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ABSTRACT
Deep learning models have been demonstrated powerful in model-
ing complex spatio-temporal data for traffic prediction. In practice,
effective deep traffic prediction models rely on large-scale traffic
data, which is not always available in real-world scenarios. To alle-
viate the data scarcity issue, a promising way is to use cross-city
transfer learning methods to fine-tune well-trained models from
source cities with abundant data. However, existing approaches
overlook the divergence between source and target cities, and thus,
the trained model from source cities may contain noise or even
harmful source knowledge. To address the problem, we propose
CrossTReS, a selective transfer learning framework for traffic pre-
diction that adaptively re-weights source regions to assist target
fine-tuning. As a general framework for fine-tuning-based cross-
city transfer learning, CrossTReS consists of a feature network, a
weighting network, and a prediction model. We train the feature
network with node- and edge-level domain adaptation techniques
to learn generalizable spatial features for both source and target
cities. We further train the weighting network via source-target
joint meta-learning such that source regions helpful to target fine-
tuning are assigned high weights. Finally, the prediction model
is selectively trained on the source city with the learned weights
to initialize target fine-tuning. We evaluate CrossTReS using real-
world taxi and bike data, where under the same settings, CrossTReS
outperforms state-of-the-art baselines by up to 8%. Moreover, the
learned region weights offer interpretable visualization.

CCS CONCEPTS
• Computing methodologies → Transfer learning; • Applied
computing → Transportation; Forecasting.
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1 INTRODUCTION
Traffic prediction is essential in various smart city applications.
Timely and accurate traffic prediction is helpful not only to urban
practitioners for policymaking and resource allocation, but also to
urban residents for trip planning. Recently, deep learning models
such as Convolutional Neural Networks (CNN) and Graph Neural
Networks (GNN) achieve great success in traffic prediction tasks,
such as traffic speeds [13, 27], travel demands [9, 25], and crowd
flows [29]. However, deep learning models require large-scale data,
which is not always accessible for urban traffic prediction tasks.
For example, cities with newly deployed ride-sharing services have
only several days of data, which is insufficient to train deep learning
models and may lead to low-quality services. Therefore, improving
traffic prediction under a lack of data is of great importance.

To address the problem, transfer learning [18] methods are pro-
posed to transfer knowledge from a city with much traffic data to
another city with limited data. Existing transfer learning methods
for traffic prediction are generally based on fine-tuning [19, 20, 24].
They train models using supervised learning [19] or meta-learning
[24] on abundant source data as initialization and designmethods to
fine-tune the models on target data. However, a common pitfall of
existing works is that they ignore the gap between source training
and target fine-tuning. Thus, the model learned on abundant source
data may contain noise or even harmful source knowledge to the
target city, which negatively impacts transfer learning performance.

We perform experiments on real-world taxi data from Chicago
and Washington DC to illustrate the weakness of fine-tuning-based
solutions. We vary the number of source training epochs and plot
the corresponding test error on both source (Chicago) and target
(DC, after fine-tuning) cities in Fig. 1. As shown, for both supervised
learning andmeta-learning, as the number of source training epochs
increases, the error on the source city decreases, while the error on
the target city remains similar (Fig. 1(b)) or even increases (Fig. 1(a)).
The results suggest that knowledge learned from the source city
may not help or even harm the target city, and that it is important
to perform selective transfer learning, i.e. selecting relevant source
knowledge to transfer to the target city. As cities are often divided
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Figure 1: Error on source (Chicago) and target (Washington
DC, after fine-tuning) cities with various source training
epochs. For source training with meta-learning, we report
source error after fine-tuning.

into regions in urban computing [19], we focus on selecting helpful
source regions to the target city. By doing so, we improve not only
traffic prediction in the target city, but also the interpretability of
cross-city transfer learning, as the selected regions provide intuitive
understandings of the common knowledge between cities.

The problem of selective transfer learning has been studied in
areas like Natural Language Processing (NLP) [4, 14, 15] where the
models select the most indicative words or documents. However,
selective cross-city transfer learning for traffic prediction faces
unique challenges. The major difference is that sample selection in
NLP focuses on tasks in the same language, thus sharing the same
set of words. However, as cities are geographically disjoint, they do
not share common regions, which leads to two challenges.

• Extracting generalizable region features. Generalizable
region features between both cities must be extracted be-
fore selective transfer learning is performed. While word
embeddings or language models act as generalizable features
across NLP tasks, existing methods that learn region features
[7, 30, 31] focus on region-wise relations in a single city, and
are thus city-specific and may not generalize to another city.

• Evaluating helpfulness of source regions. Through the
shared words between NLP tasks, we can evaluate words in
both source and target contexts and thus select indicative
words or samples across tasks. However, as no regions exist
in both source and target cities, it is challenging to evaluate
the helpfulness of a source region in the target context.

In this paper, we propose CrossTReS (Cross-City Transfer via
Region Selection), a selective cross-city transfer learning frame-
work for traffic prediction by adaptively re-weighting source re-
gions. CrossTReS applies to general fine-tuning-based cross-city
transfer learning methods. Specifically, CrossTReS consists of three
components, a feature network 𝐹𝜃 𝑓 , a weighting network 𝐹𝜃𝑤 , and
a prediction model 𝐹𝜃 . We train the feature network with node- and
edge-level domain adaptation techniques to learn generalizable spa-
tial features for both source and target regions. Based on the learned
features, the weighting model assigns weights 𝜆𝑟S to source regions
and is trained via a source-target joint meta-learning. We simulate
source training and target fine-tuning in the inner loop of the joint
meta-learning, and learn 𝜃 𝑓 , 𝜃𝑤 such that source regions that help
target fine-tuning are assigned high weights. Finally, we selectively
train the prediction model 𝐹𝜃 on the source city via 𝜆𝑟S to initialize

target fine-tuning. Extensive experiments on real-world taxi and
bike data are performed, where under the same settings, CrossTReS
outperforms state-of-the-art baselines by as much as 8%. Moreover,
the learned region weights offer interpretable visualization results.

To summarize, we make the following contributions.

• To our knowledge, this is the first work to study the selective
cross-city transfer learning problem for traffic prediction.

• We propose CrossTReS, a selective cross-city transfer learn-
ing framework for traffic prediction. With node- and edge-
level domain adaptation methods and joint meta-learning,
CrossTReS extracts city-agnostic region features and adap-
tively re-weights source regions to improve target fine-tuning.

• We perform extensive experiments and case studies on real-
world taxi and bike data to validate the effectiveness and
interpretability of CrossTReS.

2 RELATEDWORKS
2.1 Traffic Prediction
Traffic prediction, such as predicting urban flows [29], traffic speeds
[13], and travel demands [9, 26] plays important roles in smart
transportation systems. With the advances in deep learning, deep
models are used for traffic prediction, such as CNN [29], recur-
rent networks (RNN) [26], and GNN [9, 13]. These models extract
complex spatio-temporal relations and can perform accurate traffic
prediction. However, deep models suffer from accuracy degradation
upon a lack of data, which is the problem we tackle in this paper.

