
Understanding Communication Characteristics of Distributed
Training

Wenxue Li1, Xiangzhou Liu1, Yuxuan Li1, Yilun Jin1, Han Tian2, Zhizhen Zhong3, Guyue Liu4, Ying Zhang5, Kai Chen1
1iSING Lab, Hong Kong University of Science and Technology, 2University of Science and Technology of China,

3MIT, 4Peking Univeristy, 5Meta

ABSTRACT
Communication is pivotal in distributed training and a thorough
understanding of its characteristics is essential for future optimiza-
tions. However, prior works are limited, either focusing on cus-
tomized optimizations or conducting incomplete explorations on
communication characteristics. In this work, we systematically an-
alyze the communication characteristics of distributed training,
considering two key aspects of communication: pattern and over-
head, and assessing a broad spectrum of determinant factors. In
particular, we extensively investigate the features of communica-
tion patterns, such as predictability, and comprehensively evaluate
the impact of various factors on communication overhead. Addition-
ally, we develop and validate an analytical formulation to estimate
communication overhead, providing a mathematical understanding
of models with predictability.

CCS CONCEPTS
• Networks→ Network performance analysis; • Computing
methodologies→Model development and analysis.

KEYWORDS
Communication Characteristics, Distributed Training
ACM Reference Format:
Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong,
Guyue Liu, Ying Zhang, Kai Chen. 2024. Understanding Communication
Characteristics of Distributed Training. In The 8th Asia-Pacific Workshop on
Networking (APNet 2024), August 3–4, 2024, Sydney, Australia. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3663408.3663409

1 INTRODUCTION
Deep Neural Networks (DNNs) are increasingly adopted as funda-
mental building blocks in variousmodern services, such as language
translation and autonomous driving [2, 24]. DNN training is an
essential step in producing high-quality deep learning services.
Given the limited computational capacity of individual accelerators
(e.g., GPUs) and the high requirement, DNN training is typically
distributed [12, 17, 18, 26, 28], where each GPU is assigned a partial
job and all GPUs collaborate via various communication operations
to complete the entire task.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNet 2024, August 3–4, 2024, Sydney, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1758-1/24/08. . . $15.00
https://doi.org/10.1145/3663408.3663409

Communication plays a significant role in distributed train-
ing and often becomes a bottleneck. Consequently, several prior
works [19, 25, 26, 28, 32, 33] aim to reduce the communication time
in training. These works typically concentrate on enhancing perfor-
mance within certain conditions, such as specific model architec-
tures or hardware platforms, and introducing customized optimiza-
tions. Although promising, they do not provide a comprehensive
overview of the communication characteristics in distributed train-
ing. Such an understanding is essential to develop a systematic and
long-term approach to communication optimization.

Prior works [6, 9, 26, 33, 33] attempt to depict the communica-
tion characteristics of distributed training. However, they conduct
incomplete explorations, either lacking fine-grained analysis or
overlooking important factors. Some of them [6, 9, 30] focus on
cluster-level metrics, viewing the entire training job as a basic unit
and primarily assessing metrics like job completion time and cluster
utilization. This approach, however, misses the fine-grained features
within individual jobs. Others [10, 26, 33, 34] delve into the within-
job characteristics but overlook various key factors. For instance,
some studies [26, 33] only focus on data parallelism, ignoring the
complexities introduced by model parallelism. Several modeling-
related research [10, 34] directly integrate the peak link capacity
into formulations, overlooking the impact of network protocols.

In this work, we aim to systematically explore the communica-
tion characteristics of distributed training. Our analysis focuses
on the individual job scenarios, paying attention to fine-grained
within-job features. We analyze communication through two as-
pects: pattern and overhead. "Pattern" refers to the high-level traffic
attributes, such as predictability and regularity. "Overhead" focuses
on the metrics of communication time and communication ratio
over the entire training process. Our analysis incorporates a multi-
dimensional approach, varying key factors to assess their influence
and thus obtain a comprehensive understanding.

For pattern analysis, we reveal the coexistence of predictability
and semi-predictability in modern DNN training and conduct an
in-depth exploration of these features (§3). Regarding overhead, we
comprehensively consider various factors, including model archi-
tecture, training scale, network protocol, parallelism strategy, and
hardware platforms, and evaluate their effect on communication
overhead (§4). Furthermore, we devise an analytical formulation
to estimate the communication overhead for typical models and
validate its accuracy by comparing its predictions against data from
our experiments (§5).

This work makes several key findings/conclusions:
• Communication pattern depends on the model architecture and
parallelism strategy. For example, densely-activatedmodels demon-
strate predictable and regular patterns, while sparsely-activated
models exhibit dynamic and semi-predictable patterns.

https://doi.org/10.1145/3663408.3663409
https://doi.org/10.1145/3663408.3663409

APNet 2024, August 3–4, 2024, Sydney, Australia W. Li, et al.

Platform RTX3090-PCIe V100-PCIe V100-NVLink
GPU specs RTX3090-24G V100-32G V100-32G

Intra-node Network PCIe3.0x16 PCIe3.0x16 NVLink-V2

Inter-node Network 100 Gbps
ConnectX-5

100 Gbps
ConnectX-5

100 Gbps
ConnectX-5

Table 1: Specifications of three hardware platforms used in
this measurement work.

Model
architecure

Number of
parameters

Batch
size

Parallelization
strategy

Training scale
(no. of GPUs)

ResNet50 24.37M 32 Data Parallel 4∼32
ResNet101 42.49M 32 Data Parallel 4∼32
VGG16 131.95M 32 Data Parallel 4∼32
Bert-base 104.44M 12 Data Parallel 4∼32
Bert-large 319.64M 12 Data Parallel 4∼32

GPT 1.5B∼3B 32 PTD Parallel 4∼32
Table 2: DNN models (densely-activated) and their configura-
tions used in this measurement work.

• In the context of predictable models, the predictability extends
to both the communication matrix and traffic volume. Moreover,
their patterns exhibit a regular "on-off" transmission shape and
are recurrent across iterations.

