
CODA: Toward Automatically Identifying and
Scheduling COflows in the DArk

Hong Zhang1 Li Chen1 Bairen Yi1 Kai Chen1 Mosharaf Chowdhury2 Yanhui Geng3

1SING Group, Hong Kong University of Science and Technology
2University of Michigan 3Huawei

{hzhangan,lchenad,biy,kaichen}@cse.ust.hk, mosharaf@umich.edu, geng.yanhui@huawei.com

ABSTRACT
Leveraging application-level requirements using coflows has
recently been shown to improve application-level communi-
cation performance in data-parallel clusters. However, exist-
ing coflow-based solutions rely on modifying applications to
extract coflows, making them inapplicable to many practical
scenarios.

In this paper, we present CODA, a first attempt at automati-
cally identifying and scheduling coflows without any applica-
tion modifications. We employ an incremental clustering al-
gorithm to perform fast, application-transparent coflow iden-
tification and complement it by proposing an error-tolerant
coflow scheduler to mitigate occasional identification errors.
Testbed experiments and large-scale simulations with pro-
duction workloads show that CODA can identify coflows with
over 90% accuracy, and its scheduler is robust to inaccura-
cies, enabling communication stages to complete 2.4⇥ (5.1⇥)
faster on average (95-th percentile) compared to per-flow mech-
anisms. Overall, CODA’s performance is comparable to that
of solutions requiring application modifications.

CCS Concepts
•Networks ! Cloud computing;

Keywords
Coflow; data-intensive applications; datacenter networks

1 Introduction
A growing body of recent work [21, 23, 24, 30, 38, 68] has
demonstrated that leveraging application-level information us-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c� 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934880

ing coflows [22] can significantly improve the communica-
tion performance of distributed data-parallel applications.1
Unlike the traditional flow abstraction, a coflow captures a
collection of flows between two groups of machines in suc-
cessive computation stages, where the communication stage
finishes only after all the flows have completed [23, 26]. A
typical example of coflow is the shuffle between the map-
pers and the reducers in MapReduce [28]. By taking a holis-
tic, application-level view, coflows avoid stragglers and yield
benefits in terms of scheduling [21, 23, 24, 30], routing [68],
and placement [38].

However, extracting these benefits in practice hinges on
one major assumption: all distributed data-parallel applica-
tions in a shared cluster – be it a platform-as-a-service (PaaS)
environment or a shared private cluster – have been modified
to correctly use the same coflow API.

Unfortunately, enforcing this requirement is infeasible in
many cases. As a first-hand exercise, we have attempted to
update Apache Hadoop 2.7 [58] and Apache Spark 1.6 [65] to
use Aalo’s coflow API [24] and faced multiple roadblocks in
three broad categories (§5): the need for intrusive refactoring,
mismatch between blocking and non-blocking I/O APIs, and
involvement of third-party communication libraries.

Given that users on a shared cluster run a wide variety of
data analytics tools for SQL queries [3, 4, 7, 15, 41, 63], log
analysis [2, 28, 65], machine learning [33, 43, 48], graph pro-
cessing [34, 44, 46], approximation queries [7, 12], stream
processing [9, 11, 13, 50, 66], or interactive analytics [7, 65],
updating one application at a time is impractical. To make
things worse, most coflow-based solutions propose their own
API [23, 24, 30]. Porting applications back and forth between
environments and keeping them up-to-date with evolving li-
braries is error-prone and infeasible [54, 57].

Therefore, we ponder a fundemantal question: can we au-
tomatically identify and schedule coflows without manually
updating any data-parallel applications? It translates to three
key design goals:
• Application-Transparent Coflow Identification We must

be able to identify coflows without modifying applications.

1We use the terms application and framework interchangeably in this paper.
Users can submit multiple jobs to each framework.

http://dx.doi.org/10.1145/2934872.2934880

• Error-Tolerant Coflow Scheduling Coflow identification
cannot guarantee 100% accuracy. The coflow scheduler
must be robust to some identification errors.

• Readily Deployable The solution must be compatible with
existing technologies in datacenter environments.
In this paper, we provide a cautiously optimistic answer via

CODA. At the heart of CODA is an application-transparent
coflow identification mechanism and an error-tolerant coflow
scheduling design.

For coflow identification, we apply machine learning tech-
niques over multi-level attributes without manually modify-
ing any applications (§3). Besides explicit attributes directly
retrieved from flows (e.g., arrival times and packet headers),
we further explore implicit attributes that reflect communica-
tion patterns and data-parallel framework designs. As to the
identification algorithm, we find that traditional traffic clas-
sification methods [17, 19, 29, 40, 47, 49, 51, 55, 67] do not
directly apply in our case. This is because coflows capture a
one-off, mutual relationship among some flows that cannot
be pre-labeled and need timely identification. To this end, we
first identify DBSCAN [31] as the base algorithm that fits our
requirements, and then we develop an incremental version of
Rough-DBSCAN [59] that provides fast identification with
high accuracy.

Despite its high accuracy, CODA’s identifier is not perfect,
and identification errors are unavoidable in practice. Such er-
rors, if present, may greatly affect the performance of existing
coflow schedulers. Consider Figure 1 as an example: a mis-
classified flow can significantly affect the coflow completion
time (CCT) of its parent coflow.

The key to CODA’s effectiveness lies in developing a ro-
bust scheduler that can tolerate such errors (§4). For error-
tolerant coflow scheduling, we start by studying how identi-
fication errors would influence scheduling results. Our analy-
sis reveals that stragglers significantly affect CCT, and recent
coflow schedulers [23, 24] suffer performance degradation in
the presence of errors. Thus, CODA employs late binding to
delay the assignment of flows to particular coflows until they
must be scheduled to minimize the impact of stragglers. Fur-
thermore, we find that intra-coflow prioritization [14, 16, 37,
62] can play a crucial role in the presence of identification
errors. Hence, unlike existing coflow schedulers [21, 23, 24,
30], CODA combines per-flow (intra-coflow) prioritization
with inter-coflow scheduling.

We have implemented a CODA prototype (§5) and built
a small-scale testbed with 40 servers to evaluate its perfor-
mance (§6.2). Our implementation experience shows that CODA
can be readily deployed in today’s commodity datacenters
with no modifications to switch hardware or application soft-
ware. By replaying a coflow benchmark based on Facebook
traces [5], we show that CODA achieves over 95% accuracy
in identification, improves the average and 95-th percentile
CCT by 2.4⇥ and 5.1⇥ compared to per-flow fairness, and
performs almost as well as Aalo [24], which requires correct,
manual coflow identification. Moreover, CODA can scale up
to 40,000 agents with small performance loss.

We further perform large-scale trace-driven simulations to

C2
C1 Misidentified flow

Time

C2C1

Misidentified flow
Identification Scheduling

Figure 1: Motivating example: a coflow scheduler (e.g., Aalo [24])
tends to optimize the CCT by prioritizing the small coflow C1 over
the large coflow C2. However, a misidentified flow of C1 will be
scheduled together with C2, significantly affecting the CCT of its
parent coflow C1.

CODA Master

Error-Tolerant SchedulerApplication-Transparent Identifier

Offline
Attribute
Exploration

Distance
Metric
Learning

Online Incremental Clustering

Inter-Coflow Prioritization

Late Binding

CODA Agent(s)

Gather and Prune
Flow Information

Enforce Coflow
Schedule

Intra-Coflow Prioritization

NIC

Figure 2: CODA architecture: CODA agents collect flow-level in-
formation, and CODA master periodically updates coflow sched-
ules using application-transparent identification and error-tolerant
scheduling mechanisms.

inspect CODA (§6.3 and §6.4). CODA’s identifier achieves
over 90% accuracy for Spark, Hadoop, and mixed workloads,
and provides significant speedup over vanilla DBSCAN. In
terms of error-tolerant scheduling, we show that CODA can
effectively tolerate misidentifications over a wide range of
scenarios. For example, in a challenging case with less than
60% identification accuracy, CODA’s error-tolerant design
brings up to 1.16⇥ speedup in CCT, reducing the impact
of errors by 40%. Overall, CODA achieves the performance
comparable to that of prior solutions using manual annota-
tions in many cases.

2 CODA Overview
The goal of CODA is to design an identifier-scheduler joint
solution that works “in the dark”, relying only on externally
observable coflow attributes that can be collected from the
network without modifying applications/frameworks.

Figure 2 presents an overview of CODA system architec-
ture. At a high level, it contains a central CODA master that
performs the primary role of coflow identification and schedul-
ing every 4 interval (e.g., 10� 100ms), as well as a CODA
agent on each end host that collects aggregated flow-level in-
formation to feed the master and enforces scheduling deci-
sions made by the master.
Information Gathering and Pruning Each CODA agent
monitors flow-level attributes and IP/port information of all
flows in the corresponding host and periodically forwards
them to the master. Before sending out the records, each agent

prunes the records of all finished flows, non-TCP flows2 and
flows with sent size less than a threshold (e.g., 100KB). This
reduces identification time and avoids extra traffic (e.g., con-
trol flows) not useful to the identification process.
Application-Transparent Coflow Identification Given pe-
riodic flow records, CODA master invokes a coflow identifier
to identify coflow relationships using machine learning (§3).
To achieve high accuracy, the identifier explores useful at-
tributes on multiple levels and learns an appropriate distance
metric to reflect coflow relations. For timely identification, it
trades off a small amount of accuracy for significantly higher
speed and relies on the coflow scheduler to amend the errors.
Error-tolerant Coflow Scheduling Next, the master runs
a coflow scheduler on the identified coflows. The scheduler
tries to minimize coflow completion times (CCT) in the pres-
ence of possible identification errors (§4). Specifically, the
error-tolerant design integrates the following two design prin-
ciples. First, we observe that stragglers may heavily affect
CCTs. We apply late binding to the identification results –
i.e., delaying the assignment of a flow to a particular coflow
until we must schedule – to decrease the number of strag-
glers. Second, we notice that intra-coflow scheduling affects
CCT under identification errors, and we introduce intra-coflow
prioritization to reduce the impact of errors. Finally, the mas-
ter sends out updated schedules to relevant end hosts to com-
plete the identification-scheduling cycle.

