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Abstract

Cross-silo federated learning (FL) adopts various crypto-
graphic operations to preserve data privacy, which introduces

significant performance overhead. In this paper, we iden-
tify nine widely-used cryptographic operations and design
an efficient hardware architecture to accelerate them. How-
ever, directly offloading them on hardware statically leads to

(1) inadequate hardware acceleration due to the limited re-
sources allocated to each operation; (2) insufficient resource

utilization, since different operations are used at different
times. To address these challenges, we propose FLASH,
a high-performance hardware acceleration architecture for
cross-silo FL systems. At its heart, FLASH extracts two ba-
sic operators—modular exponentiation and multiplication—
behind the nine cryptographic operations and implements

them as highly-performant engines to achieve adequate ac-
celeration. Furthermore, it leverages a dataflow scheduling
scheme to dynamically compose different cryptographic op-
erations based on these basic engines to obtain sufficient
resource utilization. We have implemented a fully-functional
FLASH prototype with Xilinx VU13P FPGA and integrated it
with FATE, the most widely-adopted cross-silo FL framework.
Experimental results show that, for the nine cryptographic
operations, FLASH achieves up to 14.0x and 3.4 x accelera-
tion over CPU and GPU, translating to up to 6.8 x and 2.0x

speedup for realistic FL applications, respectively. We finally
evaluate the FLASH design as an ASIC, and it achieves 23.6x

performance improvement upon the FPGA prototype.

1 Introduction

Training a high-quality machine learning model requires mas-
sive data, which is likely to be distributed across different
institutions or companies in the real world. However, the
increasing concern about data privacy and emerging regula-
tions and lawsuits restrict these data from being collected
together in one place for centralized training. To solve this
problem, federated learning (FL) has been proposed to enable
distributed learning among these data silos by performing
local computation within a data silo and securely aggregating
the intermediate results (e.g., gradients/parameters) to gener-
ate a global model without revealing any original data to the
outside world [44,48, 89].

To ensure the security of cross-silo FL, various crypto-
graphic techniques have been used. For example, partially ho-
momorphic encryptions (PHE), e.g., Paillier, have been used
to enable parameter computation/aggregation directly on ci-
phertexts [73]. RSA is used to build the blind signature-based
Private Set Intersections (PSI) for sample alignment [45]. In

this paper, we perform a comprehensive analysis of exist-
ing cross-silo FL applications and identify nine widely-used
cryptographic operations, such as encryption/decryption, com-
putation over ciphertexts, efc. (more details in §3.1). While
preserving privacy, these cryptographic operations signifi-
cantly degrade the performance (§3.2). For example, our ex-
periments show that these operations cause up to 60.74 x
performance degradation. The reasons are two-fold: (1) they
are of high computational complexity, e.g., Paillier encryp-
tion has a O(2V)! time complexity; (2) they introduce large
number calculations, e.g., additively HE and RSA encryp-
tion generate 2048-bit ciphertexts which need to be broken
down to multiple 64-bit numbers and executed with limited
parallelism on current CPU architecture.

In this paper, we ask: can we offload these cryptographic
operations to dedicated hardware to accelerate cross-silo FL?
Towards answering this question, our first attempt went with
GPU. However, as we will reveal in §3.3, the cryptographic
operations used in cross-silo FL involve complicated compu-
tation stages and dramatically inflate the data, making them
inappropriate for GPUs. While GPU is ideal for performing
data parallelism over tensors with short numbers, e.g., single-
precision floats, it fails to provide efficient pipeline execution
for cryptographic operations with large numbers, e.g., 2048-
bit integers. The reason is that the limited size of the shared
memory within one Streaming Multiprocessor (SM) causes
frequent data exchange between external and on-chip shared
memory during the pipeline execution, significantly compro-
mising the performance. While it might be feasible to work
around the limitation of GPUs, it requires complex mecha-
nisms such as a complex memory orchestration system. Our
paper does not take this direction (§6).

