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Abstract
Secure Collaborative Machine Learning (SCML) suffers
from high communication cost caused by secure computation
protocols. While modern datacenters offer high-bandwidth
and low-latency networks with Remote Direct Memory Ac-
cess (RDMA) capability, existing SCML implementation
remains to use TCP sockets, leading to inefficiency. We
present CORA1 to implement SCML over RDMA. By us-
ing a protocol-aware design, CORA identifies the protocol
used by the SCML program and sends messages directly to
the remote party’s protocol buffer, improving the efficiency of
message exchange. CORA exploits the chance that the SCML
task is determined before execution and the pattern is largely
input-irrelevant, so that CORA can plan message destina-
tions on remote hosts at compile time. CORA can be readily
deployed with existing SCML frameworks such as Piranha
with its socket-like interface. We evaluate CORA in SCML
training tasks, and our results show that CORA can reduce
communication cost by up to 11⇥ and achieve 1.2⇥�4.2⇥
end-to-end speedup over TCP in SCML training.

1 Introduction

Secure Collaborative Machine Learning (SCML) provides
solutions to protect privacy in machine learning tasks [21,
30, 44, 55]. SCML enables multiple individuals or organiza-
tions to perform model training or prediction collaboratively
with their private data and get higher-quality results without
compromising privacy. However, SCML faces high communi-
cation cost [41, 44, 58, 70] because it adopts communication-
intensive protocols such as Secret Sharing (SS) and Oblivious
Transfer (OT) as basic building blocks.

The widely deployed datacenters have brought opportuni-
ties to accelerate SCML. On one hand, it has been a common
practice to store datasets and deploy machine learning tasks
in a datacenter. The tenants within a datacenter will get better
models if they collaboratively train on their datasets. On the
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other hand, datacenters provides high-performance comput-
ing and network facilities essential to train models. However,
when performing SCML tasks, the datacenter network is not
fully utilized because the implementation of SCML proto-
cols is mainly based on TCP sockets, which is inefficient due
to cost in host network stack [16]. Remote Direct Memory
Access (RDMA), as a more efficient networking technology,
is generally available in datacenters [26], yet remains to be
integrated with SCML frameworks.

The communication cost consists of the time spent in the
network protocol stack and the time for data propagation on
the wire. While existing works accelerate SCML communica-
tion by configuring the transport layer protocol [12, 50] or re-
ducing communication complexities [13], RDMA can speed
up communication by offloading network stack to RDMA
Network Interface Controller (RNIC), bringing better latency
and bandwidth than kernel TCP.

However, accelerating SCML with RDMA still faces the
following challenges:

• Current SCML frameworks usually use hybrid proto-
cols [15,31,41–43,48,69]. But RDMA is unaware of the
protocols, so messages are mixed in the staging buffer
on receiving side which requires extra costs of demulti-
plexing the messages to multiple protocols’ buffers.

• For the same protocol conducted by multiple parties,
the communication patterns may differ across parties
because the parties are different entities and have differ-
ent runtime configurations, such as segmentation sizes,
which require the extra cost of partitioning or concate-
nating messages.

• New SCML frameworks are still emerging with different
protocols and communication patterns. Manually demul-
tiplexing messages of multiple protocols is not scalable
in new SCML frameworks.

We present CORA to address the above challenges with
the following observations: 1) SCML tasks are data-parallel
with each element in the input matrix processed by the same



protocol. 2) The communication pattern of protocols will not
change with the input, i.e., for each protocol used in SCML,
it yields the same communication pattern [35] for different
elements in the input matrix. 3) SCML tasks have high-level
descriptions such as Domain Specific Languages (DSL) and
APIs [33, 69], which provide the input’s length and adopted
protocols (§2.3). These opportunities enable us to demultiplex
messages belonging to multiple protocols at compile time.

With the above observations, CORA tackles the challenges
with the following designs:

• For the challenge of demultiplexing messages of hybrid
protocols, CORA sets up a dedicated buffer for each
protocol used in SCML. With the observations 2 and 3,
CORA can identify the remote receiving buffer with the
current task and adopted protocol. For example, when
performing a convolution with SS protocol, the sender
writes messages to an agreed buffer that is used to store
SS messages specifically.

• For the challenge of heterogeneous communication pat-
terns, CORA assigns offset addresses for the messages
in the protocol buffers. With the observations 1 and 2,
we know that the communication pattern is determined,
so the address of the message will not change with in-
put. The receiver can get the message directly from the
corresponding offset without extra cost.

• For the challenge of applying CORA in new SCML
frameworks, CORA relies on the observation 3 that cur-
rent SCML frameworks have high-level descriptions of
SCML tasks, including model structure and input length.
CORA only requires the backend protocol to implement
the layers in the SCML model. These features are com-
monly available in recent SCML frameworks.

We implement CORA as an independent module. Devel-
opers can use CORA in existing SCML frameworks without
much effort because the interfaces are similar to the socket.
It consists of three parts: 1) A Parser that extracts the SCML
layers and adopted protocols as part of the protocol contexts
to identify the current protocol. 2) A Planner that assigns start-
ing addresses for the protocols to store messages. 3) Basic
communication primitives that encode the current protocol in
RDMA operations so that the receiver side knows the protocol
context and addresses of arrived messages.

We thoroughly evaluate CORA in machine learning tasks,
and the key results are as follows:

• In SCML building blocks, such as machine learning
layers, CORA achieves 1.8⇥�7.2⇥ speedup over TCP.

• In SCML training tasks including SecureML [44],
LeNet [36], VGG16 [51], and AlexNet [34], CORA
achieves 1.2⇥�4.2⇥ speedup over TCP.

• In SCML inference tasks, CORA achieves 1.2⇥�2.0⇥
speedup over TCP.

• CORA reduces the communication cost in the model
training tasks by up to 11⇥. The communication cost is
no longer the bottleneck after using CORA.

To summarize, this paper makes two main contributions:
First, we are among the first to use RDMA to accelerate
SCML tasks, and we improve the efficiency of using RDMA
for SCML tasks with CORA, a protocol-aware design of
RDMA. Second, we integrate CORA into existing SCML
frameworks and show the performance benefit of CORA.