CODA’s centralized architecture is inspired by the success
of many large-scale infrastructure deployments such as [28,
32, 35, 65] that employ a central controller at the scale of
tens to hundreds of thousands of machines. Because CODA
master must serve a large number of CODA agents, it must
be scalable and fault-tolerant.
Scalability The faster CODA agents can coordinate, the bet-
ter CODA performs. The number of messages is linear with
the number of agents and independent of the number of flows
or coflows, and it is not a bottleneck in our testbed. Our eval-
uation suggests that CODA can scale up to 40,000 machines
with small performance loss (§6.2). Because many coflows
are tiny [23] and can effectively be scheduled through local
decisions [24], they do not face coordination overheads.
Fault Tolerance CODA fails silently from an application’s
perspective, as it is application-transparent by design. CODA
handles master/ agent failures by restarting them. A restarted
CODA master can rebuild its state from the next wave of up-
dates from the agents. Restarted CODA agents remain incon-
sistent only until the next schedule arrives from the master.

3 Coflow Identification
CODA identifier aims to meet three practical objectives:
• Transparency: It should not require any modification to ap-

plications.
• Accuracy: It should identify accurate coflow relationships

to enable correct scheduling.

2Currently most data-parallel computing frameworks leverage TCP for reli-
able data transfer.

• Speed: It should be fast enough for timely scheduling.
To achieve these goals, CODA identifier relies on the follow-
ing three steps:
1. Attribute Exploration A flow can be characterized by a

tuple of attributes, and searching for useful attributes is a
key first step for coflow identification. Instead of taking a
black-box approach, CODA explores explicit and implicit
attributes and heuristics on multiple levels (§3.1).

2. Distance Calculation Given the attributes, CODA calcu-
lates distances between flows to capture coflow relation-
ships – flows belonging to the same coflow will have smaller
distances. The key here is having a good metric to reflect
the importance of each attribute. CODA employs distance
metric learning [64] to learn such a metric (§3.2).

3. Identifying Coflows via Clustering Finally, CODA em-
ploys unsupervised clustering to identify coflow relation-
ships. We use unsupervised learning because coflows can-
not be labeled by predefined categories – mutual relation-
ships among flows captured by a particular coflow do not
recur once its parent job is over. CODA leverages an incre-
mental Rough-DBSCAN algorithm to achieve fast yet ac-
curate coflow identification by clustering flows with small
distances (§3.3).

3.1 Multi-Level Attributes
We first explore a set of flow, community, and application
level attributes that might be useful in coflow identification.
We prune this set in §3.2.
Flow-level Attributes First and foremost, we consider the
widely-used flow-level attributes [52]: (i) S

time

: flow start
time; (ii) M

size

: mean packet size inside a flow; (iii) V
size

:
variance of packet sizes inside a flow; (iv) M

int

: average
packet inter-arrival time inside a flow.

IPs and ports have application-specific meanings, which
we exploit later when considering application structures and
communication patterns. We ignore flow size and duration as
they cannot be acquired until a flow finishes; at that time, they
would be useless.
Community-Level Attributes Recent studies on datacenter
traffic show that the traffic matrix is sparse and most bytes
stay within a stable set of nodes [18, 56]. This suggests a
community attribute; i.e., the datacenter can be separated into
service groups where intra-group communication is frequent
while inter-group communication is rare. With this, we can
have a useful heuristic: two flows belonging to different com-
munities are less likely to be inside one coflow. We define the
community distance D

com

(f
i

, f
j

) to be 0 if flow f
i

, f
j

are in
the same community, and 1 otherwise. To calculate D

com

, we
develop a community detection module, which uses spectral
clustering [60] to segment machines into communities while
minimizing inter-community traffic.

Community-level attributes can be very helpful in differ-
entiating coflows across services that show stable and iso-
lated patterns, e.g., service groups within private datacenters
or tenants in public clouds. However, it may not work under
uniformly distributed traffic across the entire cluster [56].

Application-Level Attributes We seek more useful attributes
by taking advantage of application designs. We investigate
two use cases – Spark and Hadoop3 – to observe their data
transfer design by delving into the source code.

Port assignment in Spark: The port assignment rule in Spark
reveals that data transmission to the same executor [8] will
have the same destination IP and port (the port of the re-
ducer’s ConnectionManager). If we denote all flows to the
same IP/port as a flow aggregation, then all flows within a
flow aggregation are likely to be within a coflow. Hence, we
define port distance D

prt

(f
i

, f
j

) for two flows f
i

and f
j

to
be 0 if they are in one flow aggregation, and 1 otherwise.

Port assignment in Hadoop: Unlike Spark, shuffle traf-
fic from different Hadoop jobs are likely to share the same
source port of ShuffleHandler (13562 by default) and ran-
dom destination ports. Consequently, port assignments do not
provide distinctive information for Hadoop.
OS-level Attributes OS-level knowledge can also be help-
ful for coflow identification. For example, for each flow one
can trace the corresponding process ID (PID) of the map-
per, and flows sharing the same PID are likely to be in one
coflow. Currently we have not included OS-level attributes
due to their unavailability in public clouds.4

3.2 Distance Calculation
Given multiple attributes, a naive distance metric between
two flows f

i

and f
j

can be defined as the Euclidean distance
between them. However, equally weighing all attributes is not
effective because different attributes may contribute differ-
ently – using irrelevant or redundant attributes may degrade
identification accuracy.

Thus we need a good distance metric that can effectively
reflect coflow relationships – one that assigns smaller dis-
tances between flows within the same coflow and larger dis-
tances between flows belonging to different coflows.
Problem Formulation Consider a flow set {f} and a dis-
tance metric d(f

i

, f
j

) = ||f
i

�f
j

||

A

=
p
(f

i

� f
j

)TA(f
i

� f
j

).
Suppose (f

i

, f
j

) 2 S if f
i

and f
j

belong to the same coflow,
and (f

i

, f
j

) 2 D otherwise. Here, A is the distance matrix re-
flecting the weight of different attributes, and setting A = I
gives Euclidean distance. We desire a metric where any pairs
of flows in S have small distances, while any pairs of flows
in D have distances larger than some threshold. This leads to
the following optimization problem similar to [64]:

min
A

X

(fi,fj)2S

||f
i

� f

j

||2
A

s. t.
X

(fi,fj)2D

||f
i

� f

j

||
A

� 1, A ⌫ 0
(1)

We simplify the problem by restricting A to be diagonal
and solve it using Newton-Raphson method [64].
Learning Results We divide our testbed into two equal-
3We used Spark-1.6 and Hadoop-2.7.1 for this study.
4Cloud providers usually do not have access to customer VMs, and hence,
cannot introduce any identification mechanism that hinges on OS-level in-
formation.

sized communities with 10 servers each and run some typ-
ical benchmarks (e.g., Wikipedia-PageRank, WordCount) in
Spark and Hadoop. We collect the trace, and the ground-truth
coflow information is annotated by applications for metric
learning. We use the attributes in §3.1, and run the above dis-
tance learning algorithm to see how they contribute to coflow
identification. The resulting diagonal elements of matrices
for Spark (A

s

) and Hadoop (A
h

) traffic are:

A
s

=

S
time

M
size

V
size

M
int

V
int

D
com

D
prt

3.825 0.000 0.000 0.000 0.000 5.431 0.217

�

A
h

=

S
time

M
size

V
size

M
int

V
int

D
com

D
prt

3.472 0.000 0.000 0.000 0.000 3.207 0.000

�

We observe three high-level characteristics:
1. Flow-level attributes other than the flow start time are not

useful. This is because coflows may demonstrate similar
packet-level characteristics regardless of their parent jobs;

2. Community-level attributes are distinctive; and
3. While port information is not useful for Hadoop as ex-

pected, it turns out to be of little use (with a small weight
of only 0.217) for Spark as well, which is unexpected. One
possible reason is that although flows within the same flow
aggregation are likely to belong to one coflow in Spark,
flows in one coflow may belong to different flow aggre-
gations (and thus have D

prt

= 1). This makes D
prt

less
distinctive compared to S

time

and D
com

.
We note that our procedure of identifying important at-

tributes is critical for CODA’s identification, especially under
generic frameworks. Simulation results show that useless at-
tributes greatly hamper identification accuracy, and distance
metric learning brings significant improvement (§6.3). In our
clustering algorithm below, we prune the useless attributes
with near zero weights to simplify the distance calculation.

3.3 Identifying Coflows via Clustering
CODA leverages a fast and accurate unsupervised cluster-
ing algorithm to identify coflows. We choose DBSCAN [31]
as the basis of our solution for two primary reasons. First,
because the number of coflows changes dynamically over
time, it is hard to timely and accurately estimate the number
of clusters a priori. Unlike k-means [45] and many alterna-
tives, DBSCAN can automatically determine the number of
clusters given a radius parameter ✏. Second, a typical work-
load consists of a mix of small coflows (or single flows) with
large coflow groups. Such imbalance prevents clustering al-
gorithms that try to balance the size of clusters – e.g., spectral
clustering [60] – from accurately identifying the singletons.
DBCSAN does not impose such preference.