2.2 Transfer Learning for Traffic Prediction
The data insufficiency problem is common in traffic prediction.
For example, cities without advanced digital infrastructures (e.g.
speed sensors) would have difficulty gathering data. To mitigate
this problem, transfer learning methods are proposed for deep
traffic prediction models, including RegionTrans [19], MetaST [24],
and ST-DAAN [20]. Given a well-trained model on the source city,
RegionTrans uses auxiliary data similarity to regularize fine-tuning,
MetaST extracts and transfers long-term temporal features, while
ST-DAAN leverages deep adaptation networks (DAN) [17] for fine-
tuning. However, all these works focus on how to fine-tune a source
model but ignore how to train a generalizable source model for fine-
tuning. Different from existing works, this paper aims to selectively
learn from the source city to accommodate target fine-tuning.

We discuss transfer learning for other urban computing tasks
besides traffic prediction in Section B in the Appendix.

2.3 Selective Transfer Learning
Selecting relevant knowledge for transfer learning is an important
problem that has been studied in computer vision (CV) [2, 28], NLP
[4, 14, 15], and recommendation [16]. However, selective transfer
learning in these areas is assisted with 1) generalizable feature ex-
tractors, such as pre-trained CNN and word embeddings, and 2)
explicit cross-domain links, such as shared vocabulary [14, 15], la-
bel sets [2, 28], or item sets [16]. On the contrary, in cities, existing
works only extract city-specific features that may not be generaliz-
able between source and target cities. Further, as no regions exist in
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both source and target cities, it is challenging to evaluate whether
a source region will help target fine-tuning.

In a similar field, multi-task learning, researchers propose task
selection methods [3, 5, 11] by aligning the gradients of each task.
However, in cities with hundreds of regions, it is not affordable to
compute gradients for all regions.

2.4 Regional Feature Learning
Regional feature learning, also known as urban region embeddings,
aims to learn versatile region features that apply to various tasks,
such as land usage and crime rate prediction [7, 31]. Recently, multi-
view urban data, such as human mobility and POI data are incor-
porated into region embeddings [30]. However, they all focus on
learning embeddings for a single city, while we aim to learn gener-
alizable region features between two cities.

3 BACKGROUND & MOTIVATION
In this section, we first introduce necessary backgrounds, includ-
ing notations and existing fine-tuning-based solutions. Then, we
analyze the drawback of existing works and formulate the problem
of selective source training for cross-city transfer learning.

3.1 Preliminaries
3.1.1 Notations. Notations and definitions are presented below.

Definition 1 (Regions). A city C is divided into a grid map with
𝑊C×𝐻C grids, where𝑊C, 𝐻C denote the longitudinal and latitudinal
ranges. Each grid in the map is referred to as a region 𝑟 . With an
abuse of notation, we also use C to denote the set of regions in city C.

Definition 2 (Time Intervals). We divide the time range in city
C into disjoint time intervals of equal length 𝑡 = 1, . . .𝑇C .

Definition 3 (Regional Traffic Data). Each region 𝑟 in C is

associated with a vector x𝑟 =

[
𝑥
(𝑡 )
𝑟

]𝑇C
𝑡=1

describing the traffic data
(e.g. number of taxi pickups) of 𝑟 from time interval 1 to 𝑇C .

We then present the definition of cross-city transfer learning for
traffic prediction [19]. In this paper, we mainly focus on grid-based
prediction tasks [12] and leave graph-based tasks for future works.

Definition 4 (Transfer Learning for Traffic Prediction).
Given a source city S and a target city T with traffic data XS =

{x𝑟S , 𝑟S ∈ S},XT = {x𝑟T , 𝑟T ∈ T },𝑇S ≫ 𝑇T , we aim to learn a
prediction model 𝐹𝜃 using target data and abundant source data.

min
𝜃

LT (XT , 𝜃 ) =
∑︁
𝑟 ∈T

𝑇T∑︁
𝑡=1

𝐿

(
𝑥
(𝑡 )
𝑟 , 𝑥

(𝑡 )
𝑟

)
,

where 𝑥 (𝑡 )𝑟 = 𝐹𝜃

( [
𝑥
(𝑡−𝜏)
𝑟 , . . . 𝑥

(𝑡−1)
𝑟

]
,XS

)
.

(1)

𝑥
(𝑡 )
𝑟 , 𝑥

(𝑡 )
𝑟 are the predicted and true values of target region 𝑟 at time

interval 𝑡 . 𝐿 is an error function such as squared or absolute error.

3.1.2 Fine-Tuning for Cross-City Transfer Learning. Existing works
solve the problem of cross-city transfer learning for traffic predic-
tion via fine-tuning [19, 20, 24], which consists of two steps.

• Source Training. The model 𝜃 is trained with abundant
source data XS to capture knowledge from the source city.
There are two ways to perform source training.

– Supervised Learning [19, 20], where the error on the
source city LS is directly minimized

𝜃S = argmin
𝜃

LS (XS, 𝜃 ). (2)

– Meta-Learning [24], where the source error after a gra-
dient step on source data is minimized

𝜃S = argmin
𝜃

LS (XS, 𝜃 − 𝛼∇𝜃LS) . (3)

• Fine-Tuning. The model 𝜃 is trained on limited target data
XT starting from the trained source model 𝜃S , such that
knowledge encoded in 𝜃S is transferred to the target city,

𝜃T = argmin
𝜃

LT (XT , 𝜃 ;𝜃S), (4)

where LT (XT , 𝜃 ;𝜃S) denotes Eqn. 1 initialized with 𝜃S .

3.2 Motivation and Problem Definition
As shown in Eqn. 2, 3 and 4, there is an inherent gap between source
training and target fine-tuning objectives. While the overall goal
of cross-city transfer learning is to minimize the error on target
data LT , source training ignores LT and minimizes the error only
on source data. Therefore, source training methods, including both
supervised and meta-learning used by existing works may learn
noise or harmful source knowledge, which lead to sub-optimal
performances on target fine-tuning, as shown in Fig. 1.

To bridge the gap, we aim to perform selective cross-city transfer
learning to rule out harmful source knowledge. For fine-tuning-
based methods, source knowledge is learned during source training
rather than fine-tuning. Thus, we perform selective transfer during
source training. Moreover, as cities are often divided into regions
[19], we perform selection at the level of regions. Concretely, we
formulate the problem of selective source training as follows.

Definition 5 (Selective Source Training for Cross-city
Transfer Learning). The goal of selective source training is to
learn weights 𝜆𝑟S > 0 for source region 𝑟S to perform source training,
such that after minimizing the weighted error on the source city,

𝜃S = argmin
𝜃

L̂S (XS, 𝜃 ; 𝜆𝑟S ) =
∑︁
𝑟S ∈S

𝑇S∑︁
𝑡=1

𝜆𝑟S𝐿

(
𝑥
(𝑡 )
𝑟S , 𝑥

(𝑡 )
𝑟S

)
(5)

and after fine-tuning (Eqn. 4), error on the target cityLT is minimized.

