow 2.38 2.34 2.38 2.47 2.03
FastOSCAR 1.75 1.74 1.64 0.94 1.00

2) Same as dataset 1 except that β∗ =
[3, 3, . . .
︸ ︷︷ ︸

0.1d

, 0, 0, . . .
︸ ︷︷ ︸

0.3d

, 1.5, 1.5, . . .
︸ ︷︷ ︸

0.1d

, 0, 0, . . .
︸ ︷︷ ︸

0.4d

, 2, 2, . . .
︸ ︷︷ ︸

0.1d

]T.

3) Same as dataset 1 except that β∗ =
[0.85, 0.85, . . . , 0.85]T.

4) σ = 15, ci j = 0.5 when i �= j , and 1 otherwise; and
β∗ = [0, . . . , 0

︸ ︷︷ ︸
0.3d

, 2, . . . , 2
︸ ︷︷ ︸

0.2d

, 0, . . . , 0
︸ ︷︷ ︸

0.3d

, 2, . . . , 2
︸ ︷︷ ︸

0.2d

]T.

5) σ = 15 and β∗ = [3, . . . , 3
︸ ︷︷ ︸

0.3d

, 0, . . . , 0
︸ ︷︷ ︸

0.7d

]T.

We compare FastOSCAR with: 1) the QP solver in [15];
2) the SQP solver3 in [15]; and 3) ProxFlow4 in [19]. For the
QP and SQP solvers, the default stopping criterion is used.
For ProxFlow, the default maximum number of iterations is
100. However, this cannot yield a comparable accuracy to
the other solvers here, and so we increase it to 300. For
FastOSCAR, it stops when the relative duality gap is small
(i.e., (f (β)+ r(β)+ f ∗(α(β)))/(f (β)+ r(β)) ≤ 10−6) or
when the relative change in the OSCAR objective is small
(≤ 10−5), with a maximum of 2000 iterations.

We vary the input dimensionality d from 10 to 10 240. For
each d , λ1 and λ2 are chosen from a validation set of 1000
samples. [15, eq. (7)] is then used to obtain the equivalent
(c, t) setting for the QP and SQP solvers. Reported results are
averaged from ten realizations of the training sets (each with
1000 samples). Experiments are performed on a PC with a
quad-core 4.5-GHz CPU and 12-GB memory.

On all the runs, the four solvers return almost identical
solutions (the relative differences in the obtained objective
values and ‖β‖ are typically smaller than 10−5). Hence, only
the time is reported in Fig. 2. As can be seen, FastOSCAR is
much faster than the others even when d is only moderately
large (e.g., d ≥ 80). The empirical time complexities are
shown in Table I. The running time of FastOSCAR is close
to O(d), which agrees with our analysis in Section III-B.

Next, we fix n and d to 1000 and study the effect of λ1, λ2
on the speed of FastOSCAR. Because of the lack of space,
only the results on dataset 5 are shown in Fig. 3. As can be
seen, it is not sensitive to the value of λ1. As for λ2, when it
is large, the grouping effect is strong and a few large clusters
can be quickly formed. Hence, the number of FISTA iterations
is small [Fig. 3(a)] and so is the CPU time [Fig. 3(b)].

Finally, we set n = d and vary d from 1 to 2560.
Fig. 4 shows the speed of FastOSCAR. As can be seen, it

3Both the QP and SQP solvers are available at: http://www4.
stat.ncsu.edu/∼bondell/software.html.

4Available at: http://www.di.ens.fr/∼mairal/software.php.

ZHONG AND KWOK: EFFICIENT SPARSE MODELING WITH AUTOMATIC FEATURE GROUPING 1441

(a) (b)

(c) (d)

(e)

Fig. 2. CPU time for various OSCAR solvers on the synthetic datasets. Note
that both axes are in log scale. (a) Data set 1. (b) Data set 2. (c) Data set 3.
(d) Data set 4. (e) Data set 5.

(a) (b)

Fig. 3. Speed of FastOSCAR on dataset 5, at different values of λ1 and λ2.
(a) Number of FISTA iterations. (b) CPU time.

is almost linear in nd , which again agrees with our analysis
in Section III-B.

B. Synthetic Data

In this section, we compare OSCAR with several state-of-
the-art sparse-modeling approaches, including lasso [6], fused
lasso [14], elastic net [7], and group lasso [11]. The datasets
are generated as in Section IV-A except with:

1) d = 8 and β∗ = [3, 2, 1.5, 0, 0, 0, 0, 0]T ;
2) d = 8 and β∗ = [3, 0, 0, 1.5, 0, 0, 0, 2]T ;
3) d = 8 and β∗ = [0.85, 0.85, . . . , 0.85]T ;
4) d = 40 and β∗ = [0, . . . , 0

︸ ︷︷ ︸
10

, 2, . . . , 2
︸ ︷︷ ︸

10

, 0, . . . , 0
︸ ︷︷ ︸

10

,

2, . . . , 2
︸ ︷︷ ︸

10

]T ;

5) d = 40 with β∗ = [3, . . . , 3
︸ ︷︷ ︸

5

, 3, . . . , 3
︸ ︷︷ ︸

5

, , 3 . . . , 3
︸ ︷︷ ︸

5

,

0, . . . , 0
︸ ︷︷ ︸

25

]T.

A summary of the datasets is given in Table II. As suggested
in [14], feature ordering for the fused lasso is obtained by

Fig. 4. CPU time of FastOSCAR at different values of nd.

