
Tagger: Practical PFC Deadlock Prevention in
Data Center Networks

Shuihai Hu1,2, Yibo Zhu1, Peng Cheng1, Chuanxiong Guo1
Kun Tan1⇤, Jitendra Padhye1, Kai Chen2

1 Microsoft 2Hong Kong University of Science and Technology

ABSTRACT
Remote Direct Memory Access over Converged Ethernet (RoCE)
deployments are vulnerable to deadlocks induced by Priority Flow
Control (PFC). Prior solutions for deadlock prevention either re-
quire signi�cant changes to routing protocols, or require excessive
bu�ers in the switches. In this paper, we propose Tagger, a scheme
for deadlock prevention. It does not require any changes to the rout-
ing protocol, and needs only modest bu�ers. Tagger is based on the
insight that given a set of expected lossless routes, a simple tagging
scheme can be developed to ensure that no deadlock will occur
under any failure conditions. Packets that do not travel on these
lossless routes may be dropped under extreme conditions. We de-
sign such a scheme, prove that it prevents deadlock and implement
it e�ciently on commodity hardware.

CCS CONCEPTS
• Networks→ Data center networks; Data path algorithms;

KEYWORDS
Data Center Networks, RDMA, Deadlock Prevention, Tag

ACM Reference Format:
Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra
Padhye, and Kai Chen. 2017. Tagger: Practical PFC Deadlock Prevention in
Data Center Networks. In Proceedings of CoNEXT ’17 . ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3143361.3143382

1 INTRODUCTION
Public cloud providers like Microsoft and Google are deploying
Remote Direct Memory Access (RDMA) over Converged Ethernet
(RoCE) in their data centers to enable low latency, high through-
put data transfers with minimal CPU overhead [38, 54]. Systems
like Pilaf [37], Farm [15], TensorFlow [3], and CNTK [2] rely on
RDMA/RoCE for enhanced performance.

RoCE uses Priority Flow Control (PFC) to prevent packet drops
due to bu�er over�ow at the switches. PFC allows a switch to
temporarily pause its upstream neighbor. While PFC is e�ective, it
can lead to deadlocks [27, 29, 49]. Deadlocks are caused by circular

⇤ Now at Huawei.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/10.1145/3143361.3143382

bu�er dependency (CBD) [29], i.e., the occupied bu�ers are waiting
for each other in a loop.

While CBD can be caused by a routing loop, routing loop is not
required – �ows that travel on loop-free paths can create bu�er
dependencies that lead to CBD. A simple but contrived example
is shown in Figure 1. We will discuss more realistic scenarios (e.g.
Figure 3) later. See [29] for several other examples.

The deadlock problem is not merely theoretical – our conver-
sations with engineers at large cloud providers con�rm that they
have seen the problem in practice and at least one provider has
reported it publicly [27]. Deadlock is a serious problem because a
deadlock is not transient – once a deadlock forms, it does not go
away even after the conditions (e.g. a temporary routing loop due
to link failure) that caused its formation have abated [27]. Worse, a
small initial deadlock may cause the PFC frames to propagate and
create a global deadlock, and shutdown the whole network.

Current solutions to the deadlock problem fall in two categories.
The �rst category consists of solutions that detect the formation
of the deadlock and then use various techniques to break it [45].
These solutions do not address the root cause of the problem, and
hence cannot guarantee that the deadlock would not immediately
reappear.

The second category of solutions are designed to prevent dead-
locks, by avoiding CBDs in the �rst place.

In §3, based on the data and experience from a large cloud
provider’s data centers, we show that any practical deadlock pre-
vention scheme must meet three key challenges. These include:
(i) it should require no changes to existing routing protocols or
switch hardware, (ii) it must deal with link failures and associated
route changes, and (iii) it must work with limited bu�er available
in commodity switches.

Prior proposals for deadlock prevention fail to meet one or more
of these challenges. Most of them [9, 12–14, 16, 17, 19, 24, 31, 40, 44,
47, 48, 48, 49, 52] are focused on designing routing protocols that
are signi�cantly di�erent from what are supported by commodity
Ethernet switches. Many of these schemes also require carefully
controlling the paths – something that is simply not possible with
decentralized routing in presence of link failures [53]. Finally, some
schemes [7, 22, 32, 42], require creation of numerous priorities
and bu�er management according to those priorities. However,
modern data center networks, built using commodity switches, can
realistically support only two or three lossless priorities [27].

In this paper, we present Tagger, whichmeets all three challenges
described above. Tagger is based on a simple observation: in a
data center, we can ask the operator to supply a list of paths that
must be lossless. Packets that do not travel on lossless paths may
be dropped under extreme circumstances. We call these expected
lossless paths (ELPs). Enumerating ELPs is straightforward for

451

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea S. Hu et al.

switch B buffer

PFC threshold

switch C buffer

switch A buffer PAUSE

B

C

A
flow 1

flow 2

flow 3

PAUSEPAUSE

Cyclic Buffer Dependency:
A -> B -> C -> A

Figure 1: A simple (but contrived) example to illustrate CBD
formation without routing loop.

“structured” topologies like Clos [11], FatTree [4] or Bcube [26], and
not onerous even for randomized topologies like Jelly�sh [46].

Using ELPs, we create a system of match-action rules to “tag”
packets. The switches use these tags to enqueue packets in di�erent
lossless queues. The tags carried in packets are manipulated in
a way such that CBD never forms due to packets traveling on
paths in ELP. If packets ever deviate from paths in ELP (e.g. due
to link failures or routing errors) they are automatically placed in
a lossy queue to ensure that they do not trigger PFC. Operators
have full �exibility to add more redundant paths into ELP, bringing
the possibility of falling in the lossy queue to nearly 0. Once ELP
is given, Tagger guarantees that there will be no deadlock - even
under unforeseen link failures or routing errors, like loops!

Tagger works for any routing protocol because there are no
restrictions on what paths can be included in the ELP, tagging rules
are static, and are speci�ed only in terms of local information (tag,
ingress port and egress port) available at each switch.

The number of lossless queues and the number of tag match-
action rules required by Tagger are small. Even for a Jelly�sh topol-
ogy with 2000 switches, Tagger requires just three lossless queues
per switch. In fact, we prove that for Clos topology, Tagger is opti-
mal in terms of number of lossless queues required. We also show
that using two lossless queues practically guarantees lossless, and
we further show how to minimize the number of match-action rules
required to implement Tagger.

We have implemented and tested Tagger on commodity Arista
switches with Broadcom chips. The implementation requires care-
fully addressing the problem of priority transition (§7). Our simula-
tions and experiments showTagger imposes negligible performance
penalty on RDMA tra�c.

2 BACKGROUND
RDMA and RoCE: RDMA technology o�ers high throughput,
low latency and low CPU overhead, by bypassing host networking
stack. It allows Network Interface Cards (NICS) to transfer data
between pre-registered memory bu�ers at end hosts. In modern
data centers, RDMA is deployed using RDMA over Converged
Ethernet V2 (RoCE) standard [30]
PFC: RoCE needs a lossless fabric for optimal performance. This is
accomplished in Ethernet networks using the Priority Flow Control
(PFC) mechanism [1]. Using PFC, a switch can pause an incoming
link when its ingress bu�er occupancy reaches a preset threshold.

As long as su�cient “headroom” is reserved to bu�er packets that
are in �ight during the time takes for the PAUSE to take e�ect, no
packet will be dropped due to bu�er over�ow [10, 54].

The PFC standard de�nes 8 classes, called priorities1. Packets in
each priority are bu�ered separately. PAUSE messages carry this
priority. When a packet arrives at port i of switch S with priority j ,
it is enqueued in the ingress queue j of port i . If the ingress queue
length exceeds the PFC threshold, a pause message is sent to the
upstream switch connected to port i . The message carries priority
j. The upstream switch then stops sending packets with priority
j to switch S on port i until a resume message with priority j is
received.
Deadlock: PFC can lead to deadlocks when paused queues form
a cycle. Deadlock cannot happen if there is no Circular Bu�er
Dependency (CBD). Thus deadlock avoidance schemes, including
this work, focus on avoiding CBD. We now describe the three key
challenges that any practical deadlock avoidance scheme must
meet.

3 CHALLENGES
3.1 Work with existing routing protocols and

hardware
Data center routing protocols have to satisfy a variety of complex
requirements regarding fault tolerance, and security [6]. Operators
also invest heavily in tools and technologies to monitor and main-
tain their networks; and these tools are tailored for the routing
protocols that are already deployed. Thus, operators are unwilling
to deploy brand-new routing protocols like [12–14, 16, 17, 19, 24, 40,
44, 47, 48, 52] or hardware just for deadlock avoidance – especially
when RoCEv2 (encapsulated in standard UDP packets) itself can be
deployed without any changes to routing.