• The factors influencing communication overhead are multifac-
eted. For example, we observe that the network protocol plays a
key role in utilizing link bandwidth and thus significantly influ-
ences communication overhead.

• We develop an analytical formulation to estimate the commu-
nication overhead for densely-activated models and confirm its
accuracy through empirical verification.

2 METHODOLOGY & OVERVIEW
Our experimental design incorporates amulti-dimensional approach,
varying key factors to assess their impact on communication pat-
terns and overhead. The following describes the details of our ex-
perimental setup.
Hardware platforms. Regarding hardware, we examine three
hardware platforms: RTX3090-PCIe, V100-PCIe, and V100-NVLink.
Each platform has its unique specifications, including GPU compu-
tation capacity, GPUmemory size, and intra-node network capacity,
as detailed in Table 1. All platforms are equipped with a Mellanox
ConnectX-5 [3] RDMA NIC (RNIC) owning a 100Gbps bandwidth;
each machine’s GPUs share a single RNIC. The CPU capacity and
host memory are similar across all platforms.
DNN workload and training scale. We evaluate four popular
DNN models: ResNet [8], VGG16 [23], Bert [4], and GPT [20], rep-
resenting CV, encoder-only and decoder-only NLP models. The
configurations for each model, including parameter numbers, batch
size, adopted parallelization strategy, and training scale, are detailed
in Table 2. We vary the training scales for each model to assess the
impact of the scale of training on communication.
Parallelization strategy and distributed framework. Different
from prior works that focus mostly on Data Parallelism (DP) [33],
we emphasize the analysis of hybrid parallelism, combining data
and model parallelism. Two primary model parallelism approaches
are Tensor Parallelism (TP) and Pipeline Parallelism (PP). Megatron-
LM [18] terms this hybrid parallelism, consisting of PP, TP, and

ResNet50
VGG16
Bert-base

M
es

sa
ge

 s
iz

e
(M

B)

10

100

1000

Message index

(a) Pure DP models.

GPT-1.5B
GPT-3B

M
es

sa
ge

 s
iz

e
(M

B)

1

10

100

1000

Message index

(b) GPT models with PTD-P.

Figure 1: Message distribution of three DP models using Py-
torch DDP and two GPT models using DeepSpeed.

DP, as PTD Parallelism (PTD-P). Another notable model parallelism
approach is Sequence Parallelism (SP) [11], which can be considered
a variant of TP, exhibiting similar traffic volume and communication
time but with lower activation memory consumption. Given our
focus on the analysis of communication, we solely measure TP and
assume SP to be equivalent to TP.

Regarding parallelism strategy selection, we employ data paral-
lelism to train VGG, ResNet, and Bert models, with PyTorch Dis-
tributedDataParallel (short as PyTorch DDP) as the framework [13].
For partitioning GPT models across GPUs, we utilize Microsoft’s
DeepSpeed framework [16] to employ the PTD parallel training.
Network protocol. In each experiment, we assess two prevalent
network protocols, TCP with Cubic [7] as congestion control (CC)
and RoCEv2 with DCQCN [35] as CC, evaluating their effects on
communication overhead.
Topology. Unless otherwise specified, we employ a ToR (Top of
Rack) topology, wherein all machines are connected to the same
ToR switch, forming a direct-connect topology.
Measurement overview. In this paper, we first focus on the fea-
tures of communication patterns and analyze the impact of various
factors on them (§3). We then shift to the communication overhead,
i.e., the ratio of communication over iteration time, and evaluate
its determinant factors (§4). Finally, we construct an analytical for-
mulation to estimate the communication overhead, the accuracy of
which is verified using realistic results (§5).

3 PATTERN ANALYSIS
In this section, we investigate the communication patterns of dis-
tributed training, beginning with an in-depth exploration of the
predictability feature in traditional densely-activated models that
utilize DP and PTD-P strategies. We then demonstrate the existence
of semi-predictability in sparsely-activated models, such as Mixture
of Experts (MoE).

3.1 In-depth Exploration of Predictability
The communication pattern is characterized by two primary ele-
ments: communication matrix and traffic volume. For traditional
densely-activated models, we observe both of them are predictable.
Furthermore, we observe that the factors (that determine commu-
nication patterns) include model architecture, parallelism strategy,
and parallelism mapping from the logical parallelism strategy to
the physical hardware platform.
Model architecture dependency. The model’s internal architec-
ture is a critical determinant of communication patterns, affecting
the total traffic volume and message distribution. For instance, in

Understanding Communication Characteristics of Distributed Training APNet 2024, August 3–4, 2024, Sydney, Australia

0.1

1

10

100

R
an
k

0

5

10

15

20

25

30

Rank
0 5 10 15 20 25 30

(a) Strategy (𝑝, 𝑡, 𝑑) = (4, 2, 4)

0.1

1

10

100

R
an
k

0

5

10

15

20

25

30

Rank
0 5 10 15 20 25 30

(b) Strategy (𝑝, 𝑡, 𝑑) = (4, 4, 2)
Figure 2: Traffic heatmaps of a GPT-3B model with two par-
allelism strategies on 32 GPUs.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Node
1

Node
2

Node
3

Node
4

PP
stage 1

PP
stage 2

PP
stage 3

PP
stage 4

DP traffic
(TP partition #2)

PP traffic TP traffic DP traffic
(TP partition #1)

EmbTableSyn
traffic

Figure 3: DeepSpeed’s default parallelism mapping from
(𝑝, 𝑡, 𝑑) = (4, 2, 4) to 32 GPUs (4 nodes).

pure DP training, the total traffic volume equals parameter number
× precision. Thus, models listed in Table 2 exhibit varying total traf-
fic volumes. Additionally, since Pytorch DDP transmits gradients
layer-wise, the message distribution also depends on the model
architecture. For example, we record the message size of ResNet50,
VGG16 and Bert-base, showing the results in Fig. 1a. The three
models exhibit different distributions. Specifically, several large
messages (the largest one is 392MB) in VGG16 results from its fully
connected (FC) layers. By contrast, all messages of ResNet50 are
relatively small. Pytorch DDP applies a bucket size of 25MB to fuse
gradients from small layers; that is the reason why many messages
are near 25MB.