Learning region weights 𝜆𝑟S essentially performs knowledge
selection by assigning low 𝜆𝑟S to regions with harmful knowledge,
and vice versa, which leads to two advantages. On one hand, we
improve traffic prediction in the target city. On the other hand, we
enhance the interpretability of cross-city transfer learning, as the
learned 𝜆𝑟S sheds light on the shared knowledge between cities.

We note that the selective source training problem is general
and agnostic to specific fine-tuning methods. Thus, existing fine-
tuning methods such as RegionTrans and MetaST [19, 20, 24] are
orthogonal to the contribution of this paper.

4 PROPOSED METHOD
In this section, we introduce our framework, CrossTReS. We first
present an overview, and then introduce detailed methods.
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Figure 2: Overview of CrossTReS. CrossTReS consists of a feature network 𝐹𝜃 𝑓 , a weighting network 𝐹𝜃𝑤 , and a prediction model
𝐹𝜃 . The feature network captures shared spatial features between cities to uncover common urban functions. The weighting
network learns to assign high weights to source regions that improve target fine-tuning. Finally, the prediction model 𝐹𝜃 is
selectively trained with 𝜆𝑟S to initialize target fine-tuning.

4.1 Overview of CrossTReS
The key challenges to selective source training are two-fold. First,
we need to extract city-agnostic region features that are indicative
in both source and target cities. Second, based on the extracted
features, we need to evaluate the helpfulness of source regions to
target city fine-tuning. To achieve both goals, CrossTReS contains
the following components, as illustrated in Fig. 2.

• Feature Network 𝐹𝜃 𝑓 . In urban planning, each region bears
certain urban functions that are related to traffic patterns. For
example, traffic flows in industrial areas peak during week-
days, while those in business centers peak during weekends.
Capturing generalizable spatial features uncovers shared ur-
ban functions between cities and facilitates knowledge trans-
fer. To capture such features, we train the feature network
via both node- and edge-level domain adaptation objectives.

• Weighting Network 𝐹𝜃𝑤 . 𝐹𝜃𝑤 learns to adaptively re-
weight source regions. For example, if the target city enjoys
smooth traffic flows, source regions with heavy congestion
would be detrimental and should be down-weighted. To
achieve this goal, we train 𝐹𝜃 𝑓 and 𝐹𝜃𝑤 via source-target
joint meta-learning. By simulating source training and tar-
get fine-tuning in the inner loop, both networks are learned
to re-weight source regions to improve target fine-tuning.

• PredictionModel 𝐹𝜃 . 𝐹𝜃 is selectively trained on the source
city with weights 𝜆𝑟S to initialize target fine-tuning.

4.2 Model Components
In this section, we introduce detailed components of CrossTReS.

4.2.1 Feature Network. The feature network extracts generaliz-
able spatial features for source and target regions upon which we
identify shared urban functions and perform selective source train-
ing. Following existing works on region embeddings [7, 30], we
model regions as nodes and a city as graphs based on multi-view
urban data and feed them as inputs to the feature network. We
build graphs based on the following region-wise relations: proxim-
ity GC

𝑝𝑟𝑜𝑥 , road connections GC
𝑟𝑜𝑎𝑑

, POI GC
𝑝𝑜𝑖

, and human mobility

GC
𝑠 ,GC

𝑑
. How to build the graphs is beyond the scope of this paper.

We refer readers to Section D in the Appendix for details.
With themulti-view graphs

{
GC
𝑣 =

(
C, EC

𝑣

)}
, 𝑣 ∈ {𝑝𝑟𝑜𝑥, 𝑟𝑜𝑎𝑑, 𝑝𝑜𝑖,

𝑠, 𝑑}, C ∈ {S,T }where EC
𝑣 denotes the edge set ofGC

𝑣 , we leverage
the feature network 𝐹𝜃 𝑓 to project {GC

𝑣 } into regional spatial fea-
tures ΦC ∈ R |C |×𝑑𝑒𝑚𝑏 , C ∈ {S,T }, where 𝑑𝑒𝑚𝑏 is the dimension
of output region features. Note that we do not specify the archi-
tecture of 𝐹𝜃 𝑓 as long as it operates on graph data. Our detailed
implementations are specified in Section 5.1.

4.2.2 Weighting Network. The weighting network 𝐹𝜃𝑤 transforms
the regional spatial features ΦS,ΦT to source region weights 𝜆𝑟S ≥
0. The intuition of the weighting network is that source and target
regions with similar urban functions are likely to share common
temporal features. Thus, we first transform both ΦS,ΦT with 𝐹𝜃𝑤 ,

Φ̂𝑟S = 𝐹𝜃𝑤 (Φ𝑟S ), Φ̂𝑟T = 𝐹𝜃𝑤 (Φ𝑟T ), (6)

and then apply mean pooling to all target regions to obtain the
target city features Φ̂T . We finally obtain source region weights
𝜆𝑟S via inner product and a tanh activation,

𝜆𝑟S = max
(
tanh

(
Φ̂
⊺
𝑟S Φ̂T

)
, 0
)
, (7)

where Φ𝑟C denotes the features of region 𝑟C ∈ C, C ∈ {S,T }.

4.2.3 Prediction Model. The prediction model 𝐹𝜃 takes source and
target dataXS,XT and the learned 𝜆𝑟S as inputs. It performs source
training according to Eqn. 5 with weights 𝜆𝑟S , which will be fine-
tuned with target data XT . We do not make assumptions on 𝐹𝜃 .

4.3 Learning to Re-Weight Source Regions
In this section, we introduce how to learn 𝜃 𝑓 , 𝜃𝑤 , 𝜃 to address the
two key challenges in Sec. 4.1, i.e. extracting city-agnostic region
features and evaluating the helpfulness of source regions, and thus
solve the problem of selective source training.

4.3.1 Learning Region Features via Bi-level Domain Adaptation. Ex-
isting works on regional feature learning leverage intra-city region-
wise links, e.g. GC

𝑟𝑜𝑎𝑑
,GC
𝑝𝑜𝑖

. Consequently, the learned features ΦC
are indicative of urban functions in the same city C rather than
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between cities. Thus, learning ΦS,ΦT that encodes city-agnostic
region features is a crucial challenge before we select source regions
to assist target fine-tuning. We design node- and edge-level domain
adaptation methods to meet the challenge.

Node-Level Adaptation. Following existing works on domain
adaptation [17, 23], we minimize the maximum mean discrepancy
(MMD) [1] between regional features from both cities

L𝑛𝑜𝑑𝑒 = MMD(ΦS,ΦT ) . (8)

Intuitively, L𝑛𝑜𝑑𝑒 aligns the distributions of node (i.e. region) fea-
tures from both cities.

Edge-Level Adaptation. Existing works on domain adaptation
focus on aligning feature distributions of individual samples. How-
ever, as we model a city with multi-view graphs, nodes (i.e. regions)
in the graphs are connected with multiple types of edges. As each
type of edge carries unique semantics (e.g. road connections, similar
origins/destinations), we additionally propose to perform edge-level
domain adaptation to align the distributions of edge features. The
intuition of the edge-level adaptation is two-fold:

• Distinguishable w.r.t. Edge Types: Features of different
types of edges should be clearly separated.

