
788 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Noniterative Sparse LS-SVM Based on Globally
Representative Point Selection

Yuefeng Ma , Xun Liang , Senior Member, IEEE, Gang Sheng, James T. Kwok, Fellow, IEEE,

Maoli Wang, and Guangshun Li

Abstract— A least squares support vector machine (LS-SVM)
offers performance comparable to that of SVMs for classification
and regression. The main limitation of LS-SVM is that it lacks
sparsity compared with SVMs, making LS-SVM unsuitable for
handling large-scale data due to computation and memory costs.
To obtain sparse LS-SVM, several pruning methods based on an
iterative strategy were recently proposed but did not consider
the quantity constraint on the number of reserved support
vectors, as widely used in real-life applications. In this article,
a noniterative algorithm is proposed based on the selection of
globally representative points (global-representation-based sparse
least squares support vector machine, GRS-LSSVM) to improve
the performance of sparse LS-SVM. For the first time, we present
a model of sparse LS-SVM with a quantity constraint. In solving
the optimal solution of the model, we find that using globally
representative points to construct the reserved support vector
set produces a better solution than other methods. We design
an indicator based on point density and point dispersion to
evaluate the global representation of points in feature space.
Using the indicator, the top globally representative points are
selected in one step from all points to construct the reserved
support vector set of sparse LS-SVM. After obtaining the set,
the decision hyperplane of sparse LS-SVM is directly computed
using an algebraic formula. This algorithm only consumes O(N2)
in computational complexity and O(N) in memory cost which
makes it suitable for large-scale data sets. The experimental
results show that the proposed algorithm has higher sparsity,
greater stability, and lower computational complexity than the
traditional iterative algorithms.

Index Terms— Globally representative point, noniterative
algorithm, pruning method, quantity constraint, sparse least
squares support vector machine (LS-SVM).

I. INTRODUCTION

CLASSIFICATION is an important domain in machine
learning with the objective of obtaining an efficient

classifier [1]. To achieve this objective, numerous methods

Manuscript received March 20, 2019; revised October 12, 2019 and
January 26, 2020; accepted March 4, 2020. Date of publication April 7, 2020;
date of current version February 4, 2021. This work was supported in part by
the National Natural Science Foundation of China under Grant 71531012 and
Grant 71601013 and in part by the Natural Science Foundation of Beijing
under Grant 4172032. (Corresponding author: Xun Liang.)

Yuefeng Ma, Xun Liang, Maoli Wang, and Guangshun Li are with
the School of Computer, Qufu Normal University, Jining 276826, China
(e-mail: rzmyf1976@ruc.edu.cn; xliang@ruc.edu.cn; wangml@qfnu.edu.cn;
guangshunli@qfnu.edu.cn).

Gang Sheng is with the School of Information Engineering,
Yancheng Teachers University, Yancheng 224007, China (e-mail:
shenggang@neusoft.edu.cn).

James T. Kwok is with the Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Technology, Hong Kong (e-mail:
jamesk@cse.ust.hk).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.2979466

are applied that are based on different approaches such as
Bayes method, decision trees, neural networks, and so on.
Among these methods, support vector machines (SVMs) have
attracted much attention due to high efficiency [2]. In SVM,
a hyperplane is constructed as a classifier with support vectors
in Hilbert space and is obtained using a mapping function. The
SVM is highly advantageous because it is sparse, efficient, and
highly accurate in classification [1]–[3].

As an important variant, the least squares support vector
machine (LS-SVM) can be obtained by replacing the loss
function in SVM with a square function [4]. Thus, LS-SVM
can be treated as a linear system, which means that the
process of solving LS-SVM is simple and efficient. In addition,
the generalization ability of LS-SVM was demonstrated as
equal to that of SVM in experiments and applications [5].
However, the limitation of LS-SVM is also apparent compared
with SVM. Because LS-SVM includes almost all of the
training data as support vectors, LS-SVM loses the property of
sparseness that is held by SVMs, which means that the compu-
tational and memory cost rapidly increases with the increasing
number of support vectors when LS-SVM is used to identify
an unlabeled datum. Therefore, pruning of the number of
support vectors of LS-SVM is a significant challenge [6]–[8].

In the research on sparse LS-SVM, the main approach is
based on an iterative pruning method. Suykens et al. [6]
proposed an iterative algorithm in which several support
vectors are pruned in each iteration. Considering the gen-
eral ability and optimization of LS-SVM, a comprehensive
method was proposed to obtain sparse LS-SVM [7]. Using
the criterion of selecting the support vector with the least
deviation, the accuracy of sparse LS-SVM was improved [8].
A light variant of sparse LS-SVM was proposed to improve
the performance of the pruning algorithm [9]. In each iteration,
the point with the minimum influence on the dual optimiza-
tion problem was selected for pruning [10]. In a pruning
algorithm that included two steps, an indicator of fragmen-
tization was introduced to evaluate the influence of points
in LS-SVM [11]. A modified active subset selection method
based on quadratic Rényi entropy and fast cross-validation
for fixed-size LS-SVMs was proposed for classification and
regression in an optimized tuning process [12]. With the
iterative build-up of a conjugate set of vectors of increasing
cardinality, sparse conjugate directions pursuit was proposed
to obtain sparse LS-SVM by solving a small linear subsystem
in each iteration [13]. Based on an iterative approximation
to the l0-norm, LS-SVM was adapted to a classical SVM
classifier [14]. By importing an l0-norm regularization term

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5245-8510
https://orcid.org/0000-0002-3431-5954
https://orcid.org/0000-0001-6147-0637