TABLE II

SUMMARY OF THE DATASETS USED

Data Dim No. of
training

No. of
valida-

tion

No.
of
test

Synthetic problem 1 8 40 40 200

Synthetic problem 2 8 40 40 200

Synthetic problem 3 8 40 40 200

Synthetic problem 4 40 200 200 400

Synthetic problem 5 40 100 100 400

atheism versus graphics 7971 707 707 354

windows.x versus religion.misc 8172 644 643 322

autos versus motorcycles 8012 792 792 396

baseball versus hockey 8087 795 795 398

forsale versus ms-windows.misc 6818 740 739 370

guns versus mideast 10 091 789 789 394

med versus space 9510 771 771 385

pc.hardware versus politics.misc 8196 701 701 351

mac.hardware versus christian 8257 782 782 391

crypt versus electronics 8778 789 789 395

breast cancer 300 118 118 59

hierarchical clustering. Group lasso requires the group struc-
ture to be known in advance. In this experiment, we give it an
unfair advantage by supplying it with the true group structure.
Parameters in all the models are tuned using an independent
validation set of the same size as the training set.

As discussed in [8], encouraging coefficients to be similar
to each other as in OSCAR will unwantedly overpenalize large
pairwise coefficient differences and thus impede performance.
Instead of resorting to the use of a nonconvex regularizer as in
[8], we alleviate this problem by rescaling OSCAR. First, we
run OSCAR to obtain the group structure. Features with zero
coefficients are discarded, while those in the same group G are
merged to form a new “super-feature” xG =

∑
i∈G sgn(βi)xi

of weight |G|. These are then used to train a weighted
ridge regression model. For comparison, this rescaling is also
applied to the fused lasso.

Table III compares the various methods in terms of the
following:

1) mean-squared error (MSE) (β − β∗)XT X(β − β∗);
2) degrees of freedom (DoF), which is the number of

unique nonzero coefficients obtained, for OSCAR, it is
the number of groups discovered [15];

3) number of feature selection errors, which is the number
of nonzero coefficients that are estimated as zero plus
the number of zero coefficients that are estimated as
nonzero.

1442 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

TABLE III

RESULTS ON THE SYNTHETIC DATA. NUMBERS AFTER THE ± SIGN ARE THE STANDARD ERRORS OF THE MEDIAN (ESTIMATED BY BOOTSTRAPPING

WITH 500 RESAMPLINGS AS IN [7]). THE BEST RESULTS AND THOSE THAT ARE NOT SIGNIFICANTLY WORSE (ACCORDING TO THE t -TEST WITH A

p-VALUE LESS THAN 0.05) ARE IN BOLD. NOTE THAT UNLIKE OSCAR, GROUP LASSO IS GIVEN THE TRUE GROUP STRUCTURE

Dataset Lasso
Fused lasso Fused lasso

Elastic net Group lasso
OSCAR OSCAR

(nonrescaled) (rescaled) (nonrescaled) (rescaled)
MSE 0.93±0.25 0.69±0.10 0.38±0.07 0.33±0.08 1.17±0.23 0.79±0.19 0.33±0.08

1 DoF 4.73±1.14 3.97±1.51 2.48±0.69 3.84±0.73 7.46±1.32 4.89±1.22 2.48±0.71
No. of (selection error) 2.08±1.34 2.76±1.85 0.39±0.72 0.84±0.73 4.82±1.37 2.94±1.50 0.42±1.39

MSE 1.16±0.14 1.46±0.20 1.13±0.17 1.06±0.13 1.37±0.16 1.13±0.13 0.98±0.15
2 DoF 5.11±1.20 5.64±1.04 4.84±1.10 6.10±1.05 7.50±1.00 5.50±0.89 5.24±1.69

No. of (selection error) 2.12±1.21 4.35±1.00 3.41±1.39 3.12±1.05 4.51±1.00 3.13±1.08 3.71±1.44
MSE 1.61±0.09 0.02±0.02 0.02±0.02 0.87±0.10 0.79±0.16 0.48±0.21 0.02±0.02

3 DoF 6.31±0.88 1.12±0.33 1.12±0.32 7.60±0.52 8.00±0.00 3.54±1.26 1.12±0.32
No. of (selection error) 1.69±0.88 0.00±0.00 0.00±0.00 0.40±0.52 0.00±0.00 0.15±0.36 0.00±0.00

MSE 26.96±1.06 17.61±0.88 15.71±0.56 21.01±0.78 9.73±1.22 19.00±1.01 16.00±0.75
4 DoF 25.29±3.04 7.84±6.62 22.29±9.02 27.14±2.15 31.98±6.60 17.68±5.55 22.10±11.14

No. of (selection error) 12.97±2.44 18.55±2.42 16.51±3.45 11.11±2.04 11.98±6.60 18.78±1.84 16.75±3.74
MSE 33.41±2.19 12.37±1.32 4.17±0.66 13.85±1.28 22.62±2.51 23.58±2.10 3.84±1.22

5 DoF 13.86±3.64 7.09±2.46 4.03±1.07 15.78±1.37 40.00±0.00 18.19±4.06 2.82±1.30
No. of (selection error) 9.04±3.63 7.71±6.60 0.62±1.40 1.61±0.82 25.00±0.00 14.11±4.82 0.00±0.00

(a) (b) (c) (d) (e)

Fig. 5. Feature coefficients obtained on the five datasets. The first row is for dataset 1, the second row is for dataset 2, and so on. (a) Ground truth.
(b) OSCAR. (c) Fused lasso. (d) Group lasso. (e) Elastic net.

To reduce statistical variability, results for all the methods are
averaged over 50 repetitions.