To further accelerate cross-silo FL, we seek a more effi-
cient hardware acceleration architecture beyond the existing
GPU architecture. To this end, we choose to use FPGA as
a prototype and further explore an Application-specific Inte-
grated Circuit (ASIC). We believe such customized hardware
architecture will exhibit several desired properties for our pur-
pose. First, it is possible to tailor a hardware architecture for
efficient cross-silo FL by customizing the hardware circuits
from scratch, so that we can design an optimized fine-grained
pipelining with flexible bit-width support for accelerating
cryptographic operations. Second, the customized hardware
architecture allows us to provide sufficient on-chip memory
for storing large numbers used in the processing pipeline for
superior performance. However, while promising, we identify

1N is the bit-width of the exponent n, and n is the public key in Paillier
encryption.



that directly offloading the nine cryptographic operations to
the hardware statically will pose two key challenges (§3.3):

¢ Inadequate hardware acceleration due to limited re-
sources. To achieve high performance, one operation may
need multiple hardware instances for high parallelism.
However, as the hardware resource of a chip is limited,
directly offloading all these nice operations to the hardware
causes inadequate resources to speed up each operation,
leading to suboptimal performance. Our implementation
with this approach on a Xilinx VU13P FPGA [23] chip
shows that each operation only achieves ~ 50% accelera-
tion on average.

¢ Insufficient resource utilization due to static offload-
ing. Different FL applications use different cryptographic
operations, and within each application, different opera-
tions are used at different times. Consequently, statically
offloading all the operations as a whole results in resource
under-utilization because not all the operations are used at
all times simultaneously.

To address the challenges, we take a closer look at these
nine cryptographic operations and observe that almost all of
them build upon two basic operators: modular exponentiation
and modular multiplication. Based on this observation, we
propose FLASH, a high-performance hardware acceleration
architecture for cross-silo federated learning (§4). At its core,
FLASH uses the majority of hardware resources to imple-
ment the two basic operators as high-performance engines
to achieve adequate hardware acceleration. We also design
fine-grained pipelines with sufficient on-chip memory to im-
prove both the intra- and inter-engine execution efficiency
for superior performance. Furthermore, based on these basic
engines, FLASH adopts a dataflow scheduling module to dy-
namically compose these engines into different cryptographic
operations on-demand to achieve high resource utilization.

We have provided a down-scale but full functional imple-
mentation of FLASH with Xilinx VU13P FPGA [23]’ for
prototyping purpose, integrated it with FATE [2]—the most
widely-adopted cross-silo FL framework—and evaluated it
extensively with real-world FL applications. We compare the
performance of FLASH with (1) the vanilla FATE, which uses
GMP [19] to implement these cryptographic operations with
CPU. GMP provides a highly-optimized implementation for
modular multiplication and exponentiation operations, which
uses many optimization algorithms, including but not limited
to the two mentioned in our paper. We choose Intel Xeon Sil-
ver 4114 CPU similar to prior works [76]; (2) the FATE where
the cryptographic operations are accelerated by NVIDIA P4’

2We use FPGA for prototyping purposes, so we do not consider the price
advantages/disadvantages of the VU13P FPGA chip.

3We note that latest NVIDIA A100 [9]/H100 [10] may have a better
performance than P4/VU13P, however, they are much more expensive while
still sharing the architectural deficiency of GPU in general as discussed in
§3.3. The focus of FLASH is to pursue a more efficient hardware acceleration
architecture for cross-silo FL.
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Figure 1: Two paradigms of cross-silo FL.
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GPU [11,43]. Here we use P4 GPU because it has the closest
INTS8 TOPS (although ~ 2x better) as FLASH (we typically
use INT8 TOPS to denote the general computation power of
a chip). P4 has ~ 20 INT8 TOPS [11]. VU13P has ~ 38.3
INT8 DSP TOPS while reaching peak 891MHz operation
frequency [23, 24]. As FLASH uses 300MHz, it achieves
~ 12.9 DSP INT8 TOPS. Moreover, both of them are built
with 16nm technology. Finally, with the standard Synopsys
software tools (e.g., Design Compiler [14], VCS [16] and
Prime Time [15]), we further evaluate the performance of
FLASH if implemented as an ASIC.

Overall, some of our key results are as follows:
e Across the nine concrete cryptographic operations (§6.2),

FLASH (with FPGA implementation) outperforms CPU

and GPU by 10.4x — 14.0x and 1.4 x — 3.4 X, respectively.

e Over the nine realistic FL applications (§6.3), FLASH
(with FPGA implementation) can consistently outperform
CPU and GPU by up to 6.8 and 2.0x, respectively.

e QOur software evaluation of FLASH as an ASIC with 12nm
and 28nm fabrication techniques (§6.5) shows that it can
achieve 23.6x and 7.1x additional performance improve-
ment upon the FPGA implementation, respectively.