However, the widely-used routing protocols, like BGP and OSPF,
never attempt to avoid CBD since they are designed for lossy net-
works. Moreover, modifying these protocols to avoid CBD is not
trivial. They are inherently asynchronous distributed systems –
there is no guarantee that all routers will react to network dynam-
ics (§3.2) at the exact same time. This unavoidably creates tran-
sient routing loops or CBDs, enough for lossless tra�c to create
deadlocks. In such cases, we cannot ensure both losslessness and
deadlock-freedom.

In this paper, instead of making drastic changes to routing pro-
tocols, we explore a di�erent design tradeo�. Our system, Tag-
ger, works with any unmodi�ed routing protocols and guarantees
deadlock-freedom by giving up losslessness only in certain rare
cases. We favor this approach because it is more practical to deploy,
and has negligible performance penalty.

3.2 Data center networks are dynamic
Given that we aim to work with existing routing infrastructures,
we must address the issue that most routing schemes are dynamic
– paths change in response to link failures or other events.

Figure 2 shows a simpli�ed (and small) version of network de-
ployed in our data center, with commonly used up-down routing

1The word priority is a misnomer. There is no implicit ordering among priorities –
they are really just separate classes.

452

Tagger: Practical PFC Deadlock Prevention in DCNs CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

Date Total No. Rerouted No. Reroute probability
11/01/2016 11381533570 148416 1.3e-5
11/02/2016 11056408780 130815 1.2e-5
11/03/2016 10316034165 104472 1.0e-5
11/04/2016 10273000622 92555 0.9e-5
11/05/2016 10230003382 102872 1.0e-5
11/06/2016 10491233987 106266 1.0e-5
11/07/2016 9608289622 100916 1.1e-5

Table 1: Packet reroute measurements in more than 20 data
centers.

(also called valley-free [41]) scheme. In up-down routing, a packet
�rst goes UP from the source server to one of the common ancestor
switches of the source and destination servers, then it goes DOWN
from the common ancestor to the destination server. In UP-DOWN
routing, the following property holds: when the packet is on its
way UP, it should not go DOWN; when it is on its way DOWN, it
should not go UP. Thus, in normal cases, there can be no CBD and
hence no deadlock.

However, packets can deviate from the UP-DOWN paths due
to many reasons, including link failures, port �aps etc., which are
quite common in data center networks [33, 53]. When the up-down
property is violated, packets “bouncing” between layers can cause
deadlocks [45]. See Figure 3.

In our data centers, we see hundreds of violations of up-down
routing per day. Such routes can persist for minutes or even longer.
In the next, we present our measurement results in more than 20
data centers.

Measurements of violations of up-down routing. Our mea-
surement works as follows. We instrument the servers to send
out IP-in-IP packets to the high-layer switches. The outer source
and destination IP addresses are set to the sending server and one
of the high layer switches, and the inner source and destination
IP addresses are set to the switch and the sending server, respec-
tively. The high-layer switches are con�gured to decapsulate those
IP-in-IP packets that are targeting themselves in hardware.

After decapsulation, the outer IP header is discarded, and the
packet is then routed using its inner header. We set a TTL value, 64
in this paper, in the inner IP header. As the packet is forwarded back
to the server, the TTL is decremented per hop. For a three-layer
Clos network, there are three hops from the highest layer switches
to the server. Hence normally the TTL value of the received packets
should be 61. If, however, the TTL value of a received packet is
smaller than 61, say 59, we know the received packet was not taking
the shortest path, and the packet must have taken a reroute path.

For every measurement, a server sends out n = 100 IP-in-IP
probing packets, if the received TTL values are not equal, we know
packet reroute happened for this measurement. We then calculate
the reroute probability of the measurements as M

N , whereM is the
number of measurements that experienced packet reroute, and N
is the total number of measurements. The measurement results are
shown in Table 1.

The most important conclusion we can draw from Table 1 is that
packet reroute does happen in data center networks. The reroute
probability is around 10�5. Though 10�5 is not a big number, given
the large tra�c volume and the large scale data center networks,

L1 L2

T1 T2

L3 L4

T3 T4

S1 S2

H1 H4… H5 H8… H9 H12… H13 H16…
flow 1 flow 2

Figure 2: Clos topology with two up-down �ows.

the deadlocks due to packet reroute as discussed in [27, 29, 45] do
not just exist in paper designs. They are real!

3.3 Limited number of lossless queues
One idea to solve deadlock is to assign dynamic priority to packets.
The priority of a packet increases as the packet approaches its
destination [32]. Such a design requires as many priorities as the
largest path length in the network. However, there are two practical
problems. First, given the network dynamics, the largest path length
may not be all that small (§3.2). Second, the PFC standard supports
only 8 priorities. Worse yet, commodity switches can realistically
support only two or three lossless priorities [27]. The problem is
that to guarantee losslessness, a switch needs to reserve certain
amount of headroom for absorbing the packets in �ight during the
time it takes for the PAUSE message to take e�ect.

The switch bu�ers are made of extremely fast and hence ex-
tremely expensive memory, so their size is not expected to increase
rapidly even as link speeds and port counts go up. Some of this
bu�er must also be set aside to serve lossy tra�c (i.e. normal TCP
tra�c), which still constitutes a majority of tra�c in data centers.
At the same time, the PFC response time is subject to physical limits
and cannot be arbitrarily reduced. Thus, even newest switching
ASICs are not expected to support more than four lossless queues.
Hence the solutions that require a large number of lossless queues
are not practical.

4 TAGGER FOR CLOS TOPOLOGY
While Tagger works for any topology, we �rst describe the core
ideas using the popular Clos network topology.

4.1 De�nitions
Expected Lossless Paths (ELP): This is a set of paths that the
network operator requires to be lossless. For example, in a Clos
network, the operator may want that all up-down paths or all
shortest paths to be lossless. Any loop-free route can be included
in ELP.
Lossless class: A lossless class is a service that the network pro-
vides for applications. The network guarantees that packets in a
lossless class will not be dropped due to bu�er over�ow as long as
they traverse paths in ELP.
Tag: Tag is a small integer assigned / associated with a packet. The
tag is embedded in a packet. A packet belonging to one lossless

453

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea S. Hu et al.

class may change its tag value, which means that a lossless class
may have multiple tag values.
Switch model: For ease of discussion, we use a simpli�ed switch
model in this section. A switch has multiple ports. Each port has up
to n lossless queues (typically n 8), and at least one lossy queue2.
The queue number corresponds to the PFC priority. Switch classi�es
arriving packets into ingress queues based on tags. Each tag maps
to a single priority value. If a tag does not match any priority value,
the packet is added to a lossy queue. Before forwarding a packet,
the switch can rewrite the tag according to user-speci�ed, match-
action rules based on the InPort (ingress port number), OutPort
(egress port number) and the original tag value.

We now describe the core idea behind Tagger.

4.2 Tagging on bounce
We start with a simple scenario. Consider Figure 2. Let’s assume
that the operator de�nes ELP simply - just shortest up-down paths
as they exist in this network. Both the green and blue �ows follow
such paths and there is no deadlock.

Now, let’s assume that as shown in Figure 3, two links fail, which
forces both �ows to travel on paths that are not in the ELP. We call
these paths 1-bounce paths, as the path violates the up-down rule
once (L2 to S1 for green �ow, L3 to S2 for blue �ow). As shown,
this can lead to CBD, and hence may cause deadlock.

One way to avoid such CBD is to put any packets that have
deviated from the ELP in a lossy queue. Being assigned to lossy
queue means that such packets will not trigger PFC. Since the paths
in ELP are shortest up-down paths they are deadlock free, and the
bounced packets won’t trigger PFC, the network will stay deadlock
free even if packets bounce.

Being assigned to lossy queue does not mean that the packets
are immediately (or ever) dropped – they are dropped only if they
arrive at a queue that is full. We only need to ensure that these
wayward packets do not trigger PFC.

Thus, if each switch can detect that an arriving packet has trav-
eled (sometime in past) on a “bouncy” path, it can put that packet
in lossy queue, and there will be no deadlock.

How can a switch determine whether the packet has bounced,
using just local information, in presence of dynamic routing?

Consider the green �ow in Figure 3. We want switch S1, the �rst
switch after bounce, to detect the bounce and put the packet in a
lossy queue.

One way for S1 (and any switches afterwards) to recognize a
bounced packet is by TTL. Since the ELP consists of shortest paths,
a bounced packet will have “lower than expected” TTL. However,
TTL values are set by end hosts (more in §7), so a more controllable
way is for L2 to provide this information via a special tag (e.g. DSCP)
in the packet.

Note that for any shortest, up-down path, L2 would have never
forward any packet that arrived from S2 to S1. So, if L2 “tags”
packets that have arrived from S2 that it is forwarding to S1, then
S1, and all other switches along the path after S1 know that the
packet has travelled on a non-ELP path.