2 Background

2.1 Secure Collaborative Machine Learning
SCML is mainly built on top of Secure Multi-party Comput-
ing (MPC) protocols, which enables a group of entities such
as individuals or companies to jointly evaluate a function
without revealing sensitive input to other parties. SCML com-
bines various of different protocols, such as Oblivious Trans-
fer (OT), Secret Sharing (SS), Garbled Circuits (GC), and
Homomorphic Encryption (HE) to perform machine learn-
ing tasks. Recent efforts have achieved success in optimizing
SCML in terms of computational efficiency [58], communi-
cation [45], versatility [33], and ease of use [69].

However, communication is still one of the major overheads
in SCML due to the usage of MPC protocols [41, 44, 58,
70] and large amounts of training data. Studies have shown
that communication is the bottleneck in both training and
inference tasks of SCML [41, 44, 45].

Recent works such as ABY3 [43], Fantastic Four [19],
Sharemind [11], and PrivPy [37] have enabled deploying
SCML in a datacenter. For example, ABY3 enables three
non-colluding servers to collaboratively perform machine
learning tasks in a datacenter. An arbitrary number of parties
can generate secret sharings of their data and distribute them
to the servers. The privacy of data is guaranteed as long as at
most one of the three servers is compromised.

Datacenters have high-performance interconnects with hun-
dreds of Gbps bandwidth and a few microseconds latency.
However, existing SCML frameworks fail to fully utilize the
network facilities because of the inefficient TCP network [16].
During sending and receiving, it consumes lots of CPU cycles
to process TCP packets, which bounds the maximum band-
width [27, 39, 63] and harms computing performance. These
problems motivate us to deploy SCML over RDMA network
which bypasses CPU during data transmission.

2.2 Remote Direct Memory Access
RDMA enables direct access to a remote computer’s memory
without involving either side’s operating system. It achieves
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Figure 1: Overview of data transmission in RDMA network
and RDMA packet format (RoCE v2).

high bandwidth and low latency with zero-copy data trans-
fer [64] and hardware-based network protocols in RNICs,
which bypasses operating systems and CPUs during data
transmission.

An overview of RDMA network is shown in Figure 1. A
memory region on the remote host is registered and autho-
rized to be directly accessed by RNICs without extra copy.
When sending data, the RNIC possesses the full network
stack to transmit the packets without involving CPUs. More-
over, RDMA packets have negligible overhead in headers
compared to existing network protocols. For example, RoCE
v2 [4], as one of the standard RDMA packet formats, is built
on top of UDP protocol with an extra IB header (12 Bytes).

With offloaded network stack and zero-copy networking,
RDMA outperforms traditional networks on both latency
and bandwidth and has been widely deployed in datacen-
ters. Moreover, RDMA brings chances to accelerate SCML
for the following reasons:

• SCML frameworks intensively use sockets to send/re-
ceive data which triggers a context switch between user
space and kernel space and interrupts the CPU when han-
dling the received data. RDMA offloads the API to user
space, and the program gets received data with a notifi-
cation generated by RDMA hardware, which improves
the utilization of CPU cycles.

• TCP requires copying the data to kernel buffers for send-
ing, while RDMA supports zero-copy data transmission.

• TCP constantly consumes CPU when sending data, while
RDMA implements network protocols in hardware and
does not consume CPU during sending/receiving.

Despite performance benefits, RDMA presents a distinct
interface compared to Linux socket and requires applications
to change the way of sending/receiving data. RDMA defines
verbs as basic primitives to access RNICs, including read,
write, send, and recv. The hosts first register a memory region
and allow direct access from remote hosts. When sending data,
the sender needs to specify both the address of source data
on local host and the destination address on remote host, and
then sends messages by posting a write verb to the RNIC. The
sender can also rely on the receiver to decide the destination
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Figure 2: Illustration of the cost brought by the staging buffer
because of multiple protocols and fractioned messages.

address. In that case, the receiver first specifies receiving
address by posting a recv verb to the RNIC, and then the
sender posts a send verb with the address of source data.

2.3 Challenges and Opportunities
It is still a challenging task to use RDMA efficiently in SCML.
We elaborate on the challenges and opportunities as follows:
Demultiplexing Cost A straightforward way of using RDMA
is to write all messages sequentially into the remote memory,
which is common in existing applications [22, 24, 25, 32, 40].
However, using a unified remote buffer is inefficient in SCML
due to heterogeneous configurations of parties and hybrid pro-
tocols. SCML combines multiple secure protocols with their
messages mixed in the same buffer, which requires demulti-
plexing to different protocols’ buffers, as shown in Figure 2.
With hybrid protocols, RDMA is unaware of the correspon-
dence between protocols and the received messages. The
demultiplexing cost cannot be ignored, considering the large
amount of data traffic between parties in SCML.
Heterogeneous Communication Patterns The parties in
SCML are different entities and may have different runtime
configurations (e.g. batch size) resulting in undefined orders
of messages arrival. As shown in Figure 2, the orange mes-
sages represent two messages of OT. The receiver needs to
concatenate them into its buffer. Moreover, the address of
messages is unknown to the receiver, so they needs extra
interactions to locate the fractioned messages.
Generality in SCML frameworks Although we can set
up multiple dedicated buffers for different protocols used in
SCML, it is not scalable to new SCML protocols. Developers
will have to manually configure the remote memory to send
the messages of corresponding protocols.
Opportunities State-of-the-art SCML frameworks develop
Domain Specific Languages (DSL) and programming APIs
that have high-level description of machine learning tasks to
ease the development of SCML programs. They define basic
building blocks such as matrix multiplication, convolution,
ReLU activation, max pooling, etc. Every building block is
determined by several parameters. For example, the convolu-
tion layer is determined by the length (or shape) of the input
matrix, kernel size, strides, etc. These parameters are deter-
mined before execution and will not change throughout the



task.
With these highly structured task descriptions and the se-

cure protocols used to execute the task, we gain the knowl-
edge of the messages that will be sent during task execution
at compile time. For example, if the matrix multiplication is
implemented using additive secret sharing, and the parties
decompose into vector products, we know that the parties
will exchange messages that have the same lengths with the
decomposed vectors, according to the multiplication in secret
sharing protocol [10].

The prior knowledge enables CORA to assign addresses for
messages at compile time, so that applications can write mes-
sages directly to the corresponding protocol’s buffer, saving
the cost of demultiplexing.