• Indistinguishable w.r.t. Cities: Features of the same type
of edges should be similar regardless of the city.

We implement the intuition via a shared edge classifier. The edge
classifier takes edge features as inputs, outputs potential edge types,
and is shared between both cities. By learning to classify edge types,
we ensure the distinguishability w.r.t. edge types. By sharing the
classifier across cities, we ensure the indistinguishability w.r.t. cities,
as edge features from both cities are classified via the same classifier
and thus follow the same distributions. Thus, we do not need an
extra domain discriminator [8].

Formally, given a region pair 𝑟C,𝑖 , 𝑟C, 𝑗 ∈ C, C ∈ {S,T }, we
obtain the edge features by concatenating their node features as
ΦC,𝑖 𝑗 =

[
ΦC,𝑖 ∥ΦC, 𝑗

]
, and assign edge labels 𝑙C,𝑖 𝑗 ∈ {0, 1}5 to

indicate the types of edges between the region pair,

𝑙C,𝑖 𝑗 =
[
I
( (
𝑟C,𝑖 , 𝑟C, 𝑗

)
∈ EC

𝑣

)]
𝑣∈{𝑝𝑟𝑜𝑥,𝑟𝑜𝑎𝑑,𝑝𝑜𝑖,𝑠,𝑑 }

, (9)

where I is the indicator function. For example, if (𝑟C,𝑖 , 𝑟C, 𝑗 ) is con-
nected in GC

𝑝𝑜𝑖
,GC
𝑠 , 𝑙C,𝑖 𝑗 = [0, 0, 1, 1, 0]. We use the edge classifier

𝐹𝜃𝑒𝑑𝑔𝑒 to predict edge labels 𝑙C,𝑖 𝑗 given the edge features ΦC,𝑖 𝑗 . We
learn the edge classifier by minimizing the following loss function,

L𝑒𝑑𝑔𝑒 =
∑︁

C∈{S,T}

∑︁
𝑟C,𝑖 ,𝑟C, 𝑗 ∈C

BCE
(
𝐹𝜃𝑒𝑑𝑔𝑒 (ΦC,𝑖 𝑗 ), 𝑙C,𝑖 𝑗

)
, (10)

where BCE is the multi-label binary cross entropy loss

BCE(𝑦,𝑦) = −
𝐿∑︁
𝑖=1

[𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )] .

By minimizing L𝑒𝑑𝑔𝑒 , we ensure that features of each type of
edges lie in their feature spaces defined by 𝐹𝜃𝑒𝑑𝑔𝑒 . It is worth noting
that the edge classifier does not require adversarial learning [8],
as both 𝐹𝜃 𝑓 and 𝐹𝜃𝑒𝑑𝑔𝑒 minimize L𝑒𝑑𝑔𝑒 to learn indicative edge
features and to better separate different edge types in both cities.

Finally, to learn generalizable region features between source
and target cities, we share the edge classifier between both cities as
a domain adaptation regularizer, and minimize the following loss,

min
𝜃 𝑓 ,𝜃𝑒𝑑𝑔𝑒

L𝑓 = L𝑒𝑚𝑏 + 𝛽1L𝑛𝑜𝑑𝑒 + 𝛽2L𝑒𝑑𝑔𝑒 , (11)

where 𝛽1, 𝛽2 are hyperparameters for node and edge-level adapta-
tions respectively, and L𝑒𝑚𝑏 is the loss of the feature network.

4.3.2 Learning Region Weights via Joint Meta-Learning. With the
generalizable spatial features as indicators, we now introduce how
to adaptively re-weight source regions to improve target fine-tuning.

Intuitively, we should learn 𝜆𝑟S such that after optimizing the
weighted source loss L̂S in Eqn. 5, the initialization 𝜃S leads to
low target error after fine-tuning. To implement the intuition, we
design a joint meta-learning approach with the following steps.

(1) Simulating Source Training.We optimize Eqn. 5 to simulate
selective source training with current weights 𝜆𝑟𝑠 . We per-
form 𝐾S steps of stochastic gradient updates on source data,

𝜃S (𝜆𝑟S ) = 𝜃 − 𝛼
𝜕L̂S (XS, 𝜃 ; 𝜆𝑟S )

𝜕𝜃
. (12)

(2) Simulating Fine-Tuning. Starting from 𝜃S (𝜆𝑟S ), we optimize
Eqn. 4 to simulate the fine-tuning stage. We perform 𝐾T
steps of stochastic gradient updates on target data

𝜃T (𝜆𝑟S ) = 𝜃S (𝜆𝑟S ) − 𝛼
𝜕LT (XT , 𝜃 ;𝜃S (𝜆𝑟S ))

𝜕𝜃
. (13)

(3) Optimizing Weights. We sample a batch of target data X̃T to
evaluate the target loss L̃T (𝜆𝑟S ) = LT (X̃T , 𝜃T (𝜆𝑟S )) with
parameters 𝜃T (𝜆𝑟S ) after simulation. We then optimize both
the weighting and the feature networks by taking a gradient
step on L̃T (𝜆𝑟S ) w.r.t. 𝜆𝑟S . Denoting 𝜃𝑠 = {𝜃 𝑓 , 𝜃𝑤} as all
parameters contributing to 𝜆𝑟S , we have

𝜃𝑠 = 𝜃𝑠 − 𝛾
𝜕L̃T (𝜆𝑟S )
𝜕𝜆𝑟S

·
𝜕𝜆𝑟S

𝜕𝜃𝑠
. (14)

In Eqn. 12, 13, and 14, 𝛼,𝛾 denote learning rates. Taking Step 1 and 2
as inner loops and Step 3 as the outer loop, our approach resembles
model agnostic meta-learning (MAML) in MetaST ([6, 24], Eqn. 3)
with the following differences1.

(1) The inner loop of MAML optimizes on source data, while
our approach first optimizes on source data, then target data
in the inner loop. This indicates that MAML optimizes the
error after source training, while our approach optimizes the
error after both source training and target fine-tuning.

(2) The outer loop of MAML minimizes the error on source data,
while our approach minimizes on target data. This indicates
that MAML leads to fast adaptation on the source domain
instead of the target (shown in Fig. 1), while our approach
leads to fast adaptation to target data after fine-tuning.

(3) MAML optimizes the prediction model 𝜃 at the outer loop,
while our approach optimizes the weights 𝜆𝑟S . This suggests
that MAML fails to select important source knowledge and
may lead to sub-optimal adaptation, while our approach
adaptively re-weights relevant source regions to select help-
ful knowledge from noise.

1We assume that we only have one source domain (city).
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4.3.3 Training Process. The overall training process of CrossTReS
follows the two steps, source training and fine-tuning, described
in Section 3.1.2. In each source training epoch, we optimize 𝜃 𝑓 and
𝜃𝑤 to obtain the current region weights 𝜆𝑟S , which are used to
selectively train the prediction model 𝜃 on source data for an epoch.
The weights 𝜆𝑟S are updated along the training process.

