
Augmenting Proactive Congestion Control with
Aeolus

Shuihai Hu1, Wei Bai2, Baochen Qiao1, Kai Chen1, Kun Tan3
1Hong Kong University of Science and Technology 2Microsoft 3Huawei

ABSTRACT
Recently, proactive congestion control solutions have drawn
great attention in the community. By explicitly scheduling
data transmissions based on the availability of network band-
width, proactive solutions o�er a lossless, near-zero queueing
network for serving network transfers. Despite the advan-
tages, proactive solutions require an extra RTT to allocate
the ideal sending rate for new arrival� ows. To resolve this,
current solutions let new� ows blindly transmit unscheduled
packets in the �rst RTT, and assign these packets with high
priority in the network. The unscheduled packets, however,
can cause serious network congestion, resulting in large
queue buildups and excessive packet losses.

This paper describes Aeolus, a solution aimed at achieving
both: eliminating the one RTT additional delay and preserv-
ing all the good properties of proactive solutions. Similar to
current solutions, Aeolus lets new� ows start at the line rate
on their arrivals. However, Aeolus introduces a new switch
mechanism which allows the switch to selectively drop ex-
cessive unscheduled packets once congestion occurs, thus
protecting the scheduled packets from the potential queue-
ing delay and packet loss caused by the unscheduled packets.
Our simulations with realistic workloads show that Aeolus
can signi�cantly speed up small� ows, e.g., deliver 55.9%
lower 99th percentile completion time, while preserving all
the good properties of proactive solutions.

CCS CONCEPTS
• Networks → Transport protocols; Data center net-
works;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the� rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’18, August 2–3, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6395-2/18/08. . . $15.00
https://doi.org/10.1145/3232565.3232567

KEYWORDS
Data Center Networks, Proactive Congestion Control, Selec-
tive Dropping

ACM Reference Format:
Shuihai Hu1, Wei Bai2, Baochen Qiao1, Kai Chen1, Kun Tan3 . 2018.
Augmenting Proactive Congestion Control with Aeolus. In APNet
’18: 2nd Asia-Paci�c Workshop on Networking, August 2–3, 2018,
Beijing, China. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3232565.3232567

1 INTRODUCTION
Many cloud applications, such as web search, social net-
working, and retail recommendation impose the stringent
latency requirement to the underlying data center networks
(DCNs). In recent years, the link speed of DCNs signi�cantly
increases, from 1Gbps to 10Gbps, to 40/100 Gbps with 200
Gbps on the horizons [13]. Given this trend, it is more and
more challenging for traditional reactive congestion control
algorithms, e.g., TCP, to meet the demanding latency require-
ment. Reactive congestion control algorithms only react after
congestion already happens. However, at high speed DCNs,
network transfers� nish in much fewer RTTs, thus having
little time to react to congestion signals.

Realizing this, proactive congestion control mechanisms [7,
9, 11, 17] have drawn great attention in recent years. Unlike
reactive solutions, proactive algorithms proactively avoid
congestion by explicitly scheduling packet transmissions
based on the availability of network resources. It has been
widely demonstrated that, proactive algorithms can achieve
zero packet loss, ultra-low bu�er occupancy and fast conver-
gence while supporting various bandwidth allocation poli-
cies.

Despite above advantages, proactive solutions require an
extra RTT to allocate the ideal sending rate for new arrival
�ows. As a result, all� ows including single-packet small
ones are delayed by one RTT, even when the network is very
idle. To resolve this, some of the existing solutions [9, 11, 16]
let new� ows blindly transmit unscheduled packets in the�rst
RTT, and assign these packets with high priority in the net-
work. The unscheduled packets, however, can cause serious
network congestion, resulting in large queue buildups and
excessive packet losses. The congestion not only degrades

22

APNet ’18, August 2–3, 2018, Beijing, China S. Hu et al.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D
F

FCT/us

ExpressPass
ExpressPass + Ideal Solution

(a) Cache Follower

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D
F

FCT/us

ExpressPass
ExpressPass + Ideal Solution

(b) Web Server

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D
F

FCT/us

ExpressPass
ExpressPass + Ideal Solution

(c) Data Mining

Figure 1: FCT of 0-100KB� ows under ExpressPass and ideal solution.

the tail performance of small� ows1, but also violates the de-
sired bandwidth allocation policy, e.g., per-�ow fair sharing,
weighted fair sharing among applications.