3 Design

3.1 Overview
A naive incorporation of RDMA into SCML with a uni-
fied buffer leads to suboptimal performance due to its ex-
tra overhead of copying and reordering messages. The root
cause exists in its inability to recognize upper-layer protocols
when sending/receiving data. CORA distinguishes itself with
a protocol-aware design of RDMA library that has a static
demultiplexing scheme generated at compile time, which im-
proves the efficiency of message exchanging. At its core,
CORA identifies the message’s protocol and writes it to a pre-
set memory address on the receiver side using RDMA. The
receiver passes the received message’s address to upper-layer
protocols without an extra copy.

There are mainly two technical challenges encountered
when communicating via RDMA. First, it lacks mechanisms
to notify receivers when messages arrive because RDMA by-
passes receivers’ OS. Although receivers can be notified by
posting RDMA recv verbs, it requires the same communica-
tion patterns between the sender and receiver, which is not
always satisfied in SCML. Second, heterogeneous commu-
nication patterns lead to unpredictable messages’ addresses
on receivers’ memories, leaving receivers unable to locate re-
ceived messages. It is impractical to preset remote addresses
manually, given various protocols’ implementations.

CORA solves the technical challenges by leveraging both
characteristics of SCML tasks and RDMA operations. First,
SCML tasks are naturally data-parallel and input-irrelevant.
Each element in an input array is processed with the same
function, such as matrix multiplication and activation, and
yields the same communication pattern. Second, RDMA al-
lows verbs to carry a customizable immediate number, which
serves as a notification to receivers.

CORA assigns ids encoded in immediate numbers to the
messages, which notify the receiver when messages arrive.
The receiver locates messages from remote parties by inter-
preting message ids associated with their addresses in the
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memory.
Specifically, the input array is applied to the same function,

producing message arrays with identical message sizes. We
group the messages produced by the input array and access
them using a base address and an index. SCML tasks typi-
cally require multiple rounds of interactions between parties,
leading to multiple message arrays. CORA manages base
addresses and indexes with a data structure named protocol
context. When sending a message, CORA loads the protocol
context and writes to the remote address using RDMA. The
receiver converts the message id as an index to locate the
received message.

We design a Parser and a Planner to manage protocol con-
texts. We illustrate their functions with a SCML training task
shown in Figure 3. The user defines SCML tasks and provides
the backend protocols for secure computation for each layer:
Convolution (Conv) layers and Fully Connected (FC) layers
are performed with SS protocol, and ReLU activations are
performed with GC.

The Parser first processes the model structure, protocol, and
input data’s length. This information helps to get the memory
space needed for each message array. When starting the task,
the parties initialize RDMA connections. Each connection
registers a memory region on the party’s server so that remote
parties can write messages directly.

The parties then collaboratively train the model using se-
cure protocols. For each layer, CORA writes messages to
the addresses indicated by the protocol context. As shown in



Figure 4, the protocol context assigns a remote address for
the message by providing a base address (base_addr) and a
message index (msg_id). The remote buffer is filled with a list
of messages with the same sizes indicated by grey blocks, as
they are produced by the same protocol on different elements
in the input array.

The receiver has the same protocol context when receiving
messages. When a message arrives, the receiver checks its
protocol context for the base address and accesses the message
using the index. Upper-layer protocols get the message by
reference. Details are shown in §4.

When calculating the next layer, the Planner initializes
a new protocol context and allocates a buffer as the base
address. The Planner recycles the buffers of existing protocol
contexts whose messages have been processed and are no
longer needed in the future. Details are shown in §3.3.

3.2 Parser

The Parser is the frontend of CORA, which extracts model
structures, backend secure protocols, and input lengths from
users’ descriptions. It indicates the memory space needed to
store messages for each protocol context. The output of Parser
reduces the complexity of planning remote addresses when
facing all kinds of implementations of secure protocols.

The Parser works without running SCML tasks. With input
irrelevance, we know the protocol will yield the same amount
of messages on each element in the input array. The Parser
extracts the length of input array, which is interpreted as the
number of messages. Then CORA gets the memory needed
for the layer. For example, in an array with length l where
each element corresponds to m messages in the protocol, we
have l⇥m messages to send to the remote buffer.

Note that some layers, such as convolution, are not per-
formed in a per-element way. For example, convolutions de-
compose input as subarrays. We classify the layers into arith-
metic and boolean layers and apply different parsing methods.

Besides machine learning layers, SCML involves protocols
that are not included in model structures. The Parser supports
including these protocols in model structures by adding extra
layers to models.

• Protocol conversion: SCML may need to convert pro-
tocols for encrypting secret data, as no current proto-
cols can support all operations efficiently. Protocol con-
versions may also involve communication, and CORA
builds protocol conversion contexts to accelerate proto-
col conversion with RDMA (§3.2.3).

• Offline protocols: SCML tasks require generating co-
related random data such as Beaver Triples [10] and
edaBits [23], which also brings lots of communica-
tion (§3.2.4).

3.2.1 Arithmetic Layers

The Parser decomposes arithmetic layers into basic opera-
tions and extracts the lengths of messages. Arithmetic layers
typically perform matrix multiplications such as convolution
layers and fully connected layers. CORA parses the layers’
parameters to get the lengths and the adopted secure protocols
at compile time as part of the context.

Matrix multiplications are decomposed into inner products
of row vectors and column vectors. Assuming the input matrix
with lengths M⇥N and N ⇥ P, the total number of basic
operations is M⇥N⇥P. For the messages generated in matrix
multiplication, the message ids are 0 . . .MNP� 1, and the
message gets its index with the input elements’ positions.

Matrix multiplication has optimized protocol with lower
communication overhead [44]. The optimized secure matrix
multiplication regards input matrices as a whole. When per-
forming secure matrix multiplications, the optimized imple-
mentation yields messages with the same lengths as the input
matrices, namely M⇥N and N⇥P. In this case, the message
ids are 0 . . .MN +NP�1.

Note that the sizes of input matrices are usually specified
in the SCML program, which provide us with the sizes of
messages at compile time. In rare cases where the SCML
program does not specify the lengths of vectors, the parties
would have to agree on the input length before execution so
that Parser could still get the length and assign indexes for the
messages.