However, DBSCAN has one major drawback – its O(n2)
worst-case time complexity, where n is the number of flows.
We address this drawback in two steps. First, we consider
Rough-DBSCAN [59] (R-DBSCAN) – a variant of DBSCAN
– instead, which trades off small accuracy for significantly
faster speed. Second, we further improve R-DBSCAN to per-
form incremental classification, accounting for dynamic flow
arrival/departure.
R-DBSCAN for Clustering The idea of R-DBSCAN is sim-

Algorithm 1 Incremental R-DBSCAN
1: procedure CLUSTERING(Previous leader-follower structure L

(initially ;), New flows F
new

, Flows left F
lft

, range ⌧)
2: for each Flow f 2 F

new

do . Add new flows
3: Find a leader l 2 L such that d(f, l) < ⌧

4: if no such leader exists then
5: L = L

S
{f} . Create a new leader

6: f.followers = {f}
7: else
8: l.followers = l.followers

S
{f} . Add to an old

leader
9: end if

10: end for
11: for each Flow f 2 F

lft

do . Delete left flows
12: Find its leader l
13: if f = l then
14: Delete l from L if l.followers = {l}

. A leader is deleted only when it has no other followers
15: else
16: l.followers = l.followers \ {f}
17: end if
18: end for
19: Run DBSCAN(L, ✏, 1) and get C0 (cluster of leaders)
20: Obtain C by replacing each leader by its followers
21: return cluster of flows C
22: end procedure

ple – to perform DBSCAN only on a selected group of rep-
resentative nodes (i.e., leaders). More specifically, a leader is
a representative of flows within a distance range ⌧ (i.e., fol-
lowers of the leader). R-DBSCAN works in three steps:
1. Scan the dataset to derive leaders and their followers;
2. Run an algorithm similar to DBSCAN (with the same ra-

dius ✏ as in DBSCAN), but use only the set of leaders in
deriving the clusters;

3. Derive the cluster of flows from the identified cluster of
leaders, based on leader-follower relationships.

The complexity of R-DBSCAN is O(nk + k2), where k is
the number of leaders. In many cases, k is much smaller than
n, and it is proved that k can be further bounded by a con-
stant given the range ⌧ [59]. More importantly, R-DBSCAN
introduces very small accuracy loss compared to DBSCAN.
Incremental R-DBSCAN Recall that CODA master performs
periodic identification and scheduling. When the set of ac-
tive flows barely changes between intervals, a complete re-
clustering over all flows is unnecessary. To this end, we de-
velop an incremental R-DBSCAN (Algorithm 1) for further
speedup, by considering dynamic flow arrival/departure. In
each interval, it first updates the leader-follower relation based
on last round information and flow dynamics (lines 1–18),
and then applies R-DBSCAN on the updated leader-follower
relations (lines 19–22). The incremental R-DBSCAN has a
complexity of only O(mk + k2), where m is the number of
newly arrived/left flows. Since most intervals do not experi-
ence a big change in active flows, the incremental design can
effectively improve the identification time (§6.3).
3.4 Discussion and Caveat
Our study in this paper currently centers around Spark and
Hadoop – two of the most popular frameworks used in pro-

 	�����
����	���1� 	�����
����	���2� M�����
	� identified f	����
�
���	���1�

(a). MADD� (b). Non-MADD�

A pioneer of C2 A straggler of C1

Time

Time Time

Figure. 2: Impact of stragglers. Stragglers (b) are likely to
more negatively affect the CCT compared with pioneers (a). �

Figure. 3: Intra coflow prioritization matters. MADD is not
error tolerant as flows inside one coflow are likely to finish
until the very end of the entire coflow. �

1 2
Time 1 2

(a) A pioneer increases the av-
erage CCT to (1.1+2)/2=1.55

 	�����
����	���1� 	�����
����	���2� M�����
	� identified f	����
�
���	���1�

(a). MADD� (b). Non-MADD�

A pioneer of C2 A straggler of C1

Time

Time Time

Figure. 2: Impact of stragglers. Stragglers (b) are likely to
more negatively affect the CCT compared with pioneers (a). �

Figure. 3: Intra coflow prioritization matters. MADD is not
error tolerant as flows inside one coflow are likely to finish
until the very end of the entire coflow. �

1 2
Time 1 2

(b) A straggler increases aver-
age CCT to (2+2)/2=2

Figure 3: Impact of misidentifications. C1 in light/orange is sched-
uled before C2 (dark/blue); without errors, each completes in one
time unit for an average CCT of 1.5 time units.

duction datacenters today. While different frameworks may
have different sets of useful attributes, we note that our ap-
proach toward attribute exploration, distance metric learning,
and coflow identification via clustering is generally applica-
ble. In future work, we are particularly interested in a com-
prehensive study on more attributes across more frameworks,
their effectiveness and commonality.

Another observation is that, for a framework, the optimal
weights of attributes may vary depending on workloads. How-
ever, such variations do not significantly affect identification
accuracy as long as they clearly separate the distinctive at-
tributes from the useless ones. As a result, to apply CODA
to different frameworks and dynamic workloads, one possi-
ble way is to learn the weights of each framework offline and
fix the setting for online identification. For example, we ap-
plied the weights learned above with our testbed workload
(§3.2) to the Facebook workload (§6.1), achieving over 90%
identification accuracy in many cases (§6.3). However, evalu-
ating the robustness of this method and exploring the optimal
weight settings of CODA under a variety of real-world work-
loads is another important future work beyond the scope of
this paper.

4 Error-Tolerant Scheduling
Despite its accuracy, the proposed coflow identification pro-
cedure (§3) can sometimes misidentify flows from one coflow
into another. Unfortunately, such mistakes can have a dras-
tic impact on existing schedulers’ performance. In this sec-
tion, we categorize different types of errors and their impacts
on performance (§4.1) and design an error-tolerant coflow
scheduler that is robust to misidentifications (§4.2).

4.1 Identification Errors and Their Impacts
To assess how identification errors affect scheduling perfor-
mance, we first divide misidentified flows into two categories
based on when they are scheduled:
1. Pioneers: Flows that are misidentified into a coflow that is

scheduled earlier than the parent coflow;
2. Stragglers: Flows that are misidentified into a coflow that

is scheduled later than the parent coflow.
These two types of errors affect the average CCT differ-

ently. To illustrate this, we consider a simple scenario in Fig-
ure 3, where two identical coflows (C1 and C2) sharing the
same bottleneck link arrive at the same time, and each con-
tains 10 identical flows. We further assume that the scheduler
assigns C1 with higher priority, and each coflow takes one

C1

C2

Potential source of misidentification

…

Highest-Priority
Queue

Lowest-Priority
Queue

QK

Q2

Q1
FIFO

FIFO

FIFO

C1’s straggler(s) with C2

Figure 4: Impact of misidentifications on Aalo. Stragglers of high-
priority C1 (light/orange) can get stuck with C2 (dark/blue) in a low-
priority queue, while other lower-priority coflows (black) compared
to C1 complete earlier.

time unit to finish. When there is no identifications error, this
schedule leads to an optimal CCT of 1.5 time units.

However, in Figure 3a, a pioneer increases both the CCT
of C1 (1.1⇥) and the average CCT (1.03⇥). A straggler hurts
even more – in Figure 3b, it doubles the CCT of C1 and in-
creases the average CCT by 1.33⇥.

Observation 1 In the presence of misidentifications, strag-
glers are likely to more negatively affect the average CCT
than pioneers. ⇤

4.1.1 Impacts of Identification Errors
Existing coflow schedulers assume prior coflow knowledge [21,
23, 24, 30] for efficient scheduling. However, they can be
highly inefficient in the presence of identification errors.
Clairvoyant Schedulers Consider Minimum-Allocation-for-
Desired-Duration (MADD), the optimal algorithm used in
Varys [23] for intra-coflow scheduling when flow sizes are
known a priori. MADD slows down all the flows in a coflow
to match the completion time of the flow that will take the
longest to finish. Because all flows finish together using MADD,
a misidentified flow (especially for stragglers) can signifi-
cantly impact the CCT (e.g., in Figure 3b).
Non-Clairvoyant Schedulers Unlike Varys, Aalo [24] uses
Discretized Coflow-Aware Least-Attained Service (D-CLAS)
– that divides coflows into multiple priority queues and sched-
ules in the FIFO order within each queue – to minimize av-
erage CCT without any prior knowledge of flow sizes. How-
ever, Aalo can perform even worse in the presence of identifi-
cation errors. This is because a misidentified flow can drop to
a low-priority queue together with another large coflow and
can become a “super” straggler.

Figure 4 illustrates such an example. This is not a cor-
ner case. Because only 17% coflows create 99% traffic [23],
flows from the 83% small coflows can easily be misidentified
into the larger ones and suffer performance loss.
Possible Remedies In both sets of solutions, intra-coflow
scheduling – MADD or per-flow fairness – elongates flows
until the end of the entire coflow. However, if we prioritize
flows [14, 16, 37, 62] within each coflow, a misidentified
flow might have a higher chance of finishing earlier. This can

C1

C2

Potential source of misidentification
Figure 5: Flows falling within multiple coflow clusters during iden-
tification can become stragglers if misidentified.
decrease the impact of identification errors. For example, in
Figure 3b, the expected average CCT would have been 1.75
time units5 instead of 2 if we performed per-flow prioritiza-
tion within C1.

Observation 2 Intra-coflow prioritization can matter in the
presence of identification errors. ⇤

4.2 Error-Tolerant Coflow Scheduling
Based on the observations in §4.1, in this section, we present
the key principles behind designing an error-tolerant coflow
scheduler and discuss its components. Our proposed sched-
uler extends the general structure of a non-clairvoyant coflow
scheduler described in Aalo [24].