Motivated by above problems, we present Aeolus, a so-
lution aimed at achieving both: eliminating the one RTT
additional delay and preserving all the good properties of
proactive solutions. The key idea of Aeolus is to let new� ows
only utilize the spare bandwidth for the� rst RTT transfers.
More speci�cally, Aeolus lets new� ows start at the line rate
on their arrivals. When the queue is built at the switch, it in-
dicates that the unscheduled packets sent in the� rst RTT uti-
lizes excessive bandwidth and causes congestion. To preserve
proactive solutions’ original properties, Aeolus leverages the
switch to selectively drop excessive unscheduled packets
packets. Thus, the aggressive unscheduled tra�c does not
adversely a�ect the scheduled tra�c. Furthermore, the se-
lective dropping feature can be easily implemented using
ECN/RED, a built-in function of most commodity switches.

While the selective dropping feature shields existing� ows
from queueing delay and packet loss, fast start could turn out
being too aggressive and cause new� ows to su�er severe
packet loss. Hence we also design a quick recovery scheme
for recovering the lost unscheduled packets.
We have implemented Aeolus on top of ExpressPass’s

open source code [3] with NS-2 simulator. Our preliminary
simulation results with realistic workloads [5, 10, 18] indicate
that, Aeolus can signi�cantly speed up small� ows while
well preserve proactive approaches’ original properties. For
example, under Cache Follower workload, Aeolus facilitates
nearly 60% of 0-100KB small� ows to complete one RTT
faster and reduces the tail� ow completion time by 55.9% at
the 99th percentile, while keeps the low bu�er occupancy
like ExpressPass.
The rest of this paper is organized as follows. Section 2

introduces some observations that motivates this paper. Sec-
tion 3 describes the design of our solution in detail. Section 4
1To minimize the impact of packet losses, NDP [11] trim packet headers at
the switch to achieve fast loss recovery.

Cache Follower Web Server Data Mining
1Gbps 8.0 RTT 11.1 RTT 18.9 RTT
10Gbps 2.7 RTT 3.0 RTT 4.2 RTT
100Gbps 2.1 RTT 2.1 RTT 2.2 RTT

Table 1: Average FCTs of 0-100KB� ows under Express-
Pass.

presents some preliminary simulation results. Section 5 dis-
cusses some related works. Section 6 concludes this paper as
well as mentions some future works.

2 MOTIVATION
2.1 High Speed Network Needs Fast Start
As 40/100 Gbps networks become prevalent in production
data centers, network transfers complete in much fewer
RTTs. In Table 1, we measured the average FCTs of 0-100KB
small� ows with di�erent link speeds. We ran the experiment
using ns-2 simulator, and choose ExpressPass for congestion
control — a credit based proactive algorithm that forbids
data transfer in the� rst RTT. Flows are generated according
to three realistic workloads including Cache Follower, Web
Server and Data Mining. The topology we use is a fat-tree
with 8 spine switches, 16 leaf switches, 32 top-of-rack (ToR)
switches and 192 servers. The average load at bottleneck
links is 0.4.
As we can see from Table 1, under 1Gbps networks, on

average it takes around 8-19 RTTs for small� ows to�nish,
hence it may not be a big concern to forbid packet sending in
the� rst RTT. However, under 100Gbps networks, on average
only around 2 RTTs are needed for small� ows to complete.
This indicates that wasting the� rst RTT can prolong the
FCTs of small� ows by up to 50% in high speed networks.
To illustrate the potential performance bene�t fast start

can bring, we ran a second experiment which assumes a
hypothetical but ideal� rst-RTT solution. This ideal solution
can instantly know the accurate spare bandwidth on every

23

Augmenting Proactive Congestion Control with Aeolus APNet ’18, August 2–3, 2018, Beijing, China

network path, and allocate them to new� ows without any
delay. The FCTs of 0-100KB� ows under ExpressPass and
“ExpressPass + Ideal Solution" are plotted in Figure 1.