After selective source trainingwith CrossTReS, target fine-tuning
is performed. CrossTReS is compatible with general fine-tuning
methods, such as RegionTrans [19] and STMem [24].

The pseudocode of CrossTReS is shown in Alg. 1 in the Appendix.

5 EXPERIMENTS
In this section, we present our experimental evaluations onCrossTReS.
Our evaluations aim to answer the following questions:

• How does CrossTReS compare against state-of-the-art cross-
city transfer learning methods for traffic prediction?

• How do the model components and hyperparameters impact
the overall performance of CrossTReS?

• How can the learned region weights 𝜆𝑟S be interpreted?

5.1 Experimental Setup
Following [19, 24], we perform experiments on taxi and bike datasets.
For each trip, a vehicle picks up a user from a start region and drops
the user off in a destination region. Our tasks are to predict fu-
ture pickup and dropoff volumes in each region. We use root mean
squared error (RMSE) and mean absolute error (MAE) to evaluate
performances [20]. We report the mean error on pickup and dropoff.

Datasets. We collect taxi and bike data from New York (NY),
Chicago (CHI), and Washington (DC). The time range of each
dataset is one year. Following [24], we divide each city into grids
of 1km×1km and time intervals of 1 hour. Dataset statistics are
shown in Table 2 in the Appendix. We pick NY and CHI, cities with
more data as source cities, and DC as the target city. For source
cities, we split the final 2 months for testing, the 2 months before
for validation, and the rest (8 months) for training. For target cities,
we use the same setting for test and validation data, and use the
last month, week, and 3 days of data before validation for training.

We also collect POI and road data from OpenStreetMap, and
derive human mobility from the taxi and bike datasets for regional
feature learning. Details are stated in Section C&D in the Appendix.

Base Models. CrossTReS works with general prediction models
𝐹𝜃 and feature networks 𝐹𝜃 𝑓 . For the prediction model, we choose
a representative one, ST-Net [24] to perform experiments. For the
feature network, we choose MVURE [30] which is an urban region
embedding framework based on multi-view graphs. We also set
L𝑒𝑚𝑏 as the loss function of MVURE (Eqn. 17 in [30]). Implemen-
tations of base models can be found in Section E in the Appendix.

Conceptually, CrossTReS can be applied to graph-based traffic
prediction models [13, 27], which we leave as future work.

Baselines. We compare CrossTReS with the following transfer
learningmethods for traffic prediction. They all focus on fine-tuning
instead of source training, and are thus non-selective baselines.

• Fine-Tuning. We first train a model on the source city with
Eqn. 2, and then fine-tune it using the data on the target city.

• RegionTrans [19]. After source training with Eqn. 2, it
computes region-wise similarity using auxiliary data to align
temporal features between cities during fine-tuning.

• MetaST [24]. MetaST uses meta-learning (Eqn. 3) for source
training and transfers the spatio-temporal memory (STMem)
containing long-term temporal patterns to the target city.

• ST-DAAN [20]. After source training with Eqn. 2, it fine-
tunes with DAN [17] by adding adaptation layers and MMD
regularization to align temporal features from both cities.

For selective baselines, as this is the first work to study selective
transfer learning for traffic prediction, there are no existing base-
lines. Thus, we compare with a method from other fields [16, 28].

• Sim-Loss, which re-weights source regions based on 1) a
non-adversarial domain classifier, and 2) loss values. Regions
similar to the target city with low loss values are emphasized.

We also compare with two non-transfer baselines.

• ST-Net. We only train ST-Net on limited target data.
• ARIMA, which is a statistical time-series regression model.

Details of baseline methods are in Section E in the Appendix. For
fairness, all transfer learning methods use ST-Net as the base model.

In addition, we also include CrossTReS-RT and CrossTReS-Mem
for comparisons to show the compatibility of CrossTReS. CrossTReS-
RT and CrossTReS-Mem use RegionTrans and STMem (used in
MetaST) for fine-tuning, respectively.

Implementation details and hyperparameter settings of CrossTReS
can be found in Section E and F in the Appendix.We provide the link
to code and data at https://github.com/KL4805/CrossTReS.

5.2 Performance Comparison
5.2.1 Quantitative Results. We evaluate CrossTReS and baselines
on two tasks: DC bike and DC taxi. For each task, we transfer from
NY and CHI. We report the means and standard deviations of 5
independent runs in Table 1. We make the following observations.

• The performances of ST-Net degrade significantly with lim-
ited data. For example, for taxi volume prediction in DC,
ST-Net performs worse than ARIMA with fewer than 7 days
of data. The degradation indicates that the problem of trans-
ferring traffic prediction models is of pressing importance.

• CrossTReS variants consistently outperform non-selective
and selective baselines. Compared with the best baselines
(underlined in Table 1), CrossTReS achieves an error reduc-
tion of up to 8% under the same settings. The improvements
indicate that CrossTReS enables selective and effective cross-
city knowledge transfer for traffic prediction tasks.

• CrossTReS-RT and CrossTReS-Mem perform similarly or
better than CrossTReS, showing that CrossTReS applies to
general fine-tuning methods in cross-city transfer learning.

In addition to the final prediction error on the target city, we also
study the speed of adaptation for CrossTReS compared to baselines.
Results are discussed in Section G in the Appendix.
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Table 1: Evaluation results for bike and taxi volume prediction in Washington DC. For each target data amount and each source
city, the best result is bolded and the second best is underlined.

Task Methods Target Data 30 days 7 days 3 days
Metric RMSE MAE RMSE MAE RMSE MAE

DC Bike

No Transfer ARIMA 3.44 1.48 3.46 1.50 3.48 1.55
ST-Net 2.49 1.24 2.73 1.43 3.14 1.78

Non-selective
Transfer

Source NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI

Fine-Tuning 2.317 2.359 1.039 1.048 2.473 2.566 1.085 1.116 2.559 2.699 1.126 1.180
RegionTrans 2.293 2.352 1.051 1.076 2.453 2.542 1.125 1.144 2.535 2.667 1.163 1.219

MetaST 2.326 2.341 1.045 1.056 2.486 2.534 1.115 1.124 2.562 2.653 1.157 1.195
ST-DAAN 2.339 2.371 1.021 1.033 2.475 2.591 1.102 1.091 2.633 2.759 1.120 1.167

Selective
Transfer

Sim-Loss 2.311 2.339 1.029 1.027 2.455 2.529 1.093 1.107 2.614 2.680 1.172 1.205

CrossTReS 2.187 2.244 0.968 0.984 2.300 2.349 0.988 1.032 2.397 2.449 1.024 1.068
Std. Dev. 0.033 0.017 0.010 0.008 0.031 0.009 0.017 0.012 0.018 0.018 0.016 0.031

