This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Enabling ECN for Datacenter Networks with RTT
Variations
Junxue Zhang, Wei Bai, and Kai Chen

Abstract—ECN has been widely employed in production datacenters to deliver high throughput low latency communications. Despite
being successful, prior ECN-based transports have an important drawback: they adopt a fixed RTT value in calculating instantaneous
ECN marking threshold while overlooking the RTT variations in practice.

In this paper, we reveal that the current practice of using a fixed high-percentile RTT for ECN threshold calculation can lead to
persistent queue buildups, significantly increasing packet latency. On the other hand, directly adopting lower percentile RTTs results in
throughput degradation. To handle the problem, we introduce ECN#, a simple yet effective solution to enable ECN for RTT variations.

At its heart, ECN? inherits the current instantaneous ECN marking (based on a high-percentile RTT) to achieve high throughput and
burst tolerance, while further marking packets (conservatively) upon detecting long-term queue buildups to eliminate unnecessary
queueing delay without degrading throughput. We implement ECN? on a Barefoot Tofino switch and evaluate it through extensive
testbed experiments and large-scale simulations. Our evaluation confirms that ECN! can effectively reduce latency without hurting
throughput. For example, compared to the current practice, ECN? achieves up to 23.4% (31.2%) lower average (99th percentile) flow
completion time (FCT) for short flows while delivering similar FCT for large flows under production workloads.

Index Terms—Datacenters, ECN, RTT Variations, AQM

1 INTRODUCTION

ATACENTER applications desire high throughput (e.g.,

data mining and storage) and low latency (e.g., web
search and memory cache) communications. To achieve this,
Explicit Congestion Notification (ECN) has been widely
used, and many ECN-based transports, such as DCTCP [1]
and DCQCN [2]], have been proposed and adopted by
industry [3], [4], [5], [6].

ECN-based transports require both ECN-aware rate con-
trol at the end host and ECN marking at the switch. ECN
marking is accomplished by an active queue management
(AQM) policy. To handle transient bursts which are common
and harmful in production environments [7], datacenter
AQM solutions usually mark packets aggressively based on
instantaneous congestion states. For example, DCTCP [1]
modifies the original RE [8] to leverage the instantaneous
queue length to mark packets, thus achieving good burst
tolerance.

For instantaneous ECN marking, the choice of the mark-
ing threshold is critical as it directly affects the tradeoff
between throughput and latency [1], [9]. Despite being
successful, prior ECN-based transports have shared an im-
portant drawback: they only adopt a fixed RTTE] value in
calculating the marking threshold without considering RTT
variations.

o Junxue Zhang, Kai Chen are with the iSING Lab, Hong Kong University
of Science and Technology, Hong Kong (e-mail: jzhangcs@cse.ust.hk;
kaichen@cse.ust.hk).

o Wei Bai was with the iSING Lab, Hong Kong University of Science and
Technology, Hong Kong. He is now with the Microsoft Research Lab,
Redmond, WA 98052 USA (e-mail: baiwei0427@gmail.com).

1. We call this version of RED as DCTCP-RED in this paper.
2. In this paper, we use RTT to denote the base RTT without the
queueing delay in datacenters.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

However, large RTT variations are common in datacen-
ters as different flows traverse different processing com-
ponents, e.g., network stack, hypervisor and middlebox.
For example, compared to intra-service flows, inter-service
flows experience large extra processing delays from the
layer 4 load balancer [10], [11]. Furthermore, the process-
ing delay of a given component also varies depending on
workloads. With a very simple testbed (§2.2), we show these
factors can easily lead to ~3x RTT variations, which also
implies even larger RTT variations in real production.

We point out, through testbed experiments, that the cur-
rent practice of using a fixed high-percentile RTT for ECN
threshold calculation can lead to persistent queue buildup,
significantly increasing packet latency. For example, our
experiment results show that using 90th percentile RTT (as
suggested by [9]) can achieve high throughput, but the
latency of short flows is increased by over 50% due to
queueing delay (§2.3). On the other hand, directly adopting
lower percentile RTTs does not solve the problem either, as
it results in throughput degradation.

Motivated by this, we seek an ECN marking scheme
that can deliver high throughput and low latency simul-
taneously, in the presence of high RTT variations. To this
end, we present ECN¥ (, a simple yet effective solution
to achieve our goal. At its heart, ECN* marks packets based
on both the instantaneous and persistent congestion states.
On the one hand, ECN* inherits the advantage of current
instantaneous ECN marking based on a high-percentile RTT
to achieve high throughput and burst tolerance. On the
other hand, to eliminate the persistent queueing caused
by flows with small RTTs, ECN* further marks packets
when observing long-term switch queue buildups. This is
performed conservatively in order not to affect throughput

(52,

Xplore. Restrictions apply.

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

By nature, ECN* works with both queue length and
sojourn time (i.e., the amount of time a packet spends in
the queue) as congestion signals. In our implementation we
adopt sojourn time in order to be compatible with packet
scheduler with traffic dynamics [12], [13].

We implement an ECN¥ prototype with ~500 lines of P4
code and compile it to a Barefoot Tofino [14] switch using
Barefoot Capilano SDE [15] (@. Our implementation uses
little switch resource, e.g., 5 32-bit register arrays and 2 64-
bit register arrays. We address three practical challenges
in the implementation: 1) To ensure the correctness, we use
emulation to get a 32-bit microsecond-granularity system
time; 2) To update switch states at line rate, we leverage
match action tables to implement the complex control flow;
3) To implement the division function, we use approxima-
tion with math unit.

We build a small 10Gbps testbed with 8 servers con-
nected to the above Tofino switch. Our experiments with
realistic workloads [1]], [16] show that, by eliminating per-
sistent queue buildups, ECN¥ can deliver up to 23.4%
lower average FCT and 31.2% lower 99th percentile FCT
for short flows compared to DCTCP-RED (where the ECN
marking threshold is based on a high-percentile RTT ac-
cording to current practice) while still maintaining com-
parable throughput for large flows. Furthermore, we find
that instantaneous ECN marking is integral to ECN*® to
tolerate bursts and reduce packet drops. For example, ECN¥
outperforms CoDel [13] (which marks packets only based on
persistent queue buildups instead of instantaneous queue-
ing) by more than 50.0% FCT reduction for short flows.

To complement small-scale testbed experiments, we fur-
ther perform larger-scale simulations to deep-dive into
ECN? (. Our simulation results further confirm the
superior performance of ECN¥. For example, compared to
DCTCP-RED, ECN* can achieve up to 31.3% lower FCT
for short flows. Furthermore, from the microscopic view
of switch queues, we show ECN! can effectively eliminate
queue buildups by keeping the switch queue length 95.6%
lower than that of DCTCP-RED (from 182 packets to 8
packets). Finally, we show ECN* 1) is robust to parameter
settings and arbitrary packet schedulers and 2) can further
benefit QCDQN [2] and PIAS [17].

To make our work easy to reproduce, we have made our
simulation code available at https://github.com/snowzjx/
ns3-ecn-sharp!

2 BACKGROUND AND PROBLEMS
2.1 Instantaneous ECN Marking

ECN-based transports consist of two parts: ECN marking at
the switch and ECN-aware rate control at the end host. ECN
marking is accomplished by an active queue management
(AQM) policy. To handle transient bursts which are common
in production datacenters [7]], most datacenter AQM solu-
tions [1], [2], [12] aggressively mark packets based on the
instantaneous congestion states, e.g., instantaneous queue
length.

For instantaneous ECN marking, the choice of the mark-
ing threshold is important as it directly affects the tradeoff
between throughput and latency [1]], [9]. Most ECN-based
datacenter congestion control algorithms [1f], [9], [18] set

© 2022 IEEE. Personal use is permitted, but republication/redistribution re

2

the two thresholds of RED to the same value, K,,;, =
Kymax = K. Given the low statistical multiplexing of large
flows in datacenter environments [1]], to fully utilize link
bandwidth while delivering low latency, the ideal ECN
marking threshold K is given as follows [1f], [9], [19]:

K=XxC x RTT 1)

To calculate and configure the ideal ECN marking threshold
at the switch, datacenter operators must get values for three
parameters: A, C and RT'T. X is a parameter determined by
the congestion control algorithm at the end host. Different
congestion control algorithms have different ECN reaction
mechanisms, resulting in different A. For example, ECN*
(regular ECN-enabled TCP) cuts the window by half in
the presence of ECN marks, thus having A = 1. DCTCP
reduces the window in proportion to the fraction of ECN
marked packets, thus having a much smaller A (0.17 in
theory [20]). C is the bottleneck link capacity, which can
be easily obtained for threshold calculation as datacenter
operators have full knowledge of the network.

RTT is the base round-trip time and is the focus of
this paper. Here the base RTT does not include switch
queueing delay. In current practice, people use a fixed RTT
value for calculation, implicitly assuming that base RTTs in
datacenters are relatively stable due to the small cable length
(low propagation delay variations), e.g., 200-300 meters [21],
and high link capacity (low transmission delay variations).
However, we show this does not hold in reality (§2.2) and

causes problems (§2.3).

2.2 RTT Variations in Datacenters

The base RTT consists of three parts: transmission de-
lay, propagation delay, and processing delay. As discussed
above, transmission delay and propagation delay are small
inside datacenters. The transmission time of a 1.5KB packet
on a 10Gbps link is only ~1.2us. The propagation delay of
a 1KM cable is only 3.3us. However, the processing delay
can be as high as tens (or even hundreds) of us, dominating
the base RTT. Thus, the variation of the base RTT is actually
caused by the variation of processing delay.

In fact, the processing delay in datacenters varies vastly
as different flows traverse different processing components,
e.g., network stack, hypervisor, and middlebox. The more
processing components a flow traverse, the larger delay
it experiences. For example, in our production datacen-
ters, we use a layer-4 software load balancer (SLB) [10]
to process and balance the inter-service traffic (e.g., traffic
from compute to storageﬂ Inter-service inbound traffic is
first delivered to the SLB Multiplexer (a scalable set of
dedicated servers), then forwarded to the application server,
thus experiencing extra processing delay compared to intra-
service traffic. Furthermore, the processing delay of a given
component also varies depending on the loads.