As we can see from Figure 1(a), without allowing new
�ows to utilize the spare bandwidth in the� rst RTT, nearly
80% of 0-100KB small� ows take one extra RTT to complete
- thus their FCTs are prolonged by nearly 75%. Similar im-
provements can be observed for all the three workloads. The
results indicate that, the waste of the� rst RTT will signi�-
cantly downgrade the small� ow performance.

2.2 The Challenges of Fast Start
While fast start can bring signi�cant performance improve-
ment for proactive algorithms, there are several challenges
to be addressed.
Challenge #1: queue buildup and packet loss. Lossless-
ness and low bu�er occupancy are two desired features pro-
vided by proactive algorithms. To guarantee these two fea-
tures, it is a must for proactive algorithms to enforce a (very)
tight control over network transfers, under which no sender
injects any unscheduled data packets into the network before
credit is granted.

Assigning each new� ow a limited budget of “free credit”
is a way to make a tradeo� between fast start and ensuring
zero data loss and low bu�er occupancy. However, the bursty
nature of data center tra�c makes it di�cult to decide the
amount of data a new� ow can send in the� rst RTT. If new
�ows are too conservative, it may under-utilize the available
bandwidth and delay the completion of small� ows; While
being too aggressive may a�ect the scheduled packets, and
lead to large queue buildups and severe packet loss.
Challenge #2: violation of policy goals. Today’s DCNs
are typically shared by a richmix of services and applications,
each of which may desire a di�erent performance metric.
Motivated by this, many proactive algorithms are designed
to o�er algorithmic� exibility in achieving various policy
goals, such as Shortest Job First (SJF), Weighted Fair Sharing
(WFS), etc..

Fast start may violate these policy goals. The reason is as
follows. To meet a certain policy goal, link bandwidth needs
to be allocated to� ows in a way that follows the policy-
induced allocation decisions. For example, with WFS policy,
link bandwidth should be divided among� ows with respect
to their weights. However, fast start allows new� ows to gen-
erate a lot of packets that is unexpected. These packets may
consume the bandwidth already allocated to some existing
�ows — thus resulting in the violation of policy goals.

2.3 Compatibility with Existing
Commodity Switches

To deliver high performance at low cost, most of today’s
data center switches are� xed-function switches built with
specialized hardware, which o�ers only very rigid function-
ality. While it is possible to add new features by redoing the
chip. it ofen takes a few years to launch new switch chips
and the cost can be very expensive. Hence to be readily-
deployable, the solution should be implementable with com-
modity switches.

3 SOLUTION
In this section, we describe the design of Aeolus, which aims
to achieve two goals: (1) allowing new� ows to sent packets
freely in the� rst RTT; (2) preserving all the good features of
proactive algorithms, including zero packet loss, low bu�er
occupancy, fast convergence, and� exibility in supporting
various policy goals.

3.1 Design Rationale and Basic Idea
We� rst introduce the key idea of Aeolus. As discussed above,
it is very di�cult to calculate a right sending rate for the un-
scheduled packets. Hence, in Aeolus, new� ows start at line
rate. Such aggressive� ow burst unavoidably leads to large
bu�er occupancy and severe packet loss under heavy load.
To handle this problem, we seek network support instead of
pure endhost solution.
To ensure low bu�er occupancy, we can drop incoming

packets once a switch queue starts to build up. While this
avoids queue buildup, the drop of scheduled packets violates
the losslessness property of proactive algorithms. To avoid
this, we assign a higher drop priority for unscheduled packets
than the scheduled packets, so the scheduled packets will
not get dropped due to congestion caused by fast start.

