
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

One More Config Is Enough:
Saving (DC)TCP for High-Speed

Extremely Shallow-Buffered Datacenters
Wei Bai, Shuihai Hu , Kai Chen , Senior Member, IEEE, Kun Tan, and Yongqiang Xiong , Member, IEEE

Abstract— The link speed in production datacenters is growing
fast, from 1 Gbps to 40 Gbps or even 100 Gbps. However,
the buffer size of commodity switches increases slowly, e.g.,
from 4 MB at 1 Gbps to 16 MB at 100 Gbps, thus significantly
outpaced by the link speed. In such extremely shallow-buffered
networks, today’s TCP/ECN solutions, such as DCTCP, suffer
from either excessive packet losses or significant throughput
degradation. Motivated by this, we introduce BCC,1 a simple
yet effective solution that requires only one more ECN config-
uration (i.e., shared buffer ECN/RED) at commodity switches.
BCC operates upon real-time global shared buffer utilization.
When available buffer space suffices, BCC delivers both high
throughput and low packet loss rate as prior work; When it gets
insufficient, BCC automatically triggers the shared buffer ECN
to prevent packet loss at the cost of sacrificing a small amount of
throughput. BCC is readily deployable with existing commodity
switches. We validate BCC’s efficacy in a 100G testbed and
evaluate its performance using extensive simulations. Our results
show that BCC maintains low packet loss rate persistently while
only slightly degrading throughput when the buffer becomes
insufficient. For example, compared to current practice, BCC
achieves up to 94.4% lower 99th percentile flow completion
time (FCT) for small flows while only degrading average FCT
for large flows by up to 3%.

Index Terms— Datacenter networks, congestion control, ECN.

I. INTRODUCTION

DATACENTER applications generate a mix of workloads
with both latency-sensitive small messages (e.g., web

search) and throughput-sensitive bulk transfers (e.g., data repli-
cation). Hence, datacenter network (DCN) transport should

Manuscript received January 22, 2020; revised July 27, 2020; accepted
September 23, 2020; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor M. Schapira. This work was supported in part by the
Hong Kong Research Grants Council (RGC) under Grant GRF-16215119 and
in part by the Huawei Research Grant. (Corresponding author: Kai Chen.)

Wei Bai was with the iSING Laboratory, The Hong Kong University of
Science and Technology, Hong Kong. He is now with Microsoft Research
Lab, Redmond, WA 98052 USA (e-mail: baiwei0427@gmail.com).

Shuihai Hu was with the iSING Laboratory, The Hong Kong University of
Science and Technology, Hong Kong. He is now with Clustar Technology,
Shenzhen 518052, China (e-mail: shuihai@clustar.ai).

Kai Chen is with the iSING Laboratory, Department of Computer Science
and Engineering, The Hong Kong University of Science and Technology,
Hong Kong (e-mail: kaichen@cse.ust.hk).

Kun Tan is with Huawei Technology, Shenzhen 518129, China (e-mail:
kun.tan@huawei.com).

Yongqiang Xiong is with Microsoft Research Asia, Beijing 100080, China
(e-mail: yongqiang.xiong@microsoft.com).

Digital Object Identifier 10.1109/TNET.2020.3032999
1BCC : Buffer-aware Active Queue Management (AQM) scheme for

Congestion Control in extremely shallow-buffered datacenters.

provide low latency and high throughput simultaneously to
meet the requirements of applications.

TCP is the dominant transport protocol in today’s pro-
duction datacenters. However it was a challenge for TCP to
achieve good performance on both metrics that are essen-
tially at odds, especially under the shared shallow-buffered
switches in production DCNs. This challenge has been iden-
tified almost 10 years ago by Microsoft researchers in their
production DCNs. To address it, they proposed DCTCP [11]
which leverages ECN [47] to strike the tradeoff between
high throughput and low latency, and showed that a properly
configured per-port ECN/RED marking scheme could well
utilize the shallow buffer to achieve both high throughput
and low latency, while still reserving certain headroom for
absorbing micro-bursts [11].

Since then, TCP/ECN variants become flourishing [11],
[16], [19], [42], [51], [55], [58], [61] and are widely adopted
in industry. For example, DCTCP has been integrated into var-
ious OS kernels [4], [5] and deployed in DCNs of Microsoft,
Google [49] and Morgan Stanley [38].

However, in this paper, we show that this seemingly solved
problem resurges and the solution is now being re-challenged,
due to the recent industrial trend. The link speed of production
DCNs is growing fast from 1Gbps to 40Gbps or 100Gbps,
whereas the buffer size of commodity switches increases
slowly (e.g., from 4MB at 1Gbps to 16MB at 100Gbps), sig-
nificantly outpaced by the link speed. Consequently, the buffer
size per port per Gbps drops from 85KB to 5.12KB, leading
to an extremely shallow-buffered DCN environment (§II-D).

We find it is hard for prior TCP/ECN solutions to remain
effective when buffer is extremely shallow (§III). On the one
hand, if we configure a standard ECN marking threshold as
prior work [11], it will cause packet losses even before ECN
starts to react when more ports are active. On the other hand,
if we configure a lower conservative ECN threshold, it will
waste bandwidth and degrade throughput when few ports are
active because ECN over-reacts. Our results (§III-C) show that
such dilemma could lead to either 0.34% packet loss rate (thus
over 50X higher FCT for short flows) or 7.8% FCT slowdown
for large flows.

Our key contribution of this work is to uncover the above
problem, demonstrate its consequences, and introduce an
effective and readily deployable solution called BCC.2

2An earlier version has been published in IEEE INFOCOM 2020 [20].

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6080-9536
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0003-4175-0097

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

BCC is surprisingly simple, one more ECN config is
enough! At its core, BCC inherits the success of per-port
ECN/RED from DCTCP [11], and further enables shared
buffer ECN/RED to cope with the extremely shallow buffer
scenario (§IV). The shared buffer ECN/RED follows the origi-
nal RED algorithm [26] but tracks the occupancy of the global
shared buffer to mark packets. We note that while this function
is available on chips [3], [9], [19], it was less understood
previously and its utility has not been fully exploited in
literature.

BCC’s shared buffer ECN/RED and per-port ECN/RED
work complementarily to each other (§IV-B). When fewer
ports are active, the available buffer space suffices, per-port
ECN/RED will take effect first to strike the balance of high
throughput and low latency as DCTCP [11]. As more and more
ports become active, the buffer space becomes insufficient,
shared buffer ECN/RED will be triggered first to prevent
packet loss—BCC trades little throughput for latency when
achieving both is impossible. Furthermore, when applying
shared buffer ECN/RED, BCC leverages probabilistic marking
(instead of DCTCP’s single cut-off marking) to desynchronize
flows across ports, so as to avoid global synchronization and
further throughput loss.

We have implemented BCC in a small testbed with a 100G
Arista 7060CX-32S-F switch connecting 6 servers (§V-A).
We show that BCC can be enabled by just one more command
at the switch (Figure 6). We note that our implementation
mainly validates that BCC is readily-deployable and functional
as expected, however, a non-trivial BCC deployment at scale
is beyond the scope of this paper. Our goal here is to show the
hardware feasibility of BCC, leaving large-scale deployment
as future work.

We further evaluate the performance of BCC using
large-scale ns-2 simulations with realistic production datacen-
ter workloads (§V-B–§V-C). Our key findings include:

• At low loads (few ports active), BCC fully utilizes the
link capacity. Compared to a conservative ECN config-
uration, BCC achieves up to 19.3% lower average FCT
for large flows (§V-B);

• At high loads (more ports active), BCC keeps low packet
loss rate while only sacrificing little throughput. Com-
pared to a standard ECN configuration, BCC achieves
up to 94.4% lower 99th percentile FCT for small flows
while only degrading average FCT for large flows by up
to 3% (§V-B);

• BCC can effectively mitigate the global synchronization
problem with probabilistic shared buffer ECN marking,
and its performance is robust to various parameter settings
(§V-C).

The rest of the paper is organized as follows. We introduce
the extremely shallow buffer problem and its impacts in §II and
§III. We then present the BCC design and evaluation in §IV
and §V. We finally discuss related work in §VI and conclude
the paper in §VII.

To make our work reproducible, we have made our
code available at https://github.com/baiwei0427/buffer-
management/.