As a final note, we are fully aware that there exist various
other privacy-preserving techniques [27, 71, 81, 85]. How-
ever, in current industry-level deployments, Paillier and RSA
schemes built with the nine cryptographic operations we in-
vestigated in this work are, to date, the most widely adopted
approach in cross-silo FL systems [2,41,49], primarily due to
the reason that they can achieve relatively better performance
and are easier to use compared to other privacy-preserving
schemes. Our goal is to provide plug-and-play acceleration
capability for these industry-level cross-silo FL systems.

2 Cross-silo Federated Learning

FL was first proposed by Google to train a language model
for keyboard input prediction from massive Android devices
without leaking privacy-sensitive data [36,90]. Recently, FL
has evolved from the above cross-device scenarios to collabo-
ratively train machine learning models across different data
silos, i.e., cross-silo FL [44,48,89]. A data silo is a reposi-
tory or collection of data under the control of a single entity
(e.g., institution, company, efc.), and is isolated from other
entities due to the ever-improving management regulations



or laws [50]. Cross-silo FL enables machine learning among
these data silos and supports both vertical and horizontal FL.

Horizontal FL: As shown in Figure |a, participants in Hor-
izontal FL have different sample spaces but the same fea-
ture space, and each participant owns the labels of its sam-
ples. In most cases, there is an arbiter for parameter aggrega-
tion (the arbiter is a third-party server to assist the FL. com-
putations). To train a model, each participant trains local
model w with its own samples and encrypts its model weights
via PHE (e.g., Paillier [74]). Then all participants send their
encrypted weights to the arbiter, and the arbiter directly per-
forms an aggregation over the received ciphertexts to obtain
the global model. Eventually, the arbiter sends the aggregated
global model to all participants for next-round computation.

Vertical FL: As shown in Figure 1b, participants in Vertical
FL have the same sample space but different feature spaces.
Only one participant holds the label of the FL task. Before
training a model, all participants have to align the samples
among different data silos based on the common IDs (similar
to joining two tables in a database based on the common IDs).
One of the most commonly used algorithms is RSA blind
signature-based PSI (RSA-PSI) [45]. After sample alignment,
all participants can follow a pre-defined protocol for model
training, such as Vertical Linear Regression (Please see Table
1 in [89]) and SecureBoost [42]. During the process, par-
ticipants use PHE to encrypt their intermediate results and
exchange them with other participants or the arbiter.

For interested readers, we have provided a detailed expla-
nation of how cross-silo FL. works and its security analysis in
Appendix A.

Summary: Various cryptographic technics are used in cross-
silo FL. These cryptographic technics are composed of vari-
ous operations, e.g., data encryption/decryption via additively
HE, computation over ciphertext, efc., and we call these oper-
ations as cryptographic operations in this paper.

3 Analysis of Cryptographic Operations
3.1 Cryptographic Operations

In this section, we present nine cryptographic operations that
are widely used in cross-silo FL. Our study is based on the
implementation of FATE [2], the most widely adopted open-
source framework for cross-silo FL. However, our analysis
can also be applied to other cross-silo FL frameworks, e.g.,
FedLearner [4], TF Encrypted [18], efc. Specifically, these
nine cryptographic operations are as follows:

O1. Paillier Encryption. This operation uses Paillier [28,73],
an additively homomorphic cryptographic algorithm, to en-
crypt cleartexts into ciphertexts. The operation is mainly used
for protecting the intermediate data during model training.

02. Paillier Decryption. This operation decrypts Paillier
ciphertexts into cleartexts. It is used when participants need
to decrypt the intermediate results for local model updates in
the training phase.

03. Ciphertext Matrix Addition. This operation is used to
add two matrices (or vectors/values) of ciphertexts. As Paillier
is used, ciphertexts can be summed up.

04. Ciphertext & Cleartext Matrix Element-wise Multi-
plication. This operation performs Hadamard product [58]
between ciphertext matrix and cleartext matrix.

05. Ciphertext & Cleartext Matrix Multiplication®. This
operation performs matrix multiplication between two matri-
ces of ciphertexts and cleartexts, respectively.

