
DGS: Communication-Efficient Graph Sampling for
Distributed GNN Training

Xinchen Wan1 Kai Chen1 Yiming Zhang2
1iSING Lab, Hong Kong University of Science and Technology

2NICEX Lab, Xiamen University

Abstract—Distributed GNN training tends to generate huge
volumes of communication. To reduce communication cost, the
state-of-the-art sampling-based techniques sample and retrieve
only a subset of the nodes. However, our analysis shows that
current sampling algorithms are still inefficient in network
communication for distributed GNN training, which is mainly
because of three problems: first, they overlook the locality of
the sampled neighbor nodes in the cluster; second, they sample
data only at the coarse-grained graph node level; and third, some
mechanisms they adopted fall short in distributed scenarios.

This paper presents a graph sampling framework (DGS) for
distributed GNN training, which effectively reduces network
communication cost while preserving the final GNN model
accuracy. To achieve this, DGS samples neighborhood infor-
mation based on the locality of the neighbor nodes in the
cluster, and samples data at the levels of not only graph nodes
but also node features based on explanation. Specifically, DGS
constructs an explanation graph which preserves the relationship
between the local graph and remote nodes, and leverages the
recently-proposed model explanation technique to design an
online explanation scheme that interprets the importance of nodes
and features. Evaluation results show that DGS achieves up to
1.25× throughput speedup over the state-of-the-art FastGCN and
reduces the communication cost by up to 28.3%, while preserving
the final model accuracy almost the same as that of full-batch
training.

I. INTRODUCTION

Graphs are pervasive in many real-world applications, such
as social network analysis [10], molecular structure genera-
tion [33], and recommendation systems [8]. Recent years have
witnessed a surge of works that extend deep neural networks
(DNNs) to extract structural information from graphs. These
new methods, known as Graph Neural Networks (GNNs), have
achieved satisfactory performance in various graph-related
tasks including node classification, link prediction, and graph
classification [7], [16], [24], [36].

GNNs express structural information by combining classical
NN operations (e.g., convolution and matrix multiplication)
with iterative neighborhood aggregation. Figure 1 illustrates
the computation process upon one node: a GNN layer (i)
aggregates the embeddings of the node’s one-hop neighbors,
and (ii) transforms the aggregated embedding through NN
operations to update the node’s embedding. The two operations
iterate across each of the n GNN layers, and the node’s
last-layer embedding contains information from all its n-hop
neighbors.

Training GNNs in large graphs is challenging because
the neighborhood aggregation procedure can involve a large
number of multi-hop neighbor nodes, quickly exceeding the
memory limitation of a single device. Therefore, large GNN
training tasks are usually processed in a distributed manner,
where the graph is first partitioned into subgraphs and then
trained in parallel (each subgraph on one worker) with neces-
sary communication. However, while the memory constraint
is relieved, iterative neighborhood aggregation makes inter-
worker communication a bottleneck for GNN training. As the
number of neighbor nodes can be exponentially large when
increasing the number of GNN layers, the total communication
volume increases drastically and affects the training efficiency
significantly.

To reduce communication overhead in distributed GNN
training, researchers have proposed the sampling-based tech-
niques [21], which sample and retrieve only a subset of the
features and thus generate less communication than obtaining
the whole set of features. However, our analysis (§II) finds
that current sampling algorithms [3], [4], [7], [30], [34], [40]
are still far from being communication-efficient for distributed
GNN training, mainly because of the following problems.

First, existing sampling algorithms overlook the locality of
the neighbor nodes in the cluster, because they are initially
designed for low memory footprint in mini-batch training on
a single worker but not for distributed scenarios. Simply mi-
grating these algorithms to distributed GNN training overlooks
the difference between accessing local and remote nodes, and
thus leads to extra communication traffic.

Second, existing sampling algorithms sample data at the
relatively coarse-grained node level to guarantee high training
accuracy. However, our experiments (§II-D) show that for pop-
ular sampling algorithms like GraphSAGE random neighbor
sampling [7], as many as 30% features can be reduced with
no more than 0.5% accuracy loss.

Third, some mechanisms adopted in sampling algorithms
can severely lower the performance of distributed training. For
example, LADIES [40] requires layer-wise adaptive compute
and update of global sampling probability during training.
While the overhead of such update is tolerable in a single
worker, it becomes overwhelming in distributed scenario be-
cause of the frequent and heavy synchronization of probability
tensors among workers.

Based on the above analysis, in this paper we study the
graph sampling problem for efficient distributed GNN training.978-1-6654-8234-9/22/$31.00 ©2022 IEEE



The basic idea is to minimize the communication overhead of
each GNN training iteration without affecting the accuracy.
To this end, we propose DGS, a distributed graph sampling
framework that samples neighborhood information at the levels
of both graph nodes and node features while preserving the
final GNN model accuracy. DGS first constructs an explana-
tion graph which preserves the relationship between the local
graph and remote nodes to facilitate the explanation process. It
then designs an online explanation scheme that interprets the
importance of nodes and features leveraging the state-of-the-
art explanation technique [31] with minor system overhead.

We implement and evaluate DGS over 4 real-world datasets
with popular GNN models [7], [16], [24]. Our results demon-
strate that DGS can speed up distributed GNN training process
by 1.25×-4.01×, while preserving the final model accuracy
almost the same as that of full-batch training.

We summarize our contributions in this paper as follows:
• We analyze and identify the factors that determine the

communication overhead in distributed GNN training,
and illustrate the limitations of existing sampling algo-
rithms when applied in a distributed scenario.

• We propose a novel sampling framework (DGS) which
takes the locality of nodes in the cluster into consideration
and applies sampling at both node and feature levels.

• We implement DGS and validate its effectiveness with
extensive experiments. Experimental results demonstrate
the effectiveness of DGS: it achieves up to 1.25× speedup
over the state-of-the-art FastGCN and reduces the com-
munication cost by up to 28.3%, while preserving the
final accuracy almost the same as full-batch training.

II. BACKGROUND AND MOTIVATION

A. Graph Neural Networks (GNNs)

GNNs emerge as a family of neural networks that perform
representation learning: they take a graph as input and map
each node into a d-dimensional vector, a.k.a., an embedding.
The embeddings are then used as inputs for downstream
machine learning tasks, such as node classification, link pre-
diction, and graph classification [7], [16], [24].