Fig. 1. Packet forwarding pipeline of Broadcom Trident II switching chip.

II. BUFFER IS BECOMING EXTREMELY SHALLOW

In this section, we first understand the buffering logic
of existing switching chips. Then, we quantify the buffer
requirements of TCP3 at high-speed. Finally, we show that the
buffer space becomes increasingly insufficient as link speed
increases.

A. Understanding the Switch Buffering

Figure 1 demonstrates a typical packet forwarding pipeline
inside the commodity datacenter switching chip. Among the
stages, we focus on Memory Management Unit (MMU), which
performs packet buffering and scheduling functions.

Basically, the MMU allocates on-chip buffer memory to
incoming packets. The buffer memory is divided into several
memory pools, which can be generally classified into the
following two categories:

• Private pools: dedicated buffers that have been reserved
to switch egress queues.

• Shared pool: buffers that are shared by many (all the)
switch egress queues.

When a packet arrives, the MMU uses the following two
steps to decide how to buffer it (or drop it):

• Enqueue into the private pool: The MMU first checks
the private pool of the destination egress queue. If there
is enough buffer space, the packet will be enqueued into
the private pool. Otherwise, the MMU will move to step
2 for further checking.

• Enqueue into the shared pool: If the private buffer has
been used up, the MMU will dynamically allocate buffer
from the shared pool. If there is still no enough buffer
space, the packet will get dropped.

As shown above, packets only get dropped by MMU if
neither the private pool nor the shared pool has enough space.
Moreover, the MMU only drops new arriving packets. Packets
in the pool cannot be pushed out.

B. Dynamic Buffer Allocation

Today’s commodity switching chips typically use Dynamic
Threshold (DT) algorithm [24] for dynamic buffer allocation.
The shared buffer allocated to a queue is controlled by a
parameter α. At time t, the MMU will compute a threshold

3In this paper, by TCP we refer to various TCP-variants, such as
DCTCP [11] and ECN∗ [55], etc., that are designed for datacenters.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: ONE MORE CONFIG IS ENOUGH: SAVING (DC)TCP FOR HIGH-SPEED EXTREMELY SHALLOW-BUFFERED DATACENTERS 3

T (t) to limit the queue length. T (t) is actually a function of
the unused shared buffer size and α as follows:

T (t) = α × (B −
N∑

i=1

Qi(t)) (1)

where B is shared buffer pool size and Qi(t) is length if
queue i at time t. A packet arriving in queue i at time t will
get dropped if Qi(t) ≥ T (t). As analyzed in [24], if there are
M active queues, each queue can eventually get α × B/(1 +
M × α) buffer space. Obviously, the more active queues we
have, the smaller buffer space each queue can get from the
shared pool. Moreover, a large α can help a queue to get
more buffer space. But a too large α can cause short-term
imbalanced buffer allocation. For example, if α is infinitely
large, the shared buffer pool will be allocated in a first in
first serve manner without any fairness guarantee. In switching
chips, α values are typically powers of two for implementation
simplicity (e.g., 1/128 to 8 in most Broadcom chips).

C. Buffer Requirement of TCP at High-Speed

TCP is the dominant transport protocol in today’s pro-
duction datacenters [11], [29], [49]. The switch buffer has
a great impact on TCP’s performance, especially for TCP
variants4 that are designed for datacenter environments [11],
[51], [55]. Moderate buffer occupancies are necessary for
high throughput [15]. In addition, we also need certain buffer
headroom to absorb transient busrts (e.g., incast [11], [17],
[36], [52], [54]). Therefore, insufficient switch buffers cause 1)
low throughput, thus slowing bulk transfers; and 2) excessive
packet losses, thus resulting in large tail completion times
for small messages. The tail completion time really mat-
ters because the performance of many responsive large-scale
applications seriously degrades when even a small fraction of
messages are late [25].

Unlike Internet, typically there are only a small number
of concurrent large flows in production DCNs [11]. In such
scenarios, to achieve the desired performance, TCP requires
at least C × RTT × λ buffer space per port, where C is the
link capacity, RTT is the average round-trip time and λ is
a characteristic constant of the congestion control algorithm
(e.g., 1 for regular ECN-enabled TCP).

In recent years, the link speed in datacenters has increased
greatly, from 1Gbps to 40Gbps and now to 100Gbps. However,
the base latency in datacenters does not change much as it
is mainly determined by processing overhead from various
sources (e.g., kernel stack, NIC driver, and middlebox). Hence,
the buffer demand of TCP almost increases in proportion to
the link speed in datacenters.
Testbed measurement: We measure the buffer demand
of conventional TCP stacks in our testbed. Three servers
(Mellanox ConnectX-4 100Gbps NIC, Linux kernel 3.10.0) are
connected to an Arista 7060CX-32S-F switch. To reduce sys-
tem overhead, various optimization techniques, e.g., TCP seg-
mentation offload (TSO) and generic receive offload (GRO),
are enabled. The base round-trip time in our testbed is ∼30μs.

4In this paper, by TCP we generally refer to various TCP-variants, such as
DCTCP [11] and ECN∗ [55], etc., that are designed for datacenters.

Fig. 2. [Testbed] Aggregate TCP throughput with different ECN/RED
marking thresholds.

We consider two datacenter TCP variants: DCTCP [11] and
ECN∗ [55] (regular ECN-enabled TCP which simply cuts
window by half in the presence of an ECN mark). We use
open source DCTCP implementation from Linux 3.18 kernel.
We generate 16 TCP long-lived flows using iperf from two
senders to a receiver. We vary the ECN/RED marking thresh-
old5 at the switch and measure the aggregate throughput at the
receiver side. For a TCP variant, its basic buffer requirement
approximately equals to the minimum ECN marking threshold
that achieves 100% link utilization.

Figure 2 shows aggregate throughput results with differ-
ent ECN marking thresholds. As expected, ECN∗ starts to
achieve 100% throughput on 325KB which is close to the
bandwidth-delay product (BDP) in our testbed. Our measure-
ment also shows that DCTCP performs similar as ECN∗ in
practice. The minimum ECN marking threshold that DCTCP
requires for 100% throughput is 250KB. The reader may
wonder why our experiment observation of DCTCP seems
inconsistent with theory results in [12] (0.17×BDP buffering
is enough for 100% throughput). We believe this is mainly
due to packet bursts that are caused by various interactions
between the OS and the NIC (e.g., TSO, GRO). Hence, a much
larger ECN marking threshold is required to absorb bursts.
Such complex burst behaviors are difficult to capture by ideal
fluid model in [12], thus resulting in the theory-practice gap.6

We also conduct the above experiment using Windows Server
2012 R2 and observe that DCTCP requires ∼60-70% BDP
buffering for 100% throughput in practice.
Production datacenters: Compared to our simple small-scale
testbed, production datacenters are more challenging and have
larger base latency. At the end host, packets may experi-
ence high kernel processing delay when servers are busy
doing CPU-intensive computations [29]. In virtualized envi-
ronments, hypervisors introduce extra processing overhead.
In the network, packets experience innegligible processing
delay when going through various middleboxes [27], [43].
Long-distance cables and multiple switch hops also bring
several-microsecond delay. Above factors greatly increase the
actual latency in production environments. In [30], the authors

5We set the maximum and minimum queue length thresholds of RED [26]
to the same value as previous work [11], [55] suggests.

6Such performance-theory gap has also been identified by previous
work [55] and even DCTCP paper itself [11].

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

BUFFER AND CAPACITY INFORMATION OF COMMODITY DATACENTER SWITCHING CHIPS. NOTE THAT BROADCOM TOMAHAWK
HAS 4 SWITCH CORES, EACH WITH ITS OWN MMU AND 4MB BUFFER [1], [2]

show that even the 50th percentile inter-pod latency can exceed
200μs. Such latency eventually transfers to a large buffer
demand. Consider a 100Gbps network with 80μs base RTT,
the per-port buffer requirement of ECN∗ can easily reach 1MB
(100Gbps× 80μs).

D. Buffer Becomes Increasingly Insufficient

However, the buffer size of commodity switching chips
in datacenters does not increase as expected. We list buffer
and capacity information of some widely used commodity
switching chips in Table I. The capacity significantly outpaces
the buffer size, resulting in decreasing buffer per port per Gbps
(from 85KB to 5.12KB). The reasons of shallow switch buffers
are at least two-fold.