We use testbed experiments to demonstrate the vari-
ations of processing delay. In our testbed, 3 hosts are
connected to a Mellanox SN2100 switch via 100 Gbps
links. Each server is equipped with a 100 Gigabit Ethernet
Adapter. We enable DCTCP [1] at the end host. A host

3. A large portion of inter-service traffic stays within the same data-
center [10].

uires /)
Authorized licensed use limited to: Southeast University. Downloaded on Feciaruary 28,2023 at 01:32:32 UTC from IEE% Xplore. Restrictions apply.

IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/snowzjx/ns3-ecn-sharp
https://github.com/snowzjx/ns3-ecn-sharp

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING 3
200 T T 3 3
. . : l 9-[0, 10KBJ: 99th percentil -9-(0, 10KBJ: 99th percentile
150 : . _!_ E‘) 18 ©-All flows: average FCT, E‘) 2 5F-6-All flows: average FCT
= ! =16 -
£ - T T 2|
T 100+ . : XN 14 N
£ ! ' . E T 15}
= = E R 512 g
50 | . - o o
=g o Z 1 Z 1
-4
AVG:39.3 639 69.3 99.2 105) N . : N N N
Case#l Case#2 Case#3 Case#4 Case#5 50 100 150 200 250 1 2 3 4 5

Marking Threshold (KB)

Fig. 1: [Testbed] RTT variations. Vary-
ing processing delay has enlarged
RTT variations up to 2.68 times.

installed with APACHE HTTP SERVER works as the web
server. We generate HTTP requests using APACHEBENCH
on another host to fetch a 1-byte web page. On the client
host, we install a modified TCP PROBE to record smoothed
RTTs (SRTT) measured by Linux kernel. For each experiment,
we generate 1000 requests and get ~3000 RTT samples. Note
that a new request is sent when we receive the previous
response. Since there is no congestion and hop difference,
the RTT variation is caused by processing delay. We consider
the following five cases and show corresponding results in
Figure[I]and Table

1. Network Stack: In this experiment, the requests from the
client are directly sent to the server. Therefore, processing
delay mainly comes from network stacks of the client and
server. As shown in Table[l} the average RTT and standard
deviation are 39.3us and 12.2ps, respectively. We think the
variation is due to multiple factors, e.g., kernel scheduling,
advanced NIC techniques such as TSO, GSO, GRO and TCP
delayed ACK mechanism.

2. Network Stack + SLB: In this experiment, we add
a layer 4 SLB between the client and the server. SLB is
widely used to process inter-service traffic inside the dat-
acenters [10]. Our SLB is another host installed with LINUX
VIRTUAL SERVER (LVS) [22]. The requests are first sent to
the SLB. Then SLB forwards them to the backend server.
The responses are directly returned to the client, without
traversing the SLB. With SLB, the average RTT and stan-
dard deviation are increased to 63.9us (1.62X) and 18.3us,
respectively. The processing latency imposed by the SLB is
~24.6s.

3. Network Stack + Hypervisor: In this experiment, we
use a quad-core virtual machine (VM) as the web server.
Therefore, compared to the first experiment, request and
response packets experience extra processing latencies on
the hypervisor. On the hypervisor, we only add a necessary
bridge rule without installing other complex rules, which is
much simpler than the configuration in production environ-
ments. The average RTT and standard deviation are 69.3s
(1.76X) and 18.8s, respectively. The extra latency caused by
the hypervisor is ~30s.

4. Network Stack + SLB + Hypervisor: In this experiment,
we combine the above two experiments. With the SLB and

© 2022 IEEE. Personal use is permitted, but republication/redistribution re

Fig. 2: [Testbed] Instantaneous mark-
ing cannot achieve high throughput
and low latency simultaneously.

RTT Variations

Fig. 3: [Testbed] Larger RTT varia-
tions cause more degradation to per-
formance.

hypervisor, the average RTT is increased from 39.3us to
99.2uus (2.52X), compared to the first one.

5. Network Stack (High Load) + SLB + Hypervisor: In this
experiment, to emulate the high load, we use STRESS to run
4 workers spinning on sqrt () on the web server VM. As
a result, the average RTT reaches 105.5us, which is around
2.68X larger than that in the first experiment.

Summary: We use the above simple experiments to demon-
strate the causes of RTT variations in datacenters. Network
components, such as Network Stack, SLB, Hypervisor, and
etc., add varying and unpredictable variations to the RTT,
especially when they are under different loads. Further-
more, different flows may traverse different numbers of
components, making RTT variations more severe. Note that
all of the experiments are conducted in very simple settings,
e.g., only a single bridge rule in the hypervisor, and very low
loads (except for the last one). We believe that the actual RTT
variations in production environment would be much larger
due to complex configurations, high system loads, and
more processing components. For example, Rohan Gandhi
et al. 23] showed that the SLB in Microsoft datacenter adds a
median latency of 196us to packets while the 90th percentile
can reach as high as 1ms. Moreover, the base RTT varies
across both flows and time. As the last two experiments
show, the base RTT of a given flow also varies when the
load of a processing component changes.

2.3 Current Practice and Problems

Existing solutions [1f], [9], [12], [19] only adopt a fixed RTT
value for ECN marking threshold calculation while over-
looking RTT variations, which can cause severe problems.
For example, operators get RTT distributions using tools
such as PingMesh [24] and in current practice they use a
high percentile RTT (e.g., 90th percentile [9]) to derive the
threshold. While this approach can achieve high throughput
for flows with different RTTs in general, for flows with
small RTTs, it results in persistent queue buildups, causing
queueing delay. On the other hand, directly using low
percentile RTTs (e.g., 50%) or average RTT can mitigate such
queueing latency, but cause flows with high RTTs to suffer
from throughput degradation.

Since we only have three 100Gbps adapters, we build
a new testbed to demonstrate this dilemma. We use 8

uires /)
Authorized licensed use limited to: Southeast University. Downloaded on Feci:)ruary 28,2023 at 01:32:32 UTC from IEE% Xplore. Restrictions apply.

IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

Combination of different processing components Mean (us) STD (us) 90 percentile(ys) 99 percentile(ys)
Networking Stack 39.3 12.2 59.0 79.0
Networking Stack + SLB 63.9 18.3 87.0 121.0
Networking Stack + Hypervisor 69.3 18.8 91.0 130.0
Networking Stack + SLB + Hypervisor 99.2 23.0 129.0 161.0
Networking Stack(high load) + SLB + Hypervisor | 105.5 23.6 138.0 178.0

TABLE 1: [Testbed] RTT statistics. Different combinations of processing components result in up to 2.68x RTT
variations in a very simple testbed setting, implying that the actual RTT variations in production datacenters would

be even larger.

endhosts with 10Gbps Ethernet adapters, connecting to the
Mellanox SN2100 switch. The cable speed is 10Gbps (with
QSFP+ to SFP+ Adapter). We generate traffic according to
the web search workload [I] (Figure[7). The average load of
the bottleneck link is 50%. To emulate RTT variations, we
use netem [25]. netem is a Linux traffic control component
which can emulate increased delay, packet loss, duplication,
and etc. It allows adding delays in microseconds. We use
netem to add extra delay at senders to emulate RTT varia-
tions.

Assume the minimum RTT and maximum RTT within
the network are RIT,,;, and RTT,,., respectively, we
define RTT variation as RTT,q0/ RT Tpnin here.

Observation 1: Instantaneous ECN marking cannot
achieve high throughput and low latency simultaneously.
First, we let the RTT variation to be 3x (70us to 210,u and
choose different ECN marking thresholds. We change the
marking threshold from 50KB to 250KB. The FCT statistics
are shown in Figure 2| The results have been normalized
to the FCT achieved by the threshold 50KB. If we choose
high percentile RTTs to derive the threshold, such as 90th
percentile (250KB) according to the current practice, short
flows suffer from 119.2% longer 99th percentile FCT (581 s
to 265us). On the contrary, setting threshold based on low
percentile RTTs leads to throughput loss. For example, using
average RTT (~ 100KB) causes 8% throughput degradation
(3701 us to 3426 us). Thus, none of the values in the range can
simultaneously achieve high throughput and low latency.

Observation 2: Larger RTT variations enlarge performance
loss. Second, we try to understand how the RTT variations
affect the performance. We change the RTT variation from
2% (7T0ps to 140pu) to 5x (7TOus to 350u) and set the ECN
marking threshold based on the average and 90th percentile
RTTs accordingly. The FCT statistics are shown in Figure
normalized to the result achieved by average RTT. When the
variation is 2, the threshold with the average RTT leads to
6.7% throughput loss (3375us to 3163us) compared to that
with the 90th percentile. The gap increases to 29.8% (4464 us
to 3439us) when the RTT variation reaches 5x. Similarly,
for 99th percentile FCT of short flows, the performance
degradation caused by current practice has increased from
41.1% (404 us to 287us) to 198.0% (995us to 334us) when
the RTT variations rise from 2x to 5x. Thus, larger RTT
variation has enlarged the performance degradation.

Problem Analysis: In this section, we try to analyze the root
cause of the above-mentioned throughput loss or enlarged
queueing delay caused by RTT variations. As shown in

4. The emulated RTT denotes end-to-end base RTT.

© 2022 IEEE. Personal use is permitted, but republication/redistribution re

Figure [4a} if there are no RTT variations and we choose a
proper ECN threshold K, the buffer occupancy can achieve
(1) high throughput, i.e., the buffer is always busy, and (2)
low latency, i.e., there is no extra queue buildups. However,
if RTT variations exist, we will encounter the following
problems:

o As shown in Figure 4b} the ideal marking threshold for
flows of large RTTs is K. If we set the ECN threshold K
based on the low percentile RTTs, K < K'. Consequently,
if we use K instead of K’ to mark ECN for these flows,
these flows will suffer from throughput loss because a
small K cause the queue to become idle from time to
time.

e Similarly, as shown in Figure the ideal marking
threshold for flows of large RTTs is K'. If we set the
threshold K based on the high percentile RTTs, K > K'.
We can observe that these flows suffer from enlarged
latency because a large K cause extra buffer occupancy,
which does not contribute to the throughput but only
increases the latency.

Summary: Instantaneous ECN marking cannot deliver both
high throughput and low queueing delay under RTT varia-
tions. The performance degrades more as the RTT variation
grows.