MA et al.: NONITERATIVE SPARSE LS-SVM BASED ON GLOBALLY REPRESENTATIVE POINT SELECTION 789

of parameters into the primal optimization problem, sparse
support vector classification (SSVC) was proposed and is
iteratively trained on the training set until it converges to a
highly sparse solution [15]. Combining prior knowledge and
an adaptive learning process, a weighted lq -norm adaptive
LS-SVM model classifier was introduced that chooses q
according to the structure of the data set [16], [17]. A fast
sparse approximation scheme for LS-SVM (FSALS-SVM)
was presented that iteratively builds the decision function by
adding one basis function from a kernel-based dictionary at
one iteration until the insensitive criterion is satisfied [18].
Combining a reduced technique with an iterative strategy, Zhao
and Sun [19] proposed a Recursive Reduced Least Squares
Support Sector Regression (RR-LSSVR) in which the support
vector should be selected by considering its contribution to
the target function, and all constraints are generated based
on the entire training set. Using increasing and decreasing
learning procedures, an adaptive pruning algorithm based on a
bottom-to-top strategy was presented in which a small support
vector set covering most of the information in the training
set can be formed adaptively [20]. An improved RR-LSSVR
was developed using a pruning criterion in which the point
leading to the largest reduction in the target function is
selected for pruning [21]. Compressive sampling was applied
to find the sparse support vector set of LS-SVM to obtain the
sparse LS-SVM [22], [23]. A least-squares regression estima-
tor was developed using bias-variance analysis in compressed
spaces [24]. Liang et al. [25] proposed a single iterative
method to remove superfluous support vectors (SVs) based
on kernel row vector space. This method can be applied to
obtain sparse LS-SVM with a simple modification. The correct
number of initial prototype vectors as the final support vectors
is introduced using the sparsity-error tradeoff method to obtain
sparse LS-SVM [26]. Shi et al. [27] presented an iterative
method for pruning redundant support vectors in which a
confidence interval is introduced to select support vectors for
pruning in LS-SVM in each iteration. Combining an iterative
pruning method and primal fixed-size LSSVM (PFS-LSSVM)
model, a pruning algorithm for highly sparse LS-SVM was
proposed for large-scale data [28]. Based on partial pivoting
Cholesky factorization of the kernel matrix, full pivoting
Cholesky factorization of primal LSSVM (PCP-LSSVM) was
extended with an iterative strategy [29]. By solving the least
absolute shrinkage and selection operator problem, a pruning
method of least angle regression was used to obtain sparse
LS-SVM in which the most important points should be iter-
atively selected as support vectors [30]. Using the density
clustering method, reconstructed support vectors were selected
to obtain sparse LS-SVM without repeatedly training the
LS-SVM [31]. A sparse LS-SVM was proposed in reduced
empirical feature space, and a wrapper method known as block
addition was used to decrease the size of the kernel matrix
in LS-SVM [32]. Based on the training mean square error
and sensitivity measure, a localized generalization error model
was introduced to prune the support vectors in LS-SVM [33].
With the two objectives of maximizing the accuracy of classi-
fiers and minimizing the number of reserved support vectors,
Silva and Neto [34] presented a pruning method to obtain

sparse LS-SVM with a multiobjective genetic algorithm in
which outliers and nonrelevant points were iteratively reduced.
By approximating the kernel matrix using a low-rank matrix
and smoothing the loss function using the entropy penalty
function, a convergent, sparse, robust LS-SVM was proposed
in primal space [35]. Obviously, most of the pruning methods
are iterative, leading to highly expensive computation and
memory cost. Otherwise, the criteria used to select the support
vector to be pruned were based mainly on the relation between
the support vector and the decision hyperplane. This approach
implies that the decision hyperplane must be obtained before-
hand with high computation and memory cost. Finally, in most
real applications, the number of reserved support vectors in
sparse LS-SVM is limited, which has not been considered
in most pruning methods. Therefore, the urgent need exists
to develop a noniterative pruning method to obtain sparse
LS-SVM with quantity constraint on the number of reserved
support vectors. To address these situations, we propose a non-
iterative pruning method designed to obtain sparse LS-SVM
using the most representative points as the reserved support
vectors.

Our contributions are described as follows. First, we demon-
strate an optimization model of sparse LS-SVM with a quan-
tity constraint on the number of reserved support vectors.
Second, we propose an indicator of the global representation
of points by considering point density and point dispersion in
feature space. Finally, based on the model and the indicator,
we present a noniterative pruning method designed to obtain
sparse LS-SVM.

In this article, we describe the fundamental process
of solving LS-SVM in Section II. Next, the global-
representation-based sparse least squares support vector
machine (GRS-LSSVM) is proposed in Section III. In Section
IV, we demonstrate the effectiveness of GRS-LSSVM in
experiments on several data sets. In Section V, we present
the conclusions.

II. PROCESS OF SOLVING LS-SVM

LS-SVM can be obtained from SVM by replacing its loss
function and constraints. The task of LS-SVM is to obtain a
decision hyperplane described as follows:

f (x) = wTϕ(x) + b (1)

where ϕ(·) is a map function from data space Rd to feature
space H , w is a vector in feature space, b ∈ R, and wT is
the transpose of w. Let (xi , yi), i = 1, . . . , N , be a pattern,
where xi ∈ Rd is a point, with yi ∈ {−1,+1} for classification
and yi ∈ R for regression. Using X = {xi } and Y = {yi},
(1) can be obtained by solving an optimization problem in the
LS-SVM formulation as follows:

min
w,b,ei

J = 1

2
‖w‖2 + C

2

N∑
i=1

e2
i

s.t. wTϕ(xi) + b = yi − ei , i = 1, . . . , N (2)

where C ∈ R+ is a regularization parameter.
In practice, by constructing the Lagrangian function

of (2), we can obtain the following formulas based on the

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

790 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Karush–Kuhn–Tucker (KKT) condition:

w =
N∑

i=1

αiϕ(xi) (3)

[
K (X, X) + I/C 1

1T 0

][
α
b

]
=

[
Y
0

]
(4)

where K (�,�) = [k(xi , x j)]|�|×|�|, xi ∈ �, x j ∈ �, k(·, ·) is
a kernel function, 1 = (1, . . . , 1)N×1, and I is a unit matrix.

From (4), we observe that the coefficients of (1) can be
obtained by solving a linear system. Obviously, the process of
solving LS-SVM is simpler than that of SVM. Because almost
all of the coefficients are nonzero, the decision hyperplane of
LS-SVM includes all the data in the training data set, which
means that LS-SVM loses sparseness. The pruning method
for sparse LS-SVM is intended to obtain a sparse decision
hyperplane that only includes a few points.