The computation process of GNN at one layer is illustrated
in Figure 1. The GNN layer first aggregates the embeddings
of the neighbor nodes calculated from the previous GNN
layer, then applies classical NN operations such as matrix
multiplication or convolution upon the aggregated result, and
finally updates the embedding of that node. Formally, the
neighborhood aggregation and NN operations are expressed
as follows:

a(k)v = Aggregate(k)({h(k−1)u | u ∈ N (v)}) (1)

h(k)v = Update(k)(h(k−1)v , a(k)v ) (2)

where h(k)v is the embedding of node v at the k-th GNN layer,
a
(k)
v denotes the activation output of the aggregated results,

and N (v) represents the neighbors of v in the graph. For each
node v at layer k, Aggregate first outputs a(k)v by gathering the

Layer K Layer K+1

Aggregate
Function

… …

Neighbor
Aggregation

NN
Operations

Updated
Embeddings

Layer K output
of other nodes

Layer K-1
embeddings

Layer K
embeddings

Fig. 1: Computation process upon one node in GNN layer
K by first aggregating its neighbors’ embeddings, and then
applying NN operations for its layer K output embedding.

embeddings of its neighbors with an accumulation function,
and then Update computes the node’s new embedding from its
previous embedding h

(k−1)
v and aggregation result a(k)v . The

above operations iterate from layer 1 to K.

B. Sampling Algorithms

Sampling algorithms are originally designed for mini-batch
training to reduce the memory requirement [3], [7]. Mini-batch
training allows for a small memory footprint during training
and strikes a balance between small memory footprint and
fast model convergence [23]. For GNNs, however, the iterative
neighborhood aggregation tends to explode the GPU memory
during training. To alleviate the memory issue, sampling algo-
rithms are proposed to down-sample multi-hop neighborhood
features of each mini-batch. For example, GraphSAGE [7]
and VR-GCN [30] applies neighbor sampling upon each mini-
batch. FastGCN [3], AS-GCN [11], and LADIES [40] adopts
layer-wise sampling strategies which generate sampling deci-
sion layer-by-layer. ClusterGCN [4] and GraphSAINT [34] use
subgraph sampling to extract subgraphs as training samples.

C. Distributed GNN Training

As graphs are becoming too large to fit into a single device,
training tasks over them are usually processed in a distributed
manner, i.e., distributed GNN training (DGT).

Following the experience of distributed DNN training [14],
DGT typically applies data parallelism among workers to
parallelize the training process. In such paradigm, the input
graph is partitioned into subgraphs with classical partition
strategies [15], and the subgraphs are then sent to different
workers. When the training process starts, each worker simul-
taneously trains GNN over its assigned graph partition and
synchronizes model parameters at each iteration.

Due to the neighborhood aggregation introduced in §II-A,
communication between workers not only contains informa-
tion of conventional parameters/gradients, but also information
of neighbor embeddings for aggregation. From the view of a
worker in DGT, to compute all its nodes’ embeddings at layer
K, it requires all its neighbors’ embeddings at layer K-1,
which again requires their neighbors’ embeddings at layer K-
2 recursively until layer 1. The amount of data needed grows



exponentially with the number of GNN layers, resulting in
drastically increased communication volume and making DGT
a network-intensive workload [12], [23].

Several techniques [12], [13], [18], [23], [27] have been
proposed to alleviate the problem, among them the adoption of
sampling in distributed scenario is a more promising one [21].
The idea of down-sampling neighbors at each subgraph helps
decrease the communication volume across workers in DGT
with minor model accuracy degradation [21], [37], thus effec-
tively accelerating the global training process. As a matter of
fact, sampling techniques have already been widely adopted
in multiple distributed GNN systems [17], [37], [38].

Although the application of sampling to the distributed sce-
nario seems natural, our analysis shows that current sampling
algorithms are still far from communication-efficient for DGT.

D. Problems of Existing Sampling Algorithms

DGT Communication Cost Analysis. Given an input
graph, DGT system divides it into n subgraphs and distributes
them to workers for K-layer GNN training. The feature size
at each node is F , and N j

Gi denotes subgraph Gi’s jth-hop
neighbor nodeset. Following the iterative aggregation scheme
in Equation 1,we formalize the communication cost of worker
Wi as follows:

Comm(Wi) = (|
K⋃
j=1

N j
Gi − Gi|)× |F| (3)

Note that here we omit the communication cost caused by
model synchronization because the network traffic generated
by GNN models is trivial compared with the traffic generated
by iterative neighborhood aggregation [37].

By summing up the communication cost of all workers, we
obtain the total communication cost:

Commtotal =

n∑
i=1

Comm(Wi) =

n∑
i=1

nirmt × |F| (4)

where nirmt denotes the size of Gi’s K-hop neighborhood from
remote workers.

Based on Equation 4, we find out that the size of remote
neighbor nodes and the size of features are the root cause of
the high communication cost in DGT. Below we elaborate our
three observations that prevent existing sampling algorithms
from being communication-efficient.

Observation 1: Existing sampling algorithms overlook the
locality of the neighbor nodes in the cluster. All sampling
algorithms can be categorized as an optimization strategy that
decreases the number of neighbor nodes at each worker for
lower network traffic. These algorithms, however, consider all
neighbor nodes the same but overlook the different overhead of
accessing local and remote nodes. Such overlook may lead to
extra communication overhead caused by accessing the remote
nodes which contribute trivial to model convergence. There-
fore, the locality of neighbor nodes in the cluster indicates a
promising communication optimization opportunity.

Observation 2: Existing algorithms only sample data at the
coarse-grained node level rather than the fine-grained feature

0%
10%
20%

30%
40%
50%

Te
st

 A
cc

ur
ac

y

0

0.5

1.0

Iterations
0 500 1000 1500

(a) Time-to-accuracy result.

Fi
na

l A
cc

ur
ac

y

0.93

0.94

0.95

0.96

Loss Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 

< 0.5% accuracy loss

 
 

Tolerable 
Loss Ratio

(b) Final accuracy result.

Fig. 2: Impact of random feature loss on model convergence:
the 2-layer GraphSAGE converges to a tolerable final accuracy
(no more than 0.5% accuracy loss) within the same iterations
when the loss ratio is below 40%.

level. Our second observation originates from the second
factor in Equation 4, i.e., the feature size F . As all existing
algorithms sample data at node-level, we consider the question
of whether sampling data can be done at a finer granularity
(i.e., feature-level) with minor model accuracy compromise?
As the features in many popular graph datasets [7], [9] are
pre-processed and expressed as sparse vectors, feature-level
sampling may have no effect on the final accuracy. To verify
this property, we run an experiment that trains a 2-layer
GraphSAGE over Reddit [7], a popular graph dataset. We use
the classical sample strategy of GraphSAGE, i.e., 25 for the
first layer and 10 for the second layer. Note that as the average
node degree of Reddit is 984, our setting is an aggressive
sampling strategy at node-level. During training, we randomly
lose some values of the sampled nodes’ features (i.e., set those
values to 0) with varying loss probabilities.