The message size distribution of two GPT models is further
depicted in Fig. 1b, which (together with Fig. 1a) highlights a preva-
lence of large flows (e.g., 100MB). Due to the numerous parameters
in DNNmodels and the existence of fusion mechanisms, DNN train-
ing is dominated by large messages, distinguishing from traditional
datacenter applications [1, 14, 15, 29].
Parallelism strategy dependency. In models utilizing PTD-P
training, communication is influenced by both model architecture
and parallelism strategy. We consider a GPT model with 3 billion
parameters over a platform of 32 RTX3090 GPUs. We evaluate two
parallelism strategies: (𝑝, 𝑡, 𝑑) = (4, 2, 4) & (4, 4, 2). The correspond-
ing traffic heatmaps are depicted in Fig. 2 (the unit of colorbar
is gigabytes (GB)). The heatmaps are distinct, showing two main
differences. First, the latter strategy exhibits a larger TP communi-
cation range (more red squares). Second, the latter one shows less
DP traffic, as it has a larger TP scale which reduces the number of
parameters per GPU, leading to less DP traffic.
Communication matrix is predictable. Given the logical par-
allelism strategy and parallelism mapping from logical strategy

Traffic type Volume Number of messages Message size
TP ∼85 GB 680 125 MB
PP ∼1 GB 16 125 MB
DP 741 MB 1 741 MB

EmbTableSyn 96 MB 1 96 MB
Table 3: Traffic volume and composition at 𝑟𝑎𝑛𝑘0 during a
GPT-3B model training over 32 GPUs.

to physical platform, we can predict the communication matrix,
which specifies the set of GPU pairs that hold traffic. For instance,
Fig. 2a with strategy (𝑝, 𝑡, 𝑑) = (4, 2, 4) adopts the default mapping
approach of DeepSpeed, whose principle is to allocate TP and DP
groups within machines and distribute PP stages across machines.
We can depict the communication matrix of this setting before
actually running the model, as illustrated in Fig. 3, where commu-
nication exists only between GPU pairs connected by arrows.

With the same parallelism strategy, parallelism mapping could
make traffic patterns different. As an example, wemaintain the same
parallelism strategy with Fig. 2a and experiment with a customized
mapping approach (Fig. 12): allocating TP groups and PP stages
within machines and DP groups across machines. This approach
exhibits distinct traffic heatmaps, as shown in Fig. 11b. Due to the
page limitation, we leave the detailed explanation in Appendix A.1.
Traffic volume is computable. Given the model architecture and
parallelism strategy, the traffic volume is computable. For example,
under a GPT-3B model with the configuration shown in Fig. 3,
we measure the transmitted traffic volume at 𝑟𝑎𝑛𝑘0 during one
iteration. The results are demonstrated in Table 3, with traffic being
categorized into four primary types: TP, PP, DP, and Embedding
Table Synchronization (EmbTableSyn). The EmbTableSyn traffic
occurs between the first and last PP stages for aggregating gradients
of embedding tables.

Given the model configuration (𝑙, ℎ, 𝑠, 𝑔𝑏, 𝑏,𝑚) and parallelism
strategy (𝑝, 𝑡, 𝑑) (notations explained in Table 4), we can pre-calculate
the traffic volume, including the total volume, number of messages
and message size, to precisely match the results in Table 3. The
formula for this calculation is detailed in §5. In this case, TP traffic
constitutes about 99% of the total volume. This predominance of
TP traffic is a consistent observation across all our experiments and
is also mentioned by other studies [11, 18].
Regularity. DNN training exhibits distinct regularity in its com-
munication pattern, specifically a consistent "on-off" transmission
shape that recurs across iterations. This regularity arises from the
dependent and structured communication and computation phases
during DNN training, leading to regular transmission cycles. Al-
though this has been previously mentioned in recent works [21, 27],
we highlight it here to ensure a comprehensive summary of the
characteristics.

3.2 Semi-predictability of Sparse Models
TheMoE structure is a popular way to implement sparsely-activated
models. Training large MoE models requires Expert Parallelism (EP)
to distribute expert layers across multiple GPUs [5, 22]. This ap-
proach introduces all-to-all communication and makes MoE train-
ing with dynamic communication patterns. Notably, we find its
pattern exhibits semi-predictability, i.e., increasing predictability
and uniformity as the model converges.

APNet 2024, August 3–4, 2024, Sydney, Australia W. Li, et al.

0 1 2 3 4 5 6 7
Rank

0
1

2
3

4
5

6
7

Ra
nk

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.60 2.59 2.66 2.83 2.57 2.56 2.63

2.66 3.63 2.77 2.93 2.66 2.67 2.72

2.59 2.69 3.65 2.86 2.60 2.59 2.66

2.66 2.77 2.71 3.88 2.68 2.66 2.75

2.83 2.93 2.86 2.94 3.79 2.82 2.91

2.57 2.66 2.60 2.68 2.85 3.50 2.64

2.56 2.67 2.59 2.66 2.82 2.56 3.56

3.57 2.72 2.66 2.75 2.91 2.64 2.62 2.60GB

2.80GB

3.00GB

3.20GB

3.40GB

3.60GB

3.80GB

(a) Iteration 10.

0 1 2 3 4 5 6 7
Rank

0
1

2
3

4
5

6
7

Ra
nk

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

4.14 3.21 3.27 3.21 3.25 3.25 3.21

3.20 4.10 3.19 3.17 3.17 3.20 3.17

3.21 3.16 4.16 3.15 3.17 3.20 3.16

3.27 3.19 3.22 4.16 3.22 3.25 3.19

3.21 3.17 3.15 3.23 4.13 3.22 3.17

3.25 3.17 3.17 3.22 3.19 4.17 3.18

3.25 3.20 3.20 3.25 3.22 3.23 4.14

4.15 3.17 3.16 3.19 3.17 3.18 3.20 3.20GB

3.40GB

3.60GB

3.80GB

4.00GB

(b) Iteration 90.