As can be seen, rescaling helps both OSCAR and fused
lasso. Overall, (rescaled) OSCAR excels on all three criteria.
By automatically tying features into groups, OSCAR is able
to reduce the DoF and thus model complexity, making it less
prone to overfitting and achieving the best or second-best MSE
among all methods. Moreover, it has a much lower feature
selection error. The rescaled fused lasso is also sometimes
competitive, but OSCAR is advantageous in that the features
do not need to be first ordered by an additional hierarchical
clustering step. Group lasso, though given the true group
structure, is often inferior to OSCAR. We speculate that this is
because group lasso does not tie the nonzero coefficients in the
same group together, and thus has a much higher complexity,
which impairs generalization.

Fig. 5 shows the feature coefficients obtained by the
various methods in a typical run. As can be seen, among
the sparse-modeling methods tested, only OSCAR and fused
lasso can perform feature grouping. Moreover, on compar-
ing with the fused lasso, OSCAR can group most of the
zero features together and its solution is also closer to the
ground truth.

C. 20 Newsgroups

In this experiment, we divide the 20-newsgroups dataset5

into ten pairs (Table II). As preprocessing, we remove words
that appear in fewer than three documents. 40% of the samples
are then used for training, another 40% for validation, and the

5Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/.

ZHONG AND KWOK: EFFICIENT SPARSE MODELING WITH AUTOMATIC FEATURE GROUPING 1443

TABLE IV

RESULTS ON THE 20-NEWSGROUPS SUBSET. THE BEST RESULTS AND THOSE THAT ARE NOT SIGNIFICANTLY WORSE

(ACCORDING TO THE t -TEST WITH A p-VALUE LESS THAN 0.05) ARE IN BOLD

Dataset Lasso
Fused lasso Fused lasso Elastic net OSCAR OSCAR

(nonrescaled) (rescaled) (nonrescaled) (rescaled)
atheism Test accuracy 92.09±0.98 93.11±0.84 93.28±1.10 94.07±1.26 93.16±1.50 93.95±1.36
versus DoF 445±81 444±79 964±584 4803±1312 576±164 1094±1130

graphics No. of nonzero feat. 467±87 3165±1072 2544±1997 4963±1350 6016±1787 4678±2866
windows.x Test accuracy 91.68±1.06 93.04±0.84 93.60±0.92 94.91±1.35 93.42±1.94 94.04±0.86

versus DoF 437±65 459±74 692±267 5259±1528 445±159 562±214
religion.misc No. of nonzero feat. 457±74 2796±1285 2465±1477 5486±1590 6279±1584 6349±1269

autos Test accuracy 90.45±0.98 92.47±1.27 93.54±1.50 94.19±1.18 92.17±1.43 93.99±1.12
versus DoF 419±73 383±108 603±232 6027±1104 359±181 779±285

motorcycles No. of nonzero feat. 438±76 3541±818 4533±2415 6325±1178 6749±551 5658±2731
baseball Test accuracy 89.95±2.42 91.56±2.01 92.66±0.93 93.52±1.47 92.66±1.41 93.47±1.19
versus DoF 332±97 368±89 967±485 6326±903 238±110 660±378
hockey No. of nonzero feat. 342±102 3217±1254 3238±2043 6583±953 6778±1048 5994±1223
forsale Test accuracy 93.14±2.37 94.65±1.20 96.05±0.68 96.70±0.67 94.70±2.31 95.30±1.59
versus DoF 389±93 361±34 802±206 5663±1903 290±151 764±485

ms-windows.misc No. of nonzero feat. 416±98 2181±1098 5186±2258 5903±2008 4116±688 5001±343
guns Test accuracy 89.49±1.67 91.12±1.26 92.03±2.19 93.20±1.54 90.91±1.93 92.18±1.51

versus DoF 402±126 500±89 1118±629 6052±1935 349±109 705±166
mideast No. of nonzero feat. 420±139 3220±532 4353±2367 6308±2016 4435±866 5415±1199

med Test accuracy 91.32±1.50 91.74±2.25 93.35±1.25 93.40±1.62 92.57±1.67 93.35±1.73
versus DoF 315±13 363±135 691±234 4600±1364 201±141 736±288
space No. of nonzero feat. 323±16 3210±1527 3510±2414 4714±1425 4707±1110 2680±2529

pc.hardware Test accuracy 94.07±1.11 95.44±1.72 96.24±0.74 96.98±0.91 95.56±1.18 96.41±1.25
versus DoF 286±76 394±106 531±294 3965±782 327±85 425±214

politics.misc No. of nonzero feat. 294±79 2757±1739 4038±2215 4095±799 4435±517 5127±2635
mac.hardware Test accuracy 93.81±1.44 94.58±1.22 95.04±0.92 95.14±1.27 95.19±1.47 95.40±1.49

versus DoF 267±155 433±55 629±238 5793±1185 260±133 345±76
christian No. of nonzero feat. 274±163 2760±1542 2858±1910 5973±1241 5367±970 3964±3261

crypt Test accuracy 88.56±0.90 90.94±1.87 90.68±0.85 92.46±1.03 90.68±0.55 91.24±0.73
versus DoF 453±83 455±60 891±683 5886±2398 444±132 740±306

electronics No. of nonzero feat. 478±92 3989±646 4802±1929 6151±2515 5421±620 3512±2557

(a) (b)

Fig. 6. Coefficients for weights in the additional groups of “autos versus
motorcycles” (top) and “windows.x versus religion.misc” (bottom). The 30
groups are delineated by vertical lines. (a) Elastic net. (b) OSCAR.

remaining 20% for testing. To make the dataset more chal-
lenging, we first run ridge regression, and then duplicate the
30 most important features 100 times (with noise from
N (0, 0.16) added to the nonzero features) to form 30 addi-
tional groups. The prediction on a test sample x is sign(xT β).