The drop of unscheduled packets, by itself, is not a problem.
In our design, the mission of these packets is to utilize the
spare bandwidth. They can get dropped when there is no
spare bandwidth. The drop of unscheduled packets becomes
a problem only when it takes a long time for them to recover.
Hence we complement our design with a fast loss recovery
scheme for recovering lost unscheduled packets.

3.2 Switch Mechanism
Aeolus employs a selective dropping mechanism at switches.
It distinguishes between packets based on the tag value (e.g.,
DSCP) carrying in the packet header. For each switch queue,
when its queue length reaches the dropping threshold K,
the incoming packets carrying low priority2 tag will get

2Low priority is equivalent to high drop priority. We use them interchange-
ably in this paper.

24

APNet ’18, August 2–3, 2018, Beijing, China S. Hu et al.

dropped. In contrast, packets carrying high priority tag only
get dropped when the bu�er over�ows. By tagging unsched-
uled packets with low priority and scheduled packets with
high priority, this mechanism ensures that an aggressive
fast start does not cause any drop of scheduled packets even
under the heavy load.

This mechanism requires no change to the packet schedul-
ing of the switch. Unless required by the proactive algorithm,
we assume all data packets are transmitted using a single
FIFO queue. This means that low-priority packets could still
result in queuing delay for high-priority packets. To resolve
this, we choose a very small dropping threshold, e.g., 2-8
KB, to avoid large queue buildups due to the bu�ering of
excessive low-priority packets.

While the above mechanism is appealing, the key question
is how to implement it with existing commodity switches?
In the following, we introduce our approach that exploits
existing functionality supported by commodity switches to
implement the above switch mechanism.
ECN-based Implementation. We leverage the ECN mark-
ing function, which is well supported by data center switches.
ECNmechanism uses the ECT� eld in the IPv4 or IPv6 header
to encode whether a packet is ECN capable. At the sender
side, a packet will be marked with ECT(1) if it is ECN capable,
otherwise with ECT(0). A single marking threshold K is set
at each switch queue. In our past testbed experiments with
ECN, we made an interesting observation. Let’s assume the
queue occupancy is greater than K on the arrival of a packet.
Our� nding is that, this packet will get ECN marked if it is
ECN capable; whereas this packet will get dropped if it is
not ECN capable.

Therefore, we can implement the selective dropping mech-
anism by reinterpreting the ECNmarking function as follows.
At the sender side, we set the ECT� eld of all unscheduled
packets to be ECT(0), while scheduled packets to be ECT(1).
At the switches, we set the ECN marking threshold K to be
the dropping threshold we want to con�gure. Then when the
marking threshold is reached at a switch queue, unscheduled
packets will be directly dropped while scheduled packets will
enter the queue and get ECN marked. At the receiver side,
we simply ignore the ECN marking of the received packets.
Why not priority queueing? One alternative idea is to
leverage priority queueing at switches to prioritize scheduled
packets over unscheduled packets. However, existing com-
modity switches only support a limited number of queues,
e.g, 4-8. In production data centers, these queues are typically
used to isolate di�erent service classes, such that tra�c be-
longing to di�erent classes can be kept from impacting each
other. The priority queueing based solution would require
one additional queue for each service class, such that the
number of supported service classes will be reduced by half.

In addition, due to the queueing delay in the low-priority
queue, for the same� ow, packets sent in the second RTTmay
be received earlier than those unscheduled packets sent in
the� rst RTT. This will lead to packet out-of-order problem.

3.3 Endhost Design
3.3.1 Duration of Fast Start. A� ow enters fast start phase

on its initiation. Fast start ceases at the end of� rst RTT when
any response is received, either from the receiver or the cen-
tral arbiter (in the case a centralized proactive algorithm is
adopted). The response can be data ACKs, bandwidth allo-
cations, loss noti�cations, etc.. Packets sent during the fast
start phase are marked as low priority, while other packets
are marked as high priority.

In production data centers, applications may maintain per-
sistent connections for transmitting multiple short messages
for a long time. After the termination of fast start phase,
these connections will be unable to send packets during the
�rst RTT since the second message. To address this, Aeolus
periodically renew a� ow once a� ow idles for a period.