CrossTReS-RT 2.177 2.211 0.984 0.998 2.315 2.315 1.017 1.038 2.377 2.419 1.058 1.073
Std. Dev. 0.004 0.021 0.013 0.013 0.029 0.026 0.012 0.015 0.036 0.009 0.013 0.014

CrossTReS-Mem 2.179 2.231 0.974 0.984 2.299 2.313 1.008 1.017 2.391 2.414 1.048 1.031
Std. Dev. 0.005 0.026 0.021 0.021 0.015 0.016 0.021 0.007 0.014 0.022 0.021 0.014

DC Taxi

No Transfer ARIMA 5.18 1.76 5.19 1.77 5.20 1.81
ST-Net 4.85 2.09 5.74 2.90 6.83 3.82

Non-selective
Transfer

Source NY CHI NY CHI NY CHI NY CHI NY CHI NY CHI

Fine-Tuning 4.214 4.148 1.478 1.461 4.420 4.357 1.573 1.574 4.675 4.566 1.723 1.700
RegionTrans 4.111 4.162 1.472 1.592 4.416 4.347 1.662 1.738 4.778 4.630 1.813 1.911

MetaST 4.097 4.077 1.450 1.438 4.422 4.351 1.592 1.605 4.672 4.617 1.708 1.708
ST-DAAN 4.250 4.171 1.482 1.472 4.459 4.408 1.550 1.555 4.898 4.705 1.697 1.679

Selective
Transfer

Sim-Loss 4.186 4.095 1.454 1.438 4.411 4.365 1.589 1.601 4.706 4.544 1.730 1.694

CrossTReS 3.885 3.869 1.381 1.382 4.056 4.031 1.435 1.449 4.326 4.271 1.577 1.558
Std. Dev. 0.033 0.050 0.021 0.014 0.031 0.039 0.028 0.015 0.041 0.045 0.028 0.040

CrossTReS-RT 3.880 3.867 1.393 1.347 4.052 4.064 1.457 1.477 4.230 4.235 1.562 1.548
Std. Dev. 0.025 0.031 0.019 0.022 0.014 0.031 0.015 0.039 0.017 0.038 0.019 0.040

CrossTReS-Mem 3.883 3.873 1.373 1.364 4.053 4.048 1.460 1.454 4.211 4.241 1.542 1.518
Std. Dev. 0.020 0.038 0.019 0.022 0.027 0.016 0.011 0.015 0.031 0.023 0.014 0.023
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Figure 3: Analysis results on node- and edge-level domain adaptations for spatial feature learning.

5.3 Model Analysis
In this section, we analyze both parts of CrossTReS, generalizable
region feature learning and region re-weighting. We perform anal-
yses using both NY-DC and CHI-DC city pairs and taxi volume
prediction tasks with 7-day target data.

5.3.1 Domain Adaptations for Spatial Features. In this section, we
study how the learned spatial features affect the overall perfor-
mance. We use two experiments to show its impact.

• Region Classification. We perform region classification
experiments to show the quality of the learned region fea-
tures. We label regions in each city according to the total
number of pickups and dropoffs in the dataset. Regions in
each city with top 25%, 50% pickups and dropoffs are labeled
0, 1, etc. We mix ΦS,ΦT from both cities and report a 5-fold
cross-validation score using logistic regression.

• Target Performance. We follow the evaluation protocol in
Sec. 5.2.1 and report performance on the target city (DC).

We compare the following variants of CrossTReS as ablation studies:
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Figure 4: Analysis results on the joint meta-learning for re-
gion re-weighting.

• CrossTReS-POI: We do not learn spatial features and use
POI vectors (details in Section C in the Appendix) as inputs
of the weighting network;

• CrossTReS-NoDA: We set 𝛽1 = 𝛽2 = 0 to remove domain
adaptation. In this case, ΦS,ΦT may follow different distri-
butions, which may compromise region re-weighting.

• CrossTReS: The full CrossTReS with 𝛽1 = 𝛽2 = 2.
• CrossTReS-GRL: We add an adversarial domain discrimi-
nator with gradient reversal layer (GRL) [8] along the shared
edge classifier 𝐹𝜃𝑒𝑑𝑔𝑒 .

We show results in Fig. 3(a) and 3(b) with the following findings.
• Comparing with CrossTReS-POI, variants that learn spa-
tial features are more precise in both region classification
and traffic prediction on target. This shows that the feature
network learns indicative spatial features that lead to more
effective selective transfer learning.

• Comparing with CrossTReS-NoDA, CrossTReS achieves bet-
ter performance in both experiments, which shows that by
learning generalizable region features via domain adapta-
tion, we better identify functionally similar regions across
cities to help selective transfer learning.

• Comparing CrossTReS and CrossTReS-GRL, we observe very
similar performances, indicating that the shared edge clas-
sifier well performs the edge-level domain adaptation, and
that an extra domain discriminator is not required.

We also study the impact of domain adaptation parameters 𝛽1, 𝛽2.
We show the results in Fig. 3(c) and 3(d). As shown, we observe a
degradation in performances when either level of domain adapta-
tion is absent (𝛽1 = 0 or 𝛽2 = 0), which indicates that both levels of
domain adaptation techniques contribute to learning generalizable
spatial features and further performing selective source training.

5.3.2 Joint Meta-Learning for Learning Region Weights. In this sec-
tion, we analyze the impact of the weighting network to the overall
performance via the following experiments.

• We remove theweighting network𝜃𝑤 and directly useΦS,ΦT
to compute 𝜆𝑟S via Eqn. 7.

• We vary the number of source and target updates 𝐾S, 𝐾T in
the inner loop (Eqn. 12 and 13) to analyze their impacts.

We show results in Fig. 4 and make the following observations.
• The performances slightly degrade without the weighting
network 𝜃𝑤 , showing that the weighting network helps fur-
ther capture indicative features for selective source training.
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Figure 5: Case study of 𝜆𝑟S during source training.
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Figure 6: Visualization of source region weights 𝜆𝑟S over NY.

• The best results are obtained with 𝐾T = 1, which suggests
that with an extra simulation of fine-tuning, helpful source
knowledge to target fine-tuning is better identified.

5.4 Case Study
In this section, we analyze the learned 𝜆𝑟S by performing a case
study using NY-DC taxi volume prediction tasks.

5.4.1 Mean Values and Sparsity. We analyze the trend of two prop-
erties of 𝜆𝑟S during source training: mean values and sparsity. We
run experiments for 6 times independently and plot the following
values at each source training epoch in each run in Fig. 5,

• Mean Values, i.e. the average 𝜆𝑟S over S;
• Sparsity, i.e. the ratio of source regions with low weights
𝜆𝑟S < 𝜀; we set 𝜀 = 0.25.

We make the following observations:

• The mean weights of source regions gradually decline as
source training proceeds, which shows that during source
training, the model gradually learns source knowledge that is
irrelevant to the target city, leading to the decline in weights.

• The sparsity of 𝜆𝑟S gradually increases as source training
proceeds. Moreover, we observe high sparsity (60 − 80%
regions have 𝜆𝑟S < 0.25) at the end of source training. Both
facts indicate that CrossTReS gradually learns to rule out
irrelevant source regions by assigning them low weights.