3.2.2 Boolean Layers

Boolean layers such as ReLU activation, Softmax activation,
and Max Pooling are mostly implemented with protocols such
as boolean secret sharing and garbled circuits. Although it
is feasible to implement all layers with boolean protocols,
current SCML frameworks avoid doing so because boolean
protocols are generally less efficient in arithmetic tasks [20].

The Parser assigns message lists with the indexes of data
elements. Boolean layers are mainly implemented by feeding
the input array’s elements iteratively into the boolean proto-
col. For single-input activations such as ReLU and Softmax,
each element yields the same communication pattern; for
multi-input protocols such as Max Pooling implemented by
comparison protocol, the Parser assigns message lists with
the element with minimal index in the input matrix.

Note that boolean layers may have multiple rounds of inter-
action. For example, Max Pooling layers may be implemented
by boolean secret sharing with multiple AND gates, which
requires multiple rounds of communication. In this case, the
Parser aggregates the total number of gates as the message
indexes list.
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3.2.3 Protocol Conversion

Existing SCML frameworks usually use hybrid protocols for
different operations [43, 45]. For example, arithmetic secret
sharing is used for matrix multiplication, while GC is used
for Softmax. Hybrid protocols require converting the form of
secret sharing to other protocols when needed.

Protocol conversions change the representations of secret
data using different conversion functions, which may involve
communication [20]. For example, when converting secret
data from arithmetic secret sharing to boolean secret sharing,
the parties jointly compute a bit extraction circuit; when con-
verting from boolean sharing to arithmetic sharing, the parties
evaluate a bit-adder circuit. We regard protocol conversions
as extra layers in SCML tasks, as shown in Figure 5.

3.2.4 Offline Protocols

SCML needs protocols that generate Beaver triples and other
correlated random data consumed in the online task. Since
the generation of triples is not related to the input of online
tasks, existing works often schedule these protocols offline,
which is done before the execution of online task [43, 44, 58].

Considering that offline protocols may bring large amounts
of communication in SCML, especially when the model is
large, CORA builds extra protocol context to accelerate com-
munication in offline protocols. Compared to SCML layers,
offline protocols do not have associations with the input data.
CORA creates a protocol context for offline protocols specifi-
cally.

There are mainly two methods for generating Beaver triples:
OT-based protocols and HE-based protocols [20]. CORA
sends the messages during triple generation to a specific buffer
on the remote party. The messages are passed to upper-layer
protocols without extra copies.

3.3 Planner
The Planner manages the protocol contexts by assigning their
base addresses and message ids before sending/receiving. It
realizes memory space needed with the input lengths extracted
by the Parser and the message sizes.

When sending a message, the Planner checks if the proto-
col context exists. If so, it assigns the message id with the
data index in the array. Otherwise, it first allocates memory
and initializes a new protocol context. The Planner frees the
remote memory when the remote party has processed the
messages.

Specifically, the remote address is decided by the following
equation:

dest_addr = base_addr+msg_size⇥ index (1)

In the equation, dest_addr represents the destination ad-
dress on remote memory; base_addr represents the base ad-
dress in the protocol context; msg_size represents the size of
message; index is the position of element in the array.

On the sender side, the Planner first gets the message’s size,
the index in the input array, and the layer’s input length. It
allocates the memory space for the current layer and initializes
the base address. The Planner allocates memory with a simple
searching algorithm: it finds the first memory region that
satisfies the need. Note that the allocation algorithms are the
same for all parties. So, the protocol contexts on different
parties have the same base address, guaranteeing that senders
write to the same location from which receivers read.

Algorithm 1 How Planner allocates memory space and pre-
pare protocol context for a message

Input: msg_size, input_len, p_context, index
G: dependency graph of the model, l: current layer
Output: Modified p_context

1: M msg_size⇥ input_len . The total memory needed
2: if p_context is not initialized then
3: Search Remote Buffer to place M
4: if Success with addr then
5: p_context.base_addr addr
6: else
7: Report Failure
8: end if
9: end if

10: p_context.msg_id index
11: p_context.len msg_size
12: if l finished then . free memory
13: L l.prev . The layers that li depends on.
14: G.L.next�= 1 . All layers have one less child layer.
15: if any layer li in G.L has no child layer then
16: Free the memory used by li
17: end if
18: end if
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On the receiver side, the Planner modifies the protocol con-
text in a symmetric way to the sender’s so that the protocol
contexts at both sizes point to the same message on the re-
ceiver’s buffer. We summarize the algorithm of Planner, as
shown in 1.

The Planner releases the memory region of a protocol con-
text when its messages are no longer needed by the remote
party. It manages the remote memory usage with a depen-
dency graph generated from the model structure. As shown
in Figure 6, each node represents data that correspond to mes-
sages in the protocols. The convolution is followed by the
activation. For every layer, the Planner associates the protocol
context with the layer’s data. When the layer’s data is no
longer used, the Planner releases the memory occupied by
this layer. For example, in Figure 6, if X2 has finished, CORA
knows the messages produced during the convolution will no
longer be used and releases the memory region used by the
protocol context. We list the algorithm of releasing memory
in List 1 line 12-17.

Besides machine learning operations, it also brings com-
munication to generate offline data and convert protocols as
mentioned in §3.2.4 and §3.2.3. Messages for offline data
generation do not depend on messages in machine learning
layers. Therefore, the Planner allocates a fixed memory re-
gion for offline protocol’s context. For protocol conversion,
the Planner regards it as an extra layer in the model.

4 Implementation

The core component of CORA is the protocol context. The
Parser creates protocol contexts based on the model structure.
The Planner initializes the protocol context with the current
layer and message sizes. When sending a message, the mes-
sage address indicated by the protocol context is encoded as
a notification to the receiver.
Send Sending messages is implemented using write verb
with immediate data, which writes data directly to the spec-
ified address on the remote host with an additional 32-bit
immediate number carried by the verb. The immediate num-
ber not only notifies task completion but also carries 32-bit
extra data besides the payload. CORA configures the four
most significant bits to indicate the protocol, and other bits to
indicate the offset. For example, CORA sets 0000 as the most
significant bits of the immediate data to indicate OT protocol.