Note that L2 needs only local information to do the tagging. We
can initially assign a NoBounce tag to every packet. L2 then simply
2All queues share a single memory pool.

S1 S2

L1 L2 L3 L4

T2 T3 T4T1

flow 1 flow 2

L2

S1
RX

L3

S2
RX

RX RX

RX RX

CBD:
L2->S1->L3->S2->L2

Figure 3: 1-bounce path creates CBD. The green �ow (T3 to
T1) bounces at L2 due to failure of L2-T1. The blue �ow (T2
to T4) bounces at L3 due to failure of L3-T4. Note that the
paths are loop-free, and yet there is a CBD.

needs to check ingress and egress port for each packet: it changes
the tag from NoBounce to Bounced if a packet arriving from ingress
port connected to S2 exits on egress port connected to S1. It is easy
to see that these rules can be pre-computed since we know the
topology, and the set of paths that we want to be “lossless”.

While this scenario is quite simple, we chose it because it clearly
illustrates the core idea behind Tagger – given a topology and an
ELP we can create a system of tags and static rules that manipulate
these tags to ensure that there will not be CBD, even when the
underlying routing system packets on paths that are not in the ELP.

Of course, this basic idea is not enough. First of all, packets may
bounce not just from the Leaf layer, but at any layer. Second, recall
from §3.2 that “bounces” are a fact of life in data center networks.
The operator may not want to put packets that have su�ered just
a single bounce into a lossy queue – we may want to wait until
the packet has bounced more than once before assigning it to a
lossy queue. This means that ELP will consist of more than shortest
up-down paths, and the paths in ELP may be prone to CBD! Third,
we must ensure that we don’t end up using more lossless queues
than the switch can support. To this end, we show how to combine
tags.

4.3 Reducing the number of lossless queues
Consider again the network in Figure 2. Let’s say the operator
wants to make sure that in face of link failures, packets are not
immediately put into a lossy queue. The operator is willing to
tolerate up to k bounces. So, the ELP consists of all shortest paths,
and all paths with up to k bounces. Do we need to assign a distinct
tag and a corresponding priority queue for each bouncing point?

To answer this question, we leverage our knowledge of Clos
topology. Consider a packet that bounces twice. The path between
the �rst bounce and the second bounce is a normal up-down path.
Therefore, these path segments do not have CBD even if we com-
bine them into a single priority queue. We can use a single tag to
represent these segments altogether, and map the tag to a globally
unique priority queue.

This completes the design of Tagger for Clos topology. Packets
start with tag of 1. We con�gure all ToR and Leaf switches such
that every time they see a packet coming down and then going up

454

Tagger: Practical PFC Deadlock Prevention in DCNs CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

L1 L2

T1 T2

L3 L4

T3 T4

S1 S2

L1 L2

T1 T2

L3 L4

T3 T4

S1 S2

tag 1 for path segments
before bounce

tag 2 for path segments
after bounce

L2

S1
1 2

1

1
L3

S2
2 1

1

1

No CBD

Figure 4: Illustration of Tagger for ELP of all shortest up-
down paths, and all 1-bounce paths. For clarity, only lossless
queues are shown.

(therefore, bouncing) for any reasons, they increase the tag by one.
Spine switches do not need to change tags since packets never go
up from there.

All switches put packets with tag i to ith lossless queues. Since
ELP includes paths with up to k bounces, the switches need to have
k + 1 lossless queues. If a packet bounces more than k times (e.g.
due to numerous link failures, or loop), it will carry a tag larger
than k + 1. All switches will put such packets into a lossy queue.

Figure 4 illustrates the tagging algorithm in action, for ELP con-
sisting of all shortest up-down paths, plus all 1-bounce paths. Pack-
ets, when traveling on path segments before bounce carry a tag
value of 1, and the tag is set to 2 after the bounce. This ensures that
the packets are queued in separate lossless queues, and thus there
is no CBD. In other words, we show a system for k = 2. The lossy
queue for packets that bounce more than once is omitted for clarity.

This design satis�es all three challenges described in §3. We do
not change the routing protocol. We work with existing hardware.
We deal with dynamic changes, and we do not exceed the number
of available lossless queues.

4.4 Deadlock freedom and optimality
We now provide brief proof sketches to prove that the above algo-
rithm is deadlock free, and optimal in terms of number of lossless
priorities used.
Tagger is deadlock-free for Clos networks: Tagger has two
important properties. First, for any given tag and its corresponding
priority queue, there is no CBD because each tag only has a set
of “up-down” routing paths. Second, every time the tag changes, it
changes monotonically. This means that the packet is going unidi-
rectionally in a DAG of priority queues. This is important because
otherwise CBD may still happen across di�erent priorities. We con-
clude that no CBD can form either within a tag or across di�erent
tags. The network is deadlock-free since CBD is a necessary condi-
tion for deadlock. A formal proof, which applies to any topology, is
given in §5.
Tagger is optimal in terms of lossless priorities used: We
show that to make all k bounces paths lossless and deadlock-free,
at least k + 1 lossless priorities are required. We use contradiction.
Assume there exists a system that canmakek bounces paths lossless
and deadlock-free with only k lossless priorities. Consider a �ow
that loops between two directly connected switches T 1 and L1 for
k +1 times, which means it bounces k times atT 1. With Pigeonhole

Symbol Description
Ai Switch A’s i th ingress port

(Ai , x) A node in tagged graph
(Ai , x) ! (Bj , �) A tagged edge

V All tagged nodes
E All tagged edges

G (V , E) Tagged graph
T Largest tag in G (V , E)
Gk Partition of G (V , E) for priority k

Table 2: Notations in the formalized description.

principle, we know that at least two times during the looping, the
packet must have the same lossless priority. This means there exists
a CBD, and deadlock can happen when having su�cient tra�c
demand [29]. Contradiction.

Much of the discussion in this section used the speci�c properties
of Clos networks, and the speci�c ELP set. We now show how to
generalize Tagger for any topology and any ELP set.

5 GENERALIZING TAGGER
We begin by formalizing the description of the tagging system using
notations in Table 2.

LetAi represent a unique ingress port in the network, i.e., switch
A’s ith ingress port. We use a tagged graph G (V ,E) to uniquely
represent a tagging scheme. Given a tagging scheme, the tagged
graph G (V ,E) is de�ned as:

(1) G contains a node, (Ai ,x), i�. port Ai may receive packets
with tag x , and these packets must be lossless. V is the set
of all such nodes.

(2) G contains an edge (Ai ,x) ! (Bj ,�) i�. switch A and B are
connected, and switch Amay change a packet’s tag from x
to � before sending to B (the case x = � also counts). E is the
set of all such edges.

Given a tag k , we also de�ne {Gk }, with vertices V (Gk) and
edges E (Gk):

V (Gk) = {(Ai ,k) |8A, i}
E (Gk) = {�0 ! �1 |8�0,�1 2 V (Gk),�0 ! �1 2 E (G)}

Each tag k is mapped to a unique lossless priority.
Each node has a rule to match on a tag on an ingress port, and

assign the packet to corresponding lossless queue. In addition, each
edge corresponds to a switch action of setting the tag for the next
hop.

If a packet arrives at Ai with tag x , and is destined for port Bj ,
and there is no corresponding edge in G (V ,E), it means that the
packet has traversed on a path that is not in ELP. Such packets
are assigned a special tag, and all switches assign this tag to lossy
priority3.

In the rest of the section, we will describe how to generate the
tagging graph – i.e. the tagging rules. But �rst, we prove that the
tagging scheme described by such a graph is deadlock free, as long
as the graph meets two requirements.

(1) Any Gk for G must not have a cycle. This is because each
edge in Gk is essentially a bu�er dependency – whether Ai
can dequeue packets depends on whether Bj has paused it.
A cycle in Gk means cyclic bu�er dependency.

3This rule is always the last one in the TCAM rule list, acting as a safeguard to avoid
unexpected bu�er dependency. See §7.

455

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea S. Hu et al.

Algorithm 1 A brute-force tagging system that decreases the tag
by one on every hop.

Input: Topology and ELP
Output: A tagged graph G (V , E)

V Set ();
E Set ();

for each path r in ELP do
ta� 1;

for each hop h in r do
V V [{(h, ta�) };

E E [{lastHop ! (h, ta�) };
ta� ta� + 1;

return G (V , E);

(2) There must be no link going from Gx to G� if x > �. This
means we enforce the order of Gx and G� .

These requirements are essentially generalization of the properties
discussed in §4.4.

T������ 5.1. Any tag system, de�ned by G (V ,E), that satis�es
the above two requirements is deadlock-free.

P����. We prove by contradiction. Suppose there exists a tag
system, whose tagged graph G (V ,E) satis�es the above two re-
quirements, but is not deadlock-free. This means G (V ,E) has a
cycle �0 ! �1 ! ... ! �0. If tra�c traverses all hops in the cycle,
the cycle leads into a CBD and can form deadlock.