Table IV shows the classification accuracies, DoF, and
the number of feature selection errors (averaged over five
repetitions). As can be seen, while the elastic net is the most
accurate, its DoF is much larger. In contrast, lasso and fused

lasso often have small DoFs, but their accuracies are inferior.
On the other hand, the accuracy of OSCAR is comparable with
that of the elastic net, and yet enjoys a small DoF. Moreover,
note that the nonrescaled OSCAR is often as good as its
rescaled version. We speculate that since feature grouping is
strong on this dataset, the OSCAR model well matches the
data. Hence, overpenalization of the coefficients is much less
a problem, making rescaling less important.

Fig. 6 compares the coefficients obtained by the elastic
net and OSCAR on the 30 additional groups of “atheism
versus graphics” and “windows.x versus religion.misc” (results
for the other pairs are similar). Though the elastic net has
some grouping effect, it fails to tie together features in the
same group (which are duplicates of each other). In contrast,
OSCAR produces much clearer feature groups. This is also
consistent with the results on the synthetic datasets in Fig. 5.

D. Breast Cancer

In this section, we experiment with the breast cancer
dataset,6 which contains 8141 genes in 295 tumors. We use the
300 genes that are most correlated with the output, and reduce
the class imbalance by duplicating the positive samples twice.
40%, 40%, and 20% of the dataset are then randomly chosen

6Available at: http://cbio.ensmp.fr/∼ljacob/.

1444 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

TABLE V

RESULTS ON THE BREAST CANCER DATASET. THE BEST RESULTS AND THOSE THAT ARE NOT SIGNIFICANTLY WORSE

(ACCORDING TO THE t -TEST WITH A p-VALUE LESS THAN 0.05) ARE IN BOLD

Lasso
Fused lasso Fused lasso

Elastic net
OSCAR OSCAR

(nonrescaled) (rescaled) (nonrescaled) (rescaled)

Classification accuracy 72.49±7.35 75.80±3.97 76.48±5.25 76.20±5.03 72.51±7.06 77.55±5.57

DoF 39.8±23.74 23.3±15.64 32.2±14.07 178.1±79.93 41.7±31.41 38.7±20.70

No. of nonzero features 39.8±23.74 215.8±67.57 102.1±78.78 178.1±79.93 143.0±113.89 79.3±81.61

for training, validation, and testing, respectively. Table V
shows the results averaged over ten repetitions. As can be
seen, the (rescaled) OSCAR and fused lasso have comparable
accuracy to the elastic net, but with a much smaller DoF.

V. CONCLUSION

In this paper, we used the accelerated gradient method to
solve the optimization problem associated with the structured
sparse OSCAR model. We showed that the core proximal step
can be solved with an iterative group merging algorithm which
is simple, easy to implement, and much more efficient than
state-of-the-art solvers. Experimental results on a number of
toy and real-world datasets showed that it is a competitive
sparse-modeling approach for both regression and classifica-
tion problems, but with the added ability of automatic feature
grouping.

As discussed in Section II-B, the proximal step is a core
component in many other proximal and accelerated gradient
methods. The proposed efficient computation of the proximal
step can also be used with these methods and is not limited to
FISTA. Moreover, since the (accelerated) gradient method only
requires knowledge of the gradient, the proposed algorithm can
be used to extend OSCAR to other loss functions besides the
square loss. These will be further investigated in the future.

APPENDIX

A. Proof of Proposition 1

Using (5) and (6), the objective Q(β; β̂ t
) in (3) becomes

f (β̂
t
)+ (β − β̂

t
)T∇ f (β̂

t
)+ L

2
‖β − β̂

t‖2 + r(β)

= L

2

d∑

i=1

(

β2
i −

2(Lβ̂ t
i −∇ f t

i)βi

L

)

+ r(β)+ C

where ∇ f t
i = [∇ f (β̂

t
)]i and C = f (β̂

t
) − ∇ f (β̂

t
)T β̂

t +
(L/2)‖β̂ t‖2. Since C is a constant, this is also equivalent to

min
β

d∑

i=1

(

β2
i −

2(Lβ̂ t
i −∇ f t

i)βi

L

)

+ 2

L
r(β). (18)

The only term that depends on the sign of βi is (Lβ̂ t
i−∇ f t

i)βi .
To minimize (18), the sign of each βi has to be chosen as
sign(βi) = sign(Lβ̂ t

i − ∇ f t
i). The result then follows using

the definitions in (8) and (9).

B. Proof of Proposition 2

Obviously, all the z∗i s are ≥ 0 because of the constraint
in (7). Assume to the contrary that z∗j > z∗i for some j > i .
First, consider the case where all the inequalities in (11) are
strict inequalities. Construct a new z′ from z∗ by exchanging
the values of z∗j and z∗i . Obviously, r̂(z∗) = r̂(z′). Together
with the fact that (z∗j − a j)z∗j + (z∗i − ai)z∗i > (z∗j − ai)z∗j +
(z∗i −a j)z∗i , we have F(z′) < F(z∗), which is a contradiction.

Now consider the case7 where some ai s are equal, i.e.,
ai−1 > ai = ai+1 = · · · = a j > a j+1 for some 1 ≤ i ≤
j ≤ d . Assume to the contrary that some of {z∗i , z∗i+1, . . . , z∗j }
are not equal. We construct a new z′ from z∗ by exchanging
the values of zk1 and zk2 , where i ≤ k1 < k2 ≤ j . It is easy to
see that F(z∗) = F(z′). Hence, z′ is also an optimal solution,
contradicting Corollary 1.