The result is shown in Figure 2, from which we can see that
even after we apply an aggressive sampling strategy at node-
level, as much as about 20% random loss of features has little
impact on the model performance: the model can still achieve
the same final accuracy within the same iterations. Besides,
when the ratio is below 30%, the model can converge to
approximately the same final accuracy with no more than 0.5%
accuracy loss, within the same iterations. Therefore, the idea
of sampling data at feature-level also indicates a promising
optimization opportunity for DGT.

Note that in the above experiment we lose the features
randomly without any intelligent selection. If we identify and
select those features that may provide major contributions
to model convergence, we can filter out more “unimportant”
features from neighboring nodes to achieve much less com-
munication traffic while still preserving the model accuracy.

Observation 3: Some mechanisms adopted in existing algo-
rithms may degrade the training performance. Most sampling
algorithms are designed by AI researchers with the assumption
of running algorithms in a single host. However, when the sce-
nario goes distributedly, some mechanisms may become a poor
fit. For example, LADIES [40] requires layer-wise adaptive
computation and update upon the global sampling probability
during training. While the update overhead is trivial in a single
worker, it becomes severe in distributed scenario due to the
heavy synchronization of probability tensor among workers.
Our experimental results (§V-A) also demonstrate that such



overhead caused by synchronization can severely degrade the
overall performance (up to 2.94× worse performance).

E. Opportunity and Challenges

Opportunity: The above three observations inspire us to
design a new sampling algorithm for DGT which targets re-
ducing the less important communication cost for each worker.
That is, for a given subgraph, we need to identify a subset of
remote nodes and features from its multi-hop neighborhood
that contributes little to prediction, while keeping minimizing
the synchronization frequency as much as possible in mind.

A recent study, GNNExplainer [31], is a natural fit for our
problem. Its goal is to identify a subgraph Gs from a complete
graph Gc and the associated features Xs from Xc that are
important for the induced GNN’s prediction ŷ. To achieve this,
the model formulates the importance of node and feature by
quantifying the change in the probability of prediction ŷ =
Φ(Gc, Xc). This metric, known as mutual information (MI),
is defined as:

maxGsMI(Y, (Gs, Xs)) = H(Y )−H(Y |G = Gs, X = Xs)
(5)

where H(Y ) is the entropy term of the prediction. The above
equation can be explained as: if masking one node from Gc

strongly decreases the probability of prediction ŷ, MI will
become large, indicating that the removed node is important
for the prediction. The feature mask can be explained in a
similar way. The correctness of this model has been thoroughly
verified in [31].

Though the explanation technique can help identify the
important nodes and features for training, unfortunately, it is
infeasible to run the explanation technique directly for DGT,
mainly because of the following two challenges:

Challenge 1: The original explanation is not designed
for a subgraph. We seek to find out a technique that can
help us interpret the importance of remote nodes and sub-
features upon a local subgraph, so that we can fetch the
more important information and reduce the “unimportant”
communication in DGT. However, the entity for which the
explanation technique works is one single node in the graph
or all nodes that have the same labels, rather than all nodes in
the subgraph that are attached with different labels as expected.
Directly using such technique is not feasible for our problem.
A proper transformation of the subgraph is needed such that
the transformed graph both preserves the original subgraph
structure information and can be applied with explanation.

Challenge 2: The original explanation training process
is offline. The original explanation technique operates offline:
by inputting a trained GNN model and the prediction upon
the node to be explained, the explanation process trains an
explanation module iteratively and finally outputs the im-
portance of the nodes and features. Clearly, DGT requires
online explanation during training to guide its sample strategy.
Further, even with online explanation the training process upon
the explanation module may contend resources and hence
affect the original GNN training performance. Therefore, it

GPU
CPU

Partitioned Graph

Preprocessing stage Explanation-guided training stage

❶ Construct
explanation graph

GNN training on the GPU while hooking node
predictions required by explanation process

K-Hop
Sampler

Explanation
Module

❸ Generate and
transmit mini-batch
data per iteration ❹ Update latest

training model snapshot
in explanation module

per 𝑇#$ iterations

❺ Train and update
SN and SF

❻ Update sampling
strategy

❷ Transmit explanation
graph as input

Explanation
Graph

§3.2
§3.2

§3.3

§3.3

§3.3

§3.3

Fig. 3: DGS overview. DGS covers two stages (preprocessing
and explanation-guided training stages) and has six operations
(¶-») for training.

is necessary to parallelize the explanation process with GNN
training while incurring minimal system overhead. Besides, the
online explanation may require tensor synchronization among
workers. As mentioned in observation 3, we should reduce
such heavy synchronization as much as possible.

III. DESIGN

A. DGS Overview

DGS consists of two stages, namely preprocessing stage and
explanation-guided training stage. Figure 3 shows an overview
of DGS from the perspective of a worker.

(1) Preprocessing stage: When a job is submitted, a DGS
worker manages to construct an explanation graph (¶) based
on its assigned partitioned graph and generates the explanation
module in CPU. The generated explanation graph is then
transmitted into the explanation module for the latter online
explanation (·). Besides, the worker is also responsible for
some conventional DGT preparations such as communication
setup and model construction.

(2) Explanation-guided training stage: During training, the
k-hop sampler initiates with a pre-defined neighbor sam-
pling strategy (e.g., random sampling [7] or importance sam-
pling [3]). The sampler requests and gathers sampled node
features. It then attaches them to the generated computation
graph, and transmits all required minibatch data to GPU for
GNN training in each iteration (¸). After every Tex iterations,
DGS updates the GNN model duplicated in the explanation
module using the latest snapshot of the training model, and
infers the prediction of all nodes within the subgraph based
on the model (¹). Note that we do not directly infer the
predictions in GPU and then transfer out to CPU, as the size of
GNN models is far smaller than the subgraph’s node features,
thereby reducing the transfer between CPU and GPU. Besides,
the inference process in CPU is quick enough to satisfy our
expectations. The explanation module in CPU then trains two
masks, i.e., sampled node mask (SN) and sampled feature
mask (SF), given the node predictions and the loss function
it predefined (in order to maximize MI between nodes) (º).
After the explanation module training is finished, SN and SF



Simple aggregation or Pooled network
Global Pooling

Graph Clustering Hierarchical Pooling

Classical
Graph Partitioning

Simple
aggregation

Explanation Graph
Construction

Multi-level
Pooled network

Original Graph

Fig. 4: Graph pooling and explanation graph construction.
Explanation graph construction is based on hierarchical pool-
ing but leverages classical graph partitioning and simplified
aggregation for efficiency.

are transmitted to the k-hop sampler and interpreted to update
sampling strategy (»). The above operations repeat until the
end of the training process.