3.3.2 Loss Recovery for Unscheduled Packets. Fast start
could turn out being too aggressive in the case when a large
number of� ows arrive in a burst. The selective dropping
mechanism protects scheduled packets from large queueing
delay and loss in such a situation. However, a new� ow that
performs fast start could itself su�er from excessive packet
loss. Without a quick loss recovery scheme, a new� ow may
end up with worse� ow completion time than if fast start
had not been used at all. In this part, we present our design
for quickly recovering the lost unscheduled packets.
Loss detection. Aeolus enables per packet ACK at the

receiver to quickly notify the senderwhich packets have been
received, but only for packets sent during fast start phase.
For each returned ACK, it carries the sequence number of
the last received packet, instead of repeating the smallest
sequence number of expected data.
In addition to the normal data ACK, Aeolus uses a probe

mechanism for detecting tail loss quickly. The idea is to send
a probe packet right after the transmission of last unsched-
uled packet. This probe packet carries the sequence number
of last sent packet, and is of minimum ethernet size, i.e., 64
bytes. We tag this probe packet with high priority, such that
it can be received by the receiver even if all the unscheduled
packets are dropped in the network due to severe congestion.
Both data ACK and probe ACK are tagged with high pri-

ority to ensure reliable acknowledgement. Based on the re-
ceived ACKs, senders can explicitly infer the lost packets
including tail loss quickly.
Loss retransmission. Retransmitting lost unscheduled

packets using unscheduled packets could result in a very
slow loss recovery procedure, as retransmitted packets may

25

Augmenting Proactive Congestion Control with Aeolus APNet ’18, August 2–3, 2018, Beijing, China

Web Cache Web Data
Server Follower Search Mining

0 - 100KB 81% 53% 52% 83%
100KB - 1MB 19% 18% 18% 8%

> 1MB 0% 29% 20% 9%
Average� ow size 64KB 701KB 1.6MB 7.41MB
Table 2: Flow size distribution of realistic workload.

get lost again in the network. To avoid this, Aeolus performs
retransmission only with scheduled packets.
Note that in existing proactive solutions, the bandwidth

allocated to a� ow has an e�ective period. It is possible that
in the second RTT the sender fails to receive the loss signal
prior to the expiration of received bandwidth allocations. As
a result, the allocated bandwidth will be wasted (assuming
there is no more new data to send in the second RTT).
To handle the above problem, Aeolus employs proactive

retransmission at the sender, i.e., let a sender, upon receiving
bandwidth allocations, retransmit corresponding amount
of unacked unscheduled packets immediately even before
detecting the loss. Note that a sender performs proactive
retransmission onlywhen there is no new and loss-con�rmed
data bu�ered. In addition, to reserve more time for ACKs to
return, the proactive retransmission can be done in a reverse
order (from the last byte towards the� rst byte).

4 SIMULATION RESULTS
We have implemented Aeolus on top of ExpressPass’s open
source code [3] with NS-2 simulator. In the next, we will
present our preliminary results for evaluating the perfor-
mance improvement when augmenting ExpressPass with
Aeolus.
Topology: Same as [7], we simulate a oversubscribed fat-
tree topology with 8 spine switches, 16 leaf switches, 32
top-of-rack (ToR) switches and 192 servers. Hence, the over-
subscription ratio is around 3 : 1. All links have 100Gbps
capacity. The per-link propagation delay and end-host pro-
cessing delay are 4µs and 1µs, respectively. Hence, the based
fabric latency across the spine switch is ⇠52µs. We employ
Equal Cost Multi Path (ECMP) with path symmetry for fabric
load balancing. Each switch port has 1.5MB bu�er to store
data packets.
Workloads: Same as [7], We generate realistic workloads
according to four distributions: Web Server [18], Cache Fol-
lower [18], Web Search [5] and Data Mining [10]. We plot
�ow size distributions in Table 2. All the distributions are
highly-skewed: the most of bytes are from few large� ows.
The� ows arrive according to the Poisson process. The source