Case 1: All the nodes in the cycle have the same tag t . According
to the �rst requirement, Gt does not have a cycle. Contradicted.

Case 2: The nodes in the cycle have at least two di�erent tags,
t0 and t1. Without loss of generality, we assume t0 < t1, and �i has
tag t0, �j has tag t1. Because �i and �j belongs to a cycle, there
must exist a path going from �j to �i . Since t0 < t1, along the path
there must exist a hop where the tag decreases. However, according
to the second requirement, such a hop cannot exist. Contradicted.

Case 1 and Case 2 cover all possible scenarios. Thus, we conclude
that there does not exist a G (V ,E) that satis�es the two require-
ments but is not deadlock-free. ⇤

5.1 Generating G (V ,E)
In the next, we describe our algorithm to generate a deadlock-free
G (V ,E) for any given topology, and the ELP set.

For general graph without structure information, a straightfor-
ward tagging system [32] is to monotonically increase the tag (thus,
the priority) at every hop, as described in Algorithm 1.

It is easy to verify that the graph generated by this algorithm
meets the two requirements speci�ed earlier, and thus it guarantees
deadlock freedom. Figure 5 shows a small example, including the
topology, the ELP set, the generated graph, and the corresponding
rule lists for each node.

Of course, with just this basic algorithm, we may end up with too
many tags (i.e. lossless priorities) – in fact, as many as the longest
path length in lossless routes. This is why we need three lossless
priorities for the simple example in Figure 5(b). In a three-layer Clos
network, the longest up-down path has 5 hops, so Algorithm 1 will
use 5 priorities just to support up-down routing. We now show how
to combine tags to reduce the number of lossless queues needed.

Algorithm 2 Greedily minimizing the number of tags by merging
brute-force tags.

Input: The brute-force tagged graph G (V , E) with largest tag T
Output: A new tagged graph G0(V 0, E0) that has small | {G0k } |

Initialize V 0, E0, Vtmp , Etmp as empty Set ();
t 0 1;

for t 1 to T do
for each (Ai , t) in V whose tag is t do

Vtmp Vtmp [{(Ai , t 0) };
Etmp Etmp [{edges of (Ai , t), change t to t 0 };

if Gtmp (Vtmp, Etmp) is acyclic then
V 0 V 0 [{(Ai , t 0) };

E0 E0 [{edges of (Ai , t), change t to t 0 };
else

V 0 V 0 [{(Ai , t 0 + 1) };
E0 E0 [{edges of (Ai , t), change t to t 0 + 1};

Vtmp Vtmp\{(Ai , t 0) };
Etmp Etmp\{edges of (Ai , t 0) };

if V 0 contains nodes of tag t 0 + 1 then
Vtmp {nodes in V 0 with tag t 0 + 1};

Etmp {edges in V 0, both ends have tag t 0 + 1};
t 0 t 0 + 1;

return G0(V 0, E0);

5.2 Reducing the number of lossless queues
Algorithm 2 uses a greedy heuristic to combine the tags generated
by Algorithm 1 to reduce the number of lossless queues required. It
greedily combines as many nodes in G (V ,E) as possible into each
path segment under CBD-free constraint. To ensure the monotonic
property, we start from combining the nodes with smallest tag, 1
and proceed linearly to consider all tags up toT , which is the largest
tag number used in G (V ,E).

The new tag t 0 also starts from 1. In every iteration, we check all
nodes with the same tag value t . Vtmp and Etmp is the “sandbox”.
For every node, we add it to Vtmp and Etmp and check whether
adding it to G 0t 0 will lead to a cycle within G 0t 0 . If not, we re-tag the
node to be t 0. Otherwise, we re-tag the node to be t 0+ 1. Re-tagging
the node to be t 0 + 1 does not cause a cycle in G 0t 0+1, because all
nodes inG 0t 0+1 so far have the same old tag of t , which means there
is no edge between them. At the end of each iteration, if there are
nodes being re-tagged as t 0+1, we move on to add nodes intoG 0t 0+1
in the next iteration. This ensures that the monotonic property will
still hold after combination.

In Figure 5(c) we see Algorithm 2 in action to minimize the
G (V ,E) from Figure 5. We see that the number of tags is reduced
to two.

5.3 Analysis
Algorithm runtime: Algorithm 2 is e�cient. Recall that T is the
largest value of tag in G (V ,E). Let S , L and P be the number of
switches, the number of links and the number of ports a switch
has in the original topology, respectively. Then, G (V ,E) can have
at most L ⇥ T nodes. Each node will be examined exactly once
for checking whether Gtmp is acyclic. Checking whether Gtmp is
acyclic with a newly added node requires a Breadth-First Search,

456

Tagger: Practical PFC Deadlock Prevention in DCNs CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

ELPs:
D->A->B->E,
D->A->C->B->E,
E->B->A->D,
E->B->C->A->D,
D->A->C->F,
D->A->B->C->F,
F->C->A->D,
F->C->B->A->D,
E->B->C->F,
E->B->A->C->F,
F->C->B->E,
F->C->A->B->E

A1
4

2
3

D

B1
4

2
3

C1
4

2
3

E

F

(a) Topology and ELP set.

Tagged graph G

A2,1D

E

F

D

E

F

B2,1

C4,1

A3,2

A4,2

B1,2

B4,2

C3,2

C1,2

A3,3

A4,3
B1,3

B4,3

C3,3

C1,3

(b) Output tagged graph by Algorithm 1.

Gʹ1

A2,1D

E

F

D

E

F

B2,1

C4,1

A3,1

A4,1

B1,1

B4,1

C3,1

C1,1

A3,1

A4,1
B1,1

B4,1

C3,2

C1,2

F

Gʹ2

(c) Output tagged graph by Algorithm 2.

Figure 5: Walk-through example of the algorithms. Each rectange in (b) and (c) is a (port,tag) pair.

Tag InPort OutPort Newtag
1 2 3 2
1 2 4 2
2 3 2 3
2 3 4 3
2 4 2 3
2 4 3 3
3 3 2 4
3 4 2 4

others others others lossy tag
(a) rules installed in A

Tag InPort OutPort Newtag
1 2 1 2
1 2 4 2
2 1 2 3
2 1 4 3
2 4 1 3
2 4 2 3
3 1 2 4
3 4 2 4

others others others lossy tag
(b) rules installed in B

Tag InPort OutPort Newtag
1 4 1 2
1 4 3 2
2 1 3 3
2 1 4 3
2 3 1 3
2 3 4 3
3 1 4 4
3 3 4 4

others others others lossy tag
(c) rules installed in C

Table 3: Tag rewriting rules under Algorithm 1. Tag “4” will only appear on destination servers.

Tag InPort OutPort Newtag
1 2 3 1
1 2 4 1
1 3 2 1
1 3 4 2
1 4 2 1
1 4 3 1

others others others lossy tag
(a) Rules installed in A

Tag InPort OutPort Newtag
1 2 1 1
1 2 4 1
1 1 2 1
1 1 4 2
1 4 1 1
1 4 2 1

others others others lossy tag
(b) Rules installed in B

Tag InPort OutPort Newtag
1 4 1 1
1 4 3 1
1 1 3 1
1 1 4 1
1 3 1 1
1 3 4 1
2 1 4 2
2 3 4 2

others others others lossy tag
(c) Rules installed in C

Table 4: Tag rewriting rules generated by Algorithm 2 (without compression).

with runtime complexity ofO (|Vtmp | + |Etmp |). |Vtmp | is bounded
by the number of links L, and |Etmp | is bounded by the number of
pairs of incident links L⇥P , in the network. Thus, the total runtime
complexity is O (L ⇥T ⇥ (L + L ⇥ P)). Note that T itself is bounded
by the length of the longest path in ELP .
Number of tags: Algorithm 2 is not optimal, but works well in
practice. For example, it gives optimal results for BCube topology
without requiring any BCube-speci�c changes – a k-level BCube
with default routing only needs k tags to prevent deadlock. The
results are promising even for unstructured topology like Jelly�sh.
Using Algorithm 2, a 2000-node Jelly�sh topology with shortest-
path routing requires only 3 tags to be deadlock-free (§8).
Number of rules: From the conceptual switch model, a switch
needs InPort (ingress port number), OutPort (egress port number),
and the current Tag to decide the next Tag. Hence it seems the
number of rules needed per switch is n(n � 1) ⇥ m (m�1)

2 , where n
is the number of switch ports andm = |G 0k | is the number of Tags.
We will show in § 7 that the number of rules can be compressed

to n ⇥ m (m�1)
2 , by taking advantage of the bit masking technique

supported in commodity ASICs. Table 4 shows the rules before
compression.
Optimality: Algorithm 2 may not return the optimal solution.
Consider the example shown in Figure 6. If ELP set consists of
shortest and “1-bounce” paths, we know the optimal tagging system
only requires two lossless queues. However, the greedy algorithm
will output a tagging system that requires three lossless queues. The
reason is that Algorithm 2 does not combine bounces that happen
when the packet is going up and when the packet is coming down.