III. GRS-LSSVM

A. Model of Sparse LS-SVM With Quantity Constraint

The goal of sparse LS-SVM is to maintain the performance
of f (x) using the following decision hyperplane:

g(x) = υTϕ(x) + b (5)

where υ = ∑L
i=1 βiϕ(si), si ∈ X , L < N , and L is the given

number of reserved support vectors of sparse LS-SVM.
Let S = {s1, . . . , sL} be the set of reserved support

vectors in sparse LS-SVM. Then, the optimization problem
of sparse LS-SVM with the quantity constraint on the number
of reserved support vectors can be written as follows:

minS Jg = 1

2
‖υ‖2 + C

2

N∑
i=1

(g(xi) − yi)
2

s.t. |S| ≤ L

S ⊂ X (6)

where Jg is the value of J using g(x) as the decision hyper-
plane. Because f (x) is the optimal solution of (2), the smaller
the difference between J f and Jg, the higher is the similarity
in the performance of f (x) and g(x).

Let μ = (β, b)(L+1)×1, g(x) = υT ϕ(x) + b =
μT (K ({x}, S), 1). When S is fixed, (6) can be transformed
into the following optimization problem:

minμ Jg = 1

2
‖υ‖2 + C

2

N∑
i=1

(g(xi) − yi)
2. (7)

Then, the error item in (7) can be transformed into the
following formula:
(g(xi) − yi)

2 = (
μT (K ({xi}, S), 1) − yi

)2

= μT (K (S, {xi}), 1)(K ({xi}, S), 1)μ

− 2yi(K ({xi}, S), 1)μ + y2
i

= μT

[
K (S, {xi})K ({xi}, S) K (S, {xi})

K ({xi}, S) 1

]
μ

−
[

2yi K ({xi}, S) 2yi

]
μ + y2

i . (8)

Because yi is constant, we transfer J ′
g into the following

formula with omitting the constant term:

Jg = 1

2

(
βT K (S, S)β

)
+ C

2

N∑
i=1

(
μT

[
K (S, {xi})K ({xi}, S) K (S, {xi})

K ({xi}, S) 1

]
μ

− [
2yi K ({xi }, S) 2yi

]
μ

)

= μT

⎡
⎣ 1

2
K (S, S) 0

0 0

⎤
⎦μ

+ C

2
μT

(
N∑

i=1

[
K (S, {xi})K ({xi}, S) K (S, {xi})

K ({xi}, S) 1

])
μ

− C

2

N∑
i=1

[
2yi K ({xi}, S) 2yi

]
μ

= μT

⎡
⎣ 1

2
K (S, S) 0

0 0

⎤
⎦μ

+ μT

⎡
⎢⎢⎢⎢⎣

C

2
K (S, S)

N∑
i=1

k(xi , xi)
C

2

N∑
i=1

K (S, {xi})

C

2

N∑
i=1

K ({xi }, S)
C N

2

⎤
⎥⎥⎥⎥⎦μ

− μT

⎡
⎢⎢⎢⎢⎣

C
N∑

i=1

yi K (S, {xi})
N∑

i=1

Cyi

⎤
⎥⎥⎥⎥⎦ = 1

2
μT Aμ − Bμ (9)

where

A =

⎡
⎢⎢⎢⎢⎣

K (S, S)(1 + C
N∑

i=1

k(xi , x j)) C
N∑

i=1

K (S, {xi })

C
N∑

i=1

K ({xi}, S) C N

⎤
⎥⎥⎥⎥⎦
(10)

B =

⎡
⎢⎢⎢⎢⎣

C
N∑

i=1

yi K (S, {xi})
N∑

i=1

Cyi

⎤
⎥⎥⎥⎥⎦. (11)

Once S is determined, (7) can reach the minimum value at
the following condition:

μ = A−1 B. (12)

It is clear that we can obtain μ to reach the minimum value
of (7) when (10) is nonsingular. Thus, the essential problem
of sparse LS-SVM is to select a suitable S that can make (10)
reach the full rank. To efficiently select support vectors for
sparse LS-SVM, we select the support vectors directly from X
without solving (4). The main approach involves the selection

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

MA et al.: NONITERATIVE SPARSE LS-SVM BASED ON GLOBALLY REPRESENTATIVE POINT SELECTION 791

Fig. 1. Description of sparse LS-SVM constructed with different points in different areas in feature space with the number of reserved support vectors equal
to four. (a) General LS-SVM in feature space with all data. (b) Sparse LS-SVM in feature space using points in a low-density area. (c) Sparse LS-SVM using
points with consideration of density in feature space. (d) Sparse LS-SVM using points with consideration of density and dispersion in feature space.

of support vectors based on the characteristics of points in
feature space. In Section III-B, we discuss the process of
selecting the support vectors noniteratively.

B. Globally Representative Point Selection

Because the problem of selecting support vectors to con-
struct S from X is an NP-hard problem, it is difficult to
obtain the globally optimal solution. Therefore, we focus
on developing a noniterative selection method based on the
characteristics of points in feature space. We present the basic
concept for this method in Fig. 1.

We display a general state of LS-SVM in feature space
in Fig. 1(a). Each point is located on one side of the decision
hyperplane (the black solid line) in feature space, and every
point is a support vector. Because |S| � |X |, the process of
approaching sparse LS-SVM can be viewed as a process of
selecting points suitable to represent other points. The question
of how to evaluate the representation of points in LS-SVM is
discussed in the following.

Although all of the points can be included in S, the effect
of a point in a different area is different if it is included in S.
In Fig. 1(b), three points in low-density areas (points 7, 8,
and 9) are selected into S. The decision hyperplane of sparse

LS-SVM [red broken line, g1(x)] displays a large deviation
from the original decision hyperplane. We consider only the
density of the points in feature space. If we select the points in
a high-density area into S, the decision hyperplane of sparse
LS-SVM is more similar to the original decision hyperplane
than the decision hyperplane based on points in a low-density
area. This situation is demonstrated in Fig. 1(c), where the
decision hyperplane of sparse LS-SVM [green dot-dashed
line, g2(x)] is constructed with four points in the highest
density area (points 2, 3, 5, and 6). Obviously, the points in
the low-density area are less effective than the points in the
high-density area. In other words, a point in a high-density
area is more representative than a point in a low-density
area in sparse LS-SVM. Therefore, it is a sensible choice
to select the point in a high-density area into S rather than
the point in the low-density area. However, in practice, if we
only consider the density in feature space, this leads to an
awkward state in which S is full of points from few high-
density areas, as displayed in Fig. 1(c). Thus, we consider
using both density and dispersion to select points into S.
In Fig. 1(d), we use density and dispersion to evaluate the
representation of a point and select the four top representative
points (points 1, 2, 3, and 4) to construct S, which leads to the
best decision hyperplane of sparse LS-SVM [blue dot-dashed