Figure 4: Traffic heatmaps of two iterations during MoE
(760M) training.

125M MoE
350M MoE
760M MoE

N
on

-u
ni

fo
rm

 fa
ct

or

0

0.2

0.4

Iteration
0 10 20 30 40 50 60 70 80 90 100

Figure 5: Increasing uniformity during MoE training.

Dynamic patterns. To illustrate this, we evaluate a GPT-based
MoE model with 760M parameters, distributed over 8 RTX3090
GPUs, with 8 EP for expert layers and 8 DP for other layers. The
traffic heatmaps during MoE training are depicted in Fig. 4. The red
diagonal squares in the heatmap represent a combination of Ring
AllReduce traffic (from DP) and all-to-all traffic (from EP), while
the blue squares indicate exclusively all-to-all traffic.

The results indicate that the all-to-all traffic is non-uniform
within each iteration and dynamic across different iterations. We
also observe that the total volume of all-to-all traffic varies in dif-
ferent iterations (Fig. 4b is "darker" than Fig. 4a). This variation
is attributed to the adoption of a top-2 gating algorithm during
training, where each token can be routed to one or two experts,
leading to fluctuating traffic volumes. A trend we observed during
our experiments is that as the training progresses, tokens increas-
ingly tend to select two experts, consequently increasing the total
traffic volume.
Semi-predictability. The gate network in MoE is trained with a
target for load balance (i.e., uniformly distributing tokens across
experts). To assess its effectiveness, we analyze the uniformity
of token distribution over the first 100 iterations and develop a
nonuniform factor which is defined as the disparity between the
highest and lowest traffic volumes of all-to-all traffic per iteration.
We evaluate three GPT-basedMoEmodels with sizes of 125M, 350M,
and 760M. The results in Fig. 5 show a consistent decrease in the
nonuniform factor, indicating the efficiency of the gate network in
achieving more uniform token distribution as training progresses.

4 OVERHEAD ANALYSIS
In this section, we analyze the influence of various factors, including
model architecture, training scale, parallelism strategy, hardware
platform, and network protocol, on the communication overhead
of typical models. In the body of this paper, we primarily focus on
analyzing the overhead of GPT models. We also examine five DP
models as listed in Table 2, uncovering the determinant factors of

16 GPUs 32 GPUs

Pe
rc

en
ta

ge
 o

f i
te

ra
tio

n

0.01

0.1

1

Communication type
TP PP DP Bubble

(a) Default mapping.

16 GPUs 32 GPUs

Pe
rc

en
ta

ge
 o

f i
te

ra
tio

n

0.01

0.1

1

Communication type
TP PP DP Bubble

(b) Customized mapping.

16 GPUs 32 GPUs

Ef
fe

ct
iv

e
ba

nd
w

id
th

ut
iliz

at
io

n
(G

bp
s)

0

20

40

60

Communication type
TP PP DP

(c) Default mapping.

16 GPUs 32 GPUs

Ef
fe

ct
iv

e
ba

nd
w

id
th

ut
iliz

at
io

n
(G

bp
s)

0

20

40

60

Communication type
TP PP DP

(d) Customized mapping.

Figure 6: Communication ratio and effective bandwidth uti-
lization during GPT training.

their communication overhead. Due to space limitation, we leave
detailed analyses of these DP models in Appendix B.

4.1 Overhead in GPT Training
The GPT models listed in Table 2 are evaluated with two training
configurations: a 1.5B parameter model trained across 16 RTX3090s
with (𝑝, 𝑡, 𝑑) = (4, 2, 2), and a 3B parameter model trained across 32
RTX3090s with (𝑝, 𝑡, 𝑑) = (4, 2, 4). The configurations for the 1.5B
and 3Bmodels are set as (𝑙, ℎ, 𝑠, 𝑔𝑏, 𝑏,𝑚) = (48, 1600, 1024, 512, 32, 8)
and (54, 2000, 1024, 1024, 32, 8) (notations explained in Table 4),
respectively. For the pipeline scheduling, we adopt the "1F1B"
scheme [17], an illustration of which is depicted in Fig. 9.

Diverging from pure DP training, GPTmodels employ the PTD-P
training, introducing several distinct communication phases: TP,
PP, DP, and bubble time. We utilize the DeepSpeed framework’s
integrated communication log tool to accurately record the execu-
tion time of communication operations. Notably, for PP, after a GPU
completes its current computation, it initiates a recv operation to
await the intermediate results of subsequent micro-batch. The recv
time includes not only active traffic transmission but idle periods
as well. Thus, we regard only the active transmission duration of
recv as PP time, leaving the idle period as bubble time.
Parallelism mapping influences overhead. We assess the influ-
ence of parallelism mapping on communication overhead, across
two training scales, and with two parallelism mappings: Deep-
Speed’s default mapping and a customized mapping strategy (see
§3.1). As illustrated in Fig. 6, our findings reveal that both the train-
ing scale and parallelism mapping affect communication overhead.
Specifically, we observe that: (1) TP communication occupies the
largest share of communication time (about 50%), attributed to its
large volume of traffic; (2) At the 32-GPU scale, DP time experi-
ences a marked increase compared to the 16-GPU scale, due to the
expanded DP group size and reduced bandwidth efficiency; (3) Com-
paring the default and customized mapping strategies, the latter
modifies the distribution of traffic on heterogeneous network links,
allocating PP communication within machines and DP communi-
cation between machines, which results in reduced PP overhead
and increased DP overhead.

Understanding Communication Characteristics of Distributed Training APNet 2024, August 3–4, 2024, Sydney, Australia

TCP
RoCEv2

Ba
nd

w
id

th
 u

til
iz

at
io

n
(G

bp
s)

0

10

20

30

40

Message size (MB)
10 −3 10 −2 10 −1 1 10 1 10 2 10 3

(a) TCP vs. RoCEv2.