RNIC

Protocol

src_data

Protocol Context

ctx_id index
imm_data

4 bits 28 bits

D
M
A

RNIC

ctx_id index
imm_data

Protocol

dst_buf

D
M
A

Protocol Context
base_addr ⊕

Sender Receiver

Figure 7: Implementation of sending a message with protocol
context.

The remaining bits indicate the offset, which is interpreted as
the address on receiving buffer.
Receive On the receiver side, the RNIC will generate a new
element in the completion queue when a message arrives.
CORA sets a dedicated thread to handle completion elements.
It interprets the 32-bit immediate data as the protocol and
offset. Next, a completion flag is set to inform upper-layer
protocols of a new message arrival.

Note that the immediate number has four bits to encode the
protocol contexts, allowing 16 protocol contexts, which are
often less than the total number of layers needed. However, the
four-bit encoding is enough in runtime because the number of
concurrent protocols is usually less than 16. For instance, the
parties may only need four protocol contexts for the current
layer, the last layer, the next layer, and the offline protocol
that generates Beaver triples.

CORA hides the details of sending/receiving from secure
protocols by providing socket-like APIs. When CORA exe-
cutes a layer in a machine learning task, it loads the corre-
sponding protocol context, which contains a base address that
points to the remote buffer. The messages are written to the
remote address with the offsets associated with the indexes
in the array. When a protocol needs to receive a message, it
polls for the arrival of that message by checking the finish
state with the message id.
Multi-Threading Some frameworks use multiple threads
to accelerate computation. There are mainly two cases when
using CORA in multithreaded frameworks: The case where
worker threads synchronize with only one thread handles
communication, and the case where multiple worker threads
handle communication.

For the first case, CORA is set up in the communicating
thread. The usage of CORA stays the same as the single-
thread case; for the second case, we initialize multiple CORA
objects in each thread. Each thread binds a unique port, result-
ing in multiple RDMA connections. Unlike single-threading,
multi-threading CORA needs the index of the corresponding
element in the global input array when sending or receiving a
message because the indexes of the threads’ input may over-
lap. The global index can be converted from the local index
and the thread index.

CORA provides a high-level interface for integrating into



Framework #Existing Lines #Lines Modified
EMP-OT [3] 1873 54

ABY [20] 20209 141
Piranha [58] 17976 47

Table 1: Number of lines in frameworks and number of lines
need to modify in order to utilize CORA

existing SCML frameworks easily. We revised the implemen-
tations of Piranha, ABY, and EMP-OT. The numbers of codes
changed are shown in Table 1. Although ABY and EMP-OT
are not designed for machine learning tasks, they can also
use CORA to accelerate communication when using multiple
protocols.

1

2 void SCML_Layer(Matrix *inputs , Matrix *outputs ,

protocol *p) {

3 // high -level description of the SCML layer

4 // first execute some codes to perform local

computation

5 Matrix *tmp = local_preprocessing(inputs);

6 // then prepare the messages

7 Matrix *source_data = prepare_message(tmp);

8 // get the protocol context

9 CORA.select_protocol_context(p);

10 // perform interaction

11 CORA.send(source_data);

12 Matrix *recv_data = CORA.recv_msg();

13 // there may be other rounds of interaction

14 // ...

15 // post processing , write output

16 outputs = post_processing(inputs , recv_data);

17 }

Listing 1: A general description of how CORA is used in
existing frameworks.

Code 1 shows the general procedure of using CORA in
existing frameworks. Note that the Matrix data structure and
APIs are for demonstration and may differ with frameworks.
Existing SCML frameworks typically use Linux sockets to
send/receive messages. To send a message, they use send API
or write to the socket’s file descriptor. CORA replaces this
routine with protocol-aware RDMA write. It first loads the
protocol context to get the protocol id and remote address for
the next write operation. Then we call send API of CORA,
which posts a work request to the RNIC and returns. The mes-
sage should not be modified until the transmission finishes.

For message receiving, CORA replaces this routine with
its receive API. The protocol context stores the address of
the next message and a flag variable indicating the message’s
arrival. CORA returns the message’s address to the caller
when the flag is set. The address is configured at compile time
by Planner so that other incoming RDMA operations will not
overwrite the message (§3.3).

5 Security of CORA

CORA relies on existing security mechanisms of RDMA to
provide isolation of parties. First, a party needs the remote
server’s key generated specifically for the registered memory
region before accessing. Second, a party cannot access other
parties’ remote memory regions because it lacks other regions’
keys. The isolation guarantees that the parties cannot steal
other parties’ messages.

It is possible to have security issues when using RDMA.
For example, the parties may mistakenly store sensitive data
in the memory regions accessible by other parties so that
other parties can read the sensitive data without notifying
the owners. The unintended vulnerabilities may require extra
examination in runtime.

Compared to existing SCML frameworks, CORA exposes
the memory access pattern to other parties for efficiency. The
memory access pattern will not cause security issues because
MPC protocols are input-irrelevant. The memory access pat-
tern does not expose information about the secret input.

Moreover, the security of RDMA hardware has been im-
proving. ReDMArk [49] gave mitigation mechanisms to
fix RDMA vulnerabilities. Later, Bedrock [59] proposed a
hardware-based defense system to secure RDMA without per-
formance penalty. It is expected that the security of RDMA
system will continue to be enhanced in the future.

Besides hardware security, the parties may need secure
channels to prevent overhearing by adversaries. Recent works
have proposed secure channels over RDMA. For example,
sRDMA [53] provided efficient authentication and encryption
for RDMA to prevent information leakage and message tam-
pering; PANIC [38] implemented multi-tenant isolation in a
public cloud. Moreover, the latest commercial RNICs have
supported autonomous TLS offload [46], which achieves bet-
ter performance than TLS on CPU. The TLS offloading has
shown the RNIC’s efficiency in packet encryption and decryp-
tion. Thus, RDMA can bring both performance improvement
and security guarantee to applications.

6 Evaluation

Evaluation Overview We summarize the test cases and the
results as follows:

• Performance on SCML building blocks, including of-
fline protocols, machine learning layers including matrix
multiplication, convolution, and ReLU. The result shows
that CORA brings 1.8⇥�7.2⇥ speedup over TCP and
1.6⇥�6.6⇥ speedup over rsocket on basic building
blocks (§6.3).