For example, as shown in Figure 6, the bounce of green �ow
will force Algorithm 2 to create a new tag for the �rst two hops,
since the third hop, which is a bouncing hop, may lead to CBD.
However, the blue �ow bounces at the last two hops and will force
Algorithm 2 to create another new tag. Thus, Algorithm 2 generates
three tags, requiring three lossless queues.

The fundamental reason for this is that generic algorithm does
not fully utilize the inherent characteristics of structured topology
like Clos. We have not been able to �nd an optimal solution to

457

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea S. Hu et al.

S1 S2

L1 L2 L3 L4

T1 T2 T3 T4
path 2path 1

1st Tag 3rd Tag2nd Tag

Figure 6: Algorithm2does not output optimal result forClos
with 1-bounce paths.

this problem (nor have we been able to prove that the problem is
NP-hard) – although we can create topology-speci�c solutions, as
seen in §4.

However, we do note that the number of tags in the solution
generated by Algorithm 2 is an upper bound on the optimal solution.
Without any assumptions, the worst case is the same as using the
brute-force solution, which requires as many tags as the length of
longest lossless route, T . However, if we know that the smallest
cycle in lossless routes is longer than l , the output number of tags
is bounded by dT /le. We omit the proof.

6 DISCUSSION
Multiple application classes: Sometimes, system administra-
tors need to use multiple lossless priorities to keep di�erent tra�c
classes from impacting each other. For example, in [54] conges-
tion noti�cation packets were assigned a separate lossless class to
ensure that these packets would not be held up by data tra�c.

A näive way to use Tagger in such cases is to treat each applica-
tion (or tra�c class) separately. For example, in §4.3, we showed
that for the Clos network, if ELP contained paths with no more
thanM bounces lossless, we needM + 1 priorities. If there are N
applications, the näive approach would use N ⇤ (M + 1) priorities.

However, we can use fewer priorities by trading o� some isola-
tion. The �rst application class starts with tag 1, and uses tags up
toM + 1. The second class starts with tag 2, and also increases tags
by 1 at each bounce. Thus, the second class uses tags 2 . . .M + 2.
Thus, for N application classes need justM + N � 1 tags. This can
be further reduced by making some application classes to tolerate
fewer bounces than others.

Note that there is still no deadlock after such mix. First, there
is still no deadlock within each tag, because each tag is still a set
of “up-down” routing. Second, the update of tags is still monotonic.
We omit formal proof for brevity.

The reduced isolation may be acceptable, since only a small
fraction of packets experience one-bounce and may mix with tra�c
in the next lossless class. This technique can be generalized for the
output of Algorithm 2.

Specifying ELP: The need to specify expected lossless paths is not
a problem in practice. For Clos networks, it is easy to enumerate
paths with any given limit on bouncing. In general, as long as
routing is tra�c agnostic, it is usually easy to determine what
routes the routing algorithm will compute – e.g. BGP will �nd
shortest AS path etc. If an SDN controller is used, the controller
algorithm can be used to generate the paths under a variety of
simulated conditions. ECMP is handled by including all possible
paths.

We stress again that there are no restrictions on routes included
in ELP, apart from the common-sense requirement that each route
be loop-free. Once ELP is speci�ed, we can handle any subsequent
abnormalities.
Use of lossy queue: Some may dislike the fact that we may even-
tually push a wayward packet into a lossy queue. We stress that we
do this only as a last resort, and we reiterate that it does not mean
that the packets are automatically or immediately dropped.
Topology changes: Tagger has to generate a new set of tags if
ELP is updated. ELP is typically updated when switches or links
are added to the network. If a FatTree-like topology is expanded by
adding new “pods” under existing spines (i.e. by using up empty
ports on spine switches), none of the older switches need any rule
changes. Jelly�sh-like random topologies may need more extensive
changes.

Note that switch and link failures are common in data center
networks [53], and we have shown (Figure 3) that Tagger handles
them �ne.
Flexible topology architectures: Tagger can support architec-
tures like Helios [18], Flyways [28] or Projector [23], as long as
ELP set is speci�ed.
PFC alternatives: Onemight argue that PFC is not worth the trou-
ble it causes; and we should focus on getting rid of PFC altogether.
We are sympathetic to this view, and are actively investigating
numerous schemes, including minimizing PFC generation (e.g. DC-
QCN [54] or Timely [38]), better retransmission in the NIC, as well
as other novel schemes.

Our goal in this paper, however, is to ensure safe deployment
of RoCE using PFC and existing RDMA transport. Tagger �xes
a missing piece of the current RoCE design: the deadlock issue
caused by existing routing protocols which were designed for lossy
networks. Besides the research value of providing a deadlock free
network, Tagger protects the substantial investments which we
and many others already made in production data centers.
Deployment of Tagger: To deploy Tagger in production data
centers, we only need to install some Tagger rules at the switches.
As will be explained in Section 7, these rules can be directly ex-
pressed with TCAM entries, and hence have no discernible impact
on throughput and latency.

7 IMPLEMENTATION
Tagger can be implemented by basic match-action functionality
available on most modern commodity switches. However, correct
implementation requires a key insight into the way PFC PAUSE
frames are handled.

458

Tagger: Practical PFC Deadlock Prevention in DCNs CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

Tagger

Match: tag
Action: ingress_queue

Match: tag, InPort, OutPort
Action: newtag

Match: newtag
Action: egress_queue

tag = x

ingress_queue
tag = y
egress_queue

Figure 7: Tagger match-action rules

1
2

1
2

1
2

Egress Ingress Egress

1

Ingress

A B C

2
PAUSE congestion

droppedtag=1 tag=2

(a) Ingress priority = egress priority! packet drop.

2
1

2
Egress Ingress Egress

1

Ingress

2
congestion

2
1

PAUSE

PAUSE
1

A B C

tag=1 tag=2

(b) Ingress priority = 1, egress priority = 2! no drop.

Figure 8: Decoupling ingress priority from egress priority at
switch B is necessary for lossless priority transition.

Match-Action rules: Tagger needs to perform two operations
at every hop, i.e., tag-based priority queueing and tag rewriting.
These two operations are implemented using a 3-step match-action
pipeline (Figure 7). First, Tagger matches the value of tags and
classi�es packets into ingress queues based. Second, Taggermatches
(tag, InPort, OutPort) and rewrites the value of tag. The third step,
wherein the packet is placed in an egress queue based on the new
tag value, is needed to ensure correct PFC operation, as described
below.
Handling priority transition: By default, a switch will enqueue
a departing packet in the egress queue of the same priority class as
its ingress queue, as shown in Figure 8(a). In this example, Switch
B is con�gured to perform priority transition for packets received
from switch A and destined for switch C. Packets exit egress queue
1 at switch B, but with priority 2. When ingress queue 2 of switch
C becomes congested, the PFC PAUSE from switch C to switch B
carries priority 2, and cannot pause the egress queue 1 of switch B.
This default behavior can lead to packet loss.

Therefore, we must map the packet to the egress queue based
on its new priority (Figure 8(b)). This avoids packet loss, since the
PFC from switch C correctly pauses the queue on which the packet
with the new tag would be exiting.

Rule 1: (tag=1, InPort=0, OutPort=2) —> newtag = 2
Rule 2: (tag=1, InPort=1, OutPort=2) —> newtag = 2
Rule 3: (tag=1, InPort=3, OutPort=2) —> newtag = 2

Pattern-1 tag=0001(2) Mask-1 1111(2)

Pattern-2 InPort=0000(2) Mask-2 0100(2)

Pattern-3 OutPort=0100(2) Mask-3 1111(2)

Result set tag = 0010(2)

TCAM entry

Tagger rules

Figure 9: Rule compression with bit masking. Port numbers
are bitmaps. The �rst bit from right represents port 0. The
second bit represents port 1, and so on.

Rule compression: The match-action rules of Tagger are imple-
mented with TCAM. TCAM entries consist of Pattern, Mask, and
Result. They refer to the pattern to be matched, the mask bits asso-
ciated with the pattern and the action that occurs when a lookup
hits the pattern, respectively. One TCAM entry can have several
Pattern-Mask pairs to match multiple packet header �elds simulta-
neously, e.g., an entry like (Pattern-1, Mask-1, Pattern-2, Mask-2,
Result) matches two �elds simultaneously and �res only if both
matches succeed.

Rules with the same Result can be compressed into one TCAM
entry, if their Patterns can be aggregated using bit masking. Con-
sider the three rules in Figure 9. These rules are identical except
the InPort �eld in Pattern.