RTX3090
V100-PCIe
V100-NVLink

Ba
nd

w
id

th
 u

til
iz

at
io

n
(G

bp
s)

0

20

40

60

80

Message size (MB)
10 −3 10 −2 10 −1 1 10 1 10 2 10 3

(b) Three hardware platforms.

Figure 7: AllReduce benchmarks, assessing the impact of
network transport and hardware platform.

4.2 Impact of Protocol and Platform
In the preceding experiments, we employ the default configuration:
RTX3090 platform and RoCEv2 protocol. Here, we assess how vari-
ations in network protocols and hardware platforms influence the
communication overhead.
Network protocol. We first compare TCP and RoCEv2 on the
V100-PCIe platform using AllReduce benchmarks. We utilize two
machines, each with 4 GPUs, forming an 8-worker AllReduce group.
The effective bandwidth utilization of the AllReduce operation
is shown in Fig. 7a. The results reveal the superior performance
of RoCEv2, e.g., offering a 1.8× higher throughput for messages
over 10MB compared to TCP. We then assess TCP and RoCEv2 on
realistic VGG16 and GPT-3B training. For VGG16, we measure the
normalized communication time, iteration time, and bandwidth
utilization of RoCEv2 over TCP (Fig. 8a). The results demonstrate
that RoCEv2 cuts communication and iteration times by 2× and
1.5×, respectively. For GPT-3B, we measure the ratio of TP, PP,
and DP times over iteration (Fig. 8b). As the results show, RoCEv2
achieves a 2.5× and 1.6× reduction on PP and DP communication,
respectively. Note that TP is not affected by transport protocols, as
its traffic is within intra-machine domains.
Hardware platform. With RoCEv2 set as the protocol, we evalu-
ate the communication time across three hardware platforms. We
form an 8-worker AllReduce group and measure the performance of
AllReduce benchmarks. As illustrated in Fig. 7b, the V100-NVLink
platform obtains the best performance, showing 2.2× and 3.7×
higher throughput than V100-PCIe and RTX3090, attributed to its
superior interconnection capacity. The difference between RTX3090
and V100-PCIe is due to the NCCL_P2P feature being enabled in the
V100 but not in the RTX3090. We observe consistent results in the
performance of realistic training, here omitted as space limitation.

5 COMMUNICATION ESTIMATION
5.1 Analytical Formulation
The analytical formulation aims to estimate the communication
overhead of GPT models. Note that the formulation of pure DP
models roughly equals the DP process of GPT models. The used
notations are illustrated in Table 4. Our analysis and experiments
leverage mixed-precision training, utilizing 16-bit precision for
model parameters, activations, and gradients. We begin the analysis
with a dissection of the iteration time.
Iteration time. As depicted in Fig. 9, the TP allreduce operation
is executed multiple times during the processing of each micro-
batch. PP send and recv operations occur at the boundaries of
pipeline stages, while the DP allreduce operation takes place at

TCP RoCEv2

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

1.0

1.5

Communication

time
Non-overlapped

comm. time

Iteration time

Bandwidth
utilization

(a) VGG16 Training.

0.31

0.024
0.014

0.32

0.01 0.008

TCP
RoCEv2

R
at

io
 o

f i
te

ra
tio

n
tim

e

0.01

0.1

1

Communication type
TP PP DP

(b) GPT-3B Training.

Figure 8: Performance of TCP and RoCEv2 in realistic VGG16
and GPT-3B training over V100-PCIe platform.

Notation Explanation
𝑝, 𝑡, 𝑑 (𝑝, 𝑡, 𝑑) for the pipeline parallel size, tensor parallel size,

and data parallel size, respectively.
𝑁 Total number of model parameters.
𝑙 Number of transformer block layers
ℎ Hidden size
𝑠 Sequence length
𝑔𝑏,𝑏 Global and micro-batch size, respectively
𝑚 Number of micro-batches per iteration
𝐶𝑇𝑃,𝑃𝑃,𝐷𝑃 Effective bandwidth utilization of TP, PP, DP
𝐹 GPU computation capacity (i.e., peak FP16 FLOP/s)

Table 4: Notations used in GPT models’ setting.

the end of each iteration. The iteration time is determined by the
total working time at 𝑠𝑡𝑎𝑔𝑒1, which completes the backward com-
putation of the last micro-batch at the latest. Assuming 𝑟𝑎𝑛𝑘0 is at
𝑠𝑡𝑎𝑔𝑒1, the iteration time is the sum of computation, communication
(including TP, PP, and DP), and bubble time at 𝑟𝑎𝑛𝑘0:

𝑇𝑖𝑡𝑒𝑟 = 𝑇𝑐𝑜𝑚𝑝 +𝑇𝑇𝑃 +𝑇𝑃𝑃 +𝑇𝐷𝑃 +𝑇𝑏𝑢𝑏𝑏𝑙𝑒 (1)

Note that the DP allreduce could potentially overlap with back-
ward computation. However, DeepSpeed does not implement this
feature in its default PTD-P training. Hence, our analysis assumes
no overlap between them.
TP, PP, andDP time. For TP, each allreduce operation generates
2𝑏𝑠ℎ bytes of traffic within a TP group. If Ring-AllReduce is adopted,
each AllReduce actually generates 2𝑏𝑠ℎ × 2(𝑡−1)

𝑡 bytes of traffic.
There are four such operations per micro-batch and transformer
block. Given that the recomputation (by default enabled) adds two
additional allreduce, the total comes to six allreduce operations
per micro-batch and transformer block. With the no. of transformer
blocks allocated to one stage being 𝑙/𝑝 , the TP time per iteration
is calculated as follows, where 𝑇𝑚𝑏

𝑇𝑃
represents the TP time for one

micro-batch:

𝑇𝑇𝑃 =𝑚 ×𝑇𝑚𝑏
𝑇𝑃 =𝑚 × 𝑙

𝑝
× 6 × 2𝑏𝑠ℎ × 2(𝑡 − 1)

𝑡 ×𝐶𝑇𝑃
(2)

For PP, each send/recv operation transfers 2𝑏𝑠ℎ bytes of data be-
tween two GPUs in adjacent pipeline stages. At 𝑟𝑎𝑛𝑘0, one send and
one recv operation occur per micro-batch, leading to the following
formulation for PP time:

𝑇𝑃𝑃 =𝑚 ×𝑇𝑚𝑏
𝑃𝑃 =𝑚 × 2 × 2𝑏𝑠ℎ

𝐶𝑃𝑃
(3)

After completing all backward computations, an allreduce is
used to aggregate model parameters (16-bit parameter). Assuming a
uniform distribution of model parameters 𝑁 across pipeline stages

APNet 2024, August 3–4, 2024, Sydney, Australia W. Li, et al.