06. Ciphertext Histogram Building. This operation per-
forms addition operations over encrypted gradient statistics
to build decision trees [42].

O7. RSA Encryption/Decryption. This operation conducts
encryption or decryption with the public or private key of
the RSA algorithm correspondingly. This operation is used
when multiple participants try to perform PSI for sample
alignment [45].

08. RSA Blind. This operation blinds the cleartexts with
encrypted random numbers.

09. RSA Unblind. This operation unblinds RSA ciphertexts

to remove the random numbers from the ciphertexts.

As shown subsequently (§3.2), these cryptographic opera-
tions have a large impact on the performance of cross-silo FL.
applications due to the following two reasons:

o High time complexity: These operations are of high com-
putation complexity, e.g., Paillier encryption has a time
complexity of O(2V). Thus these algorithms are expensive
to compute.

e Large number computation: Cryptographic operations
significantly inflate data, yielding large numbers, e.g., 2048-
bit integer. The large number will need to be divided into
multiple small numbers and executed on the current CPU
architecture with limited parallelism.

3.2 Quantifying the Performance Impact

We now quantify the performance impact of these crypto-
graphic operations with realistic cross-silo FL applications
through testbed experiments.

Our testbed is equipped with an Intel Xeon Silver 4114
CPU [5] and 192GB memory. We choose three most widely-
adopted vertical FL applications and one horizontal FL appli-
cation for evaluation: RSA blind signature-based PSI (RSA-
PSI), Vertical Logistic Regression (VLR) [53], SecureBoost
Decision Tree (SBT) [42] and Horizontal Logistic Regres-
sion (HLR). The dataset we use is a commercial dataset from
a bank with ~ 100,000 samples and 80 features. For verti-
cal FL applications, the dataset is vertically partitioned into
two parts: one part contains 80 features while the other con-
tains one feature. We first perform RSA-PSI to obtain the

4To efficiently process a large matrix, we will use optimization algorithms
such as blocking the matrix and performing multiplications of the blocked
matrices. Thus this operation is not a simple combination of matrix element-
wise multiplication (O4) and addition (O3).



Applications & Their Sub-tasks Involved Operations w/o CO (s) w CO (s) Degradation
RSA-PSI Computing intersection 07, 08, 09 791 20.62 2.60x |
Encrypting logits 01 0 32.05 -
VLR Aggregating logits 03 0.63 2.04 323x )
(One Epoch) Computing fore gradients® 03,04 0.74 2.92 3.93x |
Total: 12.05 Computing gradients 03,04, 05 3.77 135.96 36.08x |
otal: 12.05x | Decrypting gradients 02 0 0.04 -
Computing loss 01, 03, 04 4.08 8.22 2.02x |
SBT Encrypting gradients 01 0 54.71 -
(One Epoch) Aggregating gradients 03, 06 12.02 22391 18.62x |
Total: 3.49x |° Split information synchronization 02 3.62 13.03 3.60% )
HLR Computing gradients 03, 04, 05 1.73 177.94 102.80x% |
(One Epoch) Model update 03,04 0.0002 0.10 526.10x |}
Total: 60.74x [P Model re-encryption 01, 02 0 0.69 -

? According to Federated Logistic Regression [53], the gradient computation takes two steps: fore gradients computation and gradients computation.
® The overall performance degradation of SBT/HLR is smaller than the sum of those sub-tasks because we do not include pure cleartext computation or networking communication

sub-tasks in the table.

Table 1: Performance penalty caused by cryptographic operations (CO) with different cross-silo FL applications.

data intersection. Then, we run VLR and SBT over the data
intersection, respectively. For horizontal FL, the dataset is
horizontally partitioned into two parts, each with ~ 50,000
samples. The four applications are executed both with cryp-
tographic operations implemented using GMP (w/ CO) and
without cryptographic operations (w/o CO). To implement
model training w/o CO, we modify the code of FATE to skip
these cryptographic operations. To perform a fine-grained
analysis, we also break down these four applications into
sub-tasks, and for each sub-task, we show the adopted cryp-
tographic operations. All the applications are executed with
ten CPU cores in parallel. Table 1 shows the results, and we
make the following observations:

e Cryptographic operations considerably degrade the
performance. In general, cryptographic operations sig-
nificantly degrade the performance of cross-silo FL ap-
plications. In our experiment, the cryptographic opera-
tions cause RSA-PSI, VLR, SBT and HLR to suffer 2.60x,
12.05x%, 3.49x and 60.74 x performance degradation, re-
spectively. Moreover, the combinations of these crypto-
graphic operations can degrade the performance from
~2.02% to ~ 526.10%.

e Not all the cryptographic operations are used at all
times simultaneously. Different FL applications use dif-
ferent cryptographic operations, and even within a single
application, different sub-tasks use different operations.