• The memory used in switch buffers is high-speed SRAM
(Static Random Access Memory). Compared to DRAM
(Dynamic Random Access Memory), SRAM is more
expensive as it requires more transistors.

• The area increases with the memory size. When the
area becomes large, the read/write latency will increase,
making the memory access speed hard to match the link
speed.

Therefore, most commodity switches in DCNs are shallow
buffered. We envision that such trend will hold for future
200/400Gbps switching chips.

III. PROBLEMS CAUSED BY EXTREMELY

SHALLOW BUFFER

In this section, we demonstrate the performance
impairments of existing TCP/ECN solutions in extremely
shallow-buffered high-speed DCNs. Existing solutions use
switch buffers either 1) too aggressively, thus causing
excessive packet losses at high loads (§III-A) or 2) too
conservatively, thus seriously degrading throughput at low
loads (§III-B).

A. Standard ECN Configuration Causes Excessive Packet
Losses

Most datacenter TCP variants [11], [19], [51], [55], [61]
leverage ECN to achieve high throughput with certain buffer-
ing. Network operators need to configure a moderate ECN
marking threshold (e.g., C × RTT × λ) for them to achieve
100% throughput. To the best of our knowledge, this is current
operation practice in many production datacenters. However,
the standard ECN configuration is likely to overfill extremely
shallow buffers when many ports are active simultaneously,

thus causing excessive packet losses and degrading tail per-
formance of small flows.

We take Broadcom Tomahawk with 16MB buffer and
32 100Gbps ports as an example. If TCP desires 1MB
(100Gbps × 80μs) marking threshold per port, the switch
buffer will be overfilled when more than half of total ports
(≥16) are congested. What is worse, Tomahawk has 4 switch
cores to achieve desired performance at the high-speed. Each
core has its own MMU and 4MB shared buffer [1], [2].
Dynamic buffer sharing only happens within the single core.
Therefore, the buffer of a Broadcom Tomahawk chip will be
overfilled when more than 4 ports attached to a single core
are congested simultaneously.

B. Conservative ECN Configuration Degrades Throughput

Realizing the above limitation, a straight forward solution is
to configure a lower ECN marking threshold (e.g., smaller than
average per-port switch buffer), thus leaving buffer headroom
to reduce packet losses. However, this conservative ECN
configuration causes unnecessary bandwidth wastage when
few ports are busy. For example, when only one port is active,
this method still throttles TCP throughput despite the sufficient
buffer space available.

C. Simulation Validation

Since we do not have enough servers to saturate the switch
buffer in the testbed, we use ns-2 simulations to quantify the
impact of above performance impairments. We consider two
schemes: standard ECN configuration (§III-A) and conserva-
tive ECN configuration (§III-B). Our simulation settings are
shown as follows.
Topology: There are 32 servers connected to a switch using
100Gbps links. The base latency is 80μs. Hence, the BDP is
80μs × 100Gbps = 1MB. The jumbo frame (9KB MTU) is
enabled.
Buffer: To emulate Broadcom Tomahawk chip, we attach
every 8 switch ports to a 3MB shared buffer pool. Each switch
port also has 128KB static reserved buffer. All switch ports
have the same α = 4 for dynamic buffer sharing. At the end
host, we allocate 10MB static buffer to each NIC.
Schemes compared: We enable DCTCP at the end host
and set RTOmin to 5ms. Based on our testbed measurement
in §II-C, 720KB marking threshold (0.72BDP) should be
enough for DCTCP to achieve full link utilization. Hence,
we consider two marking thresholds: 720KB (standard) and
200KB (conservative).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: ONE MORE CONFIG IS ENOUGH: SAVING (DC)TCP FOR HIGH-SPEED EXTREMELY SHALLOW-BUFFERED DATACENTERS 5

Fig. 3. [Simulation] FCT and packet loss rate results for the web search workload with the single switch topology. Note that we normalize FCT results to
values achieved by DCTCP K=200KB.

Workloads: Among 32 servers, 24 server send traffic to the
rest 8 servers. Note that the 8 ports connected to receivers are
attached to the same shared buffer pool. We generate flows
according to the web search distribution (Figure 8). We vary
the network load (average utilization of links to receivers) from
40% to 90%.
Performance metrics: We use FCT as the primary metric
and also measure packet loss rate for analysis. For clear
comparison, we normalize all FCT results to values achieve
by 200KB threshold.
Results analysis: Figure 3 shows FCT and packet loss rates.
We make the following two observations.

At low loads (few ports active), the 720KB threshold (stan-
dard) obviously outperforms the 200KB threshold (conserv-
ative). For example, at 40% load, compared to the 200KB
threshold, the 720KB threshold achieves ∼ 6% lower overall
average FCT and ∼ 8.7% lower average FCT for large
flows. Moreover, both solutions achieve near zero packet loss
rate when the load is smaller than 60%. In such scenarios,
the switch has sufficient buffer. But the conservative ECN
configuration still leaves much buffer space unused, thus
seriously degrading throughput. This confirms our analysis in
§III-B.

At high loads (more ports active), the 720KB threshold
causes excessive packet losses, thus seriously degrading the
99th percentile FCT for small flows. For example, as shown
in Figure 3(d), at 90% load, 0.34% packets are dropped
with the 720KB threshold, which is much higher than the
0.1% network service level agreement (SLA) threshold used
in Microsoft datacenters [30]. Such high packet loss rate
causes numerous packet retransmissions and 10,390 TCP
timeouts (100,000 flows). As a result, at 90% load, the 99th
percentile FCT for small flows with the 720KB threshold is
∼37.6 (5399μs to 140μs) higher than that with the 200KB
threshold. This indicates that the standard ECN configuration
causes excessive packet losses when many ports are congested
simultaneously, confirming our analysis in §III-A.

IV. SOLUTION

A. Design Goals

Good performance: We seek to achieve both high throughput
and low packet loss rate simultaneously. However, as shown in
§III, the scarce buffer resource in switching chips may make
it difficult to guarantee both metrics in all scenarios. Like

prior work [31], [40], when a conflict arises between the two
metrics, we prefer low packet loss rate at the cost of sacrificing
little throughput. This is because the bandwidth is generally
plentiful in datacenters, while a small increase in packet loss
rate (e.g., ≥ 0.1%) can seriously degrade the performance of
user-facing applications and in turn, operator revenue [40].
Deployability: Our solution should work with existing com-
modity switches and be backward compatible with legacy
TCP/IP network stacks. Modifying switch hardware is costly
as a new switch ASIC often takes years to design and imple-
ment. We note that some prior DCN transport designs [13],
[23], [28], [31], [45], [46], [60] may work with extremely
shallow buffers. However, as we will discuss in §VI, these
solutions require non-trivial modifications to switch hardware
and network stacks or make unrealistic assumptions. They fail
to achieve our goal.

B. BCC Mechanism

Overview: BCC keeps conventional TCP/ECN algorithm at
the end host, and its core is to perform global buffer-aware
ECN marking at the switch. When the shared buffer utilization
is low, BCC marks packets with standard ECN configuration
to achieve both high throughput and low packet loss rate.
When the utilization goes high, BCC marks packets more
aggressively to prevent packet loss with minimal throughput
loss. BCC realizes this with just one more ECN configuration
in existing commodity switches.
Details: We now describe the mechanism of BCC in
detail. We model the switch as a shared-buffer output-queued
switch. Variables and parameters used in the model are listed
in Table II and III. We start from the simplest assumption
that each switch port only contains a single egress queue7

and no buffer is reserved for each queue. Hence, all buffers
are dynamically allocated from a single shared buffer pool.
The switch has B shared buffer space and N egress queues
in total. Any TCP/ECN variant (e.g., [11], [42], [51], [55])
can be enabled at the end host. The standard ECN setting is
configured on each port/queue for high throughput.

We assume that our TCP variant (with standard ECN
configuration) requires at least BR buffer space per queue
to achieve both high throughput and low packet loss rate.
We simply treat BR as a known constant here and show

7In §IV − B and §IV − C, we use queue and port interchangeably.
We further discuss the impact of multiple queues per port in §IV − D.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II

SHARED BUFFER MODEL PARAMETERS

TABLE III

SHARED BUFFER MODEL VARIABLES

how to determine BR later in §IV − C. When T (t) > BR,
it means that the switch has sufficient buffer space to achieve
both goals simultaneously. Hence, BCC just marks pack-
ets with the standard ECN configuration without degrading
throughput.