B. Explanation Graph

As described in §II-E, current explanation technique [31]
only supports explanation upon one node or a set of nodes that
have the same labels, rather than all nodes in the subgraph
as expected. Therefore, we should construct an explanation
graph based on the given partitioned graph such that it can
preserve the original graph structure information, especially
the relationship between the local graph and remote nodes. We
expect the explanation graph to have the following properties:
• Expressive graph structure: The explanation graph should

be expressive to represent the relationship between local
subgraph and remote nodes.

• Fast embedding interpretation: The operation for inter-
preting the predictions from the original graph toward
the explanation graph should be fast. This is because
such interpretation should be operated frequently (per Tex
iterations), hence a heavy interpretation may become a
severe burden and degrade the performance.

We leverage graph pooling techniques [29], [32] and knowl-
edge of graph partitioning [15] to achieve the above properties.
Graph pooling is a popular technique used in GNN tasks,
especially in graph classification tasks [32], to predict the label
associated with the entire graph. It uses the generated node
embeddings to encode the coarse-grained graph structure with
a pre-defined differentiable pooling approach. As shown in
Figure 4, there are two conventional types of pooling manners,
namely, (i) global pooling all the node embeddings together,
e.g., using a simple summation/average or neural network that
operates over the whole graph; and (ii) hierarchical pooling
node embeddings to a set of clusters, with each level training
a dedicated pooling neural network.

The hierarchical approach usually demonstrates better ac-
curacy improvement [32], but at the cost of complex cluster
assignment and sophisticated neural network layer. Leverag-
ing graph partitioning, we adopt hierarchical pooling in an
efficient way. We utilize the principle of balanced edge-cut
for graph partitioning to cluster nodes, and simply employ the
average pooling approach to encode the subgraph with local
nodes’ embeddings. Since classical partition algorithms such
as METIS [15] are already capable of capturing community

structure from graphs, we explicitly utilize the partition result
so as not to introduce extra clustering overhead. Specifically,
we identify the node type (local nodes and remote nodes),
shrink all local nodes (i.e., the community recognized by
partition algorithm) into one subgraph node vG, and construct
links between it and all remote nodes. Besides, we add a
self-loop edge toward vG to guarantee that the node can help
explain itself during explanation. While the average pooling
operation upon embeddings is simple, recent works [29]
and our evaluation results (see §V-B) demonstrate that the
approach is sufficient for our expectation.

C. Online Explanation

In this subsection, we introduce the online explanation
which helps us process the offline explanation technique in an
online mode. We first describe the module plug-in designed
to integrate the explanation module in DGS framework, and
then elaborate the online explanation process in detail.

Module Plug-in. We directly employ the explanation mod-
ule presented in [31], and use the output masks, i.e., node
mask (SN) and feature mask (SF), to update our sampling
strategy. As introduced in §II-E, these masks represent the
importance of nodes and features upon the subgraph node vG
induced in the explanation graph. DGS interprets SN and SF
into two probability tensors, SN (sampled nodes) and SF
(sampled features), based on the node mapping between the
original graph and explanation graph. The value of each tensor
in one dimension ranges between 0 and 1 and represents
the importance of a remote node or a feature dimension.
Thereafter, DGS is able to identify the important remote nodes
and features leveraging these tensors, and sample them with
built-in GNN system APIs and user-defined sampling values.
As it may incur bias because we only sample remote nodes
but remain all local nodes for GNN computation, we add
ε (empirically ranging from 0 to 1/10 of the total sampled
number) as a deviation towards the number of local sampled
nodes and remote sampled nodes while remaining the number
of total sampled nodes unchanged.

Online Explanation. The online explanation algorithm of
DGS is described in Algorithm 1. During training, the main
training process operates in GPU, and the explanation process
operates in CPU to avoid GPU contention.

In the training process, the sampler first performs sampling
to generate a computation graph of each mini-batch at the
beginning of every iteration. Initially, it employs a pre-defined
classical neighbor sampling strategy (line 5-6) which operates
only in the first Tex iterations, and switches to our distributed
sampling if SF and SN are set by explanation process (line 7-
8). During distributed sampling, it fetches top-Nf sub-features
with respect to SF , from the sampled nodeset regarding the
probability tensor SN with deviation ε, and generates the
sampled minibatch computation graph. DGS then transmits the
computation graph from CPU to GPU to instantiate distributed
GNN training process (line 9-12). The above operations iterate
over time.



In the explanation process, the explanation module pulls the
latest model from GPU every Tex iterations, and updates its
internal GNN model to infer node predictions (line 14). It then
interprets the predictions and features based on the embedding
interpretation described in §III-B (line 15-16). Note that the
pulled model is the latest model that generates a minimal
loss, indicating a more correct node and feature masks to be
explained. To avoid GPU contention with the main training
process, the explanation module FE is trained in CPU and
generates explanation loss epoch by epoch (line 17-21). If
the loss is below a pre-defined threshold L, the explanation
process terminates and updates SN and SF to guide future
distributed sampling (line 22). Otherwise, DGS updates FE

and wte
E , and loops the explanation training process until

the end of TE epochs. Eventually, the explanation process
terminates when the training process finishes.

IV. IMPLEMENTATION

We implement DGS on top of DGL [37], a popular open-
source framework for DGT. We use DGL as a distributed
framework for inter-worker message exchange and a graph
propagation engine for graph-related operations, and use Py-
Torch [20] for neural network execution and model synchro-
nization.

We extend DGL in multiple ways to support DGS design.
First, we adopt DGL’s probability-based sampling API and
reuse its k-hop graph sampling service to achieve our sampling
framework. We assign an appropriate tensor, i.e., the tensor
interpreted from SN (§III-C) to the service such that we can
interpret the explanation toward DGS sampling strategy, which
can then be executed in all corresponding workers.

Second, we add the feature selection function in DGL
to support fine-grained feature sampling. We extend DGL’s
KVStore push/pull handler to support extracting the sub-
tensors given the dimension and selected index in the pull
requests. With this extension, the extracted subtensors can be
replied via RPC library. We also extend the feature selection
function in DGL’s functional components, e.g., DistGraph
and DistTensor, for compatibility.

For system optimization, we use sysv_ipc [2] (a high-
performance IPC library) to exchange the updated model and
masks between processes. To minimize the IPC overhead, we
use shared memory among processes to avoid extra memory
copy. We pre-register shared memory to be used for training,
and load/store updated objects when necessary during training.