On commodity ASICs, port numbers in TCAM are bitmaps, not
binary values. To match a single port, we can simply set the corre-
sponding bit in the pattern to 1, and set the mask to all 1’s. However,
we may match multiple ports with one rule. We set the pattern to
all 0’s, and set the corresponding bits in the mask to 0. As shown
in Figure 9, to match InPorts 0, 1 and 3, we set Pattern-2 to “0000”
and Mask-2 to “0100”. In this case, only the packet received from
InPorts 0, 1 or 3 will match Pattern-2 after doing bit masking with
Mask-2. Thus, the three rules are compressed into a single TCAM
entry.

Recall from §5 that without any compression, we need n(n �
1)m(m � 1)/2 rules per switch. The number of rules can be com-
pressed to nm(m � 1)/2 by aggregating InPorts. The result can be
further improved by doing joint aggregation on tag, InPort and
OutPort.
Broadcom implementation: We implemented Tagger on com-
modity switches based on Broadcom ASICs. We use DSCP �eld
in IP header as the tag. The DSCP-based ingress priority queuing
(step 1), ingress ACL and DSCP rewriting (step 2), and ACL-based
egress priority queuing (step 3) are well supported by the com-
modity ASICs and do not require any ASIC changes. Everything is
implemented using available and documented functionality.

We considered using TTL instead of DSCP to tag packets, but TTL
is automatically decremented by the forwarding pipeline, which
complicates the rule structure.

459

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea S. Hu et al.

0

10

20

30

40

0 10 20 30 40

Fl
ow
ra
te
/G
bp
s

Time (s)

��� �
��� �

(a) Without Tagger

0

10

20

30

40

0 10 20 30 40

Fl
ow
ra
te
/G
bp
s

Time (s)

��� �
��� �

(b) With Tagger

Figure 10: Clos deadlock due to 1-bounce paths

F1 F2

L1

T1

H1 H2

to H16
L1

T1

RX

RX

RX

L1

T1

1

1

2 3

1 2 3

Without Tagger:
CBD

With Tagger:
No CBD

lossy

lossy

(a) Scenario

0

10

20

30

40

0 10 20 30 40

Fl
ow
ra
te
/G
bp
s

Time (s)

������� ������
���� ������

(b) Rate of �ow 2

Figure 11: Deadlock due to routing loop

0

10

20

30

40

0 10 20 30 40Th
ro
ug
hp
ut
/G
bp
s

Time/s

���� � ���� �� �� ��
���� � ���� ��� �� ��
���� � ���� ��� �� ��
���� � ���� ��� �� ��

(a) 4-to-1 shu�le with Tagger

0

10

20

30

40

0 10 20 30 40Th
ro
ug
hp
ut
/G
bp
s

Time/s

���� � ���� �� �� ��
���� � ���� ��� �� ��
���� � ���� ��� �� ��
���� � ���� ��� �� ��

(b) 4-to-1 shu�le without Tagger

0

10

20

30

40

0 10 20 30 40Th
ro
ug
hp
ut
/G
bp
s

Time/s

���� � ���� �� �� ���
���� � ���� �� �� ���
���� � ���� �� �� ���
���� � ���� �� �� ���

(c) 1-to-4 shu�le with Tagger

0

10

20

30

40

0 10 20 30 40Th
ro
ug
hp
ut
/G
bp
s

Time/s

���� � ���� �� �� ���
���� � ���� �� �� ���
���� � ���� �� �� ���
���� � ���� �� �� ���

(d) 1-to-4 shu�le without Tagger

Figure 12: PFC PAUSE propagation due to deadlock

8 EVALUATION
We evaluate Tagger using testbed experiments, numerical analysis
and NS-3 simulations. We consider three questions: (i) Can Tag-
ger prevent deadlock? (ii) Is Tagger scalable for large data center
networks?, and (iii) Does Tagger have a performance penalty?
Testbed: Our testbed (Figure 2) consists of a Clos network with
10 Arista 7060 (32x40Gb) switches and 16 servers with Mellanox
40Gb ConnectX-3 Pro NICs.

Switches Ports Longest Lossless Max
ELP Priorities Rules

100 32 5 2 40
500 64 6 3 76

1,000 64 6 3 88
2,000 64 7 3 98

2,000 (*) 64 7 4 135
Table 5: Rules and priorities required for Jelly�sh. Half the
ports on each switch are connected to servers. ELP is short-
est paths for �rst four entries. ELP for last entry includes
additional 20,000 random paths.

8.1 Deadlock prevention
We have already proved that Tagger prevents deadlock. Thus, ex-
periments in this section are primarily illustrative. We have also
done extensive simulations, which we omit for brevity.

Deadlock due to one bounce:We recreate the scenario shown
in Figure 3, where 1-bounce paths lead to CBD. In this experiment,
we start the blue �ow at time 0, and the green �ow at time 20.
Figure 10 shows the rate of the two �ows with and without Tagger.
Without Tagger, deadlock occurs and rate of both �ows are reduced
to 0. With Tagger, and ELP set to include shortest paths and 1-
bounce paths, there is no deadlock and �ows are not paused.

Deadlock due to routing loop: As shown in Figure 11(a), we
generate 2 �ows across di�erent ToRs, i.e., F1 from H1 to H15 and
F2 from H2 to H16. At time = 20s, we install a bad route at L1 to
force F1 enter a routing loop between T1 and L1. The path taken
by F2 also traverses link T1-L1. ELP is set to include the shortest
paths and 1-bounce paths.

Figure 11(b) shows the rate of F2 with and without Tagger. With-
out Tagger, deadlock occurs and F2 is paused due to propagation of
PFC PAUSE. With Tagger, there is no deadlock and F2 is not paused
(but rate is a�ected by the routing loop). Note that throughput of
F1 is zero, as packets are dropped due to TTL expiration. The key
takeaway here is that Tagger was able to successfully deal with a
routing loop.

PAUSE propagation due to deadlock: Once deadlock occurs,
PFC PAUSE will propagate and may �nally pause all the �ow
running in the datacenter network. In this experiment, we run
a many-to-one data shu�e from H9, H10, H13 and H14 to H1, and
a one-to-many data shu�e from H5 to H11, H12, H15 and H16
simultaneously. We then manually change the routing tables so
that the �ow from H9 to H1 and the �ow from H5 to H15 take
1-bounce paths. This creates CBD as discussed earlier.

In Figure 12, we plot the throughput of all 8 �ows with and
without Tagger. Without Tagger, all �ows get paused due to PFC
PAUSE propagation and throughput is reduced to zero.With Tagger,
�ows are not a�ected by link failures.

8.2 Scalability
CanTaggerwork on large-scale networks, while commodity switches
can support only a limited number of lossless queues (§3)? We have
already shown that on an arbitrarily large Clos topology, Tagger re-
quires k+1 lossless priorities to support paths with up to k bounces.
We now consider other topologies.

460

Tagger: Practical PFC Deadlock Prevention in DCNs CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

8-to-1 16-to-1 24-to-1
scenario scenario scenario

Baseline: RoCE 1.25⇥10�2 6.6⇥10�2 1.27⇥10�1without PFC
RoCE + Tagger 0 6.87⇥10�7 1.61⇥10�6(1 lossless Q)
RoCE + Tagger 0 0 0(2 lossless Qs)

Table 6: Packet loss rate under web search workload

Jelly�sh topology is an r-regular random graph, characterized
by the number of switches, the number of ports a switch has (n)
and the number of ports used to connect with other switches (r). In
our experiment, we let r = n/2. Remaining ports are connected to
servers. We construct ELP by building destination-rooted shortest-
path spanning trees at all the servers. Table 5 shows the results.

Tagger requires only four classes for a networkwith 2000 switches,
even when 20,000 random routes are used in addition to the short-
est paths, and at most4 135 match-action rules per switch. Modern
commodity switches can support 1-4K rules, so this is not an issue.

We also considered smaller (100 switches, 32 ports) Jelly�sh
topologies with up to 16-shortest paths between every switch pair.
We need only 2 lossless priorities, and no more than 47 rules per
switch.

BCube [26] is server-centric topology, constructed from servers
with n ports, nk switches with k+1 ports. BCube(8, 3) with ELP of 4
shortest paths requires 4 lossless priorities, and 41 rules per switch.
F10 [33] is a fault-tolerant FatTree-like topology. With three-level
network of 64 port switches, and ELP of all shortest and 1-bounce
paths, we need just 2 lossless priorities and 164 rules per switch.

To conclude, in terms of number of lossless classes and ACLs,
Tagger scales well for modern data center topology.

Generating tagging rules is a one-time activity. Still, runtime of
Algorithm 2 is of possible interest. Figure 13 shows the runtime
for Jelly�sh topologies of di�erent sizes. Even with 10000 switches,
Algorithm 2 takes just 19.6 hours on a commodity desktop machine.