• Performance on model training and inference, includ-
ing SecureML, LeNet, VGG16, and AlexNet. The result
shows that CORA brings 1.2⇥�4.2⇥ speedup over
TCP and 1.1⇥�3.9⇥ speedup over rsocket (§6.4).
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• We compare CORA’s communication cost to existing
transport optimization, including Transputation [12] and
MOTION [13] (§6.5).

• Performance Decomposition. We recorded the commu-
nication and computation costs during training. We
show that CORA reduces communication cost by 2.9⇥
�11.0⇥. Communication is no longer the bottleneck of
SCML (§6.6).

CORA focuses on deploying SCML in a single datacenter,
where servers are interconnected with RDMA network (§2.1).
Some SCML frameworks deploy SCML in multiple data-
centers. We show that the performance of CORA in inter-
datacenter networks is bounded by the propagation delay
between datacenters (§6.6).

6.1 Experiment Settings
We run our experiments in a computing cluster with 100 Gbps
Mellanox ConnectX-5 RDMA NICs. Each server has an Intel
Xeon 5218R CPU (40 cores), 128 GB memory, and a Nvidia
Tesla V100 GPU. The ping between servers is about 0.1 ms.

We assume that each party in SCML has one server. Both
TCP-based and RDMA-based experiments use the RNIC.
RNIC supports both TCP and RDMA traffic by automatically
switching between TCP and RDMA modes according to the
way of accessing the network interface.
Baseline We compare CORA against the default TCP net-
work in SCML tasks. In addition, to show the benefits of
protocol-aware RDMA, we show the performance of CORA
over rsocket [7], a general-purpose RDMA library that uses
a unified ring buffer to send/receive data, as shown in Fig-
ure 8. rsocket sets a unified buffer on the receiver side. When
a new RDMA message arrives, RNIC writes the message to
the buffer’s tail and generates completion. The receiver has
a polling thread that notifies the receiving thread when get-
ting a new completion. Then, the receiving thread reads new
messages from the buffer’s head.

Note that Piranha utilizes GPU and stores data in GPU
memory. However, RDMA only supports accessing host mem-
ory by default. We use GPUDirect RDMA [2], a built-in fea-
ture from CUDA 11.4, so that RDMA can access the GPU’s
memory just like accessing the host memory.

Test Cases We evaluate the speedup on the following tasks:
Offline Protocols Piranha ignores the cost of the offline
phase, which involves generating multiplication triples, and
only implements the online phase. However, the offline phase
takes a large portion of the total cost when taken into account.
Existing SCML frameworks generate multiplication triples
based on OT (§3.2.4). We integrate CORA in EMP-OT to test
the performance of OT and triple generation.
Basic Building Blocks For basic building blocks, we tested
matrix multiplication, convolution, and ReLU activation. We
tested the speedup under different sizes of input and different
numbers of parties. The matrix multiplications and convo-
lutions are implemented with arithmetic secret sharing. The
ReLU activation is based on GC.
Model Training For the whole training process, we tested
models in SecureML, LeNet, VGG16, and AlexNet. Se-
cureML and LeNet are trained on MNIST [5] dataset; VGG16
and AlexNet are trained on CIFAR-10 [1] dataset. Each case
is implemented with two-party semi-honest (2PC) [44], three-
party replicated-ring (3PC) [43], and four-party replicated-
ring (4PC) [19] protocols, respectively. These protocols are
most widely studied in existing SCML frameworks. All pro-
tocols had their field set as 32 bits. The computation on float-
point arithmetic is the same as the implementation of SCML
frameworks.
Inference When performing an inference task, we pay more
attention to the time spent to infer a single data sample be-
cause it represents the end-to-end latency of performing an
inference task. We tested inference performance with the
same model as in the training experiment. We set the input
batch size as one to test the inference performance.

6.2 Offline Protocols
One of the most significant costs in the offline phase is to
generate Beaver triples [10], which are used when multiplying
two secret sharings. Existing works have implemented triple
generation based on OT. We test the triple generation based
on IKNP OT [9] implemented by EMP-OT [3] library.

For the performance of CORA in OT, we integrate CORA
in EMP-OT to test the speedup on different OT protocols,
including IKNP and Ferret [61]. The implementations of OT
protocols assume semi-honest security settings. We tested
TCP, rsocket, and CORA in OT, respectively, and the result
is shown in Figure 9. CORA achieves 1.3⇥�4.5⇥ speedup
over TCP and 1.1⇥�4.2⇥ speedup over rsocket. The perfor-
mance of rsocket is bounded by the message copy on both



Figure 9: Time elapsed for conducting OT and triple generation.

sides. In the OT task, the sender generates and sends an ar-
ray of ciphertext to the receiver. On the sender side, rsocket
implements the sending task by copying the message to a
unified buffer on the local host and posts RDMA write. On
the receiver side, rsocket copies the received data to the OT
buffer. Compared to rsocket, CORA reads source data from
the sender’s buffer and writes to the receiver’s buffer directly
without an extra copy.

OT-based Beaver triple generation is performed with a
batch of OT tasks [20]. We integrate CORA into ABY, a
two-party computation framework that implements the triple
generation based on semi-honest IKNP OT with two parties.
The width of the triple element is set as 32 bits. For each
triple, the parties need 32 OTs. Figure 9 shows the perfor-
mance improvement. In the figure, N stands for the number
of triples to generate. CORA achieves 1.8⇥�2.6⇥ speedup
over TCP and 1.6⇥�2.3⇥ speedup over rsocket.

6.3 Basic Building Blocks
We compare CORA with the default TCP network and rsocket
by integrating into Piranha, a GPU-based SCML framework.
We run the basic building blocks, including matrix multi-
plications, convolutions, and activations. In general, CORA
achieves 1.8⇥�7.2⇥ speedup over TCP and 1.6⇥�6.6⇥
speedup over rsocket. Figure 10 summarizes the result for
each basic building block.

Matrix multiplication is tested by multiplying two N⇥N
matrices using arithmetic secret sharing under a semi-honest
security setting. The offline phase generates triples with IKNP
OT. The matrix multiplication is decomposed as a series of
vector dot products. CORA achieves 2.1⇥�4.9⇥ speedup
over TCP and 1.8⇥�4.3⇥ speedup over rsocket.