V. EVALUATION

We evaluate DGS over several real-world graphs and com-
pare it with state-of-the-art sampling algorithms. Overall, our
results show that:
• DGS accelerates the training process by 1.25×-4.01×,

and reduces the communication cost by up to 28.3%. The
benefits DGS brings up increase with cluster size.

• DGS achieves almost the same final accuracy as full-
batch training and without accuracy loss.

Algorithm 1: Online explanation algorithm (a per-
partition view)
Input:
partition id i, subgraph partition Gi, explanation graph
Ei, number of GNN layer K, feature dimension f ,
node feature Xi, node predictions hi, node sampling
size Nn, node sampling deviation ε, feature sampling
rate Nf , sampling update period Tex, explanation
epoch TE , loss threshold L, explanation module FE ,
initial model w0

Output:
trained model wT

1 begin
2 for t = 1...T do
3 do in parallel

// Training process
4 for each batch do
5 if not set SN or SF then
6 Use conventional sampling strategy;

7 else
8 Fetch sampled nodeset with top-Nf

sub-features according to SN , ε,
and SF from remote workers;

9 Construct K-layer computation graph;
10 Process GNN computation; . in GPU
11 Process AllReduce to share gradients;
12 Update wt;

// Explanation process
13 for every Tex batches do
14 Update latest model wt as w0

E ; . in
CPU

15 Inference node predictions hGi and
interpret to hEi in Ei;

16 Update XEi in Ei;
17 for te = 1...TE do
18 loss =

FE(Ei, XEi , hEi , pn, pf , w
te
E );

19 if loss ≤ L then
20 break

21 Update FE , w
te
E ;

22 Update SN and SF ;

• DGS demonstrates its ability to explore complex GNN
models against other sampling algorithms in DGT.

Experimental Setup: We evaluate DGS upon a GPU cluster
with 4 physical servers, each equipped with 2 Tesla V100,
40 CPU cores (2.4GHz Intel Xeon Gold 5115), 128 GB
RAM, and 2 Mellanox ConnectX5 NICs. The servers are
interconnected via 4 Mellanox SN2100 switches running Onyx
3.7.1134 operating system. We virtualize an 8-node cluster
by separating two docker containers at each server, where



Reddit Ogbn- Amazon Ogbn-
products papers

Nodes 232.9K 2.45M 1.60M 111.1M
Edges 114.6M 61.86M 132.2M 1.616B

Features 602 100 200 128
Classes 41 47 107 172

Avg. Deg 984.0 50.5 82.7 29.1

TABLE I: Graph datasets used in our evaluation.

each container is equipped with one dedicated GPU, 20 CPU
cores, 64GB RAM, and 10Gbps virtual Ethernet interface1.
All servers run 64-bit Ubuntu 18.04 with CUDA library v11.0,
DGL v0.6.1, and PyTorch v1.10.1.

Baseline: We choose several state-of-the-art sampling algo-
rithms for comparison. Random sampling [7] performs random
selection upon neighbors, which is the default sampling algo-
rithm adopted in DGL. FastGCN [3] interprets graph convolu-
tions as integral transforms and uses Monte Carlo approaches
for importance sampling. LADIES [40] adopts a layer-wise
sampling algorithm which considers the previously sampled
nodes for calculating layer-dependent sampling probability.
ClusterGCN [4] exploits the graph clustering structure and
allows each worker to independently train GNN model upon
its assigned subgraph.

Note that except Random, all other works are open-sourced
for single machine only234. Therefore, we modify the three
algorithms to process distributedly based on the example code
of DGL5. Such modification only helps process the algorithm
in a distributed manner and has no effect on the final accuracy.
As ClusterGCN does not require feature exchange between
workers and hence always achieves linear throughput, we only
compare with it in terms of accuracy (§V-B).

Datasets: Table I lists four real-world graph datasets that we
used in our evaluation, including Reddit [7], a dense online
discussion forum dataset, Ogbn-products [9], an undirected
product co-purchase graph, Amazon [34], a multi-label ama-
zon co-purchasing network, and Ogbn-papers [9], a billion-
edge directed citation graph. We run multi-class classification
tasks on Reddit, Ogbn-products, and Ogbn-papers, and binary
classification tasks on Amazon.

Models & Metrics: We evaluate DGS with three repre-
sentative models: GCN (Graph Convolutional Network) [16],
GraphSAGE [7], and GAT (Graph Attention Network) [24].
We use the default model hyper-parameters as [7], i.e., 2 layers
and 16 hidden dimension per layer.

Parameters Setup. We set the batch size to 1024 and
the sampling strategy with fanout {64, 64} (adopted in [40])
in all experiments. For DGS-related parameters, we set the
node sampling size Nn at each layer the same to {64, 64},
the node sampling deviation ε to 0.1, the feature sampling
rate Nf to 0.85, the sampling update period Tex to 30, the

1We use SR-IOV to separate the resource of physical NIC. [5] shows that
it achieves nearly the same performance as the non-virtualized environments.

2https://github.com/acbull/LADIES/blob/master/pytorch ladies.py#L95
3https://github.com/acbull/LADIES/blob/master/pytorch ladies.py#L127
4https://github.com/dmlc/dgl/tree/master/examples/pytorch/cluster gcn
5https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage

explanation epoch TE to 50, and the loss threshold L to 0.01
by default. The above settings ensure that the explanation
module converges in our experiments.

A. Overall Performance

Due to the limited memory in each node (64 GB), we
are not able to run large graphs like Ogbn-papers in small-
scale clusters. Hence, we first present the scalability of each
sampling algorithm over other 3 datasets. Then, we show the
training performance over Ogbn-papers in an 8-node cluster.
Besides, we also show the communication cost per epoch.

Scalability. The scalability results are shown in Figure 5,
6, and 7. We find that DGS outperforms all baselines in all
settings with the speedup of 1.10×-3.24×, and the benefit
increases with the cluster size. In general, LADIES performs
worst among the three baselines due to the frequent probability
synchronization of LADIES, as stated in II-D. Specifically,
LADIES performs as much as 3.24× worse than DGS over
Amazon, as the number of synchronizations increases with
large graphs. Random and FastGCN do not perform such syn-
chronization during training: Random just samples nodes uni-
formly at random; FastGCN pre-computes and synchronizes
the probability tensor before training, and then remains the
value unchanged throughout training. Hence, the two methods
perform better and achieve comparable performance in all ex-
periments. However, we still see that they perform up to 1.25×
worse performance than DGS because of their communication-
inefficiency: without the locality awareness of neighbor nodes
and adopting coarse-grained node-level sampling only, the
two methods bring up extra and redundant communication,
which degrades the global training throughput. For DGS,
though it needs to synchronize the probability tensor when
necessary, its update period is much coarser: one-time update
every Tex = 30 iterations versus the layer-size× updates
per iteration in LADIES. Overall, with the communication-
efficient mechanisms adopted in DGS, specifically, both node-
and feature-sampling, and the coarse-grained synchronization
mechanisms, DGS gains more benefit for training than all
other algorithms. We expect that DGS can benefit the training
process with more workers involved in.