4.2.1 Design Principles
We rely on two key design principles to mitigate the impacts
of stragglers and intra-coflow scheduling in the presence of
identification errors:
1. Late binding errs on the side of caution to reduce the num-

ber of stragglers;
2. Intra-coflow prioritization leverages per-flow prioritization

[14, 16, 37, 62] in the context of coflows.

Design Principle 1: Late Binding Observation 1 indicates
that avoiding stragglers is key to error-tolerant scheduling. To
this end, we take a late binding approach toward the coflow
relationships identified in the clustering process. For exam-
ple, consider a flow that can potentially belong to either coflow
C1 or coflow C2 – i.e., it lies on the boundary between the two
during clustering (Figure 5). Instead of arbitrarily assigning it
to either C1 or C2, we delay the decision and consider it to be
in both C1 and C2 for the time being. Only during scheduling,
we assign it to the higher priority coflow in C1 and C2. Con-
sequently, this flow does not become a straggler to its parent
coflow, no matter whether it belongs to C1 or C2.

There can be two outcomes from our decision: (i) if the
original classification is correct, we introduce one pioneer in
the worst case; (ii) if the original classification is wrong, we
effectively prevent this flow from becoming a straggler. Es-
sentially, we try to reduce the number of stragglers at the risk
of increasing the number of pioneers. To stop all flows from
becoming pioneers, we restrict late binding only to flows that
straddle classification boundaries. For example, in Figure 4,
instead of creating stragglers for C1, we would instead cause
pioneers of C2 that have lower impact on the average CCT
(Figure 6a). Our evaluation (§6.4) suggests that this principle
5CCT of C1 can be between 1 and 2 time units based on when its straggler
flow is scheduled, with an expected CCT of 1.5 time units.

…
QK

Q2

Q1
FIFO

FIFO

FIFO

C2’s pioneer(s) with C1

…
QK

Q2

Q1
FIFO

FIFO

FIFO

C1’s leftover straggler(s) with C2

C2’s pioneer(s) with C1

(a) Late binding

…
QK

Q2

Q1
FIFO

FIFO

FIFO

C2’s pioneer(s) with C1

…
QK

Q2

Q1
FIFO

FIFO

FIFO

C1’s leftover straggler(s) with C2

C2’s pioneer(s) with C1

(b) Intra-coflow prioritization

Figure 6: Impact of CODA’s design principles: (a) minimize strag-
glers by increasing pioneers; and (b) complete individual flows fast
to handle leftover stragglers.

contributes to more than 10% CCT improvements in the pres-
ence of identification errors, reducing the impact of errors by
more than 30%.
Design Principle 2: Intra-Coflow Prioritization Although
late binding helps, some flows may still be misidentified. An
even more troublesome case is when C1 and C2 are clus-
tered as one coflow. To reduce the impact of errors in such
cases, we leverage Observation 2, which suggests that intra-
coflow prioritization can be more effective in error-tolerant
inter-coflow scheduling than in the absence of errors.

To this end, we use per-flow prioritization based on bytes
sent (similar to [16]) within each identified coflow without
any prior knowledge. This is especially effective for flows
from small coflows that become stragglers with large coflows
– the most likely case given the prevalence of small coflows
[23]. For example, instead of the straggler of C1 taking the
same amount of time as longer flows in C2 (Figure 4), it will
finish much earlier due to its small size (Figure 6b).

This scheme also takes effect in the reverse scenario – i.e.,
when a flow from the larger coflow C2 becomes a pioneer
with smaller coflow C1. By preferring smaller flows, C1’s
flows are likely to finish earlier than the pioneer from C2.
Evaluation in §6.4 suggests that this principle brings up to
30% speedup for small coflows under low identification ac-
curacy.

4.2.2 CODA Scheduler
Putting everything together, Algorithm 2 describes CODA’s
error-tolerant scheduler, which has the following three com-
ponents working cooperatively to minimize the impact of strag-
glers and pioneers during identification as well as to perform
intra- and inter-coflow scheduling.
1. Late Binding In COFLOWEXTENSION(·), for each identi-

fied coflow C, we create a corresponding extended coflow
C⇤ by extending its boundary by a diameter d (line 4).
Meaning, C⇤ further includes all flows whose distances
to C are smaller than d.6 Note that a flow might belong

6The distance between a flow f and a coflow group C is defined as the

Algorithm 2 CODA’s Error-Tolerant Scheduler
1: procedure COFLOWEXTENSION((Identified) Coflows C, di-

ameter d)
2: C⇤ = ; . Set of extended coflows to be returned
3: for all Coflow C 2 C do
4: G = {(Flows)f

i

|d(f
i

, C) d}
5: C⇤ = C⇤ S{C

S
G} . Extend coflow and add

6: end for
7: return C⇤

8: end procedure

9: procedure INTERCOFLOW(Extended Coflows C⇤, Coflow
Queues QC)

10: for all i 2 [1, |QC |] do
11: for all C⇤ 2 Q

C

i

do . Q

C

i

sorted by arrival time
12: IntraCoflow(C⇤, QF)
13: end for
14: end for
15: end procedure

16: procedure INTRACOFLOW(Extended Coflow C

⇤, Flow
Queues QF)

17: for all j 2 [1, |QF |] do
18: for all Flows f 2 C

⇤ T
Q

F

j

and not yet scheduled do
19: f .rate = Max-min fair share rate
20: Mark f as scheduled . Binds f to the highest

priority coflow among all it belongs to
21: Update the residual bandwidth
22: end for
23: end for
24: end procedure

25: procedure CODASCHEDULER(C, QC , QF , d)
26: C⇤ = CoflowExtension(C, d)
27: InterCoflow(C⇤, QC)
28: end procedure

to two or more extended coflows simultaneously after this
step. Later, the flow belonging to multiple coflows will be
bound into the coflow with the highest priority when it is
scheduled for the first time (line 20).

2. Inter-Coflow Prioritization In INTERCOFLOW(·), we adopt
D-CLAS [24] to prioritize across these extended coflows.
Basically, we dynamically place coflows into different coflow
queues of QC , and among the queues we enforce prioriti-
zation (line 10). Within each queue, we use FIFO among
coflows (line 11) so that a coflow will proceed until it reaches
queue threshold or completes. Using FIFO minimizes in-
terleaving between coflows in the same queue which min-
imizes CCTs.

3. Intra-Coflow Prioritization In INTRACOFLOW(·), we ap-
ply smallest-first heuristic [16] to prioritize flows within
each coflow. For this purpose, we implement multi-level
feedback queue scheduling (MLFQ) among flow queues of
QF with exponentially increasing thresholds. Such scheme
prioritizes short flows over larger ones with no prior knowl-
edge of flow sizes [16]. Flows within each flow queue use
max-min fairness (line 19).

Choice of Diameter d Diameter d reflects the tradeoff be-

smallest distance between f and flows in C.

tween stragglers and pioneers. The optimal value of d in terms
of average CCT is closely related to the choice of radius ✏
in identification, and it varies under different traffic patterns.
There is no doubt that an extreme value of d (e.g., infinity)
will lead to poor CCT. However, as mentioned earlier (§4.1),
the impact of stragglers is much bigger than that of pioneers,
making late binding beneficial under a wide range of d (§6.4).

5 Implementation
In this section, we discuss the difficulties we have faced im-
plementing an existing coflow API in Hadoop 2.7 & Spark
1.6, and describe the implementation of CODA prototype.

5.1 Implementing Coflow API
In order to validate CODA, we implemented Aalo’s coflow
API in Hadoop 2.7 and Spark 1.6 to collect ground truth
coflow information. We faced several challenges, including
intrusive refactoring of framework code, interactions with third-
party libraries to collect coflow information, and Java byte-
code instrumentation to support non-blocking I/O APIs.
Coflow Information Collection Modern applications are
built on top of high-level abstractions such as Remote Pro-
cedure Call (RPC) or message passing, rather than directly
using low-level BSD socket APIs or equivalent coflow prim-
itives. As a result, matching the high-level coflow informa-
tion with the low-level flow information requires refactoring
across multiple abstraction layers and third-party libraries.

In our implementation of collecting coflows in Hadoop,
which implements its own RPC submodule, we: (i) changed
the message formats of RPC requests and responses to em-
bed coflow information; (ii) modified the networking library
to associate individual TCP connections to the coflow infor-
mation in the RPC messages; and (iii) added an extra parsing
step to look up coflow information in binary messages, since
RPC messages are often serialized into byte stream before
being passed into the networking level.

To make things worse, there is no universal interface for
messaging or RPC. For example, unlike Hadoop, Spark uses
third-party libraries: Akka [1] and Netty [6]. Hence, collect-
ing coflow information in Spark almost doubled our effort.
Supporting Non-blocking I/O Current coflow implementa-
tions [23, 24] emulate blocking behavior in the user space, ef-
fectively forcing threads sending unscheduled flows to sleep.
As a result, each CPU thread can send at most one flow at any
time, which does not scale. To let each thread serve multiple
I/O operations, the common practice is to employ I/O mul-
tiplexing primitives provided by the OS (e.g., “select” and
“poll” in POSIX, and “IOCP” in Windows). Both Hadoop
and Spark uses “java.nio” for low-level non-blocking I/O.

Since many popular frameworks (including Hadoop and
Spark) are compiled against JVM, we seek an implementa-
tion that can support “java.nio” as well as a variety of third
party libraries on JVM. To this end, we employed Java byte-
code instrumentation – partially inspired by Trickle [10] –
to dynamically change the runtime behavior of these appli-
cations, collect coflow information, and intercept I/O oper-
ations based on scheduling results. Similar to the dynamic

linker in Trickle, during the JVM boot, our instrumentation
agent is pre-loaded. Upon the first I/O operation, the agent
detects the loading of the original bytecode and modifies it to
record job IDs in Hadoop and Spark shuffles at runtime, so
that coflow information can be collected.