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

792 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Algorithm 1 GRPS
Input: dataset X , kernel function k(·,·), threshold values θ .
Output: an ordered sequence τ
01) Initializing ρ = 0N×1, ζ = 0N×1, mdis = 0N×1 respec-
tively
02) For i = 1 to N do:
03) Compute Di X = {di j |x j ∈ X}
04) Compute ρi based on (14) and (15)
05) Compute mdisi = max(Di X)
06) EndFor
07) For i = 1 to N do:
08) Construct Xalternative = {x j |ρi < ρ j}
09) If Xalternative is empty:
10) Then
11) ζi = mdisi

12) Else
13) Compute Di X alternative ={di j | x j ∈ Xalternative}
14) ζi = min(Di X alternative)
15) EndIf
16) EndFor
17) Normalizing ρ and ζ based on (17) and (18) respectively
18) Compute τ based on (19)
19) Soring τ
20) Return τ

line, g3(x)] to replace the original decision hyperplane in all
of three decision hyperplanes.

For the convenience of discussion, we give two definitions
for density and dispersion of a point in feature space based
on the formulas in [26].

In feature space, the distance between xi and x j can be
calculated using the following formula:

di j =
√

k(xi , xi) + k
(
x j , x j

) − 2k
(
xi , x j

)
. (13)

Based on the distance between two points, we give the
density of point xi in feature space as follows.

Definition 1 (Point Density): Let xi be a point in data space
and k(·, ·) be a kernel function. The number of points that
are located in the θ neighborhood of xi is referred to as the
point density of xi in feature space. The point density of xi

in feature space is denoted as ρi , which can be calculated as
follows:

ρi =
N∑

j=1

δ
(
di j

)
(14)

where

δ(z) =
{

1, z ≤ θ

0, otherwise.
(15)

Obviously, ρ can be used to evaluate the representation of
the points in the local area in feature space.

Definition 2 (Point Dispersion): Let xi be a point in data
space. The point dispersion in feature space denoted as ζi is
defined as follows:

ζi = min
ρi <ρ j , j=1,...,N

di j (16)

where ζi is the least distance among the distances between
xi to other points whose ρ are larger than xi [36], and the
corresponding point X j is called as the nearest neighbor (NN)
of point xi . For the point x with maximal ρ, we define its ζ as
the maximal distance in all distances between x and the other
points. Thus, ζi can be viewed as an indicator to evaluate the
relative location of xi in the entire data set in feature space.

For ρ and ζ as 2-D items, we can construct a space known
as ρ − ζ space. In the ρ − ζ space, we discover that all
of the points can be separated into three classes. The first
class contains points with high point density and high point
dispersion. The second contains the points with high point
density and low point dispersion. The last class contains points
with low point density and high point dispersion. In the ρ − ζ
space, the three classes are located in three distinct areas.
An illustration is shown in Fig. 2. The locations of data in
data space and in ρ–ζ space are displayed in Fig. 2(a) and (b),
respectively. Because ρ > 0 and ζ > 0, all data are located
in quadrant 1. The three classes are located in three separate
areas in quadrant 1. Area I is located far from the ρ-axis and
ζ -axis, which includes points of the first class such as points 1
and 6. Area II includes points of the second class close to the
ρ-axis and far from the ζ -axis such as points 2 and 3. Area III
is located far from the ρ-axis and close to the ζ -axis, which
includes points of the last class such as point 7. Obviously,
the points in different areas have different characteristics. If a
point is located in area I, both the point density and the point
dispersion of the point are larger than those of points in the two
other sections. This observation means that the points lying
in area I have highly global representation in all data. For
example, point 1 can be viewed as a representative point for
points 2 and 3. Points 4, 5, and 6 have the same ability to
represent points located close to them. Therefore, the main
problem of constructing S is to reasonably select points in
area I.

Because the units of ρ and ζ are different, we cannot
directly compare the values of ρ and ζ of different points.
Therefore, we normalize ρ and ζ as follows:

ρ ′
i = ρi − ρmin

ρmax − ρmin
(17)

ζ ′
i = ζi − ζmin

ζmax − ζmin
(18)

where ρmin and ρmax are the minimum and the maximum
values of all ρ, and ζmin and ζmax are the minimum and
the maximum values of all ζ , respectively. For convenience,
we continue to use ρi and ζi to denote the values after
normalization.

Then we introduce an indicator known as the global repre-
sentation of a point, which is denoted as τ and calculated as
follows:

τi = min(ρi , ζi) (19)

where ρ and ζ are normalized. It is clear that the larger the
value of τ , the more representative a point will be. So we can
select the top points to represent all points in the training set.

Obviously, to obtain all of τi for each point, we need to
compute all di j . If we compute all di j in one step, the memory

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

MA et al.: NONITERATIVE SPARSE LS-SVM BASED ON GLOBALLY REPRESENTATIVE POINT SELECTION 793

Fig. 2. Description of globally representative data. (a) Location of data in x–y space. (b) Location of data in ρ–ζ space.

Fig. 3. Comparison of error ratio in different data sets. (a) BCW, (b) BA, (c) MK, and (d) LR, where L is the given number of reserved support vectors in
sparse LS-SVM. Results from data sets.

cost should be O(N2). It is too large for large-scale data sets.
Therefore, we used an alternative way to compute all of τi

as algorithm Globally Representative Point Selection (GRPS).
The flowchart of GRPS is displayed in Algorithm 1.

In GRPS, we use three variables to store information for
each point. The three variables are ρ, ζ , and mdis. Each length
is N . For xi , ρi is used to store the value of point density, ζi is
used to store the value of point dispersion, and mdisi is used
to store the maximal distance from xi to other points.