1 2 3 4

1

1

1 1

1

1

1

2 3

2 3

2 2 3 3 4 4 5 5 6 6 7 7 8 8

8

8

8

7

7

7

6

6

6

3 4 5

3 4 5

3 4 5

2

2

2

4

4

5

5

5 6 7 8

6 7 8

6 7 8 9 10

9

DP comm.

Forward Pass Backward Pass GPU IdleTime

Stage 1

Stage 2

Stage 3

Stage 4

... ...

Bubble time

Send RecvTP AllReduce op.Forward Comp.

Backward Comp.

Figure 9: Illustration of pipeline scheduling with 4 stages and
8 micro batches used in this work.

(a simplification, as the actual distribution may slightly vary), the
DP time at 𝑟𝑎𝑛𝑘0 is calculated as:

𝑇𝐷𝑃 =
2𝑁
𝑝 × 𝑡

× 2(𝑑 − 1)
𝑑 ×𝐶𝐷𝑃

(4)

Bubble time. Considering the computation time for one micro-
batch, including both forward and backward passes, as𝑇𝑚𝑏

𝑐𝑜𝑚𝑝 , under
the "1F1B" scheduling scheme, we can derive the formulation of
bubble time at 𝑟𝑎𝑛𝑘0:

𝑇𝑏𝑢𝑏𝑏𝑙𝑒 = (𝑝 − 1) × (𝑇𝑚𝑏
𝑐𝑜𝑚𝑝 +𝑇𝑚𝑏

𝑃𝑃 +𝑇𝑚𝑏
𝑇𝑃) (5)

Furthermore, the total iteration time can be given by:

𝑇𝑖𝑡𝑒𝑟 =𝑚 × (𝑇𝑚𝑏
𝑐𝑜𝑚𝑝 +𝑇𝑚𝑏

𝑃𝑃 +𝑇𝑚𝑏
𝑇𝑃) +𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +𝑇𝐷𝑃 , (6)

If 𝑇𝐷𝑃 is excluded, the ratio of bubble time, 𝑅𝑏𝑢𝑏𝑏𝑙𝑒 , can be ap-
proximated as a constant value:

𝑅𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑇𝑏𝑢𝑏𝑏𝑙𝑒/𝑇𝑖𝑡𝑒𝑟 ≈ (𝑝 − 1)/(𝑝 − 1 +𝑚) (7)

Computation time. It is estimated that each model parameter
and input token requires roughly eight floating-point operations
(FLOPs) for computation, two for the forward pass, two for the
recomputation, and four for the backward pass [11, 18]. The detailed
rationale behind this approximation is discussed in Appendix C.
Adopting this value, the computation requirement for each micro-
batch at 𝑟𝑎𝑛𝑘0 is calculated as:

𝐹𝐿𝑂𝑃𝑚𝑏
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

= 8 × 𝑁

𝑝 × 𝑡
× 𝑏 × 𝑠 (8)

The computation time is then the ratio of required FLOPs to the
GPU’s capacity (FLOP/s). Given the unattainability of the GPU’s
peak computational capacity 𝐹 in practice, a factor 𝜇 is introduced
to represent the GPU utilization rate. Thus, the computation time
per iteration at 𝑟𝑎𝑛𝑘0 is estimated by:

𝑇𝑐𝑜𝑚𝑝 =

𝑚 × 𝐹𝐿𝑂𝑃𝑚𝑏
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝜇𝐹
=

8𝑚 × 𝑁 × 𝑏 × 𝑠

𝑝 × 𝑡 × 𝜇𝐹
(9)

5.2 Evaluation of Accuracy
To assess the accuracy of the analytical formulation, we compare
its estimations against realistic data derived from our experiments.
This evaluation assesses the estimation of computation time (𝑇𝑐𝑜𝑚𝑝),
bubble ratio (𝑅𝑏𝑢𝑏𝑏𝑙𝑒), communication time (𝑇𝑐𝑜𝑚𝑚), and commu-
nication ratio (𝑅𝑐𝑜𝑚𝑚 = 𝑇𝑐𝑜𝑚𝑚/𝑇𝑖𝑡𝑒𝑟).

The evaluation covers four experimental configurations: 16 RTX3090s
with a 1.5B GPT model, 32 RTX3090s with a 3B GPT model, 4 V100s
with a 1.5B GPT model, and 8 V100s with a 3B GPT model. Dur-
ing our experiments, we observed that the GPU utilization rate,

Estimated Measured

C
om

pu
ta

tio
n

Ti
m

e

0

10

20

3090-16
3090-32

V100-4 V100-8

(a) Computation time.

Estimated
Measured

C
om

m
un

ic
at

io
n

Ti
m

e

0

20

40

3090-16
3090-32

V100-4 V100-8

(b) Communication time.

Estimated
Measured

Bu
bb

le
 R

at
io

0

0.1

0.2

0.3

3090-16
3090-32

V100-4 V100-8

(c) Bubble ratio.

Estimated
Measured

C
om

m
un

ic
at

io
n

R
at

io

0

0.2

0.4

0.6

3090-16
3090-32

V100-4 V100-8

(d) Communication ratio.

Figure 10: Comparision between the analytical model and
realistic results over four experiment settings.