Ogbn-papers. The training performance is shown in Ta-
ble II. Overall, DGS achieves 1.07×-4.02× speedup in 3 GNN
models over Ogbn-papers. We find that DGS outperforms all
baselines with the speedup of 1.07×-4.02×. DGS reduces
more redundant communication costs than other algorithms
with the help of the communication-efficient mechanisms. We
expect that DGS can benefit training over even larger graphs.

Communication Cost. We also present the communication
cost during training. We log the counter of the NIC to
obtain the communication cost/epoch result when training
GraphSAGE over three datasets in an 8-node cluster. We also
deep-dive the node-sampling (NS-only) and feature-sampling
(FS-only) mechanisms.

The results are shown in Table III. DGS reduces the
communication cost by 24.05%, 24.55%, 28.33%, and 24.89%



LADIES
Random
FastGCN
DGS

x1000
Th

ro
ug

hp
ut

 (n
od

es
/s

)

0

5

10

15

# of workers
2 4 6 8

(a) GraphSAGE

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

# of workers
2 4 6 8

(b) GCN

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

# of workers
2 4 6 8

(c) GAT
Fig. 5: Throughput comparison with existing sampling-based methods in 3 GNN models over Reddit.

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

20

# of workers
2 4 6 8

(a) GraphSAGE

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

20

# of workers
2 4 6 8

(b) GCN

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

# of workers
2 4 6 8

(c) GAT
Fig. 6: Throughput comparison with existing sampling-based methods in 3 GNN models over Ogbn-products.

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

20

25

# of workers
2 4 6 8

(a) GraphSAGE

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

10

20

# of workers
2 4 6 8

(b) GCN

LADIES
Random
FastGCN
DGS

x1000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

5

10

15

20

# of workers
2 4 6 8

(c) GAT
Fig. 7: Throughput comparison with existing sampling-based methods in 3 GNN models over Amazon.

LADIES Random FastGCN DGS Speedup

GraphSAGE 10.43 31.42 36.72 41.57 1.13-3.99×
GCN 10.46 30.71 39.19 42.00 1.07-4.02×
GAT 9.580 28.38 34.76 38.09 1.09-3.98×

TABLE II: Overall throughput (Knodes/s) when training over
Ogbn-papers.

for Reddit, Ogbn-products, Amazon, and Ogbn-papers, re-
spectively, which demonstrates the communication efficiency
of DGS. We also show the communication cost with NS-
only and FS-only. As expected, the result shows that node-
sampling is more useful for communication reduction, as node-
sampling may eliminate the whole node feature transmission
while feature-sampling only reduces a subset (15%) of it.

B. Final Accuracy

Next we present the final accuracy. We compare DGS with
baselines, including ClusterGCN, in terms of final accuracy
when training GraphSAGE over 4 datasets. We add each
baseline with a random feature sampling rate 0.85, noted as
+RF, to show the performance of our feature-level sampling.
For DGS, we show the results by varying the number of

Method Reddit Ogbn-products Amazon Ogbn-papers

Sampling-based 11.030 15.168 24.896 8.302
NS-only 9.312 12.962 20.390 7.057
FS-only 10.026 14.119 22.194 7.809

DGS 8.377 11.445 17.843 6.236

TABLE III: Communication cost (GB) per epoch. NS-only
represents DGS adopts node-sampling only. FS-only repre-
sents DGS adopts feature-sampling only. Note that the com-
munication cost of Ogbn-papers is small because in fact only
a subset of Ogbn-papers is involved in training.

partitions6 and Tex as the two parameters may affect the final
accuracy in DGT. We also add the full-batch training (mini-
batch without sampling) accuracies as our target accuracies.

The results are shown in Table IV. The full-batch accuracies
are: 95.17% in Reddit, 70.08% in Ogbn-products 7, 62.62% in
Amazon, and 43.64% in Ogbn-papers. As expected, LADIES
achieves the highest accuracies among baselines in almost all
datasets due to its adaptive layer-wise importance sampling.
FastGCN has lower accuracies than LADIES. ClusterGCN

6For Ogbn-papers, we only train it over 8-node due to memory constraint.
7The accuracy is different from the result reported in [1] because we use

2-layer GraphSAGE and they use 3-layer.



Method Reddit Ogbn-products Amazon Ogbn-papers

Full-Batch 95.17 70.08 62.62 43.64
Random 93.97 69.07 61.16 41.24

Random+RF 93.69 68.02 58.06 39.41
FastGCN 95.00 68.30 61.28 41.41

FastGCN+RF 94.91 67.73 58.76 39.04
LADIES 95.05 69.37 62.28 41.62

LADIES+RF 94.70 68.77 59.24 40.86
ClusterGCN 92.49 67.86 62.35 26.19

ClusterGCN+RF 92.12 67.48 57.37 24.72

DGS

# of workers 2 4 6 8 2 4 6 8 2 4 6 8 8

Tex = 30 94.57 94.80 95.02 95.03 69.88 69.23 69.51 69.77 62.36 62.33 62.38 62.35 41.86
Tex = 60 94.36 95.09 95.09 95.05 69.01 69.02 69.03 69.02 62.41 62.43 62.42 62.44 40.72
Tex = 90 94.80 95.06 95.00 94.95 68.98 68.95 69.03 68.98 62.30 62.28 62.20 62.34 40.77

TABLE IV: Comparison of test accuracy (%) on 4 datasets, where DGS under different numbers of partitions are shown. The
accuracies of full-batch and the highest accuracy of DGS in terms of # of workers are in bold.

Random
FastGCN
DGS

Sp
ee
du
p

0

1

2

Reddit Products Amazon Papers

(a) Chunk-based partition

Random
FastGCN
DGS

Sp
ee
du
p

0

1

2

Reddit Products Amazon Papers

(b) Random partition

Fig. 8: Impact of Partitioning Strategy.
behaves differently in different datasets: in Amazon it achieves
as much as 62.35% comparable accuracy as LADIES, but
92.49% and 26.19% low accuracy in Reddit and Ogbn-papers.
It is because ClusterGCN depends heavily on the graph
structure and the partition strategy may not be optimal. The
accuracies of Random are the worst as it does not recognize the
importance of each node. Besides, all baselines with RF face
accuracy loss, because the random feature sampling cannot
identify the important features during training and hence may
sample the important ones and degrade the accuracy. DGS
achieves similar accuracies as full-batch. As the table shows,
DGS has no preference regarding the number of workers. This
is because DGS adopts METIS partition which shows great
ability in capturing graph community information regardless of
the number of partitions. Besides, we find that DGS achieves
the highest accuracy in most cases when Tex is moderately
60, rather than what we expected Tex = 30. We assume it
is because the frequency of strategy may also affect the final
accuracy, and a frequent update may adversely prevent the
model from converging. Moreover, with infrequent updates
upon sampling (Tex = 90), DGS achieves lower accuracy
compared to others, but still outperforms most baselines.