• Both metrics show similar trends across different runs, show-
ing that CrossTReS can stably select helpful source regions.



Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting KDD ’22, August 14–18, 2022, Washington, DC, USA

5.4.2 Visualization of 𝜆𝑟S . We visualize the learned weights to
illustrate the selection by CrossTReS. We show both the map of NY
and a heatmap of the average final 𝜆𝑟S in Fig. 6. As shown, Man-
hattan has much higher weights than New Jersey, Brooklyn, Bronx,
and Queens. The phenomenon can be interpreted in two ways. On
one hand, similar to Washington DC, Manhattan has many tourist
attractions, which leads to a similarity in popular destinations. On
the other hand, Washington DC enjoys high economic develop-
ment, while Manhattan is the most economically developed county
in NY.2 We thus conclude that the selection by CrossTReS well
corresponds with various notions of cross-city region similarity.

6 CONCLUSION
Wepresent CrossTReS, a selective cross-city transfer learning frame-
work for traffic prediction by adaptively re-weighting source re-
gions to improve target fine-tuning. CrossTReS applies to general
fine-tuning-based methods. We first learn generalizable features
for urban regions via node and edge-level domain adaptation meth-
ods to uncover shared urban functions between cities. We fur-
ther adaptively re-weight source regions via a source-target joint
meta-learning, such that selective source training with the learned
weights leads to low target error after fine-tuning. We perform
experiments on real-world taxi and bike datasets, where CrossTReS
outperforms state-of-the-art baselines by up to 8%. We further vi-
sualize the learned region selection in an interpretable manner.
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Algorithm 1 Selective Cross-City Transfer Learning for Traffic
Prediction with CrossTReS
Input: Source and target traffic data XS,XT ,
Multi-view urban data {GC

𝑣 }, 𝑣 ∈ {𝑝𝑟𝑜𝑥, 𝑟𝑜𝑎𝑑, 𝑝𝑜𝑖, 𝑠, 𝑑}, C ∈ {S,T },
Output: A deep prediction model 𝜃T for T
1: Set 𝑠_𝑒𝑝𝑜𝑐ℎ = 0, 𝑡𝑢𝑛𝑒_𝑒𝑝𝑜𝑐ℎ = 0.
2: while 𝑠_𝑒𝑝𝑜𝑐ℎ < 𝑇𝑠 do
3: Train feature network 𝜃 𝑓 via Eqn. 11.
4: Train 𝜃𝑠 = {𝜃 𝑓 , 𝜃𝑤} via Eqn. 12, 13, and 14.
5: Obtain source weights 𝜆𝑟S .
6: Train 𝜃 on source data XS via Eqn. 5 with weights 𝜆𝑟S .
7: 𝑠_𝑒𝑝𝑜𝑐ℎ = 𝑠_𝑒𝑝𝑜𝑐ℎ + 1.
8: end while
9: while 𝑡𝑢𝑛𝑒_𝑒𝑝𝑜𝑐ℎ < 𝑇𝑡𝑢𝑛𝑒 do
10: Train model 𝜃 on target data XT .
11: 𝑡𝑢𝑛𝑒_𝑒𝑝𝑜𝑐ℎ = 𝑡𝑢𝑛𝑒_𝑒𝑝𝑜𝑐ℎ + 1.
12: end while
13: return Trained model 𝜃T .

Table 2: Detailed statistics of the datasets. # Taxis, # Bikes
denotes the number of taxi/bike trips. Longitude and Latitude
show the detailed spatial ranges of the selected datasets.

City Longitude (W) Latitude (N) Time # Taxis # BikesAbbr. 𝑊𝑐 𝐻𝑐

New York [74.059, 73.863] [40.645, 40.848]

1/1-31/12, 2016

133M 13.8MNY 20 23
Chicago [87.740, 87.576] [41.766, 42.013] 24.5M 3.5MCHI 17 28

Washington [77.127, 76.926] [38.798, 38.969] 10M 2.7MDC 21 20

A PSEUDOCODE OF CROSSTRES
The detailed pseudocode of CrossTReS is shown in Algorithm 1.

B FURTHER RELATEDWORKS
B.1 Transfer Learning in Urban Computing
In addition to traffic prediction, transfer learning is also studied for
other tasks in urban computing, including FLORAL for air quality
prediction [21], CityTransfer and WANT [10, 16] for site recom-
mendation. However, FLORAL focuses on tree classifiers, while
WANT and CityTransfer focus on recommendation models. There-
fore, none of them can be directly applied to our problem.

C DATA PREPARATION
We collect bike and taxi data from New York3, Chicago4, and Wash-
ington DC5. We show the exact spatial range of the selected datasets
in Table 2. All datasets contain taxi/bike trips that include time and
geographical coordinates of pickups and dropoffs. We accordingly
process them into arrays recording the number of pickups/dropoffs
in each time interval. In addition, the taxi datasets in Chicago and
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.citibikenyc.com/system-data
4https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://www.divvybikes.com/system-data
5https://opendata.dc.gov/search?q=taxi%20trips
https://www.capitalbikeshare.com/system-data

Washington DC involve both geographical and temporal rounding,
i.e. the exact time is rounded to the nearest 15/30 minutes, and the
exact locations are rounded to centers of census tracts. In these
cases, we follow the approximate time and location information pro-
vided by the data. Regions that do not record any pickup/dropoffs
will not be included in computing errors.

For multi-view urban data, in addition to human mobility ex-
tracted by bike and taxi trips, we collect road information and POI
attributes from OpenStreetMap6. For road information, we process
it into a graph GC

𝑟𝑜𝑎𝑑
. Two regions (𝑟1, 𝑟2) ∈ GC

𝑟𝑜𝑎𝑑
if they are

connected by highways. For POI information, we process it into
a matrix PC ∈ R |C |×14. p𝑟 ∈ R14 denotes the number of POIs of
each class in region 𝑟 ∈ C. We consider the following POI classes:

• 0: Scenic spots;
• 1: Medical and health services;
• 2: Domestic services;
• 3: Residential areas;
• 4: Financial institutions (e.g. banks);
• 5: Sports and leisure services;
• 6: Cultural and educational services;
• 7: Shopping;
• 8: Housing services (e.g. hotels);
• 9: Governments and organizations;
• 10: Corporations;
• 11: Catering;
• 12: Transportation;
• 13: Public services.

D MULTI-VIEW URBAN GRAPH
CONSTRUCTION

We provide construction rules of the multi-view urban graphs.
• Proximity GC

𝑝𝑟𝑜𝑥 .We follow [9] and link each region 𝑟 with
8 regions that are within the 3×3 grid centered at 𝑟 . Regions
at the boundaries will link to fewer than 8 regions.

• Road Connections GC
𝑟𝑜𝑎𝑑

. Regions connected with high-
ways are connected with undirected edges.