Essentially, convolution is also decomposed as matrix mul-
tiplications. We chose the size of convolution layers that are
commonly used in model training and calculated the number
of total basic multiplications. In model training on the MNIST
dataset and the CIFAR-10 dataset, the convolution cost is from
1.6⇥106 to 5.7⇥108. CORA achieves 1.8⇥�4.7⇥ speedup
over TCP and 1.6⇥�3.5⇥ speedup over rsocket.

For ReLU activation, the operation is implemented by mul-
tiplying with a flag, which is generated by comparing with

zero. The test is conducted on the implementation of Pi-
ranha based on edaBits. The communication task involves
one round of reconstruction between parties. CORA achieves
3.6⇥�7.2⇥ speedup over TCP and 2.6⇥�6.6⇥ speedup
over rsocket.

The implementation of basic building blocks usually in-
volves only one round of interaction: matrix multiplication
protocol reconstructs the secrets with offset among parties,
and ReLU with edaBits reconstructs the masked input with
one round of interaction. CORA mainly benefits from the
high bandwidth and the zero-copy characteristic compared to
TCP and rsocket.

6.4 Model Training and Inference
The training process relies on forward propagations and back-
ward propagations to update model parameters. We set other
task parameters the same as the Piranha’s, such as the bits re-
served for float arithmetic and sizes of ciphertexts. We trained
for ten epochs on each model and calculated the average cost
for training each batch of data.

The performance of CORA on the whole training process
is shown in Table 2. CORA achieves 1.2⇥�4.2⇥ speedup
over TCP and 1.1⇥�3.9⇥ speedup over rsocket. Besides
the basic building blocks, the speedup of CORA also comes
from the protocol conversion when performing activation on
linearly secret sharings (§3.2.3) and the backward propagation
process.

6.5 Comparison to TCP Optimizations
To show how CORA improves communication performance
compared to other transport optimizations, we tested machine
learning tasks using Transputation [12] and MOTION [13].
Transputation, as an independent communication module, is
integrated into Piranha for testing. MOTION, however, is a
full-stack framework. We only compare their time spent in
communication, as shown in Table 3.

Compared to the other two frameworks, CORA has far
less communication cost. The speedup over the other frame-
works can be explained from two aspects: First, Transputation
and MOTION configures the TCP sockets for high-latency



Figure 10: Performance of basic building blocks after applying CORA.

network environments, such as non-blocking operations. How-
ever, datacenter provides a low-latency interconnect, and it
is more important to optimize data transmission at the end
host. Second, TCP-based optimization requires CPU cycles
for packet processing. When CPU cores are busy with com-
puting, the communication is delayed.

6.6 Performance Decomposition
To inspect how CORA achieves better performance over
rsocket and TCP, we profile the communication and com-
putation costs of the training task. We show that CORA has a
much smaller communication cost compared to rsocket and
TCP.

Figure 11 illustrates the decomposed cost for model train-
ing. Compared to CORA, rsocket and TCP have much higher
communication cost, which dominates the total cost. In con-
trast, CORA has much lower communication cost, and the
main cost shifts to computation overhead.

When sending a message, rsocket first copies the message
into the buffer on the local host and sends the message us-
ing RDMA write. On the receiver side, rsocket monitors the
arrival of new messages by checking the head pointer of the

buffer, which can only detect the arrival of messages adjacent
to the head pointer. CORA is more efficient because it does
not involve copies during sending, and the receiver can get
the addresses of arrived messages by checking the immediate
data.
Training in Inter-Datacenter Network CORA relies on the
high bandwidth and low latency of RDMA network in the
same datacenter. For the case where SCML parties reside in
multiple datacenters, the network performance is bounded
by the bandwidth and propagation delay between datacen-
ters [65]. For example, the Round Trip Time (RTT) between
two datacenters across continents could be over 60 ms, and
the bandwidth is less than 10 Gbps, compared to an intra-
datacenter network that has 100 Gbps bandwidth and < 1ms
latency.

We show that the performance of SCML in the inter-
datacenter is bounded by the propagation delay after using
CORA. We simulate the inter-datacenter network by limiting
the bandwidth to 10 Gbps and adding 10 ms RTT between
servers. We decompose the communication cost into transmis-
sion cost at the end host, including data copy and transmission
by RNIC, and the propagation cost. The result is shown in



Model SecureML LeNet VGG16 AlexNet
# Parties 2 3 4 2 3 4 2 3 4 2 3 4

TCP 220 184 366 2072 1649 4309 25760 20609 46513 1027 821 1978
Train rsocket 218 179 373 1836 1534 3332 23648 18992 41886 973 791 1809

CORA 163 160 229 808 656 1315 6753 4904 11643 509 502 1052
Speedup / TCP 1.3 1.2 1.6 2.6 2.5 3.3 3.8 4.2 4.0 2.0 1.6 1.9

/ rsocket 1.3 1.1 1.6 2.3 2.3 2.5 3.5 3.9 3.6 1.9 1.6 1.7
TCP 50 29 102 140 87 326 864 491 1422 266 156 470

Inference rsocket 44 25 97 135 83 281 832 455 1352 245 147 422
CORA 40 23 56 111 61 162 500 359 885 192 136 326

Speedup / TCP 1.2 1.2 1.8 1.3 1.4 2.0 1.7 1.4 1.6 1.4 1.2 1.4
/ rsocket 1.1 1.1 1.7 1.2 1.4 1.7 1.7 1.3 1.5 1.3 1.1 1.3

Table 2: Average time spent (ms) for training (batch = 128) and inference on different models and different numbers of parties.

SecureML LeNet VGG16 AlexNet
#Parties 2 3 4 2 3 4 2 3 4 2 3 4
CORA 24 14 54 263 153 354 3141 1566 4481 89 81 148

Transputation [12] 52 44 143 1225 988 2885 19223 14471 30422 325 223 667
MOTION [13] 119 127 154 2206 2427 2935 24261 25442 28334 922 1077 1129

Table 3: Communication Time (ms) in the machine learning training (batch = 128) task.

(a) SecureML (b) LeNet

(c) VGG16 (d) AlexNet

Figure 11: Cost decomposition of training different models
on different numbers of parties.

Figure 12. It shows that in a network condition where the
RTT is 10ms, the propagation cost takes at least nearly half
of the total communication cost.