3.3 Challenges of Offloading Cryptographic
Operations

To accelerate these cryptographic operations, we chose GPU
as our first attempt, as it has been widely adopted in various
offloading scenarios. However, as our exploration proceeds,
we find that the cryptographic operations in cross-silo FL
require complicated pipeline computation and significantly
inflate the data, posing the following challenges for GPU.
The hardware architecture of GPU is tailored for perform-
ing data parallelism over tensors, which are mostly short
numbers. However, as we will show in §4.2.1, to efficiently

execute cryptographic operations, we have to use several
steps to optimize the computation, e.g., Montgomery Modular
Multiplication [65], in which pipeline parallelism is needed.
Furthermore, massive large numbers should be stored in the
shared memory during the pipeline execution. However, these
large numbers, e.g., 2048-bit integer numbers, can easily over-
flow the on-chip memory of the GPU. For example, the
amount of shared memory per SM is 96 KB for NVIDIA
V100 [13]. No more than 384 2048-bit integer numbers can
be stored inside one SM. Therefore, after processing a small
amount of data, the GPU has to swap data between the shared
memory and external memory, interrupting the pipeline exe-
cution. While it is possible to solve the aforementioned limi-
tations, it requires complicated memory orchestration, such
as a suitable double-buffering [33], which may pose further
challenges.

To this end, our paper does not take this direction but
moves one step further beyond the existing GPU architecture,
by seeking a more efficient, customized hardware accelera-
tion architecture for cross-silo FL. We envision that with a
customized hardware architecture, we can implement fine-
grained pipelining for those cryptographic operations with
large numbers. The hardware can also support variable bit-
widths to match the cross-silo FL scenarios where different
public key sizes are used (which yield large numbers with
different bit-widths). Furthermore, with a customized design,
we are able to invest sufficient on-chip memory for caching
large numbers used in the pipeline execution. The data swap-
ping between on-chip and external memory can be part of the
pipeline to avoid the performance penalty mentioned above.

In this paper, we follow the rule-of-thumb approach to
use FPGA as a prototype and evaluate the potential of ASIC
via software tools [30, 51, 87]. However, we confront the
following two challenges in our design:

1. Inadequate hardware acceleration due to limited re-
sources. As identified in §3.2, all the cryptographic opera-
tions cause a performance penalty, so we should offload all of
them to hardware. Furthermore, to realize sufficient accelera-
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tion, each operation requires multiple hardware instances of
accelerating modules/circuits for high parallelism. However,
in practice, the hardware chip has limited resources, and if we
naively offload all cryptographic operations to the chip, each
operation has inadequate resources to be fully accelerated.
Taking the DSP resources as an example, our preliminary
implementation on VU13P FPGA [23] chip shows that to
accelerate Paillier encryption (O1) by 2x, we need to use
2630 DSPs. Yet, a high-end FPGA chip, such as VU13P [23],
only has 12288 DSPs, leaving < 1365 DSPs for one opera-
tion on average’ (some DSPs are reserved for PCle, memory
controller, etc.). Thus, directly offloading all operations on
VUI13P FPGA chip leads to only ~ 50% acceleration on aver-
age. A similar problem also applies to the ASIC design.

2. Insufficient resource utilization due to static offload-
ing. Different from software, hardware function is static
after being configured/programmed/taped out, thus it cannot
change its function dynamically. Nevertheless, as shown in
§3.2, not all the cryptographic operations are used at all times
simultaneously. Consequently, if we statically offload all cryp-
tographic operations on the hardware chip, only part of these
cryptographic operations is used at a time. Therefore, such
static offloading causes low resource utilization and further
leads to suboptimal performance.