3 ECN¢
3.1 Design Choice

Given the above dilemma, we seek to develop a solution to
achieve high throughput and low queueing delay in data-
centers even with high RTT variations. In the meanwhile,
the solution should be resilient to traffic burstiness.

As shown in the crux of existing instantaneous
ECN marking is that the configured static threshold cannot
adapt to the base RTTs of active flows. Given the emerg-
ing reconfigurable switching chips [14], a straightforward
solution is a radical switch AQM that tracks the base
RTTs of active flows (both spatially and temporally) and
dynamically adjusts the instantaneous threshold on each
individual switch correspondingly. For example, we can
use the average base RTTs of all active flows to compute
the threshold in Equation [I} However, it is challenging to
measure real-time base RTTs. The reason is that, to exclude
the noise of queueing delay, we first need to measure real-
time processing delay of each component in both directions
and embed this information into packet headers. This is
a huge burden for operators as they need to modify all
network processing components in datacenters.

IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

uires /)
Authorized licensed use limited to: Southeast University. Downloaded on Feciaruary 28,2023 at 01:32:32 UTC from IEE% Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING 5
!
) 5 n==K y
g g % g
& & ' &
e K = Lo—v-K S S ¢
3 S ! 3 - K
5 5 \ s | /L AV A
A A 1 A \ ‘¢ Extra queueing delay
\ \, \Y3 \
. h'—l . .
Time Throughput loss Time Time

(@) Buffer occupancy without RTT

variations. throughput loss.

(b) Flows of large RTTs suffer from

(c) Flows of small RTTs suffer from
extra queueing delay.

Fig. 4: RTT variations cause either throughput loss or enlarged queueing delay. For Figure @ the dash line indicates
the ideal buffer occupancy for flows of large RTTs while the solid line indicates the buffer occupancy if the ECN
threshold is set according to low percentile RTTs. For Figure [4b} the dash line indicates the ideal buffer occupancy for
flows of small RTTs while the solid line indicates the buffer occupancy if the ECN threshold is set according to high

percentile RTTs.

Therefore, we take one step back and seek a lightweight
solution. Our lesson learned from shows that the cur-
rent practice of using a high percentile RTT to derive the
instantaneous threshold is able to achieve high throughput
and burst tolerance, but suffers from persistent queues when
the base RTTs of active flows are small. Inspired by this, our
design choice is to inherit the current practice for through-
put and burst tolerance, and augment it with a scheme
to detect and eliminate persistent queues. As a result, we
introduce ECN*: 1) inherits instantaneous ECN marking
based on a high percentile RTT to handle bursts and main-
tain high throughput; and 2) further enables ECN marking
upon presistent queue buildups to eliminate unnecessary
queueing delay without incurring throughput loss.

3.2 ECN! Mechanism

ECNF is a new AQM solution. Following the above ratio-
nale, it marks packets based on both instantaneous and
persistent congestion states. A packet is marked when either
one of the following conditions decides to mark it:
e When there is a large instantaneous queue, ECN aggres-
sively marks packets to avoid buffer overflow.

e When there is a persistent queue, ECN* conservatively
marks packets to reduce queueing delay.

By nature, ECN* works with both queue length and
sojourn time (i.e., the amount of time a packet spends in
the queue) as congestion signals. According to Equation
the equivalent sojourn time based ECN marking threshold
© K AxCxRIT

T= c = - ()
In our design and implementation, we adopt sojourn time
over queue length in order to be compatible with packet
scheduler with traffic dynamics [12], [13].

= AX RIT

ECN marking based on instantaneous queue: To achieve
burst tolerance, ECN¥ employs instantaneous ECN marking.
When a packet dequeues, ECN¥ compares the sojourn time
of the packet with the instantaneous marking threshold,
T = ins_target, which can be calculated based on Equation
with high percentile RTTs. If the sojourn time exceeds the
threshold, the packet gets ECN marked.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

Configuration Parameters

pst_target persistent queueing target
pst_interval interval to determine persistent queueing
ins_target threshold for instantaneous marking

Variables

sojourn_time
detected
marking_state
marking_count
marking_next
first_above_time

sojourn time of the current packet
if persistent queueing is detected
if ECN* has marked packets
number of marked packets

the next marking time
when sojourn time
pst_target

starts to exceeds

TABLE 2: Parameters and variables used in ECN¥.

ECN marking based on persistent queue buildups: First,
ECNF tracks the minimal queueing over an interval to detect
persistent queue buildups. Then, it performs conservative
marking to eliminates those queues. Here, two parameters
are involved: 1) pst_interval: the time interval used to ob-
serve the queue before deciding if there is persistent queue-
ing; 2) pst_target: the persistent queue threshold used to
compare against the packet sojourn time to control the long-
term queueing. The algorithm mainly contains the following
two parts as illustrated in Algorithm [1} Table 2] shows all
parameters and variables.

Persistent queue buildups detection. ECNF measures
whether the sojourn time has exceeded pst_target for at least
one pst_interval to determine long-term queueing. ECN#
only uses one variable first_above_time to record the times-
tamp that sojourn time exceeds pst_target for the first time
(first_above_time = now ()). If sojourn time is lower than
pst_target, which means the queue expires, ECN* will reset
first_above_time to 0. If ECN! finds it has been over one
pst_interval since first_above_time (now () > first_above_time
+ pst_interval), it confirms there is persistent queueing and
triggers the conservative marking logic.

Conservative marking. After detecting the persistent queue
buildups, ECN* conservatively marks one packet in each
pst_interval in order not to adversely affect throughput. In
the meanwhile, pst_interval is a time-varying interval that
adapts to real workloads. If the sojourn times of packets
continuously exceed the threshold, ECN* reduces the in-

Xplore. Restrictions apply.

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

Algorithm 1: ECN marking upon persistent conges-
tion

input : Coming packet pkt

output: Whether the pkt should be marked
1 Procudure ShouldPersistentMark (pkt)

2 detected = IsPersistentQueueBuildups (pkt)
3 if marking_state == true then
4 if detected == false then
5 marking_state = false
6 return false
7 else if now () > marking_next then
8 marking_count ++
9 marking_next += pst_interval / marking_count
10 return true
1 end
12 else
13 if detected == true then
14 marking_state = true
15 marking_count =1
16 marking_next = now () + pst_interval
17 return true
18 end
19 return false
20 end
21 Procudure IsPersistentQueueBuildups (pkt)
2 if pkt.sojourn_time < pst_target then
23 first_above_time = 0
24 return false
25 end
26 if first_above_time == 0 then
27 first_above_time = now ()
28 return false
29 else if now () > first_above_time + pst_interval then
30 | return true
31 else
32 | return false
33 end

terval of next marking to increase the marking probability
(marking_next += pst_interval / marking_count), thus reduc-
ing the buffer occupancy.

3.3 Why ECN* works?
We discuss why ECN¥ can achieve all the design goals.

High throughput & low queueing delay: Instead of
directly using a low instantaneous ECN marking threshold
to aggressively bring down the buffer occupancy at the
cost of throughput loss, ECN! uses a more conservative
mechanism. By tracking the minimal queueing over a time
interval, ECN*® only marks packets after it determines per-
sistent queue buildups. These queue buildups are caused
by providing excessive buffer space for flows with small
RTTs, which do not contribute to the throughput but only
increase the queueing delay. Eliminating these queues can
benefit latency-sensitive short flows without throughput
degradation. We carefully choose the interval to be around
one worst case base RTT because TCP needs one RTT to
react to ECN marking. Furthermore, the marking itself is
conducted in a conservative way to mitigate throughput
loss. Only after detecting persistent queue buildups, ECN¥
marks one packet and schedules next marking after an
interval. Afterwards, ECN* checks again to see whether the
queue expires or not. If not, ECNF increases the marking
frequency by reducing the interval. Through both persistent
queueing detection and conservative ECN marking, ECN*

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

6

can achieve both high throughput and low queueing delay
simultaneously.

Burst tolerance: ECN? leverages the instantaneous ECN
marking to achieve good burst tolerance. As discussed
above, the instantaneous marking scheme enables fast re-
sponse to bursty traffic, such as incast. Once the queue
exceeds the threshold, it aggressively marks the packets to
tame the subsequent bursts from senders and bring down
the buffer usage. This scheme ensures a upper bound of
buffer occupancy to avoid packet loss. Furthermore, ECN*’s
instantaneous marking threshold is derived base on a high
percentile RTT, which provides sufficient buffer without
causing throughput loss.

3.4 Parameter Setting

ECN* has 3 key parameters: ins_threshold, pst_target and
pst_interval. We provide a rule-of-thumb to tune those pa-
rameters while leaving the optimality analysis as future
work. We also conduct parameter sensitivity analysis in
to show that ECN* can achieve good performance by
following the rule-of-thumb.

The instantaneous marking threshold, ins_threshold, can
be calculated based on Equation 2] As discussed in we
use high percentile RTTs (e.g., 90th percentile) to derive a
high instantaneous marking threshold to avoid throughput
loss.

Both pst_interval and pst_target are critical for identify-
ing and mitigating persistent queue buildups. pst_interval
determines the time that ECN® spends tracking a queue
before it confirms there is a persistent queue buildup. It
has been recommended that the interval has to be around
one RIT in order to accurately determine the persistent
queueing [13]. Thus, we set pst_interval to be around the
high percentile RTT to ensure that ECN* can precisely detect
the persistent queue buildups caused by flows with smaller
RTTs. However, in real environment where traffic is very
bursty, we can set a smaller value for pst_interval to increase
the marking rate to achieve fast reaction to those dynamics.

For pst_target, theoretically, we can set a very small value
for it. The reason is that by observing the queue for an
interval, we can detect persistent queue buildups, and a
lower target will further bring down those unnecessary
queues. However, in datacenters, the queue oscillation is
large due to some network settings (MTU settings, etc.) or
NIC offloading (GSO, LSO, etc.) [1]. Thus, we also recom-
mend setting it to be a more conservative value, which is
larger than or equal to A x RTT, where A is determined
by the transport protocol and RT'T is the average RTT. This
setting can reduce the buffer occupancy to an acceptable
value without risking throughput loss.

3.5 Discussion

ECN* vs CoDel: ECNF is partially inspired by CoDel [13],
an AQM solution to address the bufferbloat problem in
Internet. CoDel uses the minimal queueing over an inter-
val to distinguish good queues (queues that contribute to
throughput) and bad queues (queues that do not contribute
to throughput, such as the persistent queueing mentioned

Xplore. Restrictions apply.