C. Proof of Proposition 3

First, we introduce the following lemma.
Lemma 1: Given a particular group Gs:t , the subsum∑
i∈Gs:t F̄i (zi): zs ≥ . . . ≥ zt ≥ 0 in (13) is minimized by

the group value in (14).
Proof: As zs = zs+1 = · · · = zt , the objective reduces to

the univariate convex quadratic function
∑

i∈Gs:t F̄i (z), whose
minimum can be easily obtained as (14).

We now proceed with the proof of Proposition 3. Assume
to the contrary that there is a group Gs:t with z∗s = · · · = z∗t �=
max{vs:t , 0}. Construct z′ from z∗ as

z′s = · · · = z′t = min{z∗s−1, max{vs:t , z∗t+1}}8 (19)

while all the other entries in z′ are the same as those in z∗.
Since z∗ satisfies Proposition 2, clearly so does z′. Consider
the following three cases.

1) vs:t > z∗s−1: from the definition of groups and
Proposition 2

z∗s−1 > z∗s = · · · = z∗t > z∗t+1. (20)

Hence, vs:t > z∗s−1 > z∗s > z∗t+1 (Fig. 7). More-
over, as z∗t+1 ≥ 0, hence vs:t > 0 and thus
arg min

∑
i∈Gs:t F̄i (z) = max{vs:t , 0} = vs:t . From (19),

z′s = z∗s−1, which is then closer than z∗s to vs:t .
Since

∑
i∈Gs:t F̄i (z) is quadratic,

∑
i∈Gs:t F̄i (z′s) <

∑
i∈Gs:t F̄i (z∗s), and thus F(z′) < F(z∗), a contradiction.

7The borderline cases “i = 1” and “ j = d” can be easily handled and are
not discussed here.

8Here, we assume z∗0 = ∞ and z∗d+1 = 0.

ZHONG AND KWOK: EFFICIENT SPARSE MODELING WITH AUTOMATIC FEATURE GROUPING 1445

Fig. 7. Positions of vs:t , z∗s−1, z∗s , z∗t+1 in the proof of Case 1 of
Proposition 3. Note that z′s = z∗s−1.

2) z∗t+1 > vs:t : similar to Case 1, we have
∑

i∈Gs:t F̄i (z′s) <
∑

i∈Gs:t F̄i (z∗s) and thus F(z′) < F(z∗), a contradiction.
3) z∗s−1 ≥ vs:t ≥ z∗t+1: as z∗t+1 ≥ 0 (due to the

nonnegative constraint), we have vs:t ≥ 0, and thus
arg min

∑
i∈Gs:t F̄i (z) = vs:t . Moreover, from (19), z′s =

· · · = z′t = vs:t , and thus F(z′) < F(z∗), a contradiction.

D. Proof of Proposition 4

Before showing the proof of Proposition 4, we first intro-
duce the following lemma.

Lemma 2: If vs:u < vu+1:t , then vs:u < vs:t < vu+1:t .
Similarly, if vs:u > vu+1:t , then vs:u > vs:t > vu+1:t . The
inequalities become equalities when vs:u = vu+1:t .

Proof: Define ps:u ≡∑
i∈Gs:u (ai−wi), qs:u ≡ 2(u+1−s),

and similarly pu+1:t and qu+1:t . Then vs:u = (ps:u/qs:u) and
vu+1:t = (pu+1:t/qu+1:t). From (15), we also have vs:t =
((ps:u + pu+1:t)/(qs:u + qu+1:t). Now if (p1/q1) < (p2/q2)
and q1, q2 > 0, then (p1/q1) < (p1 + p2)/(q1 + q2) <
(p2/q2). Hence, the first part of the lemma follows. The proof
of the second part is similar.

We now proceed with the proof of Proposition 4. Assume
to the contrary that there exists an incoherent group Gs:t with
z∗s = · · · = z∗t = vs:t ≥ 0. In other words, there exists a split
at some u ∈ {s, s + 1, . . . , t − 1} such that

vs:u > vu+1:t . (21)

Now construct a new z′ from z∗ by setting

z′s = · · · = z′u = min{z∗s−1, vs:u}. (22)

z′u+1 = · · · = z′t = max{z∗t+1, vu+1:t }, while the other entries
are the same as z∗. Clearly z′ still satisfies Proposition 2.
Consider the following two cases.

1) vs:u ≥ z∗s−1: similar to Case 1 in the proof of
Proposition 3, we have vs:u ≥ z∗s−1 > z∗s . From
(22), z′s = z∗s−1, which is closer than z∗s to
arg min

∑
i∈Gs:u F̄i (z) = max{vs:u, 0} = vs:u by (20).

Thus,
∑

i∈Gs:u F̄i (z′s) <
∑

i∈Gs:u F̄i (z∗s).
2) vs:u < z∗s−1: it then follows from (22) that

z′s = vs:u . (23)

Using (21) and Lemma 2, we have

vs:u > vs:t . (24)

Since vs:t ≥ 0 by assumption, we have vs:u > vs:t ≥ 0.
Thus, arg min

∑
i∈Gs:u F̄i (z) = max{vs:u, 0} = vs:u .

Hence, from (20), (23), and (24), z′s = vs:u > vs:t =
z∗s = · · · = z∗t > z∗t+1. Since vs:u is the minimizer of
∑

i∈Gs:u F̄i (z), so
∑

i∈Gs:u F̄i (z′s) <
∑

i∈Gs:u F̄i (z∗s).
In both cases,

∑
i∈Gs:u F̄i (z′s) <

∑
i∈Gs:u F̄i (z∗s). Similarly,

one can show
∑

i∈Gu+1:t F̄i (z′t) ≤
∑

i∈Gu+1:t F̄i (z∗t).9 Thus,
F(z′) < F(z∗) and z∗ is not optimal, a contradiction.