When T (t) ≤ BR, it indicates that the shared buffer
pool is highly utilized by many active ports. In such scenar-
ios, only relying on standard ECN configuration may cause
excessive packet losses as analyzed in §III − A. Hence,
BCC throttles the shared buffer occupancy to avoid excessive
packet losses. By Equation 1 and T (t) ≤ BR, we derive
that

N∑

i=1

Qi(t) ≥ B − BR/α (2)

Here
N∑

i=1

Qi(t) is the occupancy of the shared buffer pool

at time t, and B, BR and α are all known parameters. This
implies that, to prevent excessive packet losses, BCC should
throttle the shared buffer occupancy from exceeding a static
threshold B − BR/α.

To realize this, we leverage the shared buffer ECN/RED
functionality which has been supported in commodity switch-
ing chips [3], [9], [19]. Shared buffer ECN/RED follows the
original RED algorithm [26] but tracks the occupancy of a
shared buffer pool to mark packets. Note that all transmitted
packets in the shared buffer pool can get marked regardless of
their ingress/egress ports and queues. Therefore, shared buffer
ECN/RED can effectively control shared buffer occupancies.
Moreover, shared buffer ECN/RED can be used in combination
with other ECN/AQM configurations at the switch. When

multiple ECN configurations enabled, a packet gets marked
if anyone decides to mark it first. Hence, BCC works as
follows:

• When few ports are active, the available buffer is abun-
dant and per-port standard ECN configuration will take
effect first to strike the balance of high throughput and
low latency as prior work [11]. Both high throughput and
low packet loss rate can be achieved.

• When more and more ports become active, the buffer
space becomes insufficient. Shared buffer ECN/RED will
be automatically triggered first to prevent packet loss at
the cost of degrading throughput slightly.

Furthermore, BCC performs a RED-like probabilistic mark-
ing over shared buffer ECN by setting minimum and maximum
thresholds (Kmin and Kmax in Table II) to different values.
This is because, if we use a single cut-off threshold like
DCTCP [11], all flows across ports sharing the same buffer
pool are likely to reduce their window at the same time.
This causes global synchronization problem and a further loss
of throughput [26]. We confirm such problem in our simu-
lations (§V-C.1). With probabilistic marking, we effectively
desynchronize flows’ window reduction activities and improve
throughput.

C. BCC Parameters

We now derive BCC parameters. First, we determine BR,
the minimum per-queue (port) buffer size for both high
throughput and low packet loss rate. With BR fixed, we then
decide marking thresholds and probability of shared buffer
ECN/RED. Note that in this section we give several useful
rules-of-thumb to set parameters while leaving optimal para-
meter settings for future work.
Determine BR: Statistics has shown that there is typically a
small number of concurrent large flows to the same receiver
in production datacenters [11]. Hence, we start from a simple
scenario where several synchronized long-lived flows share a
bottleneck link. In such scenario, we need C × RTT × λ
per port buffering to achieve 100% throughput, where λ is a
characteristic constant of the congestion control algorithm.

However, the lag in ECN control loop imposes extra buffer
requirement to avoid packet losses. When a packet gets ECN
marked at switch egress,8 the sender will reduce its window
after one RTT . During this RTT interval, extra buffer space
is required to absorb the queue increase. We assume that the
receiver acknowledges every MTU-sized data packet. We con-
sider the most challenging TCP slow start phase. As an ACK
packet can trigger two MTU-sized data packets, the aggregate
sending rate reaches 2C and the switch queue gradient is C.
Therefore we need C × RTT extra buffer to avoid packet
losses and C ×RTT × (1 + λ) buffer in total to achieve both
goals.

We next consider a realistic scenario that a mix of small
and large flows arrive and leave dynamically. In this scenario,
it is less likely that all active flows enter slow start phase
simultaneously, thus reducing the switch queue gradient. But
the arrivals and departures of flows also affect the switch

8Modern shared buffer switches mark packets using RED at egress side [63].

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: ONE MORE CONFIG IS ENOUGH: SAVING (DC)TCP FOR HIGH-SPEED EXTREMELY SHALLOW-BUFFERED DATACENTERS 7

Fig. 4. [Simulation] CDF of buffer occupancies of the congested port at
90% load.

queue gradient, which is hard to model. Hence, we run a ns-
2 simulation instead. In this simulation, 31 senders generate
traffic to the same receiver according to the web search
workload. The average link utilization is 90%. We increase
the shared buffer size to 10MB, which eliminates packet
loss in the network. The other settings are same as those
in §III − C. We configure the per-port ECN/RED marking
threshold to 720KB (C×RTT×λ where C is 100Gbps, RTT
is 80μs and λ is 0.72). Hence, C × RTT × (1 + λ) is equal
to 1720KB. Figure 4 plots the CDF of buffer occupancies
of the congested port. Around 25% occupancies are larger
than 720KB, suggesting that C × RTT × λ is not enough.
The 99.99th percentile buffer occupancy is 1609KB, which is
smaller than C × RTT × (1 + λ). Hence, we envision that
C × RTT × (1 + λ) also works well for mixes of small and
large flows.

In summary, we recommend setting BR to C × RTT ×
(1 + λ). As C and λ are both known and RTT can be
measured [30], [55] in production datacenters, operators can
easily compute the value of BR.
Determine parameters for shared buffer ECN/RED: We
leverage shared buffer ECN/RED to prevent the shared buffer
occupancy from exceeding B−BR/α. To achieve fast reaction
to bursty traffic, we mark packets based on the instantaneous
buffer occupancy. Shared buffer ECN/RED has 3 parameters
to configure: minimum threshold Kmin, maximum threshold
Kmax and maximum probability Pmax. When the buffer
occupancy is: 1) below Kmin, no packet is marked; 2) between
Kmin and Kmax, packets are marked according to a proba-
bility; 3) exceeds Kmax, all packets get marked.

As analyzed before, if we set Kmin = Kmax, flows across
ports sharing a buffer pool are likely to get synchronized,
resulting throughput loss. Therefore, we decide to perform a
probabilistic marking by setting Kmin < Kmax = B−BR/α.
The key here is to control the range between Kmin and
Kmax. A too small Kmax − Kmin will make buffer occu-
pancy regularly ramp up beyond Kmax, still causing global
synchronization and even packet losses. As original RED
work [26] suggests, Kmax−Kmin should be made sufficiently
large (e.g., larger than typical increase in the shared buffer
occupancy during a RTT) to avoid global synchronization.
Hence, the choice of Kmax − Kmin depends on both the
number of ports N and link capacity C. In BCC, given
Kmax = B − BR/α, we set Kmin as follows:

Kmin = B − BR/α − C × N × h (3)

where h is a parameter to control Kmax − Kmin, the range
performing probabilistic marking. In our evaluation, we set h
to 8μs. For the maximum marking probability Pmax, we set it
to 10% following the guideline in [26]. In §V −C.2, we find
that BCC is robust for a range of h and Pmax.

D. Discussion

In this section, we first discuss several factors that may
affect the design of BCC. Then we discuss BCC’s compati-
bility with delay-based transports.
Impact of multiple MMUs: Some switching chips (e.g.,
Broadcom Tomahawk) have multiple MMUs and dynamic
buffer allocation only happens within the single MMU. BCC
also takes effect in such architecture as the shared buffer
ECN/RED operates in a per-MMU manner. Each MMU has its
own shared buffer ECN/RED and only marks its own packets
based on its own shared buffer occupancy (see validation in
§V − A).
Impact of different α values: Each switch egress port has
multiple queues for traffic isolation and scheduling. To provide
differentiated network services, operators may configure dif-
ferent α values for different queues. For example, operators
may give higher α values to queues carrying traffic of more
important services, e.g., real-time workloads.

When there are different α values, we can choose the
minimum value αmin among them and update shared buffer
ECN/RED parameters as follows: Kmax = B − BR/αmin,
Kmin = B − BR/αmin − C × N × h.
Impact of static reserved buffers: In §IV − B, we simply
assume that all buffers are dynamically allocated. In practice,
each egress queue has a small amount of static reserved
buffer by default. Operators can also configure different
reserved buffer sizes for different queues based on their
importances.