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

above). After detecting a bad queue, CoDel gradually re-
duces the marking interval to mitigate persistent queue
buildups while not degrading throughput. However, such
conservative marking makes CoDel react slowly to transient
bursts, resulting in excessive packet losses. In contrast,
ECN* leverages the instantaneous ECN marking to keep
good burst tolerance. Hence, ECN* can greatly outperform
CoDel in incast scenarios. We further analyze it through
simulations in

Sojourn time vs queue length: As discussed above, in
ECN®s design, we choose sojourn time instead of queue
length as the congestion signal. CoDel is the first to use
sojourn time as the congestion signal because CoDel is
designed for the Internet, where lots of networking met-
rics, such as link bandwidth, queueing, are varying and
unknown to the user. As a result, by using the sojourn time
that direct reflect the time a packet stays in a queue, CoDel
is much simpler to configure, making it a viable solution for
Internet congestion control.

In contrasts, in a datacenter, the networking metrics
are relatively fixed and known to the datacenter operators.
Thus, the sojourn time in datacenter networking is mainly
used to solve the multiple queueing scenarios, as proposed
in TCN [12]]. In other words, in a single queue scenario,
ECN* is compatible with both sojourn time and queue
length as its congestion signal. We have also implemented
a version of ECN® that uses queue length as congestion
signal and achieves identical results as sojourn time in
a single queue environment. Because the measurement of
sojourn time requires attaching timestamp, which may not
be compatible with some commodity switches, we can use
ECN* with queue length instead to enable ECN with RTT
variations.

ECN? vs TCN: TCN [12] combines the sojourn time and
instantaneous ECN marking. However, under high RTT
variations, it is challenging to decide a proper sojourn time
threshold for TCN. Current practice with high percentile
RTTs leads to persistent queue buildups. In contrast, ECN¥
can conservatively mark packets based on persistent con-
gestion state, thus delivering low latency.

Probabilistic instantaneous marking: Some transport pro-
tocols, e.g. DCQCN [2], need probabilistic instantaneous
marking to ensure fairness. Two instantaneous marking
thresholds, Ky, and K., are used, packets are marked
with probabilities from 0 to 1 when queue length resides
from K, ,;n to Kpuqq, instead of ”“cut-off” behaviors (mark all
packets if queue length exceeds a single threshold). One pos-
sible solution for ECN* to work with probabilistic marking
is to change the original cut-off marking into probabilistic
marking, and keep the marking based on persistent conges-
tion unchanged since it is conducted in a probabilistic way.
In this paper, by following the above-mentioned approach,
we have provided a ECN* + DCQCN prototype in our
simulator and evaluated its performance in §5|

Flow scheduling: There are various flow scheduling mech-
anisms, such as PIAS [17], pFabric [26], QJUMP [27], etc.,
targeting at optimizing short flows as well. These works
leverage switch queue(s) to enforce scheduling mecha-

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

7

nisms for flows, such as shortest-job-first, jump-the-queue,
etc. Since ECNF targets at eliminating the queue buildups
caused by RTT variations, it can further benefit these flow
scheduling mechanisms. For example, PIAS uses multiple
priority queues to emulate a shortest-job-first scheduling
without knowing the flow size and further adopts ECN to
keep these queues short. However, the ECN configuration in
PIAS also suffers from RTT variation, leading to degraded
performance of short flows and compromising the over-
all performance gain. Therefore, applying ECNF on these
queues should further improve PIAS with RTT variations.
We have provided a prototype of ECN* + PIAS in our
simulator and evaluated its performance in §5

4 |IMPLEMENTATION

We have implemented an ECN* prototype in the egress
pipeline of Barefoot Tofino switch [14]. ECN¥ is essentially
a stateful data plane algorithm as the per-packet processing
involves updates of multiple switch states. Our implemen-
tation has around 500 lines of P4 [28] code and is compiled
to Barefoot Tofino switch using Barefoot Capilano SDE
6.1.1 [15].

Resource requirement: In our implementation, we use 7
match action tables in total. The number of table entries is
less than 10 (most of match action tables use default actions,
so no entry is needed explicitly). To store switch updates
on all the 128 ports, we use 5 32-bit register arrays and 2
64-bit register arrays. The register memory consumption is
only ~37KB. Each packet needs 124-bit metadata. Our ECN¥
prototype only uses little switch resource, leaving more for
other network functions.

We meet two main challenges in our implementation: 1)
how to obtain the precise system time, and 2) how to update
multiple switch states at line rate. In the following, we will
describe our efforts to address them.

4.1 Emulate Precise System Time

As shown in Algorithm |1, ECN® requires current system
time to determine persistent queue buildups and mark
packets. In the egress pipeline, each packet carries a meta-
data egress_global_tstamp, which has 64 bits and ex-
presses current egress pipeline time in nanoseconds. How-
ever, we cannot directly use this 64-bit metadata. This is
because we need to compare the current time with other
states, e.g. first_above_time, using algorithm logical
units (ALUs), but ALUs in Tofino only accept 32-bit input.
Thus, we need an approximation method to derive a 32-
bit system time. To solve this problem, there are several
potential solutions:

e Use the lower 32 bits of egress_global_tstamp. The
time is accurate enough but wrap around in every ~4
seconds (232 nanoseconds). When the time wraps around,
we will have a very small marking_next (line 16 of
Algorithm [I), resulting in aggressive marks. A serious
performance degradation in every 4 seconds is unaccept-
able.

o Use the higher 32 bits of egress_global_tstamp. The
time is not accurate enough (around 4-second granular-
ity) for low latency datacenters.

Xplore. Restrictions apply.

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

Pseudo Code

Mutual Exclusive
Control Flow (= _____________ C T CEEE D _________________
{ +

—— - / v
j . . 1 apply (if_sojourn_time_over_target) VERSl 'okt.sojourn_time_over_target=01 [1 pkt.sojourn_time_over_target=1 |
1 if pkt.sojourn_time > target: 2 if okt.soi ti t t==0:) L N . M T
" first ab timelidx] > 0: If pkt.sojourn_time_over_target==U: LGl | reset_first_above_time ! check_first_over_now |
fFnow-Tirst_a ove._ Imefiax]>0: 3 [apply (read_first_above_time) N | S) Nemmmmmmmoma- - '
3 pkt..should_markerg= 1 4 i (pkt.first_above_time==0): colnﬂict Action 1 | S Action 2 1
4 els.e if f|rst_abc?ve_t'|me[|dx]:: . 5 | apply (add_now_to_first_above_time)] First_above_time[idx] =0; if now - first_above_time[idx] > 0:
5 first_above_time[idx] =now +itvalil |¢ e, pkt.should_conservative_marking= 1;
6 else: 7 else: else if first_above_time[idx] = 0:
7 first_above_time[idx]=0; 8 apply (reset_first_above_time); first_above_time[idx] = now + interval;

(a) Pseudo code
mentation

(b) Control flow function imple-

(c) Match action table implementation

Fig. 5: Different control flow implementations. Control flow implementation that directly interprets the pseudo code
into control flow cannot be compiled to Tofino as it causes multiple accesses to the same register. Hence, we use match

action table to optimize the ECN* control flow instead.

Algorithm 2: Emulate Precise System Time

Input : pkt.egress_global_tstamp
Output: pkt.current_time
tmp_tstamp = lower_32bits(pkt.egress_global_tstamp)
time_low = shift_right(tmp_tstamp, 10)
if time_low < register_low then
/* Wrap around
register_high = register_high + 1
end
register_low = time_low
pkt.current_time = register_high x 222+ register_low

W N R

*/

ES - NS RN

e Right shift egress_global_tstamp by 10 bits and
then get lower 32 bits. The time is accurate enough
(microsecond granularity) for datacenters and only
wraps around in every 4295 seconds (2%? microseconds),
which is more than 1 hour. However, the operation
shift_right in Barefoot Capilano SDE can only sup-
port 32-bit input data.

Faced with above problems, we decide to emulate a
32-bit microsecond-granularity system time. Our key idea
is given as follows. We first use the lower 32 bits of
egress_global_tstamp, then right shift the 32 bits by
10 bits to get a 22-bit microsecond-granularity time. For the
remaining higher 10 bits, we increase it by 1 whenever we
observe the lower 22 bits wrap around. Finally, we attach the
emulated 32-bit microsecond-granularity time to the packet
as a metadata. Algorithm [2| gives the pseudo code. In our
implementation, we use two 32-bit registers to store values
of the lower 22 bits and the higher 10 bits, respectively.

4.2 Update Switch States at Line Rate

ECN* keeps several switch states on the switch registers
and updates them for every packet arrival. To achieve
line rate, Tofino imposes a register update limit: a Tofino
program can only access a register once (in a pipeline). Note
that in Tofino, reading a register, comparing the register
value with another value, and then updating the register
correspondingly are also treated as one access. For exam-
ple, the line 4 to 5 of Figure only has one access to
first_above_time[idx].

To implement the control flow of ECNF, we first
directly use control flow function in P4 to apply dif-
ferent tables. A simple example is Figure How-
ever, directly interpreting the logic of pseudo code

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

into control follow function implementation causes prob-
lems, e.g., both tables read_first_above_time and
add_now_to_first_above_time access the same regis-
ter first_above_time[idx]. This implementation can-
not be compiled to the Tofino switch due to the hardware
restrictions mentioned above. We notice that some recon-
figurable hardware research work [29] also reports similar
problem.

An alternative solution is to use resubmit primitive.
The packet will be sent back to the beginning of the ingress
pipeline with certain flags and regarded as a new packet.
Then we can apply different tables based on the flags.
This can guarantee the access to the register is mutually
exclusive. However, resubmiting packets occupies more
pipeline resources and largely degrades the throughput.

To this end, we use the match action table to optimize
the control flow of ECN¥. Given a register, we first ensure
that one register only has one table with actions accessing
it. In this table, different actions reflect different control
flow paths and they are naturally mutual exclusive. We
further ensure the register is only accessed once within one
action. Based on the two rules, we optimize the control
flow by breaking it down into multiple match action tables.
Figure |5q is one example. Before applying a match action
table, we first compute the result of condition and attach the
result to the packet as a metadata. Then we use the metadata
to match the desired action, where the register will only be
accessed once, and update switch states correspondingly. In
our evaluation (, we confirm ECNY can achieve line-rate
performance.