E. Proof of Theorem 1

Assume that

∃z, ẑ (z �= ẑ) satisfying Propositions 2–4. (25)

Obviously, their grouping structures are different; otherwise,
we have z = ẑ. Suppose that z and ẑ are equal up to the first
u − 1 zi s

z1 = ẑ1, z2 = ẑ2, . . . , zu−1 = ẑu−1, but zu �= ẑu . (26)

Let u belong to some (coherent) group Gs:t (resp. Gŝ:t̂) in z
(resp. ẑ).

Lemma 3: t �= t̂ .
Proof: Assume to the contrary that t = t̂ . Consider the

following cases.

1) s < ŝ: as u belongs to Gŝ:t̂ in ẑ (resp. Gs:t in z), we
have s < ŝ ≤ u. By (26) and definition 1, zs−1 =
ẑs−1 > zs = ẑs = zs+1 = ẑs+1 · · · = zu > ẑu , so
u is the start of some group in ẑ, and thus ŝ = u.
As max{vs:u−1, 0} = ẑu−1 > ẑu ≥ 0; hence, by
Propositions 2 and 3, max{vs:u−1, 0} = vs:u−1 = ẑu−1 >
ẑu = max{0, vu:t̂ } ≥ vu:t̂ and so Gs:t is not coherent, a
contradiction.

2) s > ŝ: the proof is similar to the first case.
3) s = ŝ: together with the assumption that t = t̂

and Proposition 3, we have zu = vs:t = ẑu , a contra-
diction.

Without loss of generality, we assume that t > t̂ .
Lemma 4: vŝ:t̂ > v t̂+1:t .

Proof: Let the groups in ẑ following Gŝ:t̂ be
Gt̂+1:t̂1,Gt̂1+1:t̂2, . . . ,Gt̂k−1+1:t̂k , where t̂k is the smallest number
such that t̂k ≥ t (Fig. 8). Since ẑ satisfies Propositions 2
and 3, we have

vŝ:t̂ > v t̂+1:t̂1 > v t̂1+1:t̂2 > · · · > v t̂k−1+1:t̂k = ẑt̂k ≥ 0. (27)

Recall that t̂k ≥ t . Consider the following two cases.

1) t < t̂k : then v t̂k−1+1:t ≤ vt+1:t̂k because Gt̂k−1+1:t̂k is
coherent. Hence, v t̂k−1+1:t ≤ v t̂k−1+1:t̂k by Lemma 2.

2) t = t̂k : obviously then v t̂k−1+1:t = v t̂k−1+1:t̂k .

Hence, in both cases, we can replace the last term v t̂k−1+1:t̂k
in (27) by v t̂k−1+1:t , and obtain

vŝ:t̂ > v t̂+1:t̂1 > v t̂1+1:t̂2 > · · · > v t̂k−1+1:t . (28)

Since v t̂+1:t̂1 > v t̂1+1:t̂2 , we have v t̂+1:t̂1 > v t̂+1:t̂2 > v t̂1+1:t̂2
from Lemma 2. Combining with (28), then v t̂+1:t̂2 > v t̂2+1:t̂3 ,
and thus v t̂+1:t̂2 > v t̂+1:t̂3 > v t̂2+1:t̂3 . Repeating this for
t̂4, t̂5, . . . , we obtain v t̂+1:t̂1 > v t̂+1:t . Result follows on
substituting this back into (28).

9The equality holds when vs:t = 0.

1446 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 8. Illustration for z and ẑ in the proof of Theorem 1.

Consider the following cases.

1) s = ŝ: then Lemma 4 implies that Gs:t is not coherent,
a contradiction.

2) s < ŝ: as shown in Case 1 in the proof of Lemma 3,
ŝ = u and Gs:ŝ−1 is a group of ẑ. By Proposition 3 and
Definition 1

vs:ŝ−1 > vŝ:t̂ . (29)

Applying Lemma 2 to the equation in Lemma 4, we
have vŝ:t̂ > vŝ:t . Combining this with (29), we obtain
vs:ŝ−1 > vŝ:t , and thus group Gs:t is not coherent at ŝ, a
contradiction.

3) s > ŝ: using the same argument above, Gŝ:s−1 is a group
of z, and vŝ:s−1 > vs:t . Since Gs:t is coherent, vs:t̂ ≤
v t̂+1:t . Using Lemma 2, vs:t ≥ vs:t̂ , and so vŝ:s−1 > vs:t̂ ,
i.e., Gŝ:t̂ is not coherent, a contradiction.

Hence, assumption (25) is not valid. In other words, we
have proved the following.

Proposition 7: There is an unique z satisfying
Propositions 2–4.

As we have shown that Propositions 2–4 hold at optimality,
we only need to prove the “⇐” part of Theorem 1. Since
Proposition 7 shows that there is only one z satisfying all three
properties and the optimal solution of (13) clearly exists, this
unique z must be the optimal solution.

F. Proof of Proposition 5

Assume to the contrary that Gs:t is not coherent at some
v ∈ {s, s + 1, . . . , t − 1} such that vs:v > vv+1:t . Consider the
following three cases.

1) v < u: then vs:v ≤ vv+1:u as Gs:u is coherent. By
Lemma 2, vs:v ≤ vs:u ≤ vv+1:u . Using the assumption
that vs:u ≤ vu+1:t , we have vs:v ≤ vu+1:t . By Lemma 2
again, vv+1:t ≥ min{vv+1:u, vu+1:t }. Combining this
with the previous two equations, we have vs:v ≤ vv+1:t ,
a contradiction.