When both static reserved buffers and dynamic shared
buffers exist, the MMU first tries to use static reserved buffers.
Therefore, we should reduce BR, the minimum per-queue
shared buffer size for both high throughput and low packet
loss rate, to incorporate the static reserved buffer into BCC.
Let Smin denote the minimum static buffer size reserved for a
single queue. Our recommended value for BR should become
C × RTT × (1 + λ) − Smin

V. EVALUATION

In this section, we evaluate BCC using both small-scale
testbed experiments and large-scale ns-2 [8] simulations.
We highlight the results as follows:

• Our testbed validations (§V −A) show that BCC is easy
to configure at switches and performs as expected.

• Our ns-2 simulations (§V −B) demonstrate BCC’s supe-
rior performance in large-scale networks. At low loads,
BCC fully utilizes the link capacity and achieves up to
19.3% lower average FCT for large flows compared to a
conservative ECN configuration. At high loads, compared
to a standard ECN configuration, BCC achieves up to
94.4% lower 99th percentile FCT for small flows while
only degrading large flow FCT by up to 3%.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

• Our targeted simulations (§V −C) demonstrate that BCC
can mitigate the global synchronization problem with
probabilistic marking and is robust to various parameter
settings.

A. Testbed Validations

Due to the scale of our testbed, we only use testbed
micro-benchmarks to (1) show that BCC is readily-deployable
at commodity switches and (2) validate its functionalities in
two scenarios: single MMU and multiple MMUs. Our goal
here is to show the hardware feasibility of BCC, however,
a non-trivial BCC deployment at scale is beyond the scope of
this paper and left as future work.
Testbed setup: Our testbed consists of 6 servers connected
to a Arista 7060CX-32S-F 100Gbps switch. The 6 servers and
6 switch ports are denoted as S1-S6 and P1-P6, respectively.
Pi is the port connected to Si. The base round-trip time is
∼30μs. We use S5 and S6 as receivers. S1 and S2 send traffic
to S5. S3 and S4 send traffic to S6. Hence, the ports P5 and
P6 are congested.

Our Arista 7060CX-32S-F switch is built on the top of
Broadcom Tomhawk [6] chip. It has 4 MMUs, each with
4MB packet buffer. The dynamic buffer allocation only hap-
pens within the single MMU. In each MMU, ∼1MB buffer
space has been reserved and only 3MB buffer space can be
dynamically allocated.

Each server is a Dell PowerEdge R730 with 2 16-core Intel
Xeon E5-2698 2.3GHz CPUs, 256GB RAM and 1 Mellanox
ConnectX-4 NIC. All servers run Linux 3.10.0 kernel. Various
system optimizations, e.g., TSO and GRO, are enabled. We use
ECN∗ [55] (regular ECN-enabled TCP) in testbed experiments
as it is more sensitive to the ECN marking threshold (Fig-
ure 4 in [55] and Figure 2). To fully utilize the link capacity,
we configure the per-queue ECN/RED marking threshold to
325KB according to Figure 2.
Validating BCC in a single MMU: In this experiment, two
congested ports P5 and P6 are attached to the same MMU.
S1 and S2 start 16 long-lived TCP flows using iperf to
S5. S3 and S4 generate 100Gbps UDP traffic to S6 using a
high performance packet generator. We configure α to 1 for
dynamic buffer allocation.

Figure 5 gives queue length sample variations of two con-
gested ports. Due to the impact of ECN marks, queue length
of P5 remains very low. By contrast, UDP traffic to S6 does
not react to ECN marks (and drops) at all, thus building up
large queues in P6.9 In theory, P6 can get almost half of
the total shared buffer space according to dynamic threshold
algorithm [24], which is ∼1.5MB. Our testbed results closely
match the theory results.

Now, we enable shared buffer ECN/RED using a single
command shown in Figure 6. For simplicity, both minimum
and maximum thresholds of shared buffer ECN/RED are set
to the same value in our testbed experiments.

Figure 7 shows aggregate TCP goodput with different
marking thresholds. As analyzed above, UDP traffic to S6 does

9Our switch performs ECN/RED marking (or dropping non-ECT packets)
at the egress side rather than ingress side. Therefore, it cannot prevent queue
build-ups caused by UDP traffic.

Fig. 5. [Testbed] Queue length samples of port 5 and 6. Note that shared
buffer ECN/RED is disabled. Traffic to P5 is TCP while traffic to P6 is UDP.

Fig. 6. Command to enable shared buffer ECN/RED on Arista EOS [9].
Both minimum and maximum thresholds are set to 500KB.

Fig. 7. [Testbed] Aggregate goodput of TCP traffic to S5 with different
shared buffer ECN thresholds.

not react to ECN marks and drops at all. Thus, switch queues
in P6 keep oscillating around 1.5MB, regardless of the shared
buffer ECN/RED settings. When the shared buffer ECN/RED
marking threshold is set to 500KB, all TCP packets to S5 get
ECN marked, resulting in ∼8Gbps TCP goodput. After we
increase the threshold above 1.5MB, the TCP goodput keeps
increasing and reaches 90Gbps with 1750KB threshold.

The above experiment (1) shows that BCC is extremely
easy to deploy at commodity switches and (2) validates BCC’s
functionality in a single MMU.
Validating BCC in multiple MMUs: In this experiment, two
congested ports P5 and P6 are attached to different MMUs.
S1 and S2 start 16 long-lived TCP flows to S5. S3 and S4 start
16 long-lived TCP flows to S6.

As shown in Table IV, without shared buffer ECN/RED,
both S5 and S6 can receive ∼90Gbps goodput as expected.
After we set shared buffer ECN threshold to 350KB, the good-
put results remain unchanged. The is because shared buffer
ECN/RED operates in a per-MMU manner: each MMU has its
own shared buffer ECN/RED and only marks its own packets
based on its own shared buffer occupancy. In a MMU, when

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: ONE MORE CONFIG IS ENOUGH: SAVING (DC)TCP FOR HIGH-SPEED EXTREMELY SHALLOW-BUFFERED DATACENTERS 9

TABLE IV

[TESTBED] TCP GOODPUT RESULTS WITH DIFFERENT SHARED BUFFER
ECN THRESHOLDS. NOTE THAT PACKETS TO S5 AND S6 ARE

STORED IN DIFFERENT MMUS

there is only a single congest port and the per-port (queue)
threshold is smaller than the shared buffer threshold, per-port
(queue) ECN marking will be triggered earlier than shared
buffer ECN. As a result, shared buffer ECN/RED does not
take any effect. But if we reduce the shared buffer threshold to
150KB, shared buffer ECN/RED starts to take effect, reducing
TCP goodput to ∼78Gbps.

This experiment validates BCC’s functionality in multiple
MMUs.

B. Large Scale Simulations

In this section, we use ns-2 [8] to evaluate BCC’s perfor-
mance in large-scale DCNs with realistic workloads.
Topology: We simulate a 128-host leaf-spine topology with
8 leaf (ToR) switches and 8 spine (Core) switches. Each leaf
switch has 16 100Gbps down links to hosts and 8 100Gbps up
links to spines. Hence, we have a 2:1 oversubscription, which
is common in production datacenters. We employ Equal-Cost
Multi-Path routing (ECMP) for load balancing. The base fabric
RTT across the spine is ∼80μs of which 72μs is spent at the
end host. The BDP is 1MB. The jumbo frame is enabled.
Buffer: Our leaf and spine switches have 24 and
8 ports, respectively. To emulate Broadcom Tomahawk chip,
we attaches every 8 switch ports to a 3MB shared buffer pool.
Hence, the leaf switch has 3 shared buffer pools while the
spine switch only has one. At the leaf switch, 8 up ports, which
are connected to spines, are attached to a shared buffer pool
while the rest 16 down ports are attached to the other 2 shared
buffer pools. We set α to 4 for all switch ports. In addition,
each switch port has 128KB static reserved buffer. At the end
host, we allocate 10MB static buffer for each NIC.
Schemes compared: We use DCTCP [11] as the transport
protocol. We set RTOmin to 5ms and initial window to
20 packets (180KB). Note that 5ms is the minimum effective
RTOmin for many Linux kernel versions [38]. We exclude
PFC due to its large buffer reservation requirement. We com-
pare the following four schemes:

• DCTCP K=720KB: This is a standard ECN configura-
tion (current practice). We configure the per-port (queue)
ECN/RED marking threshold to 720KB (0.72BDP based
on measurement in §II−C) to achieve 100% throughput.