7 Discussion
Performance in Inter-Datacenter Network CORA focuses
on accelerating SCML in a intra-datacenter network, where
communication bottleneck exists at end hosts. If the parties
of SCML reside in multiple datacenters, the network latency
between parties could be hundreds of milliseconds and the
bandwidth is usually less than 10 Gbps. In this case, the
performance of SCML is bounded by the inter-datacenter
network, which is out of the scope of this work.

Even with the marginal improvement in the inter-datacenter

Figure 12: Decomposition of cost in the inter-datacenter en-
vironment, where the bandwidth is limited to 10Gbps and
RTT=10ms.

setting, RDMA is better than TCP in SCML. First, intra-
datacenter environment is preferred for machine learning
tasks, considering that companies and individuals have al-
ready stored their data in datacenters. Recent works such as
ABY3 [43], Sharemind [6, 11], PrivPy [37] have deployed
SCML among multiple servers in intra-datacenter environ-
ment. Second, SCML applications have higher utilization of
CPU resources with RDMA, because RDMA implements the
data transmission in hardware and does not need consume
extra CPU cycles for packet processing.

Applying to General Secure Computation CORA can be
extended to general MPC frameworks that use graph-based
description of tasks, so that CORA parser can identify the
protocol contexts. For example, ABY describes the MPC
tasks with a graph, in which the nodes represent gates and the
edges represent wires. CORA can be applied to ABY with a
new frontend that parses circuit files and produces protocol
contexts that match the execution of circuits. Moreover, ABY
circuit files can be analyzed by CORA Planner to find the
dependency of secret sharings, so that the memory can be
reused efficiently. We have applied CORA to ABY, as listed



in Table table 1.
For secure computation frameworks that do not have a

high-level description, CORA can be used by managing the
receiving buffer as a ring. The developer defines the protocols
used in the secure computation program, and CORA creates
the buffers that are used specifically for the protocols. When
sending a message, CORA writes to the end of the corre-
sponding buffer of the protocol. On the receiving side, CORA
passes the addresses of messages to upper-layer protocols.
When the receiver consumes messages, it notifies the sender
so that the buffer can be reused by other messages.

That said, it might be challenging to apply CORA to gen-
eral secure computation frameworks. First, some frameworks
have optimizations that may change the execution order. For
example, MP-SPDZ sorts the computation graph in topology
order which results in a different execution order as the task
file’s, which requires more efforts in order to embed CORA
to MP-SPDZ runtime. Second, some frameworks, such as
Opaque [68], relies on hardware enclaves that encrypt the
memory which can be decrypted only inside the processor. A
co-design of RDMA and hardware enclave is needed in order
to perform RDMA operation to encrypted remote memory.
Limitations CORA requires that all parties in SCML have
RDMA hardwares. If some parties lack RDMA support, they
can use soft-ROCE [8], a software implementation of RDMA
that does not require dedicated hardware to run RDMA pro-
grams. However, soft-ROCE is slower than hardware RDMA,
as the packet processing in the software is less efficient than
RDMA hardware. Moreover, RDMA performance suffers
from bursty and lossy network environments, as there might
be head-of-line blocking [71] or deadlock [28], and the packet
retransmission in current hardwares is not efficient either.
Researchers have been working on new RDMA solutions
to address these issues. For example, Tagger [29] proposed
efficient deadlock handling, and SRNIC [57] implemented
efficient retransmission for RDMA.

8 Related Work
There have been many efforts that could accelerate SCML.
We classify existing works with their methods and compare
them against CORA.
Protocol Optimizations focus on designing more effi-
cient protocols for secure computation tasks. For example,
GAZELLE [31] and MiniONN [41] focused on efficient
secure inference on trained models using OT protocols;
ABY3 [43] proposed an efficient honest-majority protocol
for machine learning among three parties; Falcon [56] pro-
posed an honest-majority and maliciously secure protocol to
train neural networks among three parties; Cerebro [69] built
a framework for general SCML applications and automati-
cally optimize the circuit layout; Sphinx [54] proposed new
protocols for efficient secure online learning; FedSVD [17]
accelerated secure singular vector decomposition protocol

on large datasets. SOLAR [47] proposed new secret sharing
protocol that automatically balance between computation and
communication. CORA could bring extra benefit to these
works by accelerating communication between parties.
Computation Optimizations accelerate SCML by leverag-
ing hardware such as multi-core CPU, GPU, and FPGA [67].
CPU-based accelerations, such as [14], implemented proto-
cols in parallel to fully utilize CPU cores; GPU-based ac-
celerations, such as HAFLO [18], CryptGPU [52], and Pi-
ranha [58], accelerated SCML computation with massive par-
allel GPU threads. FPGA-based accelerations such as [62]
and FLASH [66] accelerated computation with efficient and
dedicated FPGA circuits. Computation optimizations are or-
thogonal to CORA, which could be combined together.
Network Optimizations use other transport protocols to
accelerate communication. For example, Shrishak et al. [50]
used UDP protocol in lossless network environments, and
they chose UDT protocol in Wide Area Network (WAN) en-
vironments. Brandt et al. [12] proposed an optimal transport
protocol that can adjust to different network environments for
secure computation. MOTION [13] adopted full communica-
tion serialization that enabled MPC over arbitrary messaging
interfaces and removed the need to own network sockets.
These works identified TCP sockets as the bottleneck of com-
munication and tried to replace the TCP socket with a more
efficient socket system. CORA distinguishes itself with an
offloaded transport on hardware, which is more efficient than
software transport in network applications. Moreover, CORA
combines the SCML communication pattern and RDMA in-
terface to process messages efficiently.

9 Summary
This paper presented CORA to implement SCML over
the RDMA network. CORA improves the efficiency of
using RDMA in SCML workload by using a protocol-
aware design. It maintains socket-like APIs that can be eas-
ily integrated into existing SCML frameworks. We com-
pare CORA with TCP and rsocket, a common practice
of RDMA without a protocol-aware mechanism, under the
SCML building blocks, model training, and inference. Our
results show that CORA achieves 1.2⇥�4.2⇥ speedup over
TCP and rsocket. CORA’s source code is publicly avail-
able (https://github.com/renzh1998/CORA).
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