C. Impact of GNN Parameters

Next we present the effect of several GNN parameters,
i.e., partitioning strategy, feature size, and number of layers,
to demonstrate the ability of DGS to explore complex GNN
models in DGT. By default, we conduct all experiments when
training GraphSAGE over Reddit in an 8-node cluster.

Impact of Partitioning Strategy. We first evaluate the
effect of partitioning strategy. We adopt chunk-based strat-
egy [39] and random strategy over 4 datasets and compare

LADIES
Random
FastGCN
DGS

Ep
oc

h 
Ti

m
e 

(s
)

10

20

30

40

# of Input Features
32 64 128 256 512 1024

(a) DGS’s benefit increases as
feature size increases.

LADIES
Random
FastGCN
DGS

Ep
oc

h 
Ti

m
e 

(s
)

0

50

100

150

# of Layers
2 3 4

(b) DGS’s benefit increases as the
number of layer increases.

Fig. 9: Impact of feature size and number of layers.

DGS with baselines. Note that we omit LADIES here because
it performs far worse than others.

Figure 8 shows the throughput results (normalized by the
throughputs of Random sampling). We see that DGS always
achieves the best among all, with the average speedup of
1.44× and 1.45× in chunk-based and random settings, respec-
tively. The results demonstrate that DGS is able to accelerate
DGT via reducing communication, regardless of the choice of
partition strategies.

Impact of Input Features. Next we evaluate the effect of
input feature size. We vary the input features of Reddit from
32 to 1024-dimension and compare DGS with baselines. We
use epoch time as the metric.

Figure 9a shows the throughput results. We see that DGS
outperforms baselines in all settings, with the speedup ranging
from 2.2% to 54.89%. Especially when feature size reaches
1024, DGS achieves 11.6%-51.03%× throughput speedup. We
remind the readers that the communication cost is proportional
to the size of input features, hence the communication ratio
increases and shifts the training bottleneck from computation
to communication. Without the awareness of nodes’ locality
in Random, FastGCN, and LADIES, the extra communication
introduced by “unimportant” nodes from remote workers can
result in significant communication overhead. DGS, however,
takes into account the locality of nodes and reduces commu-
nication leveraging both node- and feature-level sampling.

Impact of Layers. We also evaluate the effect of the number
of GNN layers. We create variants of GraphSAGE with 2, 3,
and 4 layers and reuse the sampling strategy at each layer, i.e.,
sample 64 nodes per layer. We use epoch time as the metric.



Fi
na

l A
cc

ur
ac

y

0.93

0.94

0.95

0.96

Impact of Nf (%)
30405060708090100

(a) Using a lower Nf may hurt
the final accuracy.

Fi
na

l A
cc

ur
ac

y

0.93

0.94

0.95

0.96

Impact of ε
0 0.02 0.04 0.06 0.08 0.10

(b) Using a varied ε has little
effect on the final accuracy.

Fig. 10: Sensitivity analysis of DGS parameters.

Method CPU Util. GPU Util. Memory

with OE 1380.2% 3337MB 20.4GB
without OE 1218.1% 3267MB 18.4GB

TABLE V: Resource Utilization of Online Explanation.
Figure 9b shows the throughput results. Compared to the

increase of input features, the increase of layers affects GNN
training more severely. It is because the increase of layers
affects not only the communication volume among workers for
more hop neighbor nodes’ features, but also the computation
workload of GNN, which ultimately limit the exploration
for more complex but powerful GNN models. While DGS
only optimizes the communication part, it achieves the lowest
epoch time in all settings, with the speedup of 35.5% -56.8%
in 4-layer experiments. Specifically, the epoch time of DGS
increases gracefully compared to other baselines, indicating
that DGS is capable of facilitating the exploration of deeper
GNN model.

D. Sensitivity Analysis

We evaluate parameters of DGS, Nf and ε in terms of
accuracy. We vary the value of Nf from 100% to 30%, the
value of ε from 0 to 1/10, in GraphSAGE training over Reddit.

Impact of feature sampling rate Nf on accuracy. Fig-
ure 10a shows the results of Nf . We find that Nf has no
effect in accuracy from 100% to 70%, but starts to degrade
the accuracy starting from 60% (from 95.17% to 94.69%
and lower). Such phenomenon echos our motivation results
in §II-D: the graph data is sparse and has various redundant
information (30% or more information can be reduced without
hurting accuracy).

Impact of node sampling deviation ε on throughput.
Figure 10b shows the results of ε. We find that in general, ε has
no effect on accuracy from 0 to 1/10. This is because METIS
partition results in a minimal relationship of local subgraph
with remote nodes. Hence the bias which may occur in DGS
that prefer local nodes to remote nodes has no effect upon the
final accuracy.

E. Resource Utilization of Online Explanation

Finally, we measure several resource utilizations of DGS
when training with and without online explanation (OE) with
GraphSAGE over Reddit. Note that we set Tex to a high
value, i.e., 2000, such that the explanation process will not
be triggered during the epoch for the w/o explanation case.

As shown in Table V, the CPU utilization and memory
consumption with OE are 162.1% and 10.9% higher than those

without OE, while the GPU utilization almost remains the
same. This is because the online explanation processes entirely
in CPU and does not consume GPU resources.

VI. RELATED WORK

GNN Framework. Various works have emerged to im-
prove GNN training. For full-graph training, NeuGraph [18]
and ROC [13] process full-graph embeddings synchronization
layer-by-layer. As they do not use sampling during training,
they may suffer from significant device memory constraints
when performing large graph training. For mini-batch training,
various frameworks [6], [12], [17], [26], [35], [37], [38] have
been extensively used either in academia or industry. Note
that DGS can benefit all mini-batch training frameworks by
reducing the communication cost.