• DCTCP K=512KB: We configure the per-port (queue)
ECN/RED marking threshold to 512KB, which equals to
the average per-port switch buffer size.

• DCTCP K=200KB: This is a very conservative
ECN configuration. We configure the per-port (queue)
ECN/RED marking threshold to 200KB, which is much
smaller than average per-port switch buffer size (512KB),
to reduce packet losses.

Fig. 8. Empirical traffic distributions.

Fig. 9. [Simulation] Packet loss rate results.

• BCC : BCC requires two ECN configurations at the
switch. We set per-port (queue) ECN/RED marking
threshold to 720KB like the standard ECN configuration.
Since λ is 0.72 for DCTCP and the per-port static
reserved buffer size Smin is 128KB, BR = C ×RTT ×
(1 + λ) − Smin ≈ 1.6MB. Therefore, Kmax = B −
BR/α ≈ 2.6MB. Since each buffer pool is shared by
N = 8 ports and the recommendation value for h is 8μs,
Kmin = Kmax − C × N × h ≈ 1.8MB. Pmax is set
to 10%. We further evaluate BCC’s sensitivity to h and
Pmax in §V − C.2.

Workloads: We conduct our simulations using realistic
workloads based on empirically observed traffic patterns in
production datacenters. We consider the two flow distributions
in Figure 8: web search [11] and cache [48]. Both distributions
are heavy-tailed. We generate flows according to a Poisson
process and choose the source and destination for each flow
uniformly at random. We vary the flow arrival rate to achieve
a desired levels of load in the fabric. Each simulation lasts for
100,000 flows.
Performance metrics: We use FCT as the primary per-
formance metric and also measure packet loss rate in cer-
tain simulations for analysis. In addition to overall results,
we also breakdown FCT results across small (0,100KB],
medium (100KB,10MB] and large (10MB,∞) flows. Since
the request completion time of many large-scale respon-
sive applications depends on the slowest flow, we con-
sider the 99th percentile FCT for small flows. For the rest
flows, we consider their average FCT. For clear comparison,
we normalize all FCT results to values achieve by BCC by
default.
Results analysis: Figure 10 and 11 give FCT results for two
workloads. We also plot packet loss results in Figure 9.

At low loads, BCC performs similarly as K=720KB
while generally outperforming K=200KB and K=512KB.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. [Simulation] FCT results for the web search workload. Results are normalized to values of BCC.

Fig. 11. [Simulation] FCT results for the cache workload. Results are normalized to values of BCC.

K=200KB only shows some performance advantage
(∼100μs) on small flows, due to its lower switch
queueing.

As shown in Figure 9, K=720KB achieves very low packet
loss rate when the load is smaller than 55%. It indicates
that the switch has enough buffer space to achieve both high
throughput and low packet loss rate at low loads. However,
K=200KB still marks packets conservatively regardless of
the sufficient buffer resource, thus causing much unneces-
sary bandwidth wastage. For K=512KB, while it is better
than K=200KB in terms of bandwidth utilization, such an
ECN marking threshold setting is still a bit conservative
compared to K=720KB, thus leading to certain performance
degradation. In such scenarios, due to the low shared buffer
occupancy, BCC marks packets like standard per-port ECN
configuration without triggering shared buffer ECN. There-
fore, BCC can fully utilize the link capacity. Compared
to K=200KB, BCC achieves up to ∼13.5% (6362μs to
5503μs) and ∼19.3% (9205μs to 7424μs) lower average FCT
for large flows, in the web search and cache workloads,
respectively.

At high loads, BCC performs similarly as K=200KB while
generally outperforming K=720KB and K=512KB in terms
of small flows. However, for large flows, BCC’s performance
is not as good as K=720KB and K=512KB, but still much
better than K=200KB. This is a design tradeoff made by
BCC

For small flows, BCC achieves up to 94.4% (5174μs to
291μs) and 94.2% (5135μs to 296μs) lower 99th FCT com-
pared to K=720KB, in the web search and cache workloads,
respectively. This is because K=720KB causes excessive
packet losses due to the exorbitant shared buffer utilization.
As shown in Figure 9, the packet loss rate with K=720KB

approaches 0.1% (SLA threshold used in Microsoft [30]) at
75% load and exceeds 0.3% at 90% load. This results in
frequent TCP timeouts, which seriously increases FCT by
at least 5ms. For example, at 90% load, K=720KB leads to
11,434 timeouts for web search workload and 5,935 timeouts
for cache workload (100,000 flows in total). By contrast,
BCC can greatly reduce packet losses even though it cannot
achieve near lossless performance as K=200KB. At 90%
load, the packet loss rate with BCC is lower than 0.08% for
both workloads. Hence, BCC only causes 2,432 timeouts for
web search workload and 1,278 timeouts for cache workload.
Furthermore, we find that the packet loss rate of K=512KB
is slightly worse than BCC at high load (e.g., 90%), but
less severe than that of K=720KB. As a result, while the
performance of K=512KB for small flows at high load is
worse compared to BCC due to packet loss, it is better than
K=720KB.

For large flows, BCC’s performance is not as good as
K=720KB and K=512KB. For example, BCC’s performance
is within ∼0.4-2.8% of the K=720KB for the web search
workload and within ∼0.3-3.0% for the cache workload. This
is the performance tradeoff made intentionally by BCC to
maintain good performance on small flows as shown above.
In the meanwhile, since the packet loss rate of K=512KB is
less severe than that of K=720KB at high load, it achieves
better throughput for large flows than K=720KB (and BCC
as well). On the other hand, since K=200KB is still very
conservative, its performance is constrained, and therefore it
increases FCT by over ∼9% compared to K=720KB for both
workloads.

In summary, BCC can operate effectively based on the
real-time shared buffer utilization, thus keeping good perfor-
mance in various scenarios.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: ONE MORE CONFIG IS ENOUGH: SAVING (DC)TCP FOR HIGH-SPEED EXTREMELY SHALLOW-BUFFERED DATACENTERS 11

Fig. 12. [Simulation] FCT results for the web search workload. Note that
results are normalized to values achieved by BCC.

C. BCC Deep Dive

In this section, we dig deeper into BCC’s design using a
series of targeted simulations. Due to space limitation, we only
show results with the web search workload, and similar trends
are observed on the cache workload as well.

1) Impact of Probabilistic Marking: In §IV − C, we rec-
ommend probabilistic ECN marking with Kmin < Kmax.
Another choice is cut-off ECN marking with Kmin = Kmax.
Though cut-off ECN marking simplifies the switch configu-
ration, it causes global synchronization problem, resulting in
throughput loss. Here, we compare BCC with BCC using
cut-off ECN marking (BCC cut-off) to explore the impact of
probabilistic marking.

For original BCC, we recommend setting Kmin and Kmax

to ∼1.8MB and ∼2.6MB, respectively. To achieve a fair
comparison, we need to determine a threshold in [1.8MB,
2.6MB] for BCC cut-off that can achieve comparable packet
loss rates as BCC. Through simulations, we find that 2.2MB is
a good choice. For example, at 90% load, the packet loss rates
with BCC and BCC cut-off (2.2MB threshold) are 0.0687%
and 0.0699%, respectively. Therefore, we set the marking
threshold of BCC cut-off to 2.2MB.

Figure 12 plots the FCT results of BCC and BCC cut-off
with the web search workload. Note that results are nor-
malized to values achieved by BCC for clear comparison.
Since BCC and BCC cut-off almost achieve the same 99th
percentile FCTs (within 3μs) for small flows at all loads,
we omit the figure for small flows due to space limitation.
As shown in Figure 12, with the increase of the network
load, the performance gap between two schemes becomes
larger and larger. Compared to BCC cut-off, BCC achieves
up to ∼5.5% and ∼10.5% lower average FCT for medium and
large flows, respectively. This shows that BCC cut-off causes
global synchronization problem among different switch ports,
resulting in loss of throughput. By contrast, BCC leverages
probabilistic marking to mitigate this problem, thus delivering
better throughput.

2) Impact of Parameters: BCC has two tunable para-
meters: h and Pmax. As shown in Equation 3, h deter-
mines the buffer occupancy range for probabilistic marking.
Pmax determines the marking probability in this range. The
larger h and Pmax we have, the more likely a packet gets
ECN marked.