5.2 CODA Prototype
Our prototype implements the master-slave architecture shown
in Figure 2. The error-tolerant scheduler runs in the master
with the information collected from CODA agents. The deci-
sions of the master are enforced by the agents. CODA agent
thus has the following two main functions: collection (of flow
information) and enforcement (of scheduling decisions).

Flow information collection can be done with a kernel mod-
ule [16], which does not require any knowledge of how the
application is constructed, complying with our goal of appli-
cation transparency. In prototype implementation, we build
upon our coflow API integration, and reuse the same tech-
nique (bytecode instrumentation). Instead of job ID, we col-
lect the information for identification: source and destination
IPs and ports, as well as the start time of flow.

To enforce the scheduling decisions in each agent, we lever-
age Hierarchical Token Bucket (HTB) in tc for rate limiting.
More specifically, we use the two-level HTB: the leaf nodes
enforce per-flow rates and the root node classifies outgoing
packets to their corresponding leaf nodes.
Implementation Overhead of CODA Agent To measure
the CPU overheads of CODA agents, we saturated the NIC
of a Dell PowerEdge R320 server with 8GB of memory and
a quad-core Intel E5-1410 2.8GHz CPU with more than 100
flows. The extra CPU overhead introduced is around 1% com-
pared with the case where CODA agent is not used. The
throughput remained the same in both cases.

6 Evaluation
Our evaluation seeks to answer the following 3 questions:
How does CODA Perform in Practice? Testbed experi-
ments (§6.2) with realistic workloads show that CODA achieves
over 95% accuracy in identification, improves the average
and 95-th percentile CCT by 2.4⇥ and 5.1⇥ compared to
per-flow fair sharing, and performs almost as well as Aalo
with prior coflow knowledge. Furthermore, CODA can scale
up to 40,000 agents with small performance loss.
How Effective is CODA’s Identification? Large-scale trace-
driven simulations show that CODA achieves over 90% ac-
curacy under normal production workloads, and degrades to
around 60% under contrived challenging workloads. Further-
more, CODA’s distance metric learning (§3.2) is critical, con-
tributing 40% improvement on identification accuracy; CODA’s
identification speedup design (§3.3) is effective, providing
600⇥ and 5⇥ speedup over DBSCAN and R-DBSCAN re-
spectively with negligible accuracy loss (§6.3).
How Effective is CODA’s Error-Tolerant Scheduling? Un-
der normal workloads with over 90% identification accuracy,
CODA effectively tolerates the errors and achieves compa-
rable CCT to Aalo (with prior coflow information), while

10−4 10−2 100 1020

0.2

0.4

0.6

0.8

1

Inter−Coflow Arrival Time(Second)

Fr
ac

tio
n

of
 C

of
lo

w
s

Facebook

(a) Inter coflow arrival time

0 10 20 300

0.2

0.4

0.6

0.8

1

Number of Cuncurrent CoflowsFr
ac

tio
n

of
 S

am
pl

ed
 T

im
ep

oi
nt

s

Facebook

(b) No. of concurrent coflows

Figure 7: Time-related characteristics of the workload.

outperforming per-flow fair sharing by 2.7⇥. Under chal-
lenging scenarios, CODA degrades gradually from 1.3⇥ to
1.8⇥ compared to Aalo when accuracy decreases from 85%
to 56%, but still maintaining over 1.5⇥ better CCT over per-
flow fair sharing. Moreover, CODA’s error-tolerant design
brings up to 1.16⇥ speedup in CCT, reducing the impact
of errors by 40%. Additionally, both late binding and intra-
coflow prioritization are indispensable to CODA– the former
brings 10% overall CCT improvement, while the latter one
brings 30% improvement on CCT of small coflows (§6.4).

6.1 Evaluation Settings
Testbed We built a testbed that consists of 40 servers con-
nected to a Pronto 3295 48-port Gigabit Ethernet switch. Each
server is a Dell PowerEdge R320 with a 4-core Intel E5-1410
2.8GHz CPU, 8G memory, a 500GB hard disk, and a Broad-
com BCM5719 NetXtreme Gigabit Ethernet NIC. Each server
runs Debian 8.2-64bit with Linux 3.16.0.4 kernel. We adopted
the same compute engine used in both Varys [23] and Aalo [24].
We set coordination interval 4 = 100ms, and set ✏ = 100
and d = 150 as default.
Simulator For large-scale simulations, we use a trace-driven
flow-level simulator that performs a detailed task-level re-
play of the coflow traces. It preserves input-to-output ratios
of tasks, locality constraints, and inter-arrival times between
jobs, and it runs at 1s decision intervals.
Workload We use a realistic workload based on a one-hour
Hive/MapReduce trace collected from a 3000-machine, 150-
rack Facebook production cluster [5]. The trace contains over
500 coflows (7 ⇥ 105 flows). The coflow size (1MB�10TB)
and the number of flows within one coflow (1�2⇥104) fol-
low a heavy-tailed distribution. Figure 7 plots the distribu-
tion of inter-coflow arrival time and the number of concurrent
coflows. In our testbed experiments, we scale down jobs ac-
cordingly to match the maximum possible 40 Gbps bisection
bandwidth of our deployment while preserving their commu-
nication characteristics.

However, the Facebook trace does not contain detailed flow-
level information such as flow start times and port numbers.
To perform a reasonable replay in our simulations, we first
run typical benchmarks (e.g., WordCount and PageRank) on
Spark and Hadoop in our testbed. Based on the flow arrival
time pattern within one coflow we learned from our testbed,
we add the start time information back to the Facebook work-
load to emulate Spark and Hadoop traffic:

50

60

70

80

90

100

Precision Recall

A
cc
ur
cy
(%

)

(a) Accuracy

0
1
2
3
4
5

CCT JCT

N
or

m
al

iz
ed

C
om

p.
Ti

m
e

Per-Flow Fairness(Avg) Per-Flow Fairness(95th)
Aalo(Avg) Aalo(95th)

CODA

(b) CCT and JCT

Figure 8: [Testbed] CODA’s performance in terms of (a) identifi-
cation accuracy, and (b) coflow and corresponding job completion
times (JCT) compared to Aalo and per-flow fairness. The fraction
of JCT jobs spent in communication follows the same distribution
shown in Table 2 of Aalo [24].

1

10

100

1000

10000

40 400 4000 40000
(Emulated) Agents

3

41

53
7 69

54

C
oo

rd
in

at
io

n
Ti

m
e(

m
s)

(a) Overheads at scale

0
2
4
6
8

10
12

10ms 100ms 1s 10s 100s
Coordination Period (Δ)

Per-Flow Fairness Aalo CODA

To
ta

l C
of

lo
w

 C
om

p.

Ti
m

e
(

10
4 s

)

(b) Impact of 4
Figure 9: [Testbed] CODA scalability: (a) more agents require
longer coordination periods (Y-axis is in log scale), and (b) delayed
coordination hurts overall performance (measured as sum of CCT).

• Spark Traffic: Flows inside each coflow are generated
within 100ms following a uniform distribution,

• Hadoop Traffic: Flows inside each coflow are generated
within 1000ms following a uniform distribution, and we
add an extra exponential delay with a mean of 100ms.

As to port assignments, they follow the rules described in
§3.1 for Spark and Hadoop respectively.
Metrics As for identification, we use precision and recall to
measure CODA’s accuracy: precision is the proportion of the
flows which are truly in coflow C

i

among all flows classified
as in C

i

, and recall is the proportion of flows in C
i

which
are correctly classified. Finally, the identification accuracy is
defined as the average of recall and precision.

As for scheduling, we measure the coflow completion time
(CCT), and compare CODA against Aalo [24] (the state-of-
the-art coflow scheduler with manually annotated coflows)
and per-flow fair sharing. For easy comparison, we normalize
the results by CODA’s CCT, i.e.,

Normalized Comp. Time =
Compared Duration
CODA’s Duration

Smaller values indicate better performance, and if the nor-
malized completion time of a scheme is greater (smaller) than
1, CODA is faster (slower).

6.2 Testbed Experiments
Performance For identification, Figure 8a shows that we
achieve 99% precision and 97% recall in testbed experiments
with the Facebook workload. As for scheduling, Figure 8b

50
60
70
80
90

100

Spark Hadoop Mix

A
cc

ur
ac

y(
%

)

Workload Type

Recall Precision

(a) Normal workloads

50
60
70
80
90

100

10 50 100

A
cc

ur
ac

y(
%

)

Batch Interval(s)

Recall Precision

(b) Batch arrival

50
60
70
80
90

100

Hadoop Spark

A
cc

ur
ac

y(
%

)

Workload Type

Recall Precision

(c) Stretched arrival

0
20
40
60
80

100

CODA w/o
DML

CODA

A
cc

ur
ac

y(
%

)

Indentification Algorithm

Recall Precision

(d) Effectiveness of DML

50
60
70
80
90

100

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

A
cu

ra
cy

(%
)

Distance threshold ε

Precision
Recall

(e) Sensitivity to ✏

Figure 10: [Simulation] Inspecting CODA’s identifier. Here DML refers to distance metric learning.

shows that CODA reduced the average and 95-th percentile
coflow completion times by 2.4⇥ and 5.1⇥ respectively in
comparison to TCP-based per-flow fairness. The correspond-
ing improvements in the average job completion time are
1.4⇥ and 2.5⇥. Also, we can see that Aalo has the normal-
ized job and coflow completion times close to 1, meaning that
CODA performs almost as well as Aalo.