𝜇, remains relatively constant across different training scales but
varies depending on the hardware platform. Based on the actual
measurement, we apply a 𝜇 of 0.3 for RTX3090 and 0.4 for V100.
We speculate the distinction is due to V100’s larger GPU memory,
which enables more model parameters per GPU, thus enhancing the
utilization efficiency of GPU’s parallel SMs. Existing works [11, 18]
mention that A100 could achieve a greater 𝜇. For 𝐶𝑇𝑃 , 𝐶𝑃𝑃 , and
𝐶𝐷𝑃 , given the training scale and hardware platform, these val-
ues remain constant and can thus be accurately determined using
NCCL micro-benchmarks, as adopted by Fig. 7. Note that for the
estimation of 𝑅𝑏𝑢𝑏𝑏𝑙𝑒 , we adopt the simplified form in Eq. 7.

As illustrated by the results in Fig. 10, the analytical formula-
tion achieves approximately 90% accuracy across the majority of
our experiments, demonstrating its capability in estimating the
performance characteristics of GPT model training.
Summary. This analytical formulation precisely formulates the
traffic volume and required computation FLOPs, offering a mathe-
matical understanding of the predictability characteristic of GPT
models. For execution time metrics, it utilizes empirical values,
including GPU utilization rate and effective bandwidth utilization.

6 CONCLUSION & FUTUREWORK
In this paper, we experimentally evaluate the influence of various
factors on the communication pattern and overhead in distributed
training. We present a comprehensive analysis of the characteristics
of communication patterns and propose an analytical formulation
to estimate communication overhead. For future work, we plan to:
(1) broaden our experimental setting to incorporate more advanced
GPUs and larger training scales to verify our current findings; (2)
explore more domain-specific features; (3) conduct an in-depth
dissection for communication overhead, e.g., identifying the factors
influencing the effective bandwidth utilization.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their constructive suggestions. The HKUST affiliated authors are
supported by the Key-Area Research and Development Program
of Guangdong Province (2021B0101400001), the Hong Kong RGC
TRS T41-603/20R, the GRF 16213621, the ITF ACCESS, the NSFC
62062005, and the TACC [31]. Kai Chen is the corresponding author.

Understanding Communication Characteristics of Distributed Training APNet 2024, August 3–4, 2024, Sydney, Australia

REFERENCES
[1] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.

{Information-Agnostic} Flow Scheduling for Commodity Data Centers. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
455–468.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[3] NVIDIA Mellanox ConnectX-5. 2020. https://www.nvidia.com/en-
us/networking/ethernet/connectx-5/.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39.

[6] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A {GPU}
cluster manager for distributed deep learning. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 485–500.

[7] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[9] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of {Large-Scale}{Multi-Tenant}{GPU}
clusters for {DNN} training workloads. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). 947–960.

[10] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. Proceedings of Machine Learning and
Systems 1 (2019), 1–13.

[11] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael
Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2023. Reducing activation
recomputation in large transformer models. Proceedings of Machine Learning and
Systems 5 (2023).

[12] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. 2014. Communication
efficient distributed machine learning with the parameter server. Advances in
Neural Information Processing Systems 27 (2014).

[13] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[14] Wenxue Li, Chaoliang Zeng, Jinbin Hu, and Kai Chen. 2023. Towards Fine-
Grained and Practical Flow Control for Datacenter Networks. In 2023 IEEE 31st
International Conference on Network Protocols (ICNP). IEEE, 1–11.

[15] Wenxue Li, Junyi Zhang, Yufei Liu, Gaoxiong Zeng, ZilongWang, Chaoliang Zeng,
Pengpeng Zhou, Qiaoling Wang, and Kai Chen. 2024. Cepheus: Accelerating
Datacenter Applications with High-Performance RoCE-Capable Multicast. In
2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 908–921.

[16] Megatron-DeepSpeed. 2021. https://github.com/microsoft/Megatron-DeepSpeed.
[17] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1–15.

[18] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.

[19] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed DNN training acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 16–29.

[20] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[21] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya Akella.
2022. Congestion control in machine learning clusters. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks. 235–242.

[22] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[23] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[24] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[25] Hao Wang, Yuxuan Qin, ChonLam Lao, Yanfang Le, Wenfei Wu, and Kai Chen.
2023. Preemptive Switch Memory Usage to Accelerate Training Jobs with Shared
In-Network Aggregation. In 2023 IEEE 31st International Conference on Network
Protocols (ICNP). IEEE, 1–12.

[26] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia, Gaoxiong
Zeng,Wei Bai, Junchen Jiang, YongWang, and Kai Chen. 2024. Towards {Domain-
Specific} Network Transport for Distributed {DNN} Training. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 1421–
1443.

[27] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,
Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. {TopoOpt}:
Co-optimizing Network Topology and Parallelization Strategy for Distributed
Training Jobs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). 739–767.

[28] Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. 2023.
Egeria: Efficient dnn training with knowledge-guided layer freezing. In Proceed-
ings of the Eighteenth European Conference on Computer Systems. 851–866.

[29] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al. 2023. {SRNIC}:
A scalable architecture for {RDMA}{NICs}. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). 1–14.

[30] QizhenWeng,Wencong Xiao, Yinghao Yu,WeiWang, ChengWang, Jian He, Yong
Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. {MLaaS} in the wild: Workload
analysis and scheduling in {Large-Scale} heterogeneous {GPU} clusters. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
945–960.

[31] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao, Decang
Sun, Chaoliang Zeng, and Kai Chen. 2021. Tacc: A full-stack cloud computing
infrastructure for machine learning tasks. arXiv preprint arXiv:2110.01556 (2021).

[32] Chaoliang Zeng, Xudong Liao, Xiaodian Cheng, Han Tian, Xinchen Wan, Hao
Wang, and Kai Chen. 2024. Accelerating Neural Recommendation Training with
Embedding Scheduling. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). 1141–1156.

[33] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin
Jin. 2020. Is network the bottleneck of distributed training?. In Proceedings of the
Workshop on Network Meets AI & ML. 8–13.

[34] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. 2022.
Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep
learning. In 16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). 559–578.