To explore BCC’s sensitivity to h and Pmax, we repeat
the web search workload at 90% load for different h and
Pmax settings. h is varied from 6μs to 10μs. We consider

3 Pmax values: 5%, 10% and 15%. Figure 13 gives FCT and
packet loss rate results. In the interest of space, we omit FCT
for medium flows. As expected, larger h and Pmax can help
reduce packet losses at the cost of slightly larger FCT for
large flows. Generally speaking, BCC is robust to parameter
settings. Overall average FCTs with different settings are
within the range of [2940μs, 3058μs]. Average FCTs for large
flows with different settings are within the range of [35.5ms,
38.3ms]. All settings also achieve good performance for small
flows except for two settings: h = 6μs, Pmax = 5% and h =
7μs, Pmax = 5%. As shown in Figure 13(d), packet loss rates
with these two settings slightly exceed 0.1% (SLA threshold
used in Microsoft Datacenters [30]). Though such results
are much better than that achieved by DCTCP K=720KB
(∼0.33%), more than 1% small flows still suffer from at least
one TCP timeout, resulting in large 99th percentile FCTs. This
suggests that we should not set too small h and Pmax for
BCC.

VI. RELATED WORK

Bufferless DCN transport: Many DCN transport
designs [13], [23], [28], [31], [33], [41], [45], [46],
[60] can cope with shallow switch buffers. However,
they are hard to deploy in production DCNs due to their
non-trivial modifications to switch hardware or network
stacks. For example, pHost [28], ExpressPass [23] and
Homa [41] require clean-slate network stacks. HULL [13]
and TFC [60] adopt TCP at the end host, but require
non-trivial modifications to switch hardware. Fastpass [46]
and Flowtune [45] require changes to network stacks and
leverage a centralized scheduler, which suffers from failures
and scalability issues. NDP [31] modifies both switch
hardware and network stacks. Furthermore, some of them
make unrealistic assumptions to the underlying network.
For example, pHost [28] and NDP [31] assume that the
congestion-free network core, which does not hold for many
production DCNs. ExpressPass [23] requires path symmetry,
which incurs increased configuration complexity with ECMP.
In contrast to all these efforts, BCC is easy to deploy as
it only requires one more ECN configuration at commodity
switches.
PFC: PFC (Priority-based Flow Control) [7] has been enabled
in many production datacenters to enable lossless networks for
RoCE (RDMA over Converged Ethernet) deployments [29],
[50]. It can also be used with TCP. With standard ECN
configuration plus PFC, it seems that we can achieve high
throughput when few ports are active and zero packet loss
even when many ports are active.

However, PFC needs to reserve buffer for each prior-
ity class as headroom to prevent packet drops [29], [62].
The size of the headroom is determined by the MTU size,
the PFC reaction time of the egress port, and most impor-
tantly, the propagation delay between the sender and the
receiver. Deploying PFC in production DCNs requires large
headroom size, which may not be affordable for shallow
buffered switches. For example, Microsoft DCN operators can
reserve headroom for at most 2 priority classes. This conflicts
with the current practice where multiple queues are used for

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. [Simulation] FCT and packet loss rate results for the web search workload at 90% load using a variety of h and Pmax settings.

QoS [14], [18], [19]. Furthermore, it has also been reported
that PFC can introduce various performance and management
problems such as head-of-line blocking [62], pause frame
storm [29] and deadlock [34], [35], thus making networks
difficult to understand and manage.

BCC can be used in conjunction with PFC. When few
ports are active, both shared buffer ECN/RED and PFC are
not triggered. When many ports are active, shared buffer
ECN/RED will be triggered first to reduce shared buffer
occupancy. If shared buffer ECN/RED still cannot effectively
throttle queue build-ups (e.g., when many small flows arrive
simultaneously), PFC will be triggered as the last defense to
eliminate packet losses.
Other work: PERC [37] targets at fast convergence in
high-speed DCNs. DIBS [56] achieves a near lossless network
by detouring packets. AuTO [22] optimizes DCN performance
via deep reinforcement learning. Some efforts [44], [52], [57]
have been made to reduce the impact of packet losses in
DCNs. In addition, there are a large body of work on load
balancing [10], [21], [59] and flow scheduling [14], [18], [32],
[39], [53]. They are all complementary to our work.

VII. CONCLUSION

In production DCNs, the increase of link speed significantly
outpaces the increase of switch buffer size, resulting in an
extremely shallow-buffered environment. Consequently, prior
TCP/ECN solutions suffer from severe performance degra-
dation. To address this problem, we have introduced BCC,
a simple yet effective solution with only one more shared
buffer ECN/RED configuration at commodity switches. BCC
operates upon real-time shared buffer utilization. It maintains
low packet loss rate persistently while only slightly degrading
throughput when the buffer becomes insufficient. We validated
BCC’s efficacy in a 100G testbed and demonstrated its superior
performance using extensive simulations.

REFERENCES

[1] Information on Datacenter Switching Chip I. [Online]. Available:
https://people.ucsc.edu/~warner/Bufs/7060CX.html

[2] Information on Datacenter Switching Chip II. [Online]. Available:
https://people.ucsc.edu/~warner/Bufs/tomahawk

[3] Cisco Nexus 3000 Series Nx-Os Qos Configuration Guide, Release
7.x. [Online]. Available: http://www.cisco.com/c/en/us/td/docs/switches/
datacenter/nexus3000/sw/qos/7x/b_3k_QoS_Config_7x/b_3k_QoS_Con-
fig_7x_chapter_010.html

[4] Dctcp in Linux Kernel 3.18. [Online]. Available: http://kernelnewbies.
org/Linux_3.18

[5] Dctcp in Windows Server 2012. [Online]. Available: http://technet.
microsoft.com/en-us/library/hh997028.aspx

[6] High-Density 25/100 Gigabit Ethernet Strataxgs Tomahawk Eth-
ernet Switch Series. [Online]. Available: https://www.broadcom.
com/products/ethernet-connectivity/switch-fabric/bcm56960

[7] IEEE DCB. 802.1Qbb—Priority-Based Flow Control. [Online]. Avail-
able: http://www.ieee802.org/1/pages/802.1bb.html.

[8] The Network Simulator NS-2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[9] User Manual of Arista EOS Version 4.15.0F. [Online]. Available: https://
www.arista.com/ assets/ data/ docs/ Manuals/ EOS-4.15.0F-Manual.pdf

[10] M. Alizadeh et al., “CONGA: Distributed congestion-aware load
balancing for datacenters,” in Proc. ACM Conf. SIGCOMM, 2014,
pp. 503–514.

[11] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf. SIGCOMM (SIGCOMM), 2010, pp. 63–74.

[12] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, convergence, and fairness,” in Proc. ACM SIGMETRICS
Joint Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), 2011,
pp. 73–84.

[13] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in Proc. 9th USENIX Symp. Netw. Syst.
Design Implement., 2012, pp. 253–266.

[14] M. Alizadeh et al., “PFabric: Minimal near-optimal datacenter trans-
port,” in Proc. ACM SIGCOMM Conf. SIGCOMM (SIGCOMM), 2013,
pp. 435–446.

[15] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun.
(SIGCOMM), 2004, pp. 281–292.

[16] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling ECN over
generic packet scheduling,” in Proc. 12th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2016, pp. 191–204.

[17] W. Bai, K. Chen, H. Wu, W. Lan, and Y. Zhao, “PAC: Taming TCP
incast congestion using proactive ACK control,” in Proc. IEEE 22nd
Int. Conf. Netw. Protocols, Oct. 2014, pp. 385–396.

[18] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. 12th
USENIX Symp. Netw. Syst. Design Implement., 2015, pp. 455–468.

[19] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in Proc. 13th USENIX Symp. Netw. Syst.
Design Implement., 2016, pp. 537–549.

[20] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (DC)TCP for high-speed extremely shallow-buffered
datacenters,” in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun.,
Jul. 2020, pp. 2007–2016.

[21] J. Cao et al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proc. 9th ACM Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2013, pp. 49–60.

[22] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 191–205.

[23] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 239–252.

[24] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” IEEE/ACM Trans. Netw., vol. 6,
no. 2, pp. 130–140, Apr. 1998.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: ONE MORE CONFIG IS ENOUGH: SAVING (DC)TCP FOR HIGH-SPEED EXTREMELY SHALLOW-BUFFERED DATACENTERS 13

[25] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[26] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4,
pp. 397–413, Aug. 1993.