4.3 Implement Division Function

ECNF needs to conduct a conservative marking by calculat-
ing pst_interval / marking_count to decide the next marking
time. Thus, the marking will become frequent only if there
are lots of packets whose queueing time exceeds pst_target.
However, current Tofino switch does not natively support
division operation. To solve this challenge, we alternatively
use approximation method with math unit provided by the
switch.

Math unit provides a lookup table and provides 16 8-
bit values that can be looked up, denoted as Table. In our
paper, we generate the Table as follows. We then set the

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

Algorithm 3: Approximate Division

Input : marking_count
Output: pst_interval /marking_count

1 shift_val = int(|logy(z)])

2 table_offset = 3

3 scale = int([logq (pst_interval /(8 * 127))])) + table_offset

4 if marking_count > 16 then

5 \ approx_val = marking_count >> (shift_val - table_offset)
6 else

7 \ approx_val = marking_count < -(shift_val - table_offset)
s end

9

ans = Tablegpproz val

a
return ans x 2(-shift_val + scale)

=
=)

50 T T T T T T T

— Approximate Results
-- Real Results -

20 :

marking_count

10 1

O 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

pst_interval / marking_count

Fig. 6: Division function approximation can still preserve
high accuracy and viable on current Tofino switches.

inverse table to math_unit_lookup_table property of
the Tofino math unit.
0 ,0<i <7 3)
Table; = j
i (pst_zﬂtervalw 8<i<15

?

Given a marking_count, the math unit will perform the
computation as shown in Algorithm (3| The table_offset is
set to be 3 by the Tofino math unit. We will also set the scale
atline 3 to the math_unit_output_scale property of the
math unit which will be added at the exponent of the output
(indicated by line 10) to scale the return results.

We also compare our approximation method with real
values to evaluate if our implementation can preserve high
accuracy. Figure [6] shows one concrete example where we
set pst_interval = 1000. The results show that the values
generated by our method overlaps with the real value.
Furthermore, our experiment results in also confirms that
our approximation method is feasible and allows ECN* to
work as expected.

5 EVALUATION

In this section, we conduct both testbed experiments and
ns-3 simulations [30] to answer the following questions:

e How does ECN* perform in practice? Our testbed ex-
periment results show that compared with current prac-
tice, ECN* achieves up to 23.4% smaller average FCT and
31.2% smaller 99th percentile FCT for small flows while
providing the similar performance for large flows (§5.2).
ECN¥s good burst control makes it largely outperform
CoDel.

e Does ECNF scale to large datacenters? We evaluate the
performance of ECNF using large scale ns-3 simulations
(. Results show that ECNF achieves up to 36.9%
smaller FCT for small flows compared to current practice.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

& Web Search
-&Data Mining

10° 10° 10* 10° 10°
Flow Size(bytes)

Fig. 7: Flow size distributions.

Tofino Switch

Receiver ~
Senders

Fig. 8: Testbed setup.

e How does ECN! control the queue length and react
to bursty traffic? We evaluate ECN* using simulations
mixing both the background traffic and bursty query
traffic (§5.4). We find that compared to current practice,
ECN* keeps a much smaller average queue occupancy
(182 packets to 8 packets). By changing the fanout of
the incast trafficc we further show that compared to
CoDel, ECNF can support 1.75x more concurrent senders
without TCP timeouts.

e How robust is ECN* to network settings? Through
targeted simulations, we show that ECN! is robust to
parameter choices (§5.4) and the packet scheduler (§5.4).

5.1 Methodology

Transport Protocol: We use DCTCP [1] at the end host
by default. In testbed experiments, we use the DCTCP in
Linux kernel 4.9.0 [3]]. We also implement DCTCP in ns-3
simulator. The parameters are set as suggested in [1]. All
endhosts in our evaluation are running DCTCP.

Schemes Compared: We compare ECN* against the follow-
ing three schemes:

e DCTCP-RED: [testbed, simulation] We use DCTCP-
RED to refer to the modified RED in DCTCP paper [1],
i.e., instantaneous ECN marking based on single thresh-
old Ky in = Kmax = K. For testbed, we implement it
on Barefoot Tofino switch. For simulation, we start from
the ns-3’s RED implementation and add instantaneous
ECN marking. We set the threshold based on both the
current practice, 90th percentile RTT (denoted as DCTCP-
RED-Tail), and average RTT (denoted as DCTCP-RED-
AVG). Please note, when only one queue is active, the
performance of DCTCP-RED is identical to TCN.

e CoDel: [testbed, simulation] CoDel tracks minimal
queueing over an interval to mark packets based on
persistent congestion. For testbed, we implement CoDel
on Barefoot Tofino to perform ECN marking.

Xplore. Restrictions apply.

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication.

IEEE TRANSACTIONS ON CLOUD COMPUTING

Citation information: DOI 10.1109/TCC.2022.3204988

10
14 14
1.5
o1 I =T I
51 o 12 &) O
= & = =
o ~c o o
o [L) 5]
=S A—A 8 X .
£ (5|9 DCTCP-RED-AVG g o8 g g
3 [®DCTCP-RED-Tail 3 8 5
Z. ©ECN! Z Z Z
O8] & CoDel o6 05 P 0—o—0—3¢
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Load(%) Load(%) Load(%) Load(%)

(a) Overall:AVG (b) (0, 100KB]:AVG

(c) (0, 100KB]:99th percentile (d) [10MB, c0):AVG

Fig. 9: [Testbed] FCT statistics with web search workload. All are normalized to the results achieved by DCTCP-RED

with threshold derived from 90 percentile RTT.

14 1.4
15
I e e e
512 O 12 g) 512
< R <] < <
==t o A A I - 1
E E T E
£ 0g|¢-DCTCP-RED-AVG g 08 g £ 08
Zs -8 DCTCP-RED-Tail zs Zs *Zs
©ECNf 4
O8].a CoDel, 06 O 0.5 MA o o6
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Load(%)
(a) Overall:AVG

Load(%)
(b) (0, 100KB]:AVG

Fig. 10: [Testbed] FCT statistics with data mining workload.
with threshold derived from 90 percentile RTT.

e TCN: [simulation] TCN uses instantaneous sojourn
time to adapt to packet schedulers. We implement TCN
based on the software prototype provided by TCN pa-
per [31].

Instead of these schemes that we directly compare ECN*
with, we also provide the following schemes that ECN*
could work with:

e ECN! + DCQCN: [simulation] DCQCN [2] is a transport
protocol, which uses probabilistic instantaneous marking
to ensure fairness. As discussed in §3.5, we can com-
bine ECN* with DCQCN by changing its instantaneous
marking into probabilistic marking based on DCQCN’s
algorithm and leaving ECN marking upon persistent
queueing unchanged. For DCQCN’s probabilistic mark-
ing algorithm, we mainly refer to the simulator from
DCQCN’s paper.

e ECN! + PIAS: [simulation] PIAS [17] efficiently sched-
ules flows without knowing flow sizes in advance. As
discussed in we can combine ECN¥ with PIAS to
further benefit these flow scheduling mechanisms under
the environment with high RTT variations.

Workloads: We generate traffic based on two realistic work-
loads in production: web search [1] and data mining [16].
The flow size distributions follow Figure[7} Both workloads
are heavy-tailed. In testbed experiments, we use an open
source traffic generator [19], [32] to generate the benchmark
traffic. Similar to previous work [17], [26], flows arrive ac-
cording to a Poisson process to achieve the desired network
utilization. We also use the same approach to generate traffic
in simulations.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires ?E/
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from IEE

Load(%)
(c) (0, 100KB]:99th percentile

Load(%)
(d) [1OMB, 0):AVG

All are normalized to the results achieved by DCTCP-RED

Metrics: We use the Flow Completion Time (FCT) as the
primary metric. Besides the overall average FCT, we also
breakdown FCT results across short flows (< 100KB) and
large flows (> 10MB). We run experiments and simulations
three times and report the average value.

5.2 Testbed Experiments

Testbed setup: We use the testbed in with 8 servers
connected to a Barefoot Tofino switch with ECN*’s imple-
mentation (@. There are 7 senders and 1 receiver. The
topology is also shown in Figure 8] for better understanding.
We use netem to emulate a 3x RTT variations (from
T0us to 210us). The RTTs generated are based on the dis-
tribution in Figure [1} which is long-tail distribution. For
DCTCP-RED, we set the marking threshold of DCTCP-RED-
AVG to 80KB and DCTCP-RED-Tail to 250KB. For CoDel,
we set interval to be 200us and target to be 85us. For ECN¥,
by following the rule-of-thumb(§3.4), we set the ins_target to
be 200us, pst_interval to be 200us and pst_target to be 85us.

Realistic Workloads

We evaluate ECN¥ using both web search and data mining
workloads. The results are shown in Figure §]and Figure
All results have been normalized to the result of current
practice, DCTCP-RED-Tail. They are breakdown in terms of
overall FCT (a), FCT of short flows (b, ¢) and FCT of large
flows (d). All Figures show normalized FCT.

Short flows: Compared to current practice, i.e., DCTCP-
RED-Tail, ECNF can achieve up to 23.4% (964.s to 738us at
90% load) and 31.2% (548us to 377us at 80% load) lower

Xplore. Restrictions apply.

IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

14

12

IS I
512 5
= p = I
2 b 508 \N—N—e"’—\
E S 0.6

g 0.8} ©-NFCT 3x he
70 ©-NFCT 4x 70 0.4

! 0.6} &NFCT 5x) 02 i

10 20 30 40 50 60 70 80 90
Load(%)

(a) Overall:AVG

10 20 30 40 50 60 70 80 90
Load(%)

(b) (0, 100KB]:99th percentile

Fig. 11: [Testbed] FCT statistics with web search workload
when RTT variation enlarges. NFCT nXx denotes the
normalized FCT of ECN* to DCTCP-RED-Tail when RTT
has nx variation. ECN? achieves lower FCT for short
flows and comparable throughput consistently.

average FCT in web search and data mining workloads, re-
spectively (Figure[Pb|and Figure[I0b). At the 99th percentile,
ECNF* achieves up to 37.2% (5242us to 3287us at 90% load)
and 37.6% (2161us to 1347us at 80% load) lower FCT with
both workloads (Figure 9 and Figure [10d). These results
show that, by well controlling the persistent queue buildups
caused by RTT variations, ECN¥ can eliminate unnecessary
queueing delay and effectively improve the performance of
delay-sensitive short flows.