Additionally, in our testbed, we also ran the SWIM work-
loads [20] using CODA prototype in Hadoop. A 97% pre-
cision and 88% recall is observed, validating the effective-
ness of our identifier design. However, due to the disk I/O-
intensive nature of the workload and the inherent bottlenecks
introduced in the current software implementation of Hadoop,
the network is hardly saturated most of the time and schedul-
ing does not provide obvious improvement to CCT.
Scalability To evaluate CODA’s scalability, we emulated run-
ning up to 40,000 agents on our testbed. Figure 9a shows
the time to complete a coordination round averaged over 500
rounds for varying number of emulated agents (e.g., 40,000
emulated agents refer to each machine emulating 1000 agents).
During each experiment, the coordinator transferred schedul-
ing information for 100 concurrent coflows on average to
each of the emulated agents.

As expected, CODA’s scalability is not as good as Aalo
[24] because of its identification procedure, which does not
exist in Aalo. However, we note that our identification speedup
already brings big improvement – DBSCAN takes minutes
with only 400 agents.

Even though we might be able to coordinate 40,000 agents
in 6954ms, the coordination period (4) must be increased.
To understand the impact of 4 on performance, we re-ran the
earlier experiments with increasingly higher 4 (Figure 9b).
Note that, to reduce the impact of the long coordination pe-
riod for small flows, CODA adopts the same method as Aalo
– the first 10MB of a flow will go without waiting for coordi-
nation. We observe that similar to Aalo, CODA worsens with
increasing 4, and the performance plummeted at 4 > 100s.

6.3 Inspecting Identification
Results under Normal Workloads We first look at the iden-
tification results of CODA under normal workloads. As shown
in Figure 10a, we find that CODA achieves high accuracy
overall – e.g., it achieves around 97% precision and 98% re-
call under the Spark traffic, 94% precision and 84% recall
for Hadoop. In addition, we observe 97% precision and 92%
recall under the mixed traffic (Hadoop/ Spark each accounts

for 50%). Comparatively, CODA obtains a higher accuracy
in recall for the Spark traffic than that for the Hadoop traf-
fic, which is probably due to its closer inter-flow arrival times
(inside one coflow).
Results under Challenging Scenarios We observe that time
plays a key role in the high accuracy of CODA in the earlier
experiment. Specifically, when flows within a coflow come in
batches, which usually has a much smaller inter-flow arrival
time than the inter-coflow arrival time, they are easier to dif-
ferentiate. In order to stress CODA, we intentionally increase
concurrency by overlapping coflows in two ways:
1. Batch arrival decreases inter-coflows arrival time. Basi-

cally, we create the case where coflows arrive in batch. We
set the batch interval to be 10s, 50s and 100s, and all the
coflows in one batch will be condensed with very close
arrival times (100-300ms). In this way, coflows come in
bursts with increased overlaps in each batch.

2. Stretched arrival increases inter-flow arrival times between
flows in one coflow. Specifically, for both Spark and Hadoop
traffic, flows are generated with a delay of 5000ms fol-
lowing a uniform distribution, and for Hadoop traffic we
add an extra exponential delay with a mean of 1000ms.
In this way, flows inside one coflow will spread out over
time and overlap more with other coflows. Such scenario
represents cases where machines have poor coordination,
or when some workers experience late start up.
Figure 10b shows the identification results under batch ar-

rival. Here we only focus on the Hadoop traffic, as the ex-
ponential delay makes identification more difficult. As ex-
pected, we observe an obvious degradation in precision as
batch interval increases. For example, the precision decreases
from 85% to 56% as the batch interval increases from 10s to
100s. This is because when the traffic becomes more bursty,
the number of concurrent coflows increases, making CODA
more likely to misclassify unrelated flows into a coflow.

Figures 10c shows the identification results under stretched
arrival. We observe that CODA’s recall drops to around 60%
for both Hadoop and Spark traffic. Due to the large delay
added to inter-flow arrival times, flows inside one coflow may
have inter-arrival times as large as tens of seconds, which
makes it more difficult to classify them to the same coflow.
The Hadoop traffic suffers from a lower accuracy due to the
1000ms exponential delay.

In addition, we find that the Facebook trace exhibits a uni-
fied community. As a result, the community attribute has little

Algorithm DBSCAN R-DBSCAN CODA
Average Identification Time (ms) 3217.27 27.50 5.23

Identification Accuracy (%) 98.21% 96.47% 96.41%

Table 1: [Simulation] Effectiveness of CODA’s speedup design

0
0.5

1
1.5

2
2.5

3

Hadoop Spark
Workload Type

Per-Flow Fairness
Aalo

N
or

m
. C

om
p.

 T
im

e

CODA

(a) Normalized CCT

10−2 100 102 1040

0.2

0.4

0.6

0.8

1

Coflow Completion Time (Seconds)

Fr
ac

tio
n

of
 C

of
lo

w
s

Per−Flow Faireness
Aalo
CODA

(b) CCT distribution

Figure 11: [Simulation] CODA’s scheduler under normal workload.

effect. But we envision that concurrent coflows generated by
different applications or tenants may be effectively identified
via communities even with very close start times.
Effectiveness of Distance Metric Learning (DML) To eval-
uate the effectiveness of DML in §3.2, we run the identifica-
tion procedure with the same weight assigned to each of the
attributes in §3.1. Figure 10d shows the average recall and
precision in such case. Compared to CODA, over 40% de-
graded identification accuracy is clearly observed. This sug-
gests that different attributes contribute differently to the final
result, and our DML can effectively distinguish them.
Impact of Parameter ✏ (§3.3) The radius parameter ✏ is key
for CODA (i.e., incremental R-DBSCAN) to determine the
number of clusters. Figure 10e shows CODA’s performance
under varying ✏.7 While CODA maintains a high accuracy
under a wide range of ✏, it is not perfect: too small a diameter
can misidentify coflows into several small clusters, leading
to low recall, while too large a diameter tends to misidentify
many coflows into one big cluster, leading to low precision.
As time plays a key role in identification, the best choice of ✏
is closely related to flow and coflow arrival patterns. In gen-
eral, we believe that an ideal ✏ should be larger than the aver-
age inter-flow arrival time inside one coflow and smaller than
the average inter-coflow arrival time.
Effectiveness of Identification Speedup We evaluate our de-
sign for identification speedup (§3.3) and show the results
in Table 1. Compared to DBSCAN, with up to 30 concur-
rent coflows (1 ⇥ 105 flows), CODA provides around 600⇥
speedup at the cost of 2% accuracy. Compared to R-DBSCAN,
CODA achieves 5⇥ speedup with negligible accuracy loss.

6.4 Inspecting Scheduling
Results under Normal Workloads We first inspect CODA
scheduler under normal workloads. Figure 11a shows the per-
formance of different scheduling algorithms in terms of nor-
malized CCT. It is evident that CODA effectively tolerates
certain identification errors and performs as well as Aalo with
correct coflow information, and significantly outperforms per-
flow fair sharing. For example, for the Spark traffic, with
7We normalized the value of S

time

to 1 in A
s

and A
h

(§3.2).

0
0.5

1
1.5

2
2.5

10 50 100
Batch Interval(s)

Per-Flow Fairness
Aalo

N
or

m
. C

om
p.

 T
im

e

CODA

(a) Batch arrival case (Hadoop)

0
0.5

1
1.5

2
2.5

Hadoop Spark
Workload Type

Per-Flow Fairness
Aalo

N
or

m
. C

om
p.

Ti
m

e

CODA

(b) Stretched arrival case

Figure 12: [Simulation] CODA’s scheduler under challenging sce-
narios.

0.9
0.95

1
1.05

1.1
1.15

1.2

10 100
Batch Interval(s)

CODA w/o both
CODA w/o I.P.
CODA

N
or

m
. C

om
p.

 T
im

e

CODA

(a) Batch arrival case (Hadoop)

0.9
0.95

1
1.05

1.1
1.15

1.2

Hadoop Spark
Workload Type

CODA w/o both
CODA w/o I.P.
CODA

N
or

m
. C

om
p.

 T
im

e

CODA

(b) Stretched arrival case

Figure 13: [Simulation] Effectiveness of CODA’s error-tolerant
scheduler. Here “both” refers to late binding (L.B.) and intra-coflow
prioritization (I.P.).

around 95% identification accuracy (corresponding to Fig-
ure 10a), it is not a surprise that CODA performs almost the
same as Aalo, and outperforms per-flow fair sharing by 2.7⇥.
For the Hadoop traffic, with around 90% accuracy, CODA is
slightly worse than Aalo (about 1.1⇥ worse), but still 2.3⇥
better than per-flow fair sharing. To better visualize the re-
sult, Figure 11b show the CDF of CCT for the Spark traffic,
we can see that CODA almost coincides with Aalo.
Results under Challenging Scenarios We next check CODA
scheduler under the two challenging scenarios – batch arrival
and stretched arrival – described above, where the identifica-
tion is not as accurate as the normal case.

Figure 12a compares different scheduling algorithms un-
der the batch arrival case using Hadoop traffic. As expected,
we observe that with more identification errors introduced,
the performance of CODA scheduler degrades gradually. For
example, we find that CODA performs around 1.3⇥ to 1.8⇥
worse compared to Aalo with correct information when batch
interval equals 10s (85% precision in Figure 10b)) to 100s
(56% precision) respectively. In the meanwhile, CODA is
still around 2⇥ to 1.5⇥ better than fair sharing.