(a) Web Server (b) Cache Follower

(c) Web Search (d) Data Mining

Figure 2: FCT of 0-100KB� ows in a oversubscribed fat-
tree topology. The average load of the network core is
40%.

and the destination of a� ow is chosen randomly. We con-
trol the average� ow arrival interval to achieve the desired
load (utilization) in the fabric core (spine-leaf links). We run
100,000� ows for each simulation setting.
Performance metrics: We use� ow completion time (FCT)
as the main performance metric. We also measure the queue
length for further analysis.
Result analysis: In Figure 2, we plot the FCT distributions
of 0-100KB small� ows. The network load is 40%.We have the
following two observations. First, with Aeolus, nearly 60%,
80%, 28% and 70% of 0-100KB small� ows complete within the
�rst RTT for the four workloads, respectively. This indicates
that Aeolus can fully utilize the spare bandwidth in the�rst
RTT to speed up small� ows. Second, the tail FCTs with both
schemes are similar. This indicates that under Aeolus, the
unscheduled packets has little negative impact on scheduled
packets.
In Figure 3, we plot the 99%-ile FCT and 99.9%-ile FCT

of 0-100KB� ows with the varying load for the web server
workload. Across all loads, Aeolus improves the FCT of 0-
100KB� ows by 19.6%-55.9% at the 99th percentile, and by
1.6%-18.8% at the 99.9th percentile, respectively. The results
further con�rm that Aeolus’s� rst RTT bursts do not degrade
the tail FCT of small� ows. Instead, better tail FCT can be
achieved for small� ows due to the fast� ow start. We also
achieve the similar results under the other three workloads.
But we omit them in the interest of the space.
In Figure 4, we show the average and maximum queue

occupancymeasured during the simulation. On average, both

26

APNet ’18, August 2–3, 2018, Beijing, China S. Hu et al.

(a) 99th percentile (b) 99.9th percentile

Figure 3: Tail FCT of 0-100KB� ows for the web server
workload.

(a) Average queue length. (b) Maximum queue length.

Figure 4: Average and maximum queue length for the
web server workload.

schemes achieve very small bu�er occupancies (< 550 bytes
under ExpressPass, and < 2KB under Aeolus). Furthermore,
both schemes’ maximum queues are small and stable with
the increased load. The results indicate that Aeolus keeps
the low bu�er occupancy like ExpressPass.
Summary: Through large-scale simulations, we� nd that
Aeolus generally outperforms ExpressPass. With fast start,
Aeolus signi�cantly speeds up small� ows while not leads
to large queue buildup.

5 RELATEDWORK
DCTCP [5] is an ECN-based transport which has been widely
adopted by the industry [1, 2, 14]. It uses instantaneous ECN
marking at the switch to detect congestion and adjusts the
window according to the extent of congestion at the end
host. However, to balance throughput and latency, DCTCP
still keep moderate bu�er occupancies at the switch. When
there is a extremely large number (e.g., hundreds of) of con-
current connections, DCTCP may fail to keep the low bu�er
occupancies, resulting in high queueing delay and excessive
packet losses [5, 14]. In addition, DCTCP su�ers from slow
convergence speed in high speed networks, which may take
hundreds of RTTs to reach ideal sending rate.
There is a large body of work built on the top of DCTCP.

D2TCP [19] adds deadline information into DCTCP’s win-
dow adjustment function. AC/DC [12] and vCC [8] enforce

DCTCP algorithm in the hypervisor to bene�t tenant virtual
machines in the public cloud. HULL [6] uses phantom queue
at the switch to deliver congestion noti�cation before queue
build-ups. It sacri�ces some throughput to achieve near zero
queueing delay.

DCQCN [21] and TIMELY [15] are congestion control so-
lutions for RDMA over Converged Ethernet (RoCE). Unlike
DCTCP, even with a large number of concurrent connec-
tions, both schemes can avoid congestion packet losses with
PFC [4]. However, PFCmay cause large queue buildups under
heavy load. In addition, PFC is known to have several impor-
tant drawbacks, including deadlock, head-of-line blocking,
unfairness and congestion spreading.
In recent years, several proactive congestion control al-

gorithms [7, 9, 11, 13, 17, 20] have been proposed, such as
FastPass [17], ExpressPass [7] and TFC [20]. Aeolus can be
integrated with all these proactive algorithms to assist them
to make a su�cient use of spare bandwidth in the� rst RTT
without violating their desired features.