We observe that DCTCP-RED-AVG achieves the best
performance for short flows, but it adversely hurts the FCT
of large flows, e.g., over 20% for the web search workload
(Figure 0d). This is because DCTCP-RED-AVG sets a lower
ECN marking threshold, which strictly limits the queueing
to a very low level, thus benefiting FCT of the short flows.
In the meanwhile, such a low marking threshold throttles
the throughput of large flows, affecting their FCT.

We also note that CoDel achieves very bad performance
for short flows. The reason is that CoDel suffers from fre-
quent TCP timeouts (1 TCP timeout adds > 1 milliseconds
to FCT) because it does not react to the instantaneous
queueing state, and thus experiences frequent packet loss
under traffic bursts.

Large flows: From Figure 0d| and Figure we see
ECNF achieves similar results as DCTCP-RED-Tail and out-
performs DCTCP-RED-AVG with both workloads. For web
search workload, ECN! achieves up to 25.6% (94411us to
70192us at 80% load) lower FCT compared to DCTCP-
RED-AVG. For data mining workload, ECN? achieves up
to 20.5% (10490354 to 833396us at 80% load) lower FCT
compared to DCTCP-RED-AVG. The reason is that by
conservatively marking packets when observing persistent
queue buildups, ECN* can bring down the buffer occupancy
without hurting throughput for large flows.

Overall: In general, ECN¥ achieves good overall perfor-
mance among the four schemes. In data mining work-
load, ECN! performs the best at all loads, whereas in web
search workload its overall FCT degradation is within 4.2%
(2240pus to 2148us) compared to DCTCP-RED-Tail at 10%
load (Figure Pa). In contrast, DCTCP-RED-AVG achieves
very bad performance. This further confirms that ECN* can
maintain the throughput of all flows.

© 2022 IEEE. Personal use is permitted, but republication/redistribution re

11

8 Spine Switches
A

16 Servers

Fig. 12: Large-scale simulation setup.

Towards Larger RTT Variations

We increase the RTT variation from 3x (70us to 210us)
to 5x (7T0us to 350us). We evaluate ECN* using the more
challenging web search workload, where the traffic is more
bursty. We compare ECN? with current practice, DCTCP-
RED-Tail. The results are shown in Figure NFCT nx
denotes the normalized FCT of ECN¥ to DCTCP-RED-Tail
when RTT has nx variation.

As shown in Figure ECNF generally achieves similar
overall FCT as DCTCP-RED-Tail. When the RTT variation
reaches 5x, the FCT degradation is within 7.6%(2854us to
2650us at 30% load). When the load is higher, ECN# can
achieve slightly better results than DCTCP-RED-Tail. The
reason is that due to the conservative marking for persis-
tent congestion, ECNF can consistently achieve comparable
overall FCT no matter how RTT variation enlarges.

Furthermore, ECN* greatly outperforms DCTCP-RED-
Tail for short flows. As show in Figure ECN* can
achieve up to 37.3% (5242us to 3287us at 90% load) lower
FCT when the RTT variation is 3x. The advantage is en-
larged to 71.2% and 73.4% when the variation is 4x and
5x respectively. This shows ECN* can effectively reduce the
FCT for short flows by controlling the persistent congestion.
When the RTT variation is larger, ECN* can bring more
benefit to delay-sensitive short flows.

5.3 Large Scale Simulations

To complement the small-scale testbed, we further evaluate
ECNF on a larger-scale spine-leaf topology with production
workloads (§5.3).

Setup: We simulate a 128-host leaf-spine topology with 8
spine and 8 leaf switches. Each leaf is connected to 16 servers
via 10Gbps links. The spine and leaf switches are also
connected via 10Gbps links. Figure [12| shows the topology.
We use ECMP for load balancing. The RTT has 3 x variations
and varies from 80us to 240us. The average RTT here is
~ 137us and 90th percentile is ~ 220us. The distributions
are similar to Figure |1} which is a long-tail distribution.

In our simulation, the calculation of packets’ sojourn
time is implemented with packet tags in ns-3 [33]]. When
a packet enqueues, we add a packet tag with the enqueue
timestamp to the packet. When the packet dequeues, we cal-

IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

uires /)
Authorized licensed use limited to: Southeast University. Downloaded on Feci:)ruary 28,2023 at 01:32:32 UTC from IEE% Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on

content may change prior to final publication

IEEE TRANSACTIONS ON CLOUD COMPUTING

Cloud Computing. This is the author's version which has not been fully edited and
. Citation information: DOI 10.1109/TCC.2022.3204988

12
14 14 14 14
e e =]
512 512 512 512
= = = =
g=} o o o
g 1m4§>e—a—=e-<g,a<$ g 1 T 888 8 B8 88 ¢ Hp—8—b—s—B—a—"—F—p
s S S e
208) 208 2 0.6 208
5 & DCTCP-RED-Tail 5 5 5
Z. Z Z Z.
0.6} ©ECN* 0.6 0.6 P06
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90

Load(%) Load(%)

(a) Overall:AVG (b) (0, 100KB]:AVG

Load(%)
(c) (0, 100KB]:99th percentile

Load(%)
(d) [10MB, c0):AVG

Fig. 13: [Simulations] FCT statistics with web search workload. All are normalized to the results achieved by DCTCP-

RED with threshold derived from 90 percentile RTT.

1.4

14 14 14
= = = =
512 512 512 512
= = = =
2 —f—8—e—8—8——0 ¥ »—sa—8—8—8—8—8—48 ¢ Hh—8—8—8 888 2 B—a——a—s—85—o—0
S S s s
E E E e
208) £08 = 0.6 £ 08
5 " & DCTCP-RED-Tail 5 5 5
Z Z Z Z.

0.6} -©ECN* 0.6 0.6 0.6

20 30 40 50 60
Load(%)

(a) Overall:AVG

70 80 90 20 30 40 50 60

Load(%)
(b) (0, 100KB]:AVG

70 80 90

20 30 40 50 60
Load(%)

(c) (0, 100KB]:99th percentile

70 80 90 20 30 40 50 60

Load(%)
(d) [1OMB, 0):AVG

70 80 90

Fig. 14: [Simulations] FCT statistics with data mining workload. All are normalized to the results achieved by DCTCP-

RED with threshold derived from 90 percentile RTT.

culate the sojourn time by deducting the enqueue timestamp
from the current timestamp.

We evaluate ECN* using both web search and data
mining workloads. The results are shown in Figure [13] and

Figure[14]. All results have been normalized to FCT achieved
by DCTCP-RED-Tail.

Overall: With both workloads, ECN¥ achieves similar re-
sults as DCTCP-RED-Tail, as shown in Figure and Fig-
ure The results show that even in large-scale environ-
ment with high RTT variations, ECN*’s marking mechanism
does not hurt the overall networking performance.

Short flows: ECNF largely outperforms DCTCP-RED-Tail
with both workloads. With web search workload, ECN*
achieves up to 23.4% better flow completion time (738us
to 964us at 90% load), and achieves up to 31.3% better
flow completion time with data mining workload (377us
to 548us at 80% load). When considering 99th percentile
short flows, the performance gain brought by ECN* further
increases. ECN* outperforms DCTCP-RED-Tail by up to
37.3% (3287us to 5242us at 90% load) with web search
workload and 37.6% (1347us to 2161us at 80% load) with
data mining workload. The results are consistent with
testbed results and show that ECN* can efficiently mitigate
the queue buildup problems with high RTT variations and
benefit the performance of short flows.

Large flows: The performance of large flows are similar
as the overall performance. Experiment results show that
ECN* can well preserve the performance of throughput-

sensitive large flows by using a threshold derived from a
high RTT value.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution re
Authorized licensed use |

Simulated Switch

Concurrent <
Senders
Egress Queue

Crossbar

Fig. 15: Simulation setting for microscopic view.

5.4 ECN! Deep Dive

In this section, we first show a microscopic view of queues
to _explain the superior results achieved in both and
Then, we analyze ECN¥’s parameter sensitivity. Finally,

we compare ECN¥ with the latest datacenter AQM solution,
TCN [12].

Microscopic View

Simulation setup: As shown in Figure[15| we use a simple
16 to 1 topology with 10Gbps links, 16 servers are senders
and 1 receiver. Other settings are similar to For CoDel,
the interval is set to 240us while target is set to 10us.

We send flows from 16 senders to the receiver. The size
of both large and short flows are generated based on data
mining workload. We also generate some query flows to
emulate bursty incast traffic. The size of query flows follows
a uniform distribution from 3KB to 60KB. We start N (100
in default) concurrent query flows at 4s. We further change
the value of N to show how these bursty query flows affect
the performance of all schemes.

> cgjires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
imited to: Southeast University. Downloaded on February 28,

/)
2023 at 01:32:32 UTC from IEE% Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

13

2 600 Queue Size /E 600 Queue Size g 600 Queue Size
& 500 & 500 & 500
=" [« ="
B 400 3 400 B 400
i 3* *
= 300 <= 300 < 300
+ + T
0 % &
& 200 £ 200 & 200
e 2 e
7 100fQuery Start T 100} Quety Start T 100} Query Start
E 3 2
< 0 < . < 0
4 4.001 4.002 4.003 4.004 4.005 4 4.001 4.002 4.003 4.004 4.005 4 4,001 4.002 4.003 4.004 4.005
Time(s) Time(s) Time(s)
(a) DCTCP-RED-Tail (b) CoDel (c) ECN*

Fig. 16: [Simulations] Queue occupancy (with 100 concurrent query flows). ECN* achieves much lower queue occupancy
(8 packets) compared to current practice, DCTCP-RED-Tail (182 packets). Meanwhile, ECN* achieves comparable
performance in handling incast (no packets drop), large outperforms CoDel (drops 125 packets).