8.3 Impact on performance
Operators may have the following two concerns when deploying
Tagger in production data centers. First, the use of lossy queue as a
last resort may cause RoCE to su�er from severe packet loss. Second,
making every packet traverse the Tagger rules installed at switches
may delay the packet processing and downgrade throughput. In
the next, we evaluate the performance impact of Tagger regarding
the above two aspects.

Impact of using lossy queue as a last resort: In Figure 14,
we measured the percentage of bounced �ows under varying link
failure rate with �ow-level simulations. In our simulator, we model
a datacenter network with FatTree topology (with switch port
number k = 8, 16, 32 and 64). Every �ow is initially routed over
a random shortest path. At the switches, we pre-install a set of

4Di�erent switches require di�erent number of rules due to the random nature of the
topology.

candidate next-hops for each destination 5. If a link fails, for every
a�ected �ow, the direct connected switch will locally reroute the
�ow to a random candidate next-hop.

In our simulations, we generate 1 million �ows with random
source and destination. We count the number of �ows bounced
once, twice and more than twice under varying link failure rate.

Figure 14(a), (b) and (c) show the percentage of �ows bounced
once, twice and more than twice, respectively. There are two take-
aways. First, when links fail, the behavior of local rerouting has a
good chance to cause DOWN-UP bounce for tree-based networks.
Second, even under high link failure rate, a �ow is rarely bounced
twice or more.

We also evaluate the packet loss rate of the lossy queue under
stressful tra�c using NS-3 simulations. We choose the setting of
FatTree(k=8) with 20% link failure rate 6. We establish many-to-one
tra�c scenarios by letting servers under di�erent ToRs send tra�c
to a common destination server. The �ows are generated according
to web search [5] and data mining [25] workload with 0.99 average
load on bottleneck link. At switches, we con�gure WRR scheduling
among lossless and lossy queues with equal weight.

The result under web search workload is shown in Table 6. We
omit the similar result under data mining workload. In our simu-
lations, we only consider the congestion loss in the lossy queue.
We didn’t include the packet loss caused by link failures before
rerouting takes e�ect, as it is not our focus.

We use “RoCE without PFC" as the baseline, where all the �ows
are in the lossy priority class. Compared with the baseline, Tagger
with 1 lossless queue has a much lower packet loss rate (only 10�7-
10�6). This is mainly because only ⇠ 16% of �ows are bounced once
and enter the lossy priority class. For Tagger with 2 lossless queues,
we don’t observe any packet loss as only ⇠ 3% of �ows are bounced
more than once. The takeaway is as follows: The use of lossy queue
as a last resort will not cause severe packet loss, because only a
small part of �ows will be bounced into the lossy priority class
under failures. In practice, making two-bounce paths lossless is
good enough to achieve losslessness.

Impact of Tagger rules: On datapath, packets have to traverse
the rules installed by Tagger. These rules installed in TCAM, and
hence have no discernible impact on throughput and latency. We
installed di�erent number of Tagger rules on T1, and measured av-
erage throughput and latency between H1 and H2 over several runs.
Figure 15 con�rms that throughput and latency are not a�ected by
the number of rules.

9 RELATEDWORK
Deadlock-free routing. Many Deadlock-free routing designs
have been proposed. See [12–14, 16, 17, 19, 21, 24, 40, 44, 47, 48, 52]
for representative schemes. Generally, these designs prevent dead-
lock by imposing restrictions on the routing paths or enforcing
certain packet rerouting policies. We classify them into two cate-
gories.

The �rst category is deterministic routing based approach, in
which the routing path is not a�ected by the tra�c status, and

5In the simulator, we aggregate the destinations to reduce the number of sets needed.
6In practice, it is unlikely to have such a high link failure rate. We choose this setting
as a stress test for Tagger.

461

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea S. Hu et al.

100
101
102
103
104
105

100 101 102 103 104

R
un
ti
m
e/
s

Number of switches

������ ���� � � ��
������ ���� � � ��

Figure 13: Runtime of Algorithm 2

0%
8%
16%
24%
32%
40%

0% 5% 10% 15% 20%

Fl
ow
pe
rc
en
ta
ge

Link failure rate

������������
�������������
�������������
�������������

(a) Flows bounced once.

0%

2%

4%

6%

8%

0% 5% 10% 15% 20%

Fl
ow
pe
rc
en
ta
ge

Link failure rate

������������
�������������
�������������
�������������

(b) Flows bounced twice.

0.0%

0.2%

0.4%

0.6%

0.8%

0% 5% 10% 15% 20%

Fl
ow
pe
rc
en
ta
ge

Link failure rate

������������
�������������
�������������
�������������

(c) Flows bounced > 2 times.

Figure 14: The percentage of bounced �ows under varying link failure rate

0
10
20
30
40
50

0 40 80 120 160Th
ro
ug
hp
ut
/G
bp
s

Number of rules

(a) Throughput

0
2
4
6
8
10
12

0 40 80 120 160

La
te
nc
y/
us

Number of rules

������� ���
���� ���������� ���
���� ���������� ���

(b) Latency

Figure 15: Tagger rules have no impact on throughput and
latency

there is no CBD. For example, the solution proposed by Dally and
Seitz [13] split each physical channel into a group of ordered virtual
channels7, and constructed CBD-free routing by restricting packets
over decreasing order of virtual channels. TCP-Bolt [49] and DF-
EDST [48] are two recent works under this category. They both
built edge-disjoint spanning trees (EDSTs) to construct CBD-free
routing paths. DF-EDST further built a deadlock-free tree transition
acyclic graph, such that the transition among some EDSTs can be
allowed. These designs either work only for speci�c topologies [13]
or are not compatible with existing routing protocols including
OSPF and BGP [48, 49].

The second category is adaptive routing based approach. The
key idea is to pre-install “escape” paths at the switches to cover
all possible destinations. The switches can reroute packets to the
“escape” paths in the presence of congestion so that deadlock can be
avoided. However, no commodity switching ASICs so far support
the dynamic rerouting based on tra�c / queue status required by the
adaptive routing designs. Furthermore, a certain amount of bu�er
needs to be reserved at the switches for the use of pre-installed
“escape” paths.
Intel Omni-Path. Intel Omni-Path architecture [8] uses the con-
cept of Service Channels (SC) for routing deadlock avoidance. Un-
like Tagger, Ommi-path uses a centralized fabricmanager tomanage
the network [8], including setting up SCs. This is not feasible at
data center scale.
Bu�ermanagement for deadlockprevention. It has been shown
that by increasing the packet priority hop-by-hop, and putting
packets of di�erent priority into di�erent bu�ers, deadlock can be

7A virtual channel is equivalent to a priority queue in PFC in the store-and-forward
setting.

avoided [7, 22, 32, 42]. These designs, however, need a large number
of lossless queues, which is the longest path length in the network.
Deadlock detection and recovery. The solutions under this cat-
egory [34, 36, 45, 50, 51] mainly include two steps. First, employing
a heuristic mechanism to detect suspected deadlocks, e.g., moni-
toring the throughput and queue occupancy of each switch port.
Second, recovering deadlock by dropping or temporarily rerouting
some of the packets involved in the deadlock. The main problem
with these solutions is that they do not resolve the root cause of
the detected deadlock, and hence cannot prevent the reappearing
of the same deadlock.
Deadlock-free routing recon�guration. Several schemes [20,
35, 39, 43] have been proposed for ensuring deadlock-free during
routing recon�guration. Tagger can be used to help any routing pro-
tocol to be deadlock-free, as Tagger is decoupled from the routing
protocols.
Summary. Tagger is di�erent from prior work. Tagger’s innova-
tions are its ELP concept, and the algorithms that pre-generate the
static tagging rules and minimize the number of priority classes. As
a result, Tagger works with any routing protocol, and with existing
hardware.

10 CONCLUSION
We have presented Tagger for deadlock prevention in data cen-
ter networks. By carrying tags in the packets and installing pre-
generated match-action rules in the switches for tag manipulation
and bu�er management, Tagger guarantees deadlock-freedom. Tag-
ger decouples itself from routing protocols by introducing the ex-
pected lossless path (ELP) concept, hence it works well with any
existing routing protocol, distributed or centralized. Tagger works
for general network topologies. We further showed that Tagger
achieves optimality for the well-known Clos/FatTree topology, in
terms of the number of lossless queues and the number of match-
action rules. Tagger can be implemented using existing commodity
switching ASICs and is readily deployable.

ACKNOWLEDGEMENTS
This work was partially supported by China 973 Program under
Grant No.2014CB340300 and HK GRF-16203715. Shuihai Hu was in-
tern with Microsoft Research Asia when he worked on this project.
We would like to thank our shepherd Costin Raiciu and the anony-
mous reviewers for their helpful feedback and suggestions.