6 CONCLUSION
This paper presented Aeolus, a simple yet e�ective solution
that augments all existing proactive algorithms to make a
su�cient use of spare bandwidth for the� rst RTT transfers
without violating the good features of proactive approaches.
By di�erentiating tra�c at the end and enforcing selective
dropping in the network, Aeolus allows aggressive fast start
without a�ecting the tra�c scheduled by proactive conges-
tion control algorithms. Our preliminary simulation results
indicate that, Aeolus can signi�cantly speed up small� ows
while keeps low bu�er occupancy and zero loss for scheduled
packets.
In the next, we will focus on implementing our solution

with commodity servers and switches in a real testbed envi-
ronment. In addition to ExpressPass, we will integrate Aeo-
lus with more proactive approaches, and demonstrate that
Aeolus can generally improve their performance while pre-
serving all the good features.

REFERENCES
[1] Dctcp in linux kernel 3.18. http://kernelnewbies.org/Linux_3.18.
[2] Dctcp in windows server 2012. http://technet.microsoft.com/en-us/

library/hh997028.aspx.
[3] Expresspass simulator. https://github.com/kaist-ina/ns2-xpass.
[4] Ieee dcb. 802.1qbb - priority-based� ow control. http://www.ieee802.

org/1/pages/802.1bb.html.
[5] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center tcp (dctcp). In SIGCOMM 2010.

[6] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Less is more: trading a little band-
width for ultra-low latency in the data center. In NSDI 2012.

[7] Inho Cho, Keon Jang, and Dongsu Han. Credit-scheduled delay-
bounded congestion control for datacenters. In SIGCOMM 2017.

27

Augmenting Proactive Congestion Control with Aeolus APNet ’18, August 2–3, 2018, Beijing, China

[8] Bryce Cronkite-Ratcli�, Aran Bergman, Shay Vargaftik, Madhusudhan
Ravi, Nick McKeown, Ittai Abraham, and Isaac Keslassy. Virtualized
congestion control. In SIGCOMM 2016.

[9] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. phost: Distributed near-optimal data-
center transport over commodity network fabric. In CoNEXT 2015.

[10] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. Vl2: a scalable and� exible data center network. In
SIGCOMM 2009.

[11] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
AndrewWMoore, Gianni Antichi, andMarcinWójcik. Re-architecting
datacenter networks and stacks for low latency and high performance.
In SIGCOMM 2017.

[12] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter,
John Carter, and Aditya Akella. Ac/dc tcp: Virtual congestion control
enforcement for datacenter networks. In SIGCOMM 2016.

[13] Lavanya Jose, Lisa Yan, Mohammad Alizadeh, George Varghese, Nick
McKeown, and Sachin Katti. High speed networks need proactive
congestion control. In HotNets 2015.

[14] Glenn Judd. Attaining the promise and avoiding the pitfalls of tcp in
the datacenter. In NSDI 2015.

[15] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. Timely: Rtt-based congestion control for
the datacenter. In SIGCOMM 2015.

[16] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John K.
Ousterhout. Homa: A receiver-driven low-latency transport protocol
using network priorities. In SIGCOMM 2018.

[17] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Deverat Shah,
and Hans Fugal. Fastpass: A centralized "zero-queue" datacenter net-
work. In SIGCOMM 2014.

[18] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the social network’s (datacenter) network. In SIG-
COMM 2015.

[19] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-
aware datacenter tcp (d2tcp). In SIGCOMM 2012.

[20] Jiao Zhang, Fengyuan Ren, Ran Shu, and Peng Cheng. Tfc: token� ow
control in data center networks. In EuroSys 2016.

[21] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
rdma deployments. In SIGCOMM 2015.

28