Figure 12b shows the performance of different schedul-
ing algorithms under the stretched arrival case. We observe
that for both Spark and Hadoop traffic, even under 60% re-
call (Figure 10c), CODA performs only around 1.3⇥ worse
than Aalo, while outperforming fair sharing by 2⇥.
Effectiveness of Error-Tolerant Design We proceed to check
the effectiveness of CODA’s error-tolerant design in Figure
13. Note that CODA without both late binding and intra coflow
prioritization is equivalent to directly adopting Aalo for schedul-
ing with inaccurate identification input. Figure 13a shows
that, for batch arrival, the error-tolerant design brings 3–5%

50
60
70
80
90

100

Before C.E After C.E.

A
cc

ur
ac

y(
%

) Recall Precision

(a) L.B. increases recall accu-
racy

0.9
0.95

1
1.05

1.1
1.15

1.2

0 200 400 600 800 1000

Stretched Arrival (Hadoop)
Normal (Spark)

CODA

Late binding diameter d

N
or

m
. C

om
p.

 T
im

e
w

.r
.t.

 C
O

D
A

(b) Sensitivity to parameter d

Figure 14: [Simulation] Understanding Late binding (L.B.)).

0.9

1

1.1

1.2

1.3

1.4

10 100
Batch Interval(s)

CODA w/o I.P.
CODA

N
or

m
. C

om
p.

 T
im

e

CODA

(a) Batch arrival case (Hadoop)

0.9

1

1.1

1.2

1.3

1.4

Hadoop Spark
Workload Type

CODA w/o I.P.
CODA

N
or

m
. C

om
p.

 T
im

e

CODA

(b) Stretched arrival case

Figure 15: [Simulation] Intra-coflow prioritization brings obvious
improvement on small & narrow (SN) coflows.

overall improvement in CCT, and especially, it brings 10–
20% improvement in CCT for small coflows (shown later
in Figure 15a). Furthermore, we observe a bigger improve-
ment in Figure 13b for stretched arrival, where the error-
tolerant design provides an overall 1.16⇥ and 1.14⇥ speedup
for Hadoop and Spark traffic. Given that CODA is around
1.3⇥ slower than Aalo in this case (Figure 12b), the 1.16⇥
speedup means it reduces the impact of errors by 40%.8

Next, we look into independent benefits of late binding
and intra-coflow prioritization. We observe that late bind-
ing brings non-trivial improvements under stretched arrival –
more than 10% for both Hadoop and Spark. Comparatively,
intra-coflow prioritization introduces less improvement – 7%
for Hadoop under stretched arrival, and 1–5% under other
cases. However, we show later that intra-coflow prioritization
does bring up to 30% improvement on CCT of small coflows.
Why does Late Binding Work? To understand why late
binding brings big improvement on CCT, we plot the identifi-
cation accuracy before/after we extend the identified coflows
by a diameter d (i.e., the extended coflow C⇤ in §4.2.2) in
Figure 14a. We observe a 10% improvement in recall at the
cost of 4% reduction in precision. Note that a higher recall
indicates that more flows in a coflow are successfully classi-
fied into one group, which means that coflow extension suc-
cessfully identifies some stragglers. These identified strag-
glers will no longer be stragglers after they are bound to the
coflow with the highest priority. As a result, late binding can
effectively reduce the number of stragglers, thus improving
CCT.
Impact of Parameter d (§4.2.2) We study how d affects
the performance of late binding. In Figure 14b, the blue line
refers to the stretched arrival case (Hadoop), where late bind-

8Calculated as: CCT(CODA w/o both) - CCT(CODA)
CCT(CODA w/o both) - CCT(Aalo) = 1.3⇥1.16�1.3

1.3⇥1.16�1 = 40%.

0
0.2
0.4
0.6
0.8

1
1.2

Per-Flow
Fairness

Aalo

N
or

m
. C

om
p.

 T
im

e

CODA

(a) Overall

0
1
2
3
4
5
6
7
8

Per-Flow
Fairness

Aalo

N
or

m
. C

om
p.

 T
im

e

CODA

(b) SN coflows

Figure 16: [Simulation] CODA’s performance w/o identification
step.

ing brings obvious improvement. We see that the normalized
CCT improves with d at the beginning. This indicates that
more stragglers are successfully identified, thereby reducing
the CCT of the corresponding coflows. However, as d keeps
increasing, late binding introduces too many pioneers, lead-
ing to a longer CCT. Moreover, the red line shows the re-
sults for the normal workloads (Spark). As the identification
is already very accurate, late binding does not provide obvi-
ous improvement, and CODA’s performance degrades slowly
with an increasing d. In general, we observe that CODA is
stable under a wide range of d, and we consider setting d to
be a multiple of ✏ (discussed in §6.3) is a feasible choice.
How does Intra-Coflow Prioritization Help? To answer
this question, we first categorize coflows based on their lengths
and widths. Specifically, we consider a coflow to be short
if its longest flow is less than 5MB and narrow if it has at
most 50 flows. We find that around 50% of coflows are short
& narrow (SN) coflows. However, their performance cannot
be clearly reflected by the overall CCT, as they contribute
to less than 0.1% of the total traffic load. Figure 15a shows
the normalized CCT of SN coflows in batch arrival. We see
that intra-coflow prioritization brings up to 16% improve-
ment. One possible reason is that when many coflows come in
batch, CODA is likely to misclassify many coflows as a “su-
per” coflow. Intra-coflow prioritization can effectively speed
up SN coflows in such misclassified coflows.

Figure 15b shows the normalized CCT of SN coflows in
stretched arrival. The stretched arrival pattern tends to gener-
ate many stragglers, and intra-coflow prioritization can effec-
tively speed up stragglers of SN coflows by up to 30%.
What if Identification is Totally Unavailable? Finally, we
study one extreme case where the entire identification pro-
cedure is unavailable (Figure 16a). As we can no longer dis-
tinguish coflows, neither inter-coflow prioritization nor late
binding takes effect. In such case, intra-coflow prioritization
alone still improves coflow completion time by around 8%.
Figure 16b further shows that for SN coflows, the improve-
ment can be as large as 7.4⇥. One important reason for such
big improvement is that the Facebook workload is heavy-
tailed in terms of coflow sizes.9 As a consequence, priori-
tizing small flows can effectively benefit average CCT (espe-
cially for SN coflows) as well.
Remark We note that our evaluation is restricted by the
workload available to us. Thus, we synthesize start times and
9Less than 20% coflows contribute to about 99% of the traffic.

perturb arrival times to create different workloads to learn
under which workloads CODA works well and under which
it does not. First, CODA achieves high accuracy and near-
optimal CCT under the normal case, which generally applies
to workloads, where the average inter-coflow arrival time is
much larger than the inter-flow arrival time inside one coflow.
Second, the results under the stretch case indicate that CODA
can still achieve comparable CCT to Aalo when workers have
poor coordination or experience slow start up. Third, the re-
sults under the batch arrival case indicate that CODA does
not perform well when coflows have very close start times.
We hope that these observations could be helpful in bridging
the gap between synthetic workloads and real-world work-
loads and in providing guidelines for further improvements.

7 Discussion
CODA with DAG Information The DAG representation of
each job and information about the physical location of each
task can be useful for coflow identification. However, such in-
formation may not always be available. For example, a public
cloud operator typically does not communicate with the ap-
plication masters of tenants. Furthermore, even with the DAG
and location information, matching the high-level coflow in-
formation with the low-level flow information is non-trivial
(§5.1).

However, we believe that coflow identification and schedul-
ing in the presence of such information is an important prob-
lem. Particularly, the DAG information can be viewed as an
extra attribute, and combining the DAG information with other
attributes can potentially increase the identification accuracy,
especially for the batched arrival case and for multi-stage
jobs. Moreover, as many datacenter workloads are repetitive,
it is possible to learn the DAG information instead of directly
retrieving it from the master. We consider this as a promising
future direction.
CODA Speedup Although we spent a lot of efforts in speed-
ing up CODA (§3.3), CODA’s scalability is not as good as
Aalo due to its identification procedure. To deploy CODA in
large datacenters with hundreds of thousands of machines,
further speedup is important. We note that one possible way
is to parallelize the identification procedure. For example, we
would like to see if CODA can benefit from recent proposals
on parallel DBSCAN algorithms [36, 53].

8 Related Work
Coflow Scheduling The coflow abstraction is gaining in-
creasingly more attention in recent years. However, all exist-
ing coflow-aware solutions, e.g., [21, 23, 24, 25, 26, 30, 38,
68], require developers to make changes to their applications
and manually annotate coflows. CODA challenges this as-
sumption via a combination of application-transparent coflow
identification and error-tolerant coflow scheduling.
Internet Traffic Classification (ITC) Despite the rich lit-
erature in ITC [17, 19, 29, 40, 47, 49, 51, 52, 55, 67], some
intrinsic differences prevent us from directly adopting them
for coflow identification. First, mutual relations among flows

captured by a particular coflow do not recur once its par-
ent job is over; hence, coflows cannot be labeled by prede-
fined categories. In contrast, in traditional traffic classifica-
tion, traffic typically correspond to stable categories [17, 40,
47, 47, 49, 55, 67]. Second, timeliness is paramount in coflow
identification because its result is the input for scheduling. In
contrast, belated identification is still useful in many tradi-
tional ITC tasks (e.g., intrusion detection).
Robust Scheduling We also notice that a similar topic, ro-
bust scheduling, has been explored in operations research [27,
39, 42, 61]. However, robust scheduling primarily deals with
unexpected events happening during a pre-computed sched-
ule, while error-tolerant scheduling in CODA attempts to sched-
ule task with possibly erroneous input.

9 Concluding Remarks
We have presented CODA to automatically identify and sched-
ule coflows without any application modifications. CODA
employs an incremental clustering algorithm to perform fast,
application-transparent coflow identification, and complements
it by proposing an error-tolerant coflow scheduling to tolerate
identification errors. Testbed experiments and trace-driven sim-
ulations show that CODA achieves over 90% identification
accuracy, and its scheduler effectively masks remaining iden-
tification errors. CODA’s overall performance is comparable
to Aalo and 2.4⇥ better than per-flow fairness.