[27] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware
and software,” in Proc. ACM Conf. SIGCOMM (SIGCOMM), 2014,
pp. 27–38.

[28] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “PHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2015, pp. 1–12.

[29] C. Guo et al., “RDMA over commodity Ethernet at scale,”
in Proc. Conf. ACM SIGCOMM Conf. (SIGCOMM), 2016,
pp. 202–215.

[30] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. ACM Conf. Special Interest
Group Data Commun. (SIGCOMM), 2015, pp. 139–152.

[31] M. Handley et al., “Re-architecting datacenter networks and stacks for
low latency and high performance,” in Proc. Conf. ACM Special Interest
Group Data Commun., Aug. 2017, pp. 29–42.

[32] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Archit., Protocols Comput. Commun. (SIGCOMM), 2012,
pp. 127–138.

[33] S. Hu et al., “Aeolus: A building block for proactive transport in data-
centers,” in Proc. Annu. Conf. ACM Special Interest Group Data Com-
mun. Appl., Technol., Archit., Protocols Comput. Commun., Jul. 2020,
pp. 422–434.

[34] S. Hu et al., “Deadlocks in datacenter networks: Why do they form,
and how to avoid them,” in Proc. 15th ACM Workshop Hot Topics Netw.
(HotNets), 2016, pp. 92–98

[35] S. Hu et al., “Tagger: Practical PFC deadlock prevention in data
center networks,” in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol.,
Nov. 2017, pp. 451–463.

[36] C. Jiang, D. Li, and M. Xu, “LTTP: An LT-code based transport protocol
for many-to-one communication in data centers,” IEEE J. Sel. Areas
Commun., vol. 32, no. 1, pp. 52–64, Jan. 2014.

[37] L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown, and S. Katti,
“High speed networks need proactive congestion control,” in Proc. 14th
ACM Workshop Hot Topics Netw. (HotNets), 2015, pp. 1–7.

[38] G. Judd, “Attaining the promise and avoiding the pitfalls of TCP in the
datacenter,” in Proc. 12th USENIX Symp. Netw. Syst. Design Implement.,
2015, pp. 145–157.

[39] Z. Li et al., “Rate-aware flow scheduling for commodity data center
networks,” in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun.,
May 2017, pp. 1–9.

[40] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. ACM Conf. Special Interest Group Data Commun.
(SIGCOMM), 2015, pp. 537–550.

[41] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proc. Conf. ACM Special Interest Group Data Commun., 2018,
pp. 221–235.

[42] A. Munir et al., “Minimizing flow completion times in data centers,” in
Proc. IEEE INFOCOM, Apr. 2013, pp. 2157–2165.

[43] P. Patel et al., “Ananta: Cloud scale load balancing,” in Proc. ACM
SIGCOMM Conf. SIGCOMM, 2013, pp. 207–218.

[44] P. Cheng et al., “Catch the whole lot in an action: Rapid precise packet
loss notification in data center,” in Proc. 11th USENIX Symp. Netw. Syst.
Design Implement., 2014, pp. 17–28.

[45] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control for
datacenter networks,” in Proc. 14th USENIX Symp. Netw. Syst. Design
Implement., 2017, pp. 421–435.

[46] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ‘zero-queue’ datacenter network,” in Proc. ACM
Conf. SIGCOMM, 2014, pp. 307–318.

[47] K. Ramakrishnan et al., The Addition of Explicit Congestion Notification
(ECN) to IP, document RFC 3168, 2001.

[48] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the social network’s (datacenter) network,” in Proc. ACM
Conf. Special Interest Group Data Commun. (SIGCOMM), 2015,
pp. 123–137.

[49] A. Singh et al., “Jupiter rising: A decade of clos topologies and cen-
tralized control in Google’s datacenter network,” in Proc. SIGCOMM,
2015, pp. 1–15.

[50] C. Tian et al., “P-PFC: Reducing tail latency with predictive PFC
in lossless data center networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 6, pp. 1447–1459, Jun. 2020.

[51] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware data-
center TCP (D2TCP),” in Proc. ACM SIGCOMM Conf. Appl., Technol.,
Archit., Protocols Comput. Commun. (SIGCOMM), 2012, pp. 115–126.

[52] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” in Proc. ACM SIGCOMM Conf. Data
Commun. (SIGCOMM), 2009, pp. 303–314.

[53] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating dis-
tributed CNN training by network-level flow scheduling,” in
Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun., Jul. 2020,
pp. 1678–1687.

[54] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data center networks,” in Proc. 6th Int. Conf. Co-
NEXT, 2010, pp. 1–12.

[55] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in Proc. 8th Int. Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2012, pp. 25–36.

[56] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and J. Padhye,
“DIBS: Just-in-time congestion mitigation for data centers,” in Proc. 9th
Eur. Conf. Comput. Syst. (EuroSys), 2014, pp. 1–14.

[57] D. Zats et al., “FastLane: Making short flows shorter with agile drop
notification,” in Proc. 6th ACM Symp. Cloud Comput. (SoCC), 2015,
pp. 84–96.

[58] G. Zeng et al., “Congestion control for cross-datacenter network,”
in Proc. IEEE 27th Int. Conf. Netw. Protocols (ICNP), Oct. 2019,
pp. 1–12.

[59] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. Conf. ACM Special
Interest Group Data Commun., Aug. 2017, pp. 253–256.

[60] J. Zhang, F. Ren, R. Shu, and P. Cheng, “TFC: Token flow control in
data center networks,” in Proc. 11th Eur. Conf. Comput. Syst. (EuroSys),
2016, pp. 1–14.

[61] J. Zhang, W. Bai, and K. Chen, “Enabling ECN for datacenter networks
with RTT variations,” in Proc. 15th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2019, pp. 233–245.

[62] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM Conf. Special Interest Group Data Commun. (SIGCOMM),
2015, pp. 523–536.

[63] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or delay: Lessons
learnt from analysis of DCQCN and TIMELY,” in Proc. 12th Int. Conf.
Emerg. Netw. Exp. Technol., Dec. 2016, pp. 313–327.

Wei Bai received the B.E. degree in informa-
tion security from Shanghai Jiao Tong University
in 2013, and the Ph.D. degree from the Depart-
ment of Computer Science and Engineering, The
Hong Kong University of Science and Technol-
ogy, in 2017. He is currently a Research Software
Development Engineer at Microsoft Research Lab,
Redmond. He is broadly interested in computer net-
working with a special focus on data center network-
ing. His research work has been published in many
top conferences and journals, such as SIGCOMM,

NSDI, CoNEXT, and ToN. His current research mainly focuses on network
infrastructure to support large-scale RDMA deployments.

Shuihai Hu received the B.S. degree in computer
science from USTC in 2013, and the Ph.D. degree
in computer science from HKUST in 2019. He is
currently the Chief Scientist at Clustar. His current
research interests include datacenter networks and
machine learning systems (with a special focus on
federated machine learning).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Kai Chen (Senior Member, IEEE) received the
Ph.D. degree in computer science from Northwest-
ern University, Evanston, IL, USA, in 2012. He is
currently an Associate Professor with the Depart-
ment of Computer Science and Engineering, The
Hong Kong University of Science and Technology,
Hong Kong. His research interests include data
center networking, machine learning systems, and
privacy-preserving AI infrastructure.

Kun Tan is currently the Director of the Distrib-
uted and Parallel Software Laboratory, 2012 Labs,
Huawei. Before joining Huawei in 2016, he was
a Senior Researcher and Research Manager at
Microsoft Research Asia, Beijing. His research inter-
ests include networked systems, cloud networking,
and mobile computing. He received the Best Paper
Award at NSDI 2009 and USENIX Test-of-Time
Award in 2019.

Yongqiang Xiong (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer science
from Tsinghua University, Beijing, China, in 1996,
1998, and 2001, respectively. He is currently
with the Networking Researching Group, Microsoft
Research Asia, as a Principal Researcher and
Research Manager. His research interests include
system and networking and network security. He has
published over 80 articles, and served as a TPC
member or reviewer for the international key con-
ferences and leading journals in the areas of system
and networking.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 12,2020 at 06:29:46 UTC from IEEE Xplore. Restrictions apply.