[35] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

A ADDITIONAL PATTERN ANALYSIS
A.1 Mapping Influences Traffic Pattern
Asmentioned in §3, we construct a customized parallelismmapping
scheme, whose principle is to allocate TP groups and PP stages
within machines and distribute DP groups across machines. The
illustration of it from the logical strategy (𝑝, 𝑡, 𝑑) = (4, 2, 4) to 32
GPUs (4 machines) is shown in Fig. 12. The corresponding traffic
heatmap is shown in Fig. 11b. As the results show, the customized
parallelism mapping results in a distinct traffic heatmap, compared
to the heatmap in Fig. 11a, demonstrating that parallelism mapping
influences traffic patterns too.

B MORE ABOUT OVERHEAD
As mentioned in §4, we also evaluate five DP models as listed in
Table 2 using the RTX3090 platform and measure their communica-
tion time, non-overlapped communication time, and the ratios over
end-to-end training. We vary the training scale from 8 GPUs to 32

APNet 2024, August 3–4, 2024, Sydney, Australia W. Li, et al.

0.1

1

10

100

R
an
k

0

5

10

15

20

25

30

Rank
0 5 10 15 20 25 30

(a) Default mapping.

0.1

1

10

100

R
an
k

0

5

10

15

20

25

30

Rank
0 5 10 15 20 25 30

(b) Customized mapping.

Figure 11: Traffic heatmap of a GPT-3Bmodel with the logical
strategy (𝑝, 𝑡, 𝑑) = (4, 2, 4).

0 1 8 9 16 17 24 25

2 3 10 11 18 19 26 27

4 5 12 13 20 21 28 29

6 7 14 15 22 23 30 31

Node 1 Node 2 Node 3 Node 4

PP
stage 1

PP
stage 2

PP
stage 3

PP
stage 4

DP traffic
(TP partition #2)

PP traffic TP traffic DP traffic
(TP partition #1)

EmbTableSyn
traffic

Figure 12: Customized parallelism mapping from the logical
strategy (𝑝, 𝑡, 𝑑) = (4, 2, 4) to 32 GPUs (4 nodes).

GPUs and assess the scaling factor, with results illustrated in Fig. 13.
The per-GPU batch size is fixed to 32 for CV models (i.e., ResNet50,
ResNet101, and VGG16) and 12 for NLP models (i.e., Bert-base and
Bert-large) in all training scales, forming a weak-scaling setting.
Effect of model architecture. The communication overhead is
determined by model architecture (see Fig. 13c, 13d, 13e, and 13f).
Specifically, VGG16 and ResNet50 are observed with the highest
and lowest communication ratios, respectively. This is because
VGG16 has FC layers, with a significant amount of parameters to
aggregate but relatively low computation requirements, causing a
high communication ratio. By contrast, ResNets are constructed
using convolutional neural network layers, which are parameter-
efficient.
Impact of training scale. Fig. 13a illustrates a constantly decreas-
ing scaling factor with training scales across all models. We observe
that, with weak scaling, the computation time across different scales
remains almost the same (also mentioned by prior works [33]),
while the communication time increases on a larger scale, thus
causing a decreasing scaling factor. The increasing communica-
tion time is due to the decreasing effective bandwidth utilization, as
shown in Fig. 13b.

C MORE ABOUT FORMULATION
C.1 Estimation of FLOP Requirement
As summarized in [18], the number of parameters in a GPT model,
𝑁 , can be computed as (𝑉 is the vocabulary size):

𝑁 = 12𝑙ℎ2 (1 + 13
12ℎ + 𝑉 + 𝑠

12𝑙ℎ) (10)

Given batch size 𝑏 and sequence length 𝑠 , the number of re-

Bert-base
Bert-large
VGG16

Sc
al

in
g

fa
ct

or

1

2

3

4

Scale (no. of GPUs)
8 16 24 32

(a) Scaling factor.

ResNet50
ResNet101

Bw
 u

til
iz

at
io

n
(G

bp
s)

10

12

14

16

18

Scale (no. of GPUs)
8 16 24 32

(b) Bandwidth utilization.

C
om

m
. t

im
e

(m
s)

102

103

Scale (no. of GPUs)
8 16 24 32

(c) Communication time.

R
at

io
 o

f c
om

m
. t

im
e

0.4

0.6

0.8

Scale (no. of GPUs)
8 16 24 32

(d) Communication ratio.

N
on

-o
ve

rla
pp

ed
co

m
m

. t
im

e
(m

s)

101

102

103

Scale (no. of GPUs)
8 16 24 32

(e) Non-overlapped communica-
tion time.

R
at

io
 o

f n
on

-o
ve

rla
pp

ed
co

m
m

. t
im

e

0

0.2

0.4

0.6

0.8

Scale (no. of GPUs)
8 16 24 32

(f) Non-overlapped communica-
tion ratio.

Figure 13: Communication overhead of pure DP models with
varying training scale.

quired FLOPs per iteration, 𝑃 , can be approximately computed as
(recomputation enabled by default):

𝑃 = 96𝑏𝑠𝑙ℎ2 (1 + 𝑠

6ℎ + 𝑉

16𝑙ℎ) (11)

When ℎ >> 𝑠 , the ratio of 𝑃 over 𝑁 is about 8𝑏𝑠 , meaning
that each model parameter and input token requires roughly eight
FLOPs for computation.

	Abstract
	1 Introduction
	2 Methodology & Overview
	3 Pattern Analysis
	3.1 In-depth Exploration of Predictability
	3.2 Semi-predictability of Sparse Models

	4 Overhead Analysis
	4.1 Overhead in GPT Training
	4.2 Impact of Protocol and Platform

	5 Communication Estimation
	5.1 Analytical Formulation
	5.2 Evaluation of Accuracy

	6 Conclusion & Future Work
	References
	A Additional Pattern Analysis
	A.1 Mapping Influences Traffic Pattern

	B More about Overhead
	C More about Formulation
	C.1 Estimation of FLOP Requirement