462

Tagger: Practical PFC Deadlock Prevention in DCNs CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

REFERENCES
[1] Ieee. 802.11qbb. Priority based �ow control, 2011.
[2] The Microsoft Cognitive Toolkit. https://github.com/Microsoft/CNTK/wiki, 2017.
[3] Martín Abadi et al. TensorFlow: A System for Large-Scale Machine Learning. In

OSDI, 2016.
[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Com-

modity Data Center Network Architecture. SIGCOMM ’08.
[5] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). SIGCOMM ’10.

[6] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
Don’T Mind the Gap: Bridging Network-wide Objectives and Device-level Con-
�gurations. SIGCOMM ’16.

[7] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall, 1992.
[8] Mark S. Birrittella, MarkDebbage, RamHuggahalli, James Kunz, TomLovett, Todd

Rimmer, Keith D. Underwood, and Robert C. Zak. Intel Omni-Path Architecture
Enabling Scalable, High Performance Fabrics. In Hot Interconnects, 2015.

[9] Jacek Blazewicz, Daniel P. Bovet, Jerzy Brzezinski, Giorgio Gambosi, and Mau-
rizio Talamo. Optimal centralized algorithms for store-and-forward deadlock
avoidance. IEEE transactions on computers, 43(11):1333–1338, 1994.

[10] Cisco. Priority Flow Control: Build Reliable Layer 2 Infrastruc-
ture. http://www.cisco.com/c/en/us/products/collateral/switches/
nexus-7000-series-switches/white_paper_c11-542809.pdf.

[11] Charles Clos. A Study of Non-Blocking Switching Networks. Bell Labs Technical
Journal, 32(2):406–424, 1953.

[12] William J. Dally and Hiromichi Aoki. Deadlock-Free Adaptive Routing in Multi-
computer Networks Using Virtual Channels. IEEE Transactions on Parallel and
Distributed Systems, 4, April 1993.

[13] William J Dally and Charles L Seitz. Deadlock-free message routing in multi-
processor interconnection networks. IEEE Transactions on computers, C-36, May
1987.

[14] Jens Domke, Torsten Hoe�er, and Wolfgang E. Nagel. Deadlock-Free Oblivious
Routing for Arbitrary Topologies. IPDPS ’11.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.
Farm: Fast remote memory. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, pages 401–414, 2014.

[16] J. Duato and T. M. Pinkston. A General Theory for Deadlock-Free Adaptive
Routing Using a Mixed Set of Resources. IEEE Trans. Parallel Distrib. Syst., 2001.

[17] Jos Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole
Networks. IEEE Transactions on Parallel and Distributed Systems, 4, December
1993.

[18] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Helios: a hybrid electrical/optical switch architecture for modular data
centers. ACM SIGCOMM Computer Communication Review, 40(4):339–350, 2010.

[19] Jose Flich, Tor Skeie, Andres Mejia, Olav Lysne, Pierre Lopez, Antonio Robles,
Jose Duato, Michihiro Koibuchi, Tomas Rokicki, and Jose Carlos Sancho. A
survey and evaluation of topology-agnostic deterministic routing algorithms.
IEEE Transactions on Parallel and Distributed Systems, 2012.

[20] Alan Gara, Matthias A Blumrich, Dong Chen, GL-T Chiu, Paul Coteus, Mark E
Giampapa, RuudAHaring, Philip Heidelberger, Dirk Hoenicke, Gerard VKopcsay,
et al. Overview of the Blue Gene/L system architecture. IBM Journal of Research
and Development.

[21] David Gelernter. A DAG-Based Algorithm for Prevention of Store-and-Forward
Deadlock in Packet Networks. IEEE Trans. Compu., C-30, October 1981.

[22] M. Gerla and L. Kleinrock. Flow Control: A Comparative Survey. IEEE Trans.
Commun., COM-28, April 1980.

[23] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. Projector: Agile recon�gurable data cen-
ter interconnect. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 216–229. ACM, 2016.

[24] Christopher J. Glass and Lionel M. Ni. The Turn Model for Adaptive Routing.
SIGARCH Comput. Archit. News, 1992.

[25] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: A scalable and �exible data center network. In SIGCOMM, 2009.

[26] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A high performance,
server-centric network architecture for modular data centers. In SIGCOMM, 2009.

[27] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitendra
Padhye, and Marina Lipshteyn. Rdma over commodity ethernet at scale. In
SIGCOMM ’16.

[28] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David
Wetherall. Augmenting data center networks with multi-gigabit wireless links.
In ACM SIGCOMM Computer Communication Review, volume 41, pages 38–49.
ACM, 2011.

[29] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,
and Kai Chen. Deadlocks in datacenter networks: Why do they form, and how to
avoid them. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
pages 92–98. ACM, 2016.

[30] In�niband Trade Association. Supplement to In�niBand Architecture Speci�-
cation Volume 1 Release 1.2.2 ANNEX A17: ROCEV2 (IP ROUTABLE ROCE)),
2014.

[31] In�niBandcntk. In�niBand Trade Association, In�niBand Architecture, Speci�-
cation. http://www.in�nibandta.com, 2001.

[32] Mark Karol, S Jamaloddin Golestani, and David Lee. Prevention of deadlocks and
livelocks in lossless backpressured packet networks. IEEE/ACM Transactions on
Networking, 2003.

[33] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
F10:A Fault-Tolerant Engineered Network. In NSDI, 2013.

[34] P. López and J. Duato. A Very E�cient Distributed Deadlock Detection Mecha-
nism for Wormhole Networks. HPCA ’98.

[35] Olav Lysne, Timothy Mark Pinkston, and Jose Duato. A methodology for devel-
oping deadlock-free dynamic network recon�guration processes. part ii. IEEE
Transactions on Parallel and Distributed Systems.

[36] Juan Miguel Martínez, Pedro Lopez, José Duato, and Timothy Mark Pinkston.
Software-based deadlock recovery technique for true fully adaptive routing
in wormhole networks. In Parallel Processing, 1997., Proceedings of the 1997
International Conference on.

[37] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided rdma reads to
build a fast, cpu-e�cient key-value store. In USENIX Annual Technical Conference,
pages 103–114, 2013.

[38] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter. In SIGCOMM ’15.

[39] Timothy Mark Pinkston, Ruoming Pang, and José Duato. Deadlock-free dynamic
recon�guration schemes for increased network dependability. IEEE Transactions
on Parallel and Distributed Systems.

[40] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu. Adaptive
Bubble Router: A Design to Improve Performance in Torus Networks. ICPP ’99.

[41] Sophie Y Qiu, Patrick Drew McDaniel, and Fabian Monrose. Toward valley-free
inter-domain routing. In 2007 IEEE International Conference on Communications,
pages 2009–2016. IEEE, 2007.

[42] E. Raubold and J. Haenle. A Method of Deadlock-free Resource Allocation and
Flow Control in Packet Networks. In ICCC, Auguest 1976.

[43] Thomas L Rodehe�er and Michael D Schroeder. Automatic recon�guration in
Autonet, volume 25. ACM, 1991.

[44] Jose Carlos Sancho, Antonio Robles, and Jose Duato. An e�ective methodology to
improve the performance of the up*/down* routing algorithm. IEEE Transactions
on Parallel and Distributed Systems.

[45] Alex Shpiner, Eitan Zahavi, Vladimir Zdornov, Tal Anker, and Matty Kadosh.
Unlocking credit loop deadlocks. In Proceedings of the 15th ACM Workshop on
Hot Topics in Networks, pages 85–91. ACM, 2016.

[46] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jelly�sh:
Networking data centers randomly. In NSDI, 2012.

[47] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. Layered Shortest Path (LASH)
Routing in Irregular System Area Networks. In Prof. of IPDPS, 2012.

[48] Brent Stephens and Alan L. Cox. Deadlock-Free Local Fast Failover for Arbitrary
Data Center Networks. In IEEE Infocom, 2016.

[49] Brent Stephens, Alan L Cox, Ankit Singla, John Carter, Colin Dixon, and Wesley
Felter. Practical dcb for improved data center networks. In IEEE INFOCOM 2014-
IEEE Conference on Computer Communications, pages 1824–1832. IEEE, 2014.

[50] Anjan K. V. and Timothy Mark Pinkston. An E�cient, Fully Adaptive Deadlock
Recovery Scheme: DZSHA. In ISCA, 1995.

[51] Anjan K. Venkatramani, Timothy Mark Pinkston, and José Duato. Generalized
Theory for Deadlock-Free Adaptive Wormhole Routing and Its Application to
Disha Concurrent. IPPS ’96.

[52] Jie Wu. A fault-tolerant and deadlock-free routing protocol in 2d meshes based
on odd-even turn model. IEEE Transactions on Computers, 52(9):1154–1169, 2003.

[53] Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang, Li-
hua Yuan, and Ming Zhang. Netpilot: Automating datacenter network failure
mitigation. In SIGCOMM ’12.

[54] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale rdma deployments. In SIGCOMM
’15.

463