2) u < v: the proof is similar to Case 1.
3) v = u: Then vs:v > vv+1:t reduces to vs:u > vu+1:t ,

which contradicts the assumption.

G. Proof of Proposition 6

Let β∗ be an optimal solution of

r∗(γ) = max
r(β)≤1

γ T β. (30)

Obviously, in order for (30) to be maximized, sgn(β∗i) =
sgn(γi). Hence, we can assume that γi ≥ 0 and β∗i ≥ 0. Since
γ1 ≥ · · · ≥ γd ≥ 0, we also have β∗1 ≥ · · · ≥ β∗d ≥ 0. It then
follows that r(β∗) =∑d

i=1 wiβ
∗
i , where wi = λ1+ (d− i)λ2,

from the definition of the OSCAR regularizer. Moreover, the
constraint in (30) should be active at optimality. Hence, (30)
can be rewritten as

r∗(γ) = max
β

γ T β (31)

s.t. β1 ≥ · · · ≥ βd ≥ 0,

d∑

i=1

wiβi = 1. (32)

Lemma 5: If β∗s−1 > β∗s = · · · = β∗u > β∗u+1 =
. . . β∗t > β∗t+1 ≥ 0 for some 1 ≤ s ≤ u < t ≤ d , then
(
∑u

i=s γi)/(
∑u

i=s wi) = (
∑t

i=u+1 γi)/(
∑t

i=u+1 wi).
Proof: Assume to the contrary that

(
∑u

i=s γi)/(
∑u

i=s wi) �= (
∑t

i=u+1 γi)/(
∑t

i=u+1 wi). Consider
the two cases.

1) (
∑u

i=s γi)/(
∑u

i=s wi) > (
∑t

i=u+1 γi)/(
∑t

i=u+1 wi).
Construct β ′ from β∗ as

β ′j =

⎧
⎪⎪⎨

⎪⎪⎩

β∗u +

∑t

i=u+1 wi∑u
i=s wi

, j = s, . . . , u

β∗u+1 −
, j = u + 1, . . . , t

β∗j , otherwise

where
 = min
{
β∗t − β∗t+1, ((β

∗
s−1 − β∗s)

∑u
i=s wi)/

(
∑t

i=u+1 wi)
}
. Obviously, β ′s−1 ≥ β ′s = · · · = β ′u >

β ′u+1 = β ′t ≥ β ′t+1 and r(β ′) = r(β∗) as
∑t

i=s wiβ
∗
i =

β∗u
∑u

i=s wi + β∗u+1

∑t
i=u+1 wi = β ′u

∑u
i=s wi +

β ′u+1

∑t
i=u+1 wi = ∑t

i=s wiβ
′
i . Hence, β ′ is a feasible

solution of (31). Moreover, using the definition of β ′ and
(
∑u

i=s γi)/(
∑u

i=s wi) > (
∑t

i=u+1 γi)/(
∑t

i=u+1 wi), we
have β ′u

∑u
i=s γi + β ′u+1

∑t
i=u+1 γi > β∗u

∑u
i=s γi +

β∗u+1

∑t
i=u+1 γi , and consequently γ T β ′ > γ T β∗, a

contradiction.
2) (

∑u
i=s γi)/(

∑u
i=s wi) < (

∑t
i=u+1 γi)/(

∑t
i=u+1 wi).

Construct β ′ from β∗ as

β ′j =
⎧
⎨

⎩

β∗u
∑u

i=s wi+β∗u+1
∑t

i=u+1 wi
∑t

i=s wi
, j = s, . . . , t

β∗j , otherwise.
(33)

Then β ′s−1 > β ′s = · · · = β ′t > β ′t and
r(β ′) = r(β∗). Hence, β ′ is also feasible. More-
over, using the construction of β ′ and the condition
(
∑u

i=s γi)/(
∑u

i=s wi) < (
∑t

i=u+1 γi)/(
∑t

i=u+1 wi), we
have β∗u

∑u
i=s γi + β∗u+1

∑t
i=u+1 γi < β ′u

∑t
i=s γi , and

consequently γ T β ′ > γ T β∗, a contradiction.

Result follows on combining these two cases.
Corollary 2: If β∗u > β∗u+1 > 0 for some u, construct β ′ as

in (33). Then γ T β ′ = γ T β∗.
Proof: This is similar to that of Case 2 in Lemma 5.

In other words, if β∗u > β∗u+1 > 0 for some u in the
optimal β∗, one can construct another optimal β ′ such that
the two groups of coefficients corresponding to β∗u and β∗u+1
are merged. Replace β∗ by β ′, and keep repeating this merging
process. At the end, we have an optimal β∗ such that β∗1 =· · · = β∗j > 0 and β∗j+1 = · · · = β∗d = 0 for some j .

With the optimal β∗ constructed above, the constraint in
(32) reduces to

∑ j
i=1 wiβ

∗
i = β∗1

∑ j
i=1 wi = 1, which

implies β∗1 = 1/
∑ j

i=1 wi . The objective in (31) then becomes

ZHONG AND KWOK: EFFICIENT SPARSE MODELING WITH AUTOMATIC FEATURE GROUPING 1447

γ T β∗ = β∗1
∑ j

i=1 γi = (
∑ j

i=1 γi)/(
∑ j

i=1 wi). Hence, to
maximize (30), we have to search for j which maximizes this
expression.

REFERENCES

[1] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[2] L. Jiao, L. Bo, and L. Wang, “Fast sparse approximation for least squares
support vector machine,” IEEE Trans. Neural Netw., vol. 18, no. 3, pp.
685–697, May 2007.