In conclusion, this work takes a natural step toward mak-
ing coflows more practical and usable by removing the need
for manual annotations in applications. It also opens up excit-
ing research challenges, including generalization of the iden-
tification mechanism beyond data-intensive workloads, de-
centralization for better scalability, online parameter tuning,
handling coflow dependencies, and extending error-tolerant
scheduling and allocation algorithms to other resources.

Acknowledgments
This work is supported in part by the Hong Kong RGC ECS-
26200014, GRF-16203715, GRF-613113, CRF- C703615G,
and the China 973 Program No.2014CB340303. We thank
our shepherd, Nandita Dukkipati, and the anonymous NSDI
and SIGCOMM reviewers for their valuable feedback.

References
[1] Akka. http://akka.io.
[2] Apache Hadoop. http://hadoop.apache.org.
[3] Apache Hive. http://hive.apache.org.
[4] Apache Tez. http://tez.apache.org.
[5] Coflow Benchmark Based on Facebook Traces. https://github.

com/coflow/coflow-benchmark.
[6] Netty. http://netty.io.
[7] Presto. https://prestodb.io.
[8] Spark 1.4.1 cluster mode overview. https://spark.apache.org/

docs/latest/cluster-overview.html.
[9] Storm: Distributed and fault-tolerant realtime computation.

http://storm-project.net.
[10] Trickle. https://www.usenix.org/legacy/event/usenix05/tech/

freenix/full_papers/eriksen/eriksen.pdf.

http://akka.io
http://hadoop.apache.org
http://hive.apache.org
http://tez.apache.org
https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark
http://netty.io
https://prestodb.io
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
http://storm-project.net

[11] Trident: Stateful stream processing on Storm. http://storm.
apache.org/documentation/Trident-tutorial.html.

[12] S. Agarwal et al. BlinkDB: Queries with bounded errors and
bounded response times on very large data. In EuroSys. 2013.

[13] T. Akidau et al. MillWheel: Fault-tolerant stream processing
at Internet scale. VLDB, 2013.

[14] M. Alizadeh et al. pFabric: Minimal near-optimal datacenter
transport. In SIGCOMM. 2013.

[15] M. Armbrust et al. Spark SQL: Relational data processing in
Spark. In SIGMOD. 2015.

[16] W. Bai et al. Information-agnostic flow scheduling for com-
modity data centers. In NSDI. 2015.

[17] L. Bernaille et al. Traffic classification on the fly. SIGCOMM
CCR, 36(2):23–26, 2006.

[18] P. Bodík et al. Surviving failures in bandwidth-constrained
datacenters. In SIGCOMM. 2012.

[19] P. Cheeseman et al. Bayesian classification (AutoClass): The-
ory and results. 1996.

[20] Y. Chen et al. The case for evaluating mapreduce performance
using workload suites. In MASCOTS, pages 390–399. 2011.

[21] M. Chowdhury et al. Managing data transfers in computer
clusters with Orchestra. In SIGCOMM. 2011.

[22] M. Chowdhury et al. Coflow: An application layer abstraction
for cluster networking. In Hotnets. 2012.

[23] M. Chowdhury et al. Efficient coflow scheduling with Varys.
In SIGCOMM. 2014.

[24] M. Chowdhury et al. Efficient coflow scheduling without prior
knowledge. In SIGCOMM. 2015.

[25] M. Chowdhury et al. HUG: Multi-resource fairness for corre-
lated and elastic demands. In NSDI. 2016.

[26] N. M. M. K. Chowdhury. Coflow: A Networking Abstraction
for Distributed Data-Parallel Applications. Ph.D. thesis, Uni-
versity of California, Berkeley, 2015.

[27] R. L. Daniels et al. Robust scheduling to hedge against pro-
cessing time uncertainty in single-stage production. Manage-
ment Science, 41(2):363–376, 1995.

[28] J. Dean et al. Mapreduce: Simplified data processing on large
clusters. In OSDI. 2004.

[29] A. P. Dempster et al. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), pages 1–38, 1977.

[30] F. R. Dogar et al. Decentralized task-aware scheduling for data
center networks. In SIGCOMM. 2014.

[31] M. Ester et al. A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In KDD. 1996.

[32] S. Ghemawat et al. The google file system. In SOSP. 2003.
[33] A. Ghoting et al. SystemML: Declarative machine learning on

mapreduce. In ICDE. 2011.
[34] J. E. Gonzalez et al. GraphX: Graph processing in a distributed

dataflow framework. In OSDI. 2014.
[35] C. Guo et al. Pingmesh: A large-scale system for data cen-

ter network latency measurement and analysis. In ACM SIG-
COMM. 2015.

[36] Y. He et al. Mr-dbscan: an efficient parallel density-based clus-
tering algorithm using mapreduce. In Parallel and Distributed
Systems (ICPADS), 2011 IEEE 17th International Conference
on, pages 473–480. IEEE, 2011.

[37] C.-Y. Hong et al. Finishing flows quickly with preemptive
scheduling. In SIGCOMM. 2012.

[38] V. Jalaparti et al. Network-aware scheduling for data-parallel
jobs: Plan when you can. In SIGCOMM. 2015.

[39] V. Jorge Leon et al. Robustness measures and robust schedul-
ing for job shops. IIE transactions, 26(5):32–43, 1994.

[40] T. Karagiannis et al. BLINC: multilevel traffic classification in
the dark. In SIGCOMM. 2005.

[41] M. Kornacker et al. Impala: A modern, open-source SQL en-

gine for Hadoop. In CIDR. 2015.
[42] P. Kouvelis et al. Robust scheduling of a two-machine

flow shop with uncertain processing times. Iie Transactions,
32(5):421–432, 2000.

[43] T. Kraska et al. MLbase: A distributed machine-learning sys-
tem. In CIDR. 2013.

[44] Y. Low et al. GraphLab: A new framework for parallel ma-
chine learning. In UAI. 2010.

[45] J. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Vol-
ume 1: Statistics, pages 281–297. 1967.

[46] G. Malewicz et al. Pregel: A system for large-scale graph pro-
cessing. In SIGMOD. 2010.

[47] A. McGregor et al. Flow clustering using machine learning
techniques. In PAM. 2004.

[48] X. Meng et al. MLlib: Machine learning in Apache Spark.
CoRR, abs/1505.06807, 2015.

[49] A. W. Moore et al. Internet traffic classification using Bayesian
analysis techniques. 33(1):50–60, 2005.

[50] D. G. Murray et al. Naiad: A timely dataflow system. In SOSP.
2013.

[51] T. T. Nguyen et al. Training on multiple sub-flows to opti-
mize the use of machine learning classifiers in real-world IP
networks. In LCN. 2006.

[52] T. T. Nguyen et al. A survey of techniques for Internet traffic
classification using machine learning. IEEE Communications
Surveys & Tutorials, 10(4):56–76, 2008.

[53] M. Patwary et al. A new scalable parallel dbscan algorithm us-
ing the disjoint-set data structure. In High Performance Com-
puting, Networking, Storage and Analysis (SC), 2012 Interna-
tional Conference for, pages 1–11. IEEE, 2012.

[54] M. P. Robillard. What makes APIs hard to learn? answers from
developers. IEEE Software, 26(6):27–34, 2009.

[55] M. Roughan et al. Class-of-service mapping for QoS: a sta-
tistical signature-based approach to IP traffic classification. In
IMC. 2004.

[56] A. Roy et al. Inside the social network’s (datacenter) network.
In SIGCOMM. 2015.

[57] C. Scaffidi. Why are APIs difficult to learn and use? Cross-
roads, 12(4):4–4, 2006.

[58] V. K. Vavilapalli et al. Apache Hadoop YARN: Yet another
resource negotiator. In SoCC. 2013.

[59] P. Viswanath et al. Rough-DBSCAN: A fast hybrid density
based clustering method for large data sets. Pattern Recogni-
tion Letters, 30(16):1477–1488, 2009.

[60] U. Von Luxburg. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

[61] J. Wang. A fuzzy robust scheduling approach for product
development projects. European Journal of Operational Re-
search, 152(1):180–194, 2004.

[62] C. Wilson et al. Better never than late: meeting deadlines in
datacenter networks. In SIGCOMM. 2011.

[63] R. S. Xin et al. Shark: SQL and rich analytics at scale. In
SIGMOD. 2013.

[64] E. P. Xing et al. Distance metric learning with application to
clustering with side-information. In NIPS. 2002.

[65] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI. 2012.

[66] M. Zaharia et al. Discretized streams: Fault-tolerant stream
computation at scale. In SOSP. 2013.

[67] S. Zander et al. Automated traffic classification and application
identification using machine learning. In LCN. 2005.

[68] Y. Zhao et al. RAPIER: Integrating routing and scheduling for
coflow-aware data center networks. In INFOCOM. 2015.

http://storm.apache.org/documentation/Trident-tutorial.html
http://storm.apache.org/documentation/Trident-tutorial.html

	Introduction
	CODA Overview
	Coflow Identification
	Multi-Level Attributes
	Distance Calculation
	Identifying Coflows via Clustering
	Discussion and Caveat

	Error-Tolerant Scheduling
	Identification Errors and Their Impacts
	Impacts of Identification Errors

	Error-Tolerant Coflow Scheduling
	Design Principles
	CODA Scheduler

	Implementation
	Implementing Coflow API
	CODA Prototype

	Evaluation
	Evaluation Settings
	Testbed Experiments
	Inspecting Identification
	Inspecting Scheduling

	Discussion
	Related Work
	Concluding Remarks