The algorithm mainly includes three steps. The first
step is to compute all ρi . For each xi , we calculate
Di X = {di j |x j ∈ X} based on (13) and obtain ρi based

on (14). The second step is to compute ζi for each point.
For point xi , we find all points whose ρ is bigger than ρi

to construct set Xalternative = {x j |ρi < ρ j }. Then, we can
calculate Di X alternative = {di j | x j ∈ Xalternative} and obtain
ζi = min(di∗). The last step includes normalizing ρ and ζ ,
respectively, calculating τ , and sorting τ .

Then, we discuss the computational complexity and memory
complexity of GRPS. For the first step, the computational
complexity is O(N2) because we need to calculate all di j .
The memory complexity is O(N) because we need to store
Di X , ρ, and mdis with length N . For the second step,
the computational complexity is O(N2) because we need to

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

794 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

compute all di j in the worst situation. The memory complexity
is O(N) because we need only to memorize Di X and ζ with
length N . For the last step, the computational complexity is
O(N log N) if we sort τ by using a quick sorting method.
The memory complexity is O(N) because we need to put τ
into the memory. Therefore, the computational complexity is
O(N2) and memory complexity is O(N), respectively.

In GRPS, θ plays an important role. Obviously, the value
of θ determines how many neighbors are calculated for a point.
In other words, the value determines the value of ρ for each
point. However, the influence is global. It means that a small
value of θ will lead to decrease in all the values of ρ of
points. On the contrary, a large value of θ will lead to increase
all values of ρ of points. In an acceptable interval, the value
of θ has little influence on the ordered sequence of ρ. Then,
the ordered sequence of ζ is stable, which leads to the ordered
sequence of τ is stable. Therefore, GRPS is robustness for θ .
The property has been discussed in [36].

C. GRS-LSSVM

To avoid a situation that S only includes point from one
class, we employ a strategy that GRPS should be used on
each class, respectively. We allocate the number of points
in S to different classes based on the ratio of the number
of points in different classes before selecting the globally
representative points from the entire training set. The numbers
of globally representative points selected from the positive
class and negative class can be obtained via the following
formulas:

L+ = max

(
1, round

(
L × N+

N

))
(20)

L− = L − L+ (21)

where N+ is the number of points in the positive class in the
training set, N is the number of points in the training set, and
round(·) is a rounding function, L+ is the number of globally
representative points selected from the positive class, L− is
the number of globally representative points selected from the
negative class.

With L+ and L−, we can select the globally representative
points for each class in the training data set to construct S.
Based on S and (10), matrix A can be obtained. It is a
very low possibility that A is ill-conditioned or even singular.
To solve the problem, we can replace points that lead A
to be singular in S with new globally representative points.
However, it is expensive for computational complexity. To save
computational time, we add a constant on diagonal with small
entries. The pseudo-code for the GRS-LSSVM is given in
Algorithm 2.

Obviously, the cost of GRS-LSSVM consists of two com-
ponents in binary classification. One component contains
two repetitions of calling the GRPS, and the other com-
ponent calculates the coefficients of sparse LS-SVM. The
cost of the computation of GRPS is O(N2). The computa-
tional complexity of the second component is O(L log7) ≈
O(L1.95) because we need to compute A−1 [37], [38]. So,
the computational complexity of the whole algorithm is

Algorithm 2 GRS-LSSVM
Input: dataset X , label set Y , kernel function k(·,·), threshold
values θ+ and θ−, the given number of reserved support
vectors L
Output: the set of reserved support vectors S, coefficients β
and b
1) Compute L+ and L− using (20) and (21) respectively
2) τ+ =GRPS(X+, k, θ+)
3) τ− =GRPS(X−, k, θ−)
4) Obtain S+ with selecting the top L+ points from τ+
5) Obtain S− with selecting the top L− points from τ−
6) S = S+ϒS−
7) Compute β and b based on (12)
8) Return S, β, and b

TABLE I

DESCRIPTION OF DATA SETS

O(N2 + L1.95). Because L � N , the total computational cost
of GRS-LSSVM is O(N2). In memory cost, GRS-LSSVM
mainly includes two sequences for two classes in two times
of calling GRPS and matrix A in the second component.
The number of points of the two sequences is N and the
size of A is L2. It is excited that the memory used by
the two sequences can be released in the second compo-
nent. Therefore, the memory complexity of GRS-LSSVM
is O(max(N, L2)) in fact. Of course, in most conditions,
the memory complexity of GRS-LSSVM is O(N) for
L � N . Therefore, GRS-LSSVM is a fast algorithm suitable
for handling large-scale data. The code of GRS-LSSVM
has been uploaded on Github with https://github.com/
rzmyf1976/Spare-Least-Square-Support-Vcetor-Machine/.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

All of the experiments are performed on a PC with Intel
Xeon E5-1620, 16-G memory, running Windows 10. The
algorithms are implemented in MATLAB.

A. Data Set Description

In this article, we use six real data sets from the UCI (UC
Irvine Machine Learning Repository). A simple description of
the six sets is presented in Table I. In data set LR, we let letter
B represent a class and other letters represent another class.

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

MA et al.: NONITERATIVE SPARSE LS-SVM BASED ON GLOBALLY REPRESENTATIVE POINT SELECTION 795

In data set HM, we use the “all” data set and randomly select
1 000 000 samples to construct data set in experiments.

To evaluate the performance of the proposed algorithm,
we use two indicators, namely, the computational time and
error ratio. In our experiments, we used tenfold cross val-
idation to evaluate the performances of the different meth-
ods. Ten experiments were conducted for each data set.
The mean values of different indicators are displayed in the
results.

In our experiments, we use Sparse LS-SVM (SLS-
SVM) [6], RR-LSSVR [19], and Iterative Sparse LS-
SVM (ISLS-SVM) [14] as comparison methods. Because
the stopping criteria are different in the different algo-
rithms, we use a different stopping criterion in each algo-
rithm. The alternative stopping criterion is that the num-
ber of reserved support vector is no more than the given
number L. SVM and LS-SVM are used as the base
algorithm of sparse SVM and nonsparse SVM, respec-
tively. The code of SVM is Libsvm which is downloaded
from https://www.csie.ntu.edu.tw/∼cjlin/libsvm/ supported by
Chih-Chung Chang and Chih-Jen Lin. The code of LSSVM is
obtained from https://www.esat.kuleuven.be/ sista/lssvmlab/.