GNN Training Optimization. Several GNN training opti-
mizations have emerged in recent years. GNNAdvisor [27]
explores GNN input properties and proposes optimizations
such as workload management and GPU memory customiza-
tions. Marius [19] optimizes the data movement during train-
ing with partition caching and buffer-aware data orderings.
CAGNET [23] proposes distributed-memory parallel GNN
training algorithms and reduces the communication costs by
dividing the feature vectors into small sub-vectors. BNS-
GCN [25] explores partition-parallelism and applies a random
boundary sampling strategy for distributed GNN training.
However, it applies sampling randomly at node-level, but DGS
applies sampling with explanation guidance at fine-grained
feature-level. Dorylus [22] brings serverless techniques to
GNN training. It breaks down a single training iteration into 4
stages and pipelines each partition based on the workflow of
each stage. The above optimizations are orthogonal to DGS.

VII. CONCLUSION

This paper proposes DGS, a communication-efficient graph
sampling framework for distributed GNN training. Its key idea
is to reduce network communication cost by sampling neigh-
borhood information based on the locality of the neighbor
nodes in the cluster, and sampling data at the levels of not
only graph nodes but also node features. DGS constructs an
explanation graph that preserves the relationship between the
local graph and remote nodes, and leverages the recently-
proposed model explanation technique to design an online
explanation scheme that interprets the importance of nodes and
features. Our evaluation results show that DGS outperforms
existing state-of-the-art sampling algorithms by up to 1.25×,
and reduces the communication cost by up to 28.3% while
preserving the final accuracy.

ACKNOWLEDGEMENTS

This work is supported in part by the Key-Area Re-
search and Development Program of Guangdong Province
(2021B0101400001), the Hong Kong RGC TRS T41-
603/20-R, GRF-16215119, GRF-16213621, the NSFC Grant
62062005, the NSFC Grant 61872376, and the Turing AI
Computing Cloud (TACC) [28].



REFERENCES

[1] OGB Leaderboards. https://ogb.stanford.edu/docs/leader nodeprop/,
2021.

[2] System V IPC for Python. https://semanchuk.com/philip/sysv ipc, 2021.
[3] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with

graph convolutional networks via importance sampling. arXiv preprint
arXiv:1801.10247, 2018.

[4] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and
Cho-Jui Hsieh. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery;
Data Mining, KDD ’19, page 257–266, New York, NY, USA, 2019.
Association for Computing Machinery.

[5] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian,
and Haibing Guan. High performance network virtualization with sr-
iov. Journal of Parallel and Distributed Computing, 72(11):1471–1480,
2012.

[6] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in neural information processing
systems, pages 1024–1034, 2017.

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-
Seng Chua. Neural collaborative filtering. In Proceedings of the 26th
international conference on world wide web, pages 173–182, 2017.

[9] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu
Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

[10] Xia Hu, Lei Tang, Jiliang Tang, and Huan Liu. Exploiting social relations
for sentiment analysis in microblogging. In Proceedings of the sixth
ACM international conference on Web search and data mining, pages
537–546, 2013.

[11] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive
sampling towards fast graph representation learning. arXiv preprint
arXiv:1809.05343, 2018.

[12] Anand Jayarajan, Jinliang Wei, Garth A. Gibson, Alexandra Fedorova,
and Gennady Pekhimenko. Priority-based parameter propagation for
distributed dnn training. In Proceedings of Systems and Machine
Learning (SysML), 2019.

[13] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken.
Improving the accuracy, scalability, and performance of graph neural
networks with roc. Proceedings of Machine Learning and Systems
(MLSys), pages 187–198, 2020.

[14] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. A unified architecture for accelerating distributed {DNN}
training in heterogeneous gpu/cpu clusters. In 14th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 20),
pages 463–479, 2020.

[15] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[17] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu.
Pagraph: Scaling gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC ’20, page 401–415, New York, NY, USA, 2020.
Association for Computing Machinery.

[18] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. Neugraph: parallel deep neural network computa-
tion on large graphs. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 443–458, 2019.

[19] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and
Shivaram Venkataraman. Marius: Learning massive graph embeddings
on a single machine. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, pages
533–549, 2021.

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[21] Marco Serafini. Scalable graph neural network training: The case for
sampling. SIGOPS Oper. Syst. Rev., 55(1):68–76, June 2021.

[22] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu,
Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, et al.
Dorylus: affordable, scalable, and accurate gnn training with distributed
cpu servers and serverless threads. In 15th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 21), pages
495–514, 2021.

[23] Alok Tripathy, Katherine Yelick, and Ayd n Buluç. Reducing com-
munication in graph neural network training. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’20. IEEE Press, 2020.

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[25] Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. Bns-
gcn: Efficient full-graph training of graph convolutional networks with
partition-parallelism and random boundary node sampling. Proceedings
of Machine Learning and Systems, 4, 2022.

[26] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library:
A graph-centric, highly-performant package for graph neural networks,
2020.

[27] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan
Xie, and Yufei Ding. Gnnadvisor: An adaptive and efficient runtime
system for {GNN} acceleration on gpus. In 15th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 21), pages
515–531, 2021.

[28] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao,
Decang Sun, Chaoliang Zeng, and Kai Chen. Tacc: A full-stack cloud
computing infrastructure for machine learning tasks. arXiv preprint
arXiv:2110.01556, 2021.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks?, 2019.

[30] Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. A
vectorized relational graph convolutional network for multi-relational
network alignment. In IJCAI, pages 4135–4141, 2019.

[31] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. Gnnexplainer: Generating explanations for graph neural
networks. Advances in neural information processing systems, 32:9240,
2019.

[32] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L
Hamilton, and Jure Leskovec. Hierarchical graph representation learning
with differentiable pooling. arXiv preprint arXiv:1806.08804, 2018.

[33] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec.
Graph convolutional policy network for goal-directed molecular graph
generation. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 6412–6422, Red
Hook, NY, USA, 2018. Curran Associates Inc.

[34] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

[35] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng
Song, Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. Agl: A
scalable system for industrial-purpose graph machine learning. Proc.
VLDB Endow., 13(12):3125–3137, August 2020.

[36] Muhan Zhang and Yixin Chen. Link prediction based on graph
neural networks. Advances in Neural Information Processing Systems,
31:5165–5175, 2018.

[37] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. Distdgl: Dis-
tributed graph neural network training for billion-scale graphs. arXiv
preprint arXiv:2010.05337, 2020.

[38] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai,
Yong Li, and Jingren Zhou. Aligraph: A comprehensive graph neural
network platform. arXiv preprint arXiv:1902.08730, 2019.

[39] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
Gemini: A computation-centric distributed graph processing system. In
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, page 301–316, USA, 2016.
USENIX Association.

[40] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quan-
quan Gu. Layer-dependent importance sampling for training deep and
large graph convolutional networks. arXiv preprint arXiv:1911.07323,
2019.