• POI GC
𝑝𝑜𝑖

. Regions with similar POI distributions indicate
similar urban functions. Thus, given region 𝑟 , we connect it
with regions with top 𝑘 cosine similarity

POISim(𝑟, 𝑟 ′) = CosSim(p𝑟 , p𝑟 ′), 𝑟 , 𝑟 ′ ∈ C, (15)

where p𝑟 is the POI vector of 𝑟 with p𝑟,𝑖 denoting the number
of POIs of class 𝑖 in region 𝑟 .

• Human Mobility GC
𝑠 ,GC

𝑑
. Human mobility patterns shed

light on regional functions. For example, traveling between
a residential area and a business area should be more fre-
quent than that between residential areas. To this end, given
origin-destination (OD) pairsMC = {(𝑟𝑠 , 𝑟𝑑 )} from human
mobilities, we compute weights between regions 𝑟, 𝑟 ′ ∈ C
as 𝑤 (𝑟, 𝑟 ′) = |{(𝑟𝑠 , 𝑟𝑑 ) ∈ MC |𝑟𝑠 = 𝑟, 𝑟𝑑 = 𝑟 ′}|, and further
compute the source and destination distribution of region 𝑟
to model its mobility patterns as:

s(𝑟𝑖 |𝑟 ) =
𝑤 (𝑟𝑖 , 𝑟 )∑
𝑟 ′ 𝑤 (𝑟 ′, 𝑟 ) , d(𝑟𝑖 |𝑟 ) =

𝑤 (𝑟, 𝑟𝑖 )∑
𝑟 ′ 𝑤 (𝑟, 𝑟 ′) (16)

6https://openstreetmap.org
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Finally, we connect each region 𝑟 with regions of top 𝑘 simi-
larity (in KL divergence) in source distribution s(·|𝑟 ) to form
GC
𝑠 , and similarly GC

𝑑
.

E IMPLEMENTATION DETAILS
We implement CrossTReS with PyTorch and DGL. We implement
ST-Net by stacking 3 3×3 residual blocks with 64 channels [29] and
a single-layer LSTM with 128 hidden units. We set the prediction
horizon 𝜏 = 6, i.e. the input data consist of observations from 6
previous intervals. We implement the feature network 𝐹𝜃 𝑓 as an
MVURE model [30] with 2-layer GATs with 2 attention heads. We
use POI vectors PC as input features and set hidden and embedding
dimensions 𝑑𝑒𝑚𝑏 as 64. We set 𝑘 = 10 for linking top 𝑘 similar
regions as suggested. The implementation of MVURE follows the
official code 7. We implement both the weighting network 𝐹𝜃𝑤 and
the edge classifier 𝐹𝜃𝑒𝑑𝑔𝑒 as 2-layer MLPs with 64 hidden units.

Implementation details of baseline methods are as follows:
• We use ARIMA models with 6 AR steps, 1 MA step, and 1 in-
tegration step. We use the official code and hyperparameters
for MetaST8 and ST-DAAN9.

• We implement RegionTrans as we fail to find codes for it. The
original RegionTrans uses check-in data for region matching.
However, as we do not have this type of data, we use POI data
PC for region matching instead and tune the 𝑤 parameter
(Eqn. 14 in [19]) to achieve optimal results.

• The implementation of Sim-Loss follows Eqn. 11-16 inWANT
[16]. The weight 𝜆𝑟S of region 𝑟S is the product of two terms:
– The output of a non-adversarial domain classifier𝐷𝐼𝑆𝐶 (𝑟S) ∈

[0, 1]. A higher 𝐷𝐼𝑆𝐶 (𝑟S) indicates a higher similarity to
the target city.

– Whether the loss value on 𝑟S is sufficiently low

I(𝐿(𝑥𝑟S , 𝑥𝑟S ) < 𝛾) ∈ {0, 1}
We fail to find codes for WANT, and thus we implement the
selection rules. We implement the non-adversarial domain
classifier with 2 3×3 residual blocks and manually tune the
threshold 𝛾 to achieve the optimal results.

We replace the base model for all baselines with ST-Net for a fair
comparison. For all fine-tuning-based baselines, we train the model
for 100 epochs on source data and choose the model with the lowest
source validation error to initialize fine-tuning.

We choose ST-Net [24] as the base model because ST-Net is
built upon stacking convolutional layers for spatial features, and
recurrent layers for temporal features, both of which are commonly
used in traffic prediction tasks. In addition, stacking the two types
of layers to form a prediction model is also a common practice
[19, 20]. We thus consider ST-Net as a representative base model.

All experiments are performed on a single NVIDIA Tesla V100
GPU with 32GB memory.

F HYPERPARAMETERS
We tune hyperparameters of CrossTReS using the NY-DC city pair
on validation data. To learn the feature network via Eqn. 11, we set

7https://github.com/mingyangzhang/mv-region-embedding
8https://github.com/huaxiuyao/MetaST
9https://github.com/MiaoHaoSunny/ST-DAAN
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Figure 7: Speed of adaptation on taxi volume prediction tasks.

Table 3: Experimental results on Hong Kong taxi data.

Methods RMSE MAE

No-Transfer ST-Net 0.350 0.150

Transfer

Source NY CHI NY CHI

Fine-Tuning 0.337 0.331 0.136 0.139
RegionTrans 0.332 0.328 0.142 0.144

MetaST 0.331 0.330 0.137 0.138
ST-DAAN 0.342 0.336 0.135 0.133
CrossTReS 0.325 0.322 0.131 0.130

𝛽1 = 𝛽2 = 2, learning rate 10−3. In addition, to improve stability in
the first epochs, we train the feature network for 80 epochs before
performing source region selection via joint meta-learning. For
joint meta-learning. We set the inner learning rate 𝛼 = 5 × 10−5,
outer learning rate 𝛾 = 10−4, 𝐾S = 3, 𝐾T = 1. For the prediction
model, we perform source training for 𝑇𝑠 = 100 epochs with early
stopping and fine-tune for 𝑇𝑡𝑢𝑛𝑒 = 80 epochs use learning rate
8 × 10−4 with weight decay 5 × 10−5. We use Adam optimizer.

G ADDITIONAL EXPERIMENTAL RESULTS
G.1 Speed of Adaptation
In addition to the final prediction error on the target city, how fast
the model adapts to target data is also an important metric in trans-
fer learning. We compare the speed of adaptation for all methods
on taxi datasets with 7-day target data. We evaluate validation error
on the target city for each fine-tuning epoch and plot the curve in
Fig. 7. As shown, CrossTReS achieves both the lowest error and the
fastest adaptation, which further verifies that CrossTReS selects
relevant knowledge for effective transfer learning.

H DISCUSSIONS & FUTUREWORK
We discuss future work by performing experiments using taxi data
from Hong Kong. The dataset contains 6 months of data. We take
Hong Kong as the target city with 7 days of training data and
show results in Table 3. One major difference between the Hong
Kong dataset and those in Table 2 is that POI data in Hong Kong is
highly sparse, which negatively impacts regional feature learning.
Therefore, CrossTReS only marginally outperforms baselines (up
to ∼3%). We thus consider it important to deal with missing and
low-quality data views in future work.
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