For kernel function selection, because RBF kernel function,
k(x, y) = exp(−�x − y�2/(2σ 2)), has been used in
many applications, we still use this kernel function in our
experiments. The parameter setting of SVM has a significant
influence on its application performance. If parameter values
are set in appropriate, the performance of SVM may be
very poor. For SVM, the error penalty parameter C and
the kernel function parameter such as the kernel parameter
σ 2 for the Gaussian kernel function are vital. In practice,
we can use cross-validation method or other methods to select
parameters [39]–[42]. In our experiments, we do not use these
methods to select the optimal parameters for convenience.
For the parameter σ 2, we choose 10 from 1, 10, 100, and
200 with simple comparison because the primary object of
this article is to verify the performances in the generalization
ability and complexity of these algorithms under the same
condition. For parameter θ , we use 0.4 selected from 0.3,
0.35, and 0.4 in all experiments. The constant added on
diagonal A is 10−6 in experiments.

B. Experimental Results

The error ratios and the computational times of different
algorithms in different data sets are shown in Figs. 3 and 4,
respectively. In Fig. 4, we use lg(time) as the vertical coordi-
nate to replace the traditional vertical coordinate. The results
of SVM and LS-SVM are listed in Table II, where Ns is the
number of support vectors included in the decision hyperplane
obtained by the algorithms.

From Table II, we observe that the generalization ability
between SVM and LS-SVM is similar because the error ratios
are approximate on different data sets. However, the sparseness
is notably different between SVM and LS-SVM. In LS-SVM,
all of the points in the training set are included in the
decision hyperplane. On the contrary, with LS-SVM, SVM
only includes approximately 20%–40% points in its decision
hyperplane.

First, we find that SLS-SVM, RR-LSSVR, and
GRS-LSSVM can all accomplish the task of sparseness
when the number of reserved support vectors is given in most
conditions. However, ISLS-SVM cannot satisfy the arbitrary
number of reserved support vectors. In other words, when
the given number of reserved support vectors is too small,
ISLS-SVM cannot perform as expected. When the sparseness
ratios reach steady levels, we observe that the order of
the sparseness ratios obtained from different algorithms is
GRS-LSV < ISLS-SVM < SLS-SVM < RR-LSSVR, which
means that GRS-LSSVM can reach a high sparseness when
the given number is small.

Second, for the indicator of error ratio, these algorithms
demonstrate several common features. In the first algorithm,
the error ratios of all algorithms can reach low levels approx-
imate to those of LS-SVM when the reserved support vectors
reach a threshold value. In the second, when the threshold
value is reached, the increasing number of reserved support
vectors does not lead to a prominent improvement in the error
ratio. Finally, the standard deviation of the error ratio maintains
a stable low level after the level of error ratio reaches a steady
level. The differences in error ratios among the four algorithms
are apparent. When the error ratio achieves a steady level,
the order of the error ratios of the four algorithms is SLS-
SVM < ISLS-SVM < GRS-LSSVM < RR-LSSVR. Although
the error ratio of GRS-LSSVM is not the smallest in all the
algorithms, GRS-LSSVM is exciting based on the performance
of sparseness when the requirement is not as severe.

With respect to computational complexity, the performance
of the four algorithms is quite different. SLS-SVM displays
a trend of a slow decline in the computational time as the
number of support vectors increases. The reason for this
observation is that the iterative times of SLS-SVM should
decrease as the number of reserved support vectors increases.
For RR-LSSVR, the computational time rapidly increases with
an increasing number of reserved support vectors because
it is an incremental algorithm used to obtain the sparse
LS-SVM with only one support vector included in the final
support vector set. The proposed GRS-LSSVM displays three
properties of computational time. First, for the same training
data set, the computational time remains stable while the
number of reserved support vectors changes. Second, for
different training data sets, the computational time does not
vary greatly, while the numbers of the training data sets change
significantly.

From the above results, GRS-LSSVM shows stable perfor-
mance in different experiments for the same training data set.
Therefore, GRS-LSSVM displays comparable performance
with respect to the other algorithms.

For a large-scale data set, we focus on the computational
complexity and memory complexity of different algorithms.
The results have been listed in Table III. The four algorithms,
LS-SVM, SLS-SVM, ISLS-SVM, and RR-LSSVR, cannot
be executed in the two data sets. The reason lies in which
they are all O(N2) on memory complexity which means
that the memory requirement will reach 40 GB when the
training set is as large as 200 000 points. That is a scary
cost. As far as the two large scale data sets, SK and HM,

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

796 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Fig. 4. Comparison of computation time in different data sets. (a) BCW. (b) BA. (c) MK. (d) LR.

TABLE II

RESULTS OF SVM AND LS-SVM IN DATA SETS BCW, BA, MK, AND LR

TABLE III

RESULTS ON DATA SETS SK AND HM

are concerned, the algorithms SVM and GRS-LSSVM can be
executed normally. On computational time, SVM costs about
5000 s on SK and 130 000 s on HM in the training stage,
respectively. Corresponding with SVM, GRS-LSSVM uses
about 7000 s on SK and 150 000 s on HM in the training
stage, respectively. With the increasing number of training

sets, the growth of GRS-LSSVM is lower than SVM on
computational time. On the testing time, SVM is greatly larger
than GRS-LSSVM because the number of support vector in
SVM is larger than the number in GRS-LSSVM. Based on the
results on the two data sets, GRS-LSSVM is more suitable for
large-scale data set than SVM.

V. CONCLUSION

In this article, we proposed a novel algorithm for the
sparseness of LS-SVM based on a globally representative
candidate set. In this work, we demonstrated an optimization
model on the sparseness of LS-SVM considering the constraint
on the number of support vectors. Based on the density and
dispersion of points in feature space, we designed an indicator
to evaluate the global representation of points. By select-
ing support vectors in a noniterative strategy using global
representation, a fast sparse LS-SVM algorithm was proposed
with good performance in real applications. Unlike traditional
algorithms, GRS-LSSVM can select all of the reserved support

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

MA et al.: NONITERATIVE SPARSE LS-SVM BASED ON GLOBALLY REPRESENTATIVE POINT SELECTION 797

vectors in one step, which means that GRS-LSSVM is suitable
for working with a large-scale data set. Using a noniterative
strategy, we reduced the computational complexity to O(N2)
and memory complexity to O(N). With this strategy, we can
avoid repeated computation of the decision hyperplane, which
wastes a large amount of time. In addition, we proposed a
novel viewpoint in which the selection of the final support
vectors is based on the overall distribution of the data set,
which leads to a better solution than the traditional methods.
Since GRS-LSSVM is based on the global representation in
feature space, it is suitable for pruning other models based on
support vectors with a simple modification.