%103 g 10°
& DCTCP-RED-Tail 1 h
4} ©ECN? 6]
. 4 CoDel s
=3 =
= Ea
O, O
5 &3]
2
s 4
0 0
50 100 150 200 50 100 150 200

Concurrent Sender(#)

(a) Query flows: AVG

Concurrent Sender(#)

(b) Query flows: 99th per-
centile

Fig. 17: [Simulations] Statistics of query flow comple-
tion time. ECN? can achieve comparable performance as
DCTCP-RED-Tail and largely outperforms CoDel.

Queue occupancy: To better illustrate how different
schemes manage their queues, we sample the queue length
of the bottleneck link for 0.005 seconds and the results are
shown in Figure Compared to other schemes, ECN*
achieves two advantages:

e Low persistent queueing: ECN* keeps much lower
queue occupancy (8 packets) compared to DCTCP-
RED-Tail (182 packets). The low queue occupancy con-
firms ECN*’s effectiveness in handling persistent queue
buildups caused by the mismatch between RTTs and
marking threshold.

e No packet drops with incast flows: ECN* achieves
comparable results in handling bursty query traffic
(no packet drops) with DCTCP-RED-Tail, outperforming
CoDel (drop 125 packets). The reason is that by leverag-
ing the merit of instantaneous marking, ECN* can achieve
good burst tolerance.

Impact of bursty query flows: To have a deeper view on
how those schemes handle bursty query flows, we change
the concurrent query senders from 25 to 200 and trace the
query completion time. The results are shown in Figure
When there are 100 concurrent senders, CoDel begins to suf-
fer from packet loss, seriously degrading the performance.
On the contrary, ECN* achieves comparable performance
with DCTCP-RED-Tail, and begins to suffer from packet
loss when the concurrent senders are increased to 175.
In summary, due to its good burst tolerance, ECN* can

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

1.02 1.01
= -© Web Search =
O 1.01 - O 1.005
R & Data Mining =
g R
N I ?» N]
E g 5
i 0.99¢ % 0.995
z z

0.98 0.99

100 150 200 250 6 10 14 18

Load(%) Load(%)

(a) Sensitivity to pst_interval (b) Sensitivity to pst_target

Fig. 18: [Simulations] Parameter Sensitivity. ECN is ro-
bust to parameter choices with only <1% variations on
overall FCT with different parameter settings.

support 1.75x more concurrent senders than CoDel with
bursty incast traffic. The reason is that ECN* leverages the
instantaneous marking and has a good control over bursty
traffic.

Parameter Sensitivity

We next show how robust ECN* is to different parameter
settings. We set both pst_target and pst_interval based on
the rule-of-thumb proposed in We conduct analysis on
both workloads. We use the setup in and the results are
shown in Figure|18| We have the following two observations
from the results:

o Different parameter settings do not have a large impact
on the performance of ECN* considering the overall FCT.
The difference is within 1% for web search workload and
0.2% for data mining workload.

o After reducing the value of pst_interval, ECN! behaves
differently on the two workloads. For data mining work-
loads, ECN* performs slightly worse (0.2% longer FCT).
However, for web search workload, ECN? performs 1%
better. The reason is that web search workload is more
bursty, and a more aggressive marking mechanism is
better. We can reduce the pst_interval to increase the
marking frequency.

Packet Scheduler

In this section, we compare ECN! with TCN [12], the latest
AQM solution to show how ECNF works with arbitrary

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

Launch query @
flows @

Fig. 19: Simulation setting for packet scheduler.

[N
[__umn
[«

DWRR 2:1:1

Launch long-live
TCP flows

/!

packet scheduler. The experiment setting is shown in Fig-
ure[19} We mainly focus on the following questions.

e Can ECNF preserve the packet scheduling policy?

e Can ECN! mitigate the persistent queueing exacerbated
by RTT variations even with packet scheduler?

To evaluate this, we configure the switch with Deficit
Weighted Round Robin (DWRR) with 3 queues/services.
The weights among the 3 queues/services are 2 : 1 : 1.
We first start a long-lived TCP flow from sender 1 and
classify this flow into queue/service 1, then from sender 2
and classify into queue/service 2, finally from sender 3 into
queue/service 3. We also randomly start short flows (the
size is from 3KB to 60KB) from the rest of senders to probe
the queue occupancies. We set the TCN marking threshold
to 150us to avoid throughput loss. Figure shows our
settings.

Figure shows the goodput of flows achieved by
ECNF. We observe at the beginning, only queue 1 is ac-
tive, flow 1 achieves around ~ 9.6Gbps goodput (Goodput
is slightly smaller than throughput due to packet header
overhead). After flow 2 starts, queue 2 becomes active and
flow 1 achieves ~ 6.42Gbps goodput while flow 2 achieves
~ 3.18Gbps goodput. Finally, when three queues all become
active, flow 1, flow 2 and flow 3 achieve around 4.82Gbps,
2.40Gbps and 2.40Gbps goodput respectively, which strictly
preserves the packet scheduling policy.

We also measure the FCT of short flows among all
queues and the results are shown in Figure Compared
to TCN, ECN* achieves 19.6% better average FCT (2913us
to 2341us) for short flows.

In summary, ECNF can strictly preserve the packet
scheduling policy with multiple queues/classes. Further-
more, compared to TCN, ECN* achieves better performance
for short flows because ECNF eliminates persistent queue
buildups exacerbated by the RTT variations.

ECN’ + DCQCN

In this section, we will demonstrate how ECN? can ben-
efit DCQCN, a transport protocol that uses probabilistic
instantaneous queueing. The experiment setting is identical
as our large-scale simulation experiment (§5.3). Figure
illustrates the results. The parameters of DCQCN is derived
based on high percentile RTTs. In general, as shown in Fig-
ure we can observe that DCQCN and DCQCN+ECN?
does not impact the overall FCT of all flows. It further

© 2022 IEEE. Personal use is permitted, but republication/redistribution re

14
10 1
. --ECN*
2, 8 08I o TCN
0
T | ¢Flow1 VOO EO'G
2, 4 ©-Flow 2 vVVVYYO 04
3 &Flow 3 ’
32k S ppEees 02
-8-8-8-8-5-5-5-a-H 0
0 1 2 3 0 1000 2000 3000 4000 5000

Time(s)

Time(ps)

(a) Flow goodput (b) FCT of short flows

Fig. 20: [Simulations] ECN* with packet schedulers. ECN*
can preserve the network scheduling policy while achieve
better performance for short flows.

-
N
Ing
iN

[N
N
=
N

Normalized FCT
o k
Oo I
Normalized FCT
q
q
q
q

o
®

&DCQCN
©DCQCN+ECN?

o
o

o
o

20 30 40 50 60
Load(%)

(a) Overall:AVG

70 80 90 20 30 40 50 60

Load (%)
(b) (0, 100KB]:AVG

70 80 90

Fig. 21: [Simulations] FCT statistics with web search
workload. All are normalized to the results achieved by
DCQCN.

14 1.2
& =
12 O 11
= =~
=] 5]
§ Pp—a—p—o——o—8—§ ¢ & & 5 &
E E
g o8 PIAS £
5 = 509
Z } z
06} -©PIAS+ECN?

0.8
20 30 40 50 60
Load (%)

(b) (0, 100KBI:AVG

20 30 40 50 60
Load (%)

(a) Overall:AVG

70 80 90 70 80 90

Fig. 22: [Simulations] FCT statistics with web search
workload. All are normalized to the results achieved by
PIAS.

confirms that ECN* does not hurt networking throughput.
Moreover, as shown in Figure we can observe that
compare to original DCQCN, DCQCN+ECN?* can further
improve the FCT of short flows by up to 14.9%. The results
indicate that even for transport protocols that leverage prob-
abilistic instantaneous marking, ECN* can benefit them by
eliminating the queue buildups caused by RTT variations,
improving the performance of short flows.

ECN’ + PIAS

We finally show how ECNY can benefit PIAS, a flow schedul-
ing mechanism. We use the experiment settings in and
the results are shown in Figure Similarly, as shown in
Figure ECNF does not impact the overall FCT of all
flows. Furthermore, while PIAS can already optimize FCT
for short flows by granting these flows higher priorities in

uires /)
Authorized licensed use limited to: Southeast University. Downloaded on Feci:)ruary 28,2023 at 01:32:32 UTC from IEE% Xplore. Restrictions apply.

IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

the network, we observe that ECN* can further optimize
FCT for short flows by up to 10.1% as shown in Figure
We admit that for PTAS, ECN* does not provide as large im-
provement as that for DCTCP/DCQCN/Codel/TCN since
PIAS has already provided superior optimization for short
flows. However, we can see that ECN? can still provide
additional improvements for short flows by eliminating
unnecessary queue buildups. On a more general note, we
believe that ECN* can also benefit other flow scheduling
mechanisms, such as pFabric [26], QJUMP [27], etc. when
RTT variation exist.

6 RELATED WORK

ECN-based Transports in Datacenters: The ECN-related
literature on datacenter networks is vast. Alizadeh et al. [1]
identified the transport requirements in production data-
centers and proposed DCTCP to address the challenges.
To achieve good burst tolerance, DCTCP uses a simplified
version of ECN/RED [8] to mark packets at the switch.

ECN* [9] uses the standard TCP congestion control
algorithm at the end host. D2TCP [18] and L?DCT [34] mod-
ified the DCTCP congestion control algorithm to meet flow
deadlines . Shan et al.proposed CEDM [35] to accurately
mark ECN to reduce throughput loss by reducing queue
oscillations. These solutions apply the same AQM marking
as DCTCP . Thus they all suffer from increased queueing
delay with the current practice under RTT variations (§2.3).
ECNF can benefit all of them. HULL [36]] delivers near zero
queueing delay by sacrificing a little throughput. It uses
phantom queues instead of RED to mark packets at the
switch. DCQCN [2] is a rate-based congestion control to
enable RDMA in datacenters. At the switch, it requires RED-
like probabilistic marking to ensure convergence. ECNF
can be extended to work with it. MBECN [37] uses a
queue-occupation-based dynamically adjusting algorithm
to solve micro-burst problem, which can also be used to
solve RTT variation problems but not feasible to implement
on switches.

MQ-ECN [19] first pointed out the drawbacks of existing
ECN/RED implementations in packet scheduling context.
To adapt to the varying queue capacity caused by packet
schedulers, TCN [12] proposed to use instantaneous sojourn
time to mark packets. ECN* inherits the merit of TCN, but
further tracks the persistent congestion state to reduce long-
term queue buildups.