[3] K. Labusch, E. Barth, and T. Martinetz, “Simple method for high-
performance digit recognition based on sparse coding,” IEEE Trans.
Neural Netw., vol. 19, no. 11, pp. 1985–1989, Nov. 2008.

[4] M. Elad, Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. New York: Springer-
Verlag, 2010.

[5] S. Kim and E. P. Xing, “Tree-guided group lasso for multi-task regres-
sion with structured sparsity,” in Proc. 27th Int. Conf. Mach. Learn.,
Haifa, Israel, Jun. 2010, pp. 543–550.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal Stat. Soc., Ser. B, vol. 58, no. 1, pp. 267–288, 1996.

[7] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. Royal Stat. Soc., Ser. B, vol. 67, no. 2, pp. 301–320,
2005.

[8] X. Shen and H. Huang, “Grouping pursuit through a regularization
solution surface,” J. Amer. Stat. Assoc., vol. 105, no. 490, pp. 727–739,
2010.

[9] R. Jörnsten and B. Yu, “Simultaneous gene clustering and subset
selection for sample classification via MDL,” Bioinformatics, vol. 19,
no. 9, pp. 1100–1109, 2003.

[10] M. Dettling and P. Buhlmann, “Finding predictive gene groups from
microarray data,” J. Multivariate Anal., vol. 90, no. 1, pp. 106–131,
2004.

[11] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Royal Stat. Soc., Ser. B, vol. 68, no. 1, pp. 49–67,
2006.

[12] T. Hastie, R. Tibshirani, D. Botstein, and P. Brown, “Supervised har-
vesting of expression trees,” Genome Biol., vol. 2, no. 1, pp. 0003-1–
0003-12, 2001.

[13] M. Park, T. Hastie, and R. Tibshirani, “Averaged gene expressions for
regression,” Biostatistics, vol. 8, no. 2, pp. 212–227, 2007.

[14] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity
and smoothness via the fused lasso,” J. Royal Stat. Soc., Ser. B, vol. 67,
no. 1, pp. 91–108, 2005.

[15] H. Bondell and B. Reich, “Simultaneous regression shrinkage, variable
selection and clustering of predictors with OSCAR,” Biometrics, vol. 64,
no. 1, pp. 115–123, 2008.

[16] S. Wu, X. Shen, and C. Geyer, “Adaptive regularization using the entire
solution surface,” Biometrika, vol. 96, no. 3, pp. 513–527, 2009.

[17] Y. She, “Sparse regression with exact clustering,” Electron. J. Stat.,
vol. 4, pp. 1055–1096, 2010.

[18] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, “Network flow
algorithms for structured sparsity,” in Proc. Adv. Neural Inf. Process.
Syst. 24, 2010, pp. 1558–1566.

[19] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, “Convex and network
flow optimization for structured sparsity,” J. Mach. Learn. Res., vol. 12,
pp. 2681–2720, Feb. 2011.

[20] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[21] L. W. Zhong and J. T. Kwok, “Efficient sparse modeling with automatic
feature grouping,” in Proc. 28th Int. Conf. Mach. Learn., Jun. 2011, pp.
9–16.

[22] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. New York: Springer-Verlag, 2004.

[23] A. Rakotomamonjy, R. Flamary, G. Gasso, and S. Canu, “�p -�q penalty
for sparse linear and sparse multiple kernel multitask learning,” IEEE
Trans. Neural Netw., vol. 22, no. 8, pp. 1307–1320, Aug. 2011.

[24] S. Ji and J. Ye, “An accelerated gradient method for trace norm
minimization,” in Proc. 26th Int. Conf. Mach. Learn., Montreal, QC,
Canada, Jun. 2009, pp. 457–464.

[25] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Convex optimization
with sparsity-inducing norms,” in Optimization for Machine Learning,
S. Sra, S. Nowozin, and S. J. Wright, Eds. Cambridge, MA: MIT Press,
2011.

[26] J. Duchi and Y. Singer, “Efficient online and batch learning using
forward backward splitting,” J. Mach. Learn. Res., vol. 10, pp. 2873–
2908, Dec. 2009.

[27] R. Jenatton, J. Audibert, and F. Bach, “Structured variable selection with
sparsity-inducing norms,” J. Mach. Learn. Res., vol. 12, pp. 2777–2824,
Oct. 2011.

[28] F. Bach, “Structured sparsity-inducing norms through submodular func-
tions,” in Proc. Adv. Neural Inf. Process. Syst. 24, 2010, pp. 118–126.

Leon Wenliang Zhong received the Bachelors
and Masters degrees in computer science from
Sun Yat-sen University, Guangzhou, China, in 2007
and 2009, respectively. He is currently pursuing
the Ph.D. degree in computer science with the
Hong Kong University of Science and Technology,
Kowloon, Hong Kong.

His current research interests include machine
learning, convex optimization, and computational
intelligence.

James T. Kwok received the Ph.D. degree in com-
puter science from the Hong Kong University of
Science and Technology, Kowloon, Hong Kong, in
1996.

He was with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong, as an
Assistant Professor. He is currently a Professor with
the Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Tech-
nology. His current research interests include kernel
methods, machine learning, pattern recognition, and

artificial neural networks.
Dr. Kwok received the IEEE Outstanding Paper Award in 2004 and the

Second Class Award in Natural Sciences from the Ministry of Education,
China, in 2008. He has been a Program Co-Chair for a number of international
conferences. He is currently an Associate Editor for the IEEE TRANSACTIONS

ON NEURAL NETWORKS AND LEARNING SYSTEMS and Neurocomputing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