REFERENCES

[1] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques.
San Francisco, CA, USA: Morgan Kaufmann, 2011.

[2] V. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley, 1998.
[3] S. Theodoridis, K. Koutroumbas, Pattern Recognition. New York, NY,

USA: Academic, 2008.
[4] J. Suykens and J. Vandewalle, “Least squares support vector machine

classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293–300, 1999.
[5] T. van Gestel et al., “Benchmarking least squares support vector machine

classifiers,” Mach. Learn., vol. 54, no. 1, pp. 5–32, Jan. 2004.
[6] J. A. K. Suykens, L. Lukas, and J. Vandewalle, “Sparse approximation

using least squares support vector machines,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2000, pp. 757–760.

[7] J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: Robustness and
sparse approximation,” Neurocomputing, vol. 48, nos. 1–4, pp. 85–105,
Oct. 2002.

[8] B. J. de Kruif and T. J. A. de Vries, “Pruning error minimization in least
squares support vector machines,” IEEE Trans. Neural Netw., vol. 14,
no. 3, pp. 696–702, May 2003.

[9] L. Hoegaerts, J. A. K. Suykens, J. Vandewalle, and B. De Moor,
“A comparison of pruning algorithms for sparse least squares support
vector machines,” in Proc. 11th Int. Conf. Neural Inf. Process., 2004,
pp. 1247–1253.

[10] X. Zeng and X. Chen, “SMO-based pruning methods for sparse least
squares support vector machines,” IEEE Trans. Neural Netw., vol. 16,
no. 6, pp. 1541–1546, Nov. 2005.

[11] B. P. R. Carvalho and A. P. Braga, “IP-LSSVM: A two-step sparse
classifier,” Pattern Recognit. Lett., vol. 30, no. 16, pp. 1507–1515,
Dec. 2009.

[12] K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and B. De Moor,
“Optimized fixed-size kernel models for large data sets,” Comput. Statist.
Data Anal., vol. 54, no. 6, pp. 1484–1504, Jun. 2010.

[13] P. Karsmakers, K. Pelckmans, K. De Brabanter, H. Van Hamme, and
J. A. K. Suykens, “Sparse conjugate directions pursuit with applica-
tion to fixed-size kernel models,” Mach. Learn., vol. 85, nos. 1–2,
pp. 109–148, Oct. 2011.

[14] J. Lopez, K. D. Brabanter, J. R. Dorronsoro, and J. A. K. Suykens,
“Sparse LS-SVMs with L0-norm minimization,” in Proc. Eur. Symp.
Artif. Neural Netw., 2011, pp. 189–194.

[15] K. Huang, D. Zheng, J. Sun, Y. Hotta, K. Fujimoto, and S. Naoi,
“Sparse learning for support vector classification,” Pattern Recognit.
Lett., vol. 31, no. 13, pp. 1944–1951, Oct. 2010.

[16] J. Liu, J. Li, W. Xu, and Y. Shi, “A weighted Lq adaptive least squares
support vector machine classifiers—Robust and sparse approximation,”
Expert Syst. Appl., vol. 38, no. 3, pp. 2253–2259, Mar. 2011.

[17] L. Wei, Z. Chen, and J. Li, “Evolution strategies based adaptive Lp
LS-SVM,” Inf. Sci., vol. 181, no. 14, pp. 3000–3016, Jul. 2011.

[18] L. Jiao, L. Bo, and L. Wang, “Fast sparse approximation for least squares
support vector machine,” IEEE Trans. Neural Netw., vol. 18, no. 3,
pp. 685–697, May 2007.

[19] Y. Zhao and J. Sun, “Recursive reduced least squares support vector
regression,” Pattern Recognit., vol. 42, no. 5, pp. 837–842, May 2009.

[20] X. Yang, J. Lu, and G. Zhang, “Adaptive pruning algorithm for least
squares support vector machine classifier,” Soft Comput., vol. 14, no. 7,
pp. 667–680, 2010.

[21] Y.-P. Zhao, J.-G. Sun, Z.-H. Du, Z.-A. Zhang, Y.-C. Zhang, and
H.-B. Zhang, “An improved recursive reduced least squares support
vector regression,” Neurocomputing, vol. 87, pp. 1–9, Jun. 2012.

[22] J. Yang, A. Bouzerdoum, and S. L. Phung, “A training algorithm for
sparse LS-SVM using compressive sampling,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2010, pp. 2054–2057.

[23] L. Yang, S. Yang, R. Zhang, and H. Jin, “Sparse least square support
vector machine via coupled compressive pruning,” Neurocomputing,
vol. 131, pp. 77–86, May 2014.

[24] M. M. Fard, Y. Grinberg, J. Pineau, and D. Precup, “Compressed least-
squares regression on sparse spaces,” in Proc. 26th AAAI Artif. Intell.,
2012, pp. 1054–1060.

[25] X. Liang et al., “Fast pruning superfluous support vectors in SVMs,”
Pattern Recognit. Lett., vol. 34, no. 10, pp. 1203–1209, Jul. 2013.

[26] R. Mall and J. A. K. Suykens, “Sparse reductions for fixed-size least
squares support vector machines on large scale data,” in Proc. 17th
Pacific-Asia Conf. Knowl. Data Mining, 2013, pp. 161–173.

[27] J. Shi, G. Si, Z. Guo, Y. Zhang, and S. Ma, “A pruning strategy based
on confidence interval for sparse LS-SVM,” in Proc. 12th World Congr.
Intell. Control Autom. (WCICA), Jun. 2016, pp. 577–582.

[28] R. Mall and J. A. K. Suykens, “Very sparse LSSVM reductions for
large-scale data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1086–1097, May 2015.

[29] S. Zhou, “Sparse LSSVM in primal using Cholesky factorization for
large-scale problems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 783–795, Apr. 2016.