Buffer Sizing and AQM in Internet: Appenzeller et
al. [38] showed that the minimum buffer size should be
C'x RTT /+/n when there are a large number of n concurrent
large flows. However, datacenter networks typically have
a small number of concurrent large flows [1]]. Therefore,
people still applied the old rule-of-thumb C x RTT for
buffer sizing for regular TCP.

Many AQM solutions have been proposed to handle
bufferbloat in Internet. CoDel [13] tracks the minimum
sojourn time over a varying time interval to detect bad
queues. PI [39] and PIE [40] use a proportional-integral
controller to keep the queueing to a constant target. Relative
to them, ECN¥ further applies the aggressive instantaneous
ECN marking to handle transient bursts.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution recgjires
Authorized licensed use limited to: Southeast University. Downloaded on February 28,2023 at 01:32:32 UTC from

15

New Design over Programmable Switches: With the emer-
gence of programmable switches, such as Barefoot Tofino.
Many clean designs, such as NDP [41] and PERC [42] have
been proposed to deliver ultra low latency communica-
tion. However, they are not compatible with state-of-the-
art ECN-based solutions in datacenters. On the contrary,
ECN* is fully compatible with ECN-based solutions and
utilizes the networking programmability to mitigate perfor-
mance degradation caused by RTT variations. Furthermore,
AIFO [43] enables programmable packet scheduling with a
single queue, which we believe could combine with ECN¥
in the future works.

7 CONCLUSION

In this paper, we have presented ECN* a simple yet effective
solution that enables ECN in datacenters with high RTT
variations. ECN* marks packets based on both instanta-
neous and persistent congestion states. It inherits the merit
of current instantaneous ECN marking based on a high-
percentile RTT to achieve high throughput and burst toler-
ance, and further marks packets when observing long-term
switch queue buildups to eliminate the persistent queueing
caused by flows with smaller RTTs. We have implemented
ECNF on a Barefoot Tofino switch and evaluated it through
both testbed experiments and ns-3 simulations. Our evalu-
ation shows that ECNF is a viable solution that achieves all
our design goals.

ACKNOWLEDGMENTS

This work is supported in part by the Key-Area Re-
search and Development Program of Guangdong Province
(2021B0101400001), the Hong Kong RGC TRS T41-603/20-
R, GRF-16215119, GRF-16213621, and the NSFC Grant
62062005. Kai Chen is the corresponding author.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz,]J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctep),” in SIGCOMM 2010, 2010.

[2] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion
control for large-scale rdma deployments,” in SIGCOMM 2015,
2015.

[3] “DCTCP in Linux kernel 3.18.” fhttps://kernelnewbies.org/
Linux_3.18, 2014.

[4] “DCTCP in Windows Server 2012.” https://technet.microsoft.
com/en-us/library /hh997028(v=ws.11).aspx, 2012.

[5] A.Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda,]J. Wanderer, U. Holzle, S. Stuart,
and A. Vahdat, “Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network,” in SIGCOMM
2015, 2015.

[6] G.]Judd, “Attaining the promise and avoiding the pitfalls of tcp in
the datacenter,” in NSDI 2015, 2015.

[7] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-
resolution measurement of data center microbursts,” in IMC 2017,
2017.

[8] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Networking
(ToN), vol. 1, no. 4, pp. 397413, 1993.

[91 H.Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ecn
for data center networks,” in CONEXT 2012, 2012.

Xplore. Restrictions apply.

IEEE permission. See https://www.ieeﬁ.zolé%lpublications/right'_s/index.html for more information.

https://kernelnewbies.org/Linux_3.18
https://kernelnewbies.org/Linux_3.18
https://technet.microsoft.com/en-us/library/hh997028(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh997028(v=ws.11).aspx

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3204988

IEEE TRANSACTIONS ON CLOUD COMPUTING

[10]

(1]

(12]
(13]
[14]
[15]

[16]

[17]

(18]
(19]
[20]
[21]

[22]
(23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]
(39]

[40]

P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri,
“Ananta: Cloud scale load balancing,” in SIGCOMM 2013, 2013.
D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein, “Maglev: A fast and reliable software network load
balancer,” in NSDI 2016, 2016.

W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling ecn over
generic packet scheduling,” in CONEXT 2016, 2016.

K. Nichols and V. Jacobson, “Controlling queue delay,” ACM
Queue, vol. 10, no. 5, pp. 20:20-20:34, 2012.

“Barefoot Tofino,” https:/ /www.barefootnetworks.com/
technology/} 2016.

“Barefoot Capilano SDE,” https://www.barefootnetworks.com/
products/brief-capilano/, 2018.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VI2: A scalable and flexible
data center network,” in SIGCOMM 2009, 2009.

W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in NSDI 2015, 2015.

B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware data-
center tcp (d2tcp),” in SIGCOMM 2012, 2012.

W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-
service multi-queue data centers,” in NSDI 2016, 2016.

M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:
Stability, convergence, and fairness,” in SIGMETRICS 2011, 2011.
C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye,]J. Padhye, and M. Lip-
shteyn, “Rdma over commodity ethernet at scale,” in SIGCOMM
2016, 2016.

“Linux Virtual Server,” http://www.linuxvirtualserver.org, 2019.
R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” in SIGCOMM 2014, 2014.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh:
A large-scale system for data center network latency measurement
and analysis,” in SIGCOMM 2015, 2015.

“netem in Linux,” https:/ /wiki.linuxfoundation.org/
networking /netem, 2016.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prab-
hakar, and S. Shenker, “pfabric: Minimal near-optimal datacenter
transport,” in SIGCOMM 2013, 2013.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues {Don’t} matter when
you can {JUMP} them!” in NSDI 15, 2015.

“P4 Language,” https:/ /p4.org/, 2018.

B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance
network processing with reconfigurable hardware,” in SIGCOMM
2016, 2016.

“The Network Simulator ns-3.” https:/ /www.nsnam.org, 2015.

“TCN Prototype,” https:/ /github.com /HKUST-SING/
TCN-Software, 2016.
“Traffic Generator,” https:/ /github.com/HKUST-SING/

TrafficGenerator, 2016.

“The Network Simulator ns-3. Packets.” https://www.
nsnam.org/docs/release/3.10/manual /html/packets.html#
tags-implementation, 2015.

A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S.
Igbal, and B. Khan, “Minimizing flow completion times in data
centers,” in INFOCOM 2013, 2013.

D. Shan and F. Ren, “Improving ecn marking scheme with micro-
burst traffic in data center networks,” in INFOCOM 2017, 2017.
M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in NSDI 2012, 2012.

K. Kang, J. Zhang,]. Jin, D. Shen, J. Luo, W. Li, and Z. Wu, “Mbecn:
Enabling ecn with micro-burst traffic in multi-queue data center,”
in CLUSTER 2019, 2019.

G. Appenzeller, 1. Keslassy, and N. McKeown, “Sizing router
buffers,” in SIGCOMM 2004, 2004.

C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A control
theoretic analysis of red,” in INFOCOM 2001, 2001.

R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “Pie: A lightweight control scheme to
address the bufferbloat problem,” in HPSR 2013, 2013.

i © 2022 IEEE. Personal use is permitted, but republication/redistribution re
Authorized licensed use limited to: Southeast University. Downloaded on Fe

[41]

[42]

[43]

—a A=

16

M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wéjcik, “Re-architecting datacenter networks
and stacks for low latency and high performance,” in SIGCOMM
2017,2017.

L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown, and
S. Katti, “High speed networks need proactive congestion con-
trol,” in HotNets 2015, 2015.

Z. Yu, C. Hu,]J. Wu, X. Sun, V. Braverman, M. Chowdhury,
Z. Liu, and X. Jin, “Programmable packet scheduling with a single
queue,” in SIGCOMM 2021, 2021.

Junxue Zhang Junxue Zhang is a Ph.D can-
didate in computer science from Hong Kong
University of Science and Technology. Junxue’s
current current research interests include data
center networking, machine learning systems
and privacy-preserving computing. His research
work has been published in many top confer-
ences such as SIGCOMM, CoNEXT.

Wei Bai Wei Bai is a senior researcher at Mi-
crosoft Research Redmond. He received his
Ph.D degree in computer science from Hong
Kong University of Science and Technology. Wei
is broadly interested in computer networking with
a special focus on data center networking. His
research work has been published in many top
conferences and journals, such as SIGCOMM,
NSDI, and ToN. Wei also has rich experience
in developing and operating production cloud
networks. Currently, he is mainly focusing on

network infrastructure to support cloud-scale RDMA deployments.

Kai Chen Kai Chen is an Associate Professor
with the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology, Hong Kong. He received his
Ph.D. degree in Computer Science from North-
western University, Evanston, IL, USA in 2012.
His current research interests include data cen-
ter networking, machine learning systems and
privacy-preserving computing.

cgjires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
ruary 28,2023 at 01:32:32 UTC from IEE

Xplore. Restrictions apply.

https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/products/brief-capilano/
https://www.barefootnetworks.com/products/brief-capilano/
http://www.linuxvirtualserver.org
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://p4.org/
https://www.nsnam.org
https://github.com/HKUST-SING/TCN-Software
https://github.com/HKUST-SING/TCN-Software
https://github.com/HKUST-SING/TrafficGenerator
https://github.com/HKUST-SING/TrafficGenerator
https://www.nsnam.org/docs/release/3.10/manual/html/packets.html#tags-implementation
https://www.nsnam.org/docs/release/3.10/manual/html/packets.html#tags-implementation
https://www.nsnam.org/docs/release/3.10/manual/html/packets.html#tags-implementation

	Introduction
	Background and Problems
	Instantaneous ECN Marking
	RTT Variations in Datacenters
	Current Practice and Problems

	ECN
	Design Choice
	ECN Mechanism
	Why ECN works?
	Parameter Setting
	Discussion

	Implementation
	Emulate Precise System Time
	Update Switch States at Line Rate
	Implement Division Function

	Evaluation
	Methodology
	Testbed Experiments
	Large Scale Simulations
	ECN Deep Dive

	Related Work
	Conclusion
	References
	Biographies
	Junxue Zhang
	Wei Bai
	Kai Chen