[30] S. Zhou and M. Liu, “A new sparse LSSVM method based the revised
LARS,” in Proc. Int. Conf. Mach. Vis. Inf. Technol. (CMVIT), Feb. 2017,
pp. 46–51.

[31] G. Si, J. Shi, Z. Guo, and Y. Zhang, “Density clustering pruning method
based on reconstructed support vectors for sparse LSSVM,” in Proc.
Chin. Control Decis. Conf. (CCDC), May 2016, pp. 3582–3587.

[32] F. Ebuchi and T. Kitamura, “Fast sparse least squares support vector
machines by block addition,” in Porc. 14th Int. Symp. Neural Netw.,
2017, pp. 60–70.

[33] B. Sun, W. W. Y. Ng, and P. P. K. Chan, “Improved sparse LSSVMS
based on the localized generalization error model,” Int. J. Mach. Learn.
Cybern., vol. 8, no. 6, pp. 1853–1861, Dec. 2017.

[34] D. A. Silva and A. R. R. Neto, “Multi-objective genetic algorithms for
sparse least square support vector machines,” in Proc. Int. Conf. Intell.
Data Eng. Automated Learn., 2014, pp. 158–166.

[35] L. Chen and S. Zhou, “Sparse algorithm for robust LSSVM in primal
space,” Neurocomputing, vol. 275, pp. 2880–2891, Jan. 2018.

[36] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[37] V. Strassen, “Gaussian elimination is not optimal,” Numerische Math.,
vol. 13, no. 4, pp. 354–356, Aug. 1969.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2011, p. 768.

[39] X. Zhang, W. Chen, B. Wang, and X. Chen, “Intelligent fault diagnosis
of rotating machinery using support vector machine with ant colony
algorithm for synchronous feature selection and parameter optimization,”
Neurocomputing, vol. 167, pp. 260–279, Nov. 2015.

[40] Y. Zhang and P. Zhang, “Machine training and parameter settings with
social emotional optimization algorithm for support vector machine,”
Pattern Recognit. Lett., vol. 54, pp. 36–42, Mar. 2015.

[41] A. Bablani, D. R. Edla, D. Tripathi, S. Dodia, and S. Chintala, “A syner-
gistic concealed information test with novel approach for EEG channel
selection and SVM parameter optimization,” IEEE Trans. Inf. Forensics
Security, vol. 14, no. 11, pp. 3057–3068, Nov. 2019.

[42] Z. Tao, L. Huiling, W. Wenwen, and Y. Xia, “GA-SVM based feature
selection and parameter optimization in hospitalization expense model-
ing,” Appl. Soft Comput., vol. 75, pp. 323–332, Feb. 2019.

Yuefeng Ma received the B.S. degree in com-
puter science from Xi’an Jiaotong University, Xi’an,
China, in 1997, the M.S. degree in management
science from Shandong Normal University, Jinan,
China, in 2006, and the Ph.D. degree in computer
science from the Department of Computer Sci-
ence, Renmin University of China, Beijing, China,
in 2017.

His main research areas are machine learning,
artificial intelligence, and social networks.

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

798 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Xun Liang (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees in computer engineer-
ing from Tsinghua University, Beijing, China,
in 1989 and 1993, respectively, and the M.Sc. degree
in operations research from Stanford University, Palo
Alto, CA, USA, in 1999.

He worked as a Post-Doctoral Fellow with the
Institute of Computer Science and Technology,
Peking University, Beijing, from 1993 to 1995, and
with the Department of Computer Engineering, Uni-
versity of New Brunswick, Fredericton, NB, Canada,

from 1995 to 1997. He worked as a CTO, leading over ten intelligent
information products in RixoInfo Ltd., CA, USA, from 2000 to 2007, and
was the Director of the Data Mining Lab, Institute of Computer Science
and Technology, Peking University, from 2005 to 2009. He is currently
a Distinguished Professor with the School of Information Science, Qufu
Normal University, Jining, China. His research interests include support vector
machines, web mining, and social computing.

Gang Sheng received the B.Sc. degree in com-
puter science from Qufu Normal University, Qufu,
China, in 2000, and the M.Sc. and Ph.D. degrees
in computer science from Northeastern University,
Shenyang, China, in 2005 and 2015, respectively.

He worked as a Post-Doctoral Fellow with the
College of Mathematics and Information Science,
Guangzhou University, Guangzhou, China, from
2015 to 2017. His research interests include applied
cryptography, cloud computing, and outsourced
computation.

Dr. Sheng is a member of the Chinese Association for Cryptologic Research.

James T. Kwok (Fellow, IEEE) received the Ph.D.
degree in computer science from the Hong Kong
University of Science and Technology, Hong Kong,
in1996.

He was an Assistant Professor with the Depart-
ment of Computer Science, Hong Kong Baptist
University, Hong Kong. He is currently a Profes-
sor with the Department of Computer Science and
Engineering, Hong Kong University of Science and
Technology. His current research interests include
kernel methods, machine learning, pattern recogni-

tion, and artificial neural networks.
Dr. Kwok received the IEEE Outstanding Paper Award in 2004 and the

Second Class Award in Natural Sciences from the Ministry of Education,
China, in 2008. He was a Program Co-Chair for a number of international
conferences and served as an Associate Editor for the IEEE TRANSACTIONS

ON NEURAL NETWORKS AND LEARNING SYSTEMS from 2006 to 2012.
He is currently an Associate Editor of Neurocomputing.

Maoli Wang received the Ph.D. degree from Harbin
Engineering University, Harbin, China, in 2008.

He is currently a Professor with the School of
Computer, Qufu Normal University, Jining, China.
His current research interests include adaptive con-
trol, fault-tolerant control, machinery intelligence,
and digit control technique.

Guangshun Li received the Ph.D. degree from
Harbin Engineering University, Harbin, China,
in 2008.

He was a Visiting Scholar with The Hong Kong
Polytechnic University, Hong Kong, in the second
half year of 2019. He is currently an Associate Pro-
fessor with the School of Information Science and
Engineering, Qufu Normal University, Jining, China.
His research interests include wireless networks, the
Internet of Things (IoT), and big data.

Authorized licensed use limited to: Qufu Normal University. Downloaded on February 06,2021 at 08:09:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