3.4 Opportunities with Accelerating Basic Op-
erators

To overcome the above challenges, we further take a look
at the internal of these nine cryptographic operations. We
discover that all these operations are composed of two basic
operators: modular multiplication and exponentiation. Then
we further find that the performance of these operations is
mainly decided by the two basic operators.

Paillier Encryption: Given the public key (n,g) and data
m (0 < m < n), the Paillier encryption algorithm takes two
steps: (1) selecting a random number r where 0 < » < n and
r € Z; (2) computing ciphertext ¢ = g" - mod n*. The
formula can also be simplified to ¢ = (1 +mn) - mod n?
by setting g = (1 +n). We use [[-]] to denote the Paillier
encryption, e.g., ¢ = [[m]].

Homomorphic Addition: Given two plaintext @ and b, ho-
momorphic addition guarantees that [[a]] D[[b]] = [[a + b]]-
In Paillier cryptosystem, [[a]] @[[b]] is defined as [[a]] * [[b]]
mod n2. The homomorphic addition is used by operations O3,
05 and O6.

SWe will show later that all these nine operations share similar building
blocks, thus they require similar resources to implement.
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Homomorphic Multiplication: Given a plaintext a and &, the
homomorphic multiplication is denoted by & - [[¢]]. It can be
actually regarded as a homomorphic addition: ¥[[a]]. Thus,
k-[[a]] = [[a]]* mod n?. The homomorphic multiplication is
used by operations 04 and OS.

Paillier Decryption: Given the public key (n, g), private key
(p,q) and ciphertext c, the Paillier Decryption algorithm can
be optimized via Chinese Remainder Theorem (CRT) to re-
duce the original workload to only about one-quarter of the
original decryption algorithm. To use CRT, we define L, and
Ly tobe Ly(x) = % and L,(x) = )%'. The decryption algo-
rithm takes the following three steps: (1) computing m, =
L,(c”~! mod p?)L,(g"~! mod p?)~! mod p; (2) comput-
ingmy =L,(c?"' mod¢®)L,(g7' modg®)~! mod g;and
(3) computing plaintext m = CRT(m,,,m;) mod n.

RSA-related Operations: The RSA-related operations are
used in RSA blind signature-based PSI [45]. It is commonly
known that the core of these RSA-related algorithms is either
modular multiplication or modular exponentiation.

Through the above mathematical analysis, we find that all
cryptographic operations used in cross-silo FL are built upon
the two basic operators: modular multiplication and expo-
nentiation® . Then, we further perform testbed experiments
to investigate how these two basic operators impact the per-
formance of the nine original cryptographic operations. The
results are shown in Figure 2. Clearly, we find that across
all nine original operations, the two basic operators occupy
> 95% of the total execution time.

Observation: We can compose all the nine cryptographic
operations with these two basic operators, and by accelerating
these two basic operators, all the nine original operations used
in cross-silo FL applications can be effectively accelerated.

4 The FLASH Design

Inspired by the above observation, we present FLASH, a high-
performance hardware acceleration architecture for cross-silo
FL. This section describes how we design FLASH in detail.
Please note that our design has been fully implemented in our
FLASH prototype with FPGAs as well as rigorously evaluated

6 Appendix B and C provide more details of these operations.
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4.1 Architecture Overview

Figure 3 shows the overall architecture of FLASH. It con-
tains a hardware acceleration card and an integrated software
package. The accelerator card can be plugged into a server
via PCle Gen3x 16 interface. The server is installed with
cross-silo FL software, e.g., FATE. The software can invoke
FLASH'’s software package to offload the cryptographic oper-
ations on the card for efficient acceleration.

The idea of our FLASH design is that it does not directly
offload all cryptographic operations on the hardware, but
leverages the insights of our observation to (1) utilize the
limited programmable resource for most performance-critical
basic operators: modular exponentiation and multiplication
to achieve adequate acceleration (§4.2), and (2) design an
on-chip dataflow scheduling module to dynamically compose
different cryptographic operations on-demand based on these
engines, achieving high resource utilization (§4.3). In addi-
tion, to make FLASH a general solution to support a wide
range of cross-silo FL frameworks, our software package
provides standard APIs. In this way, different cross-silo FL
software can utilize FLASH by harnessing its APIs (§4.4).

4.2 Modular Exponentiation and Multiplica-
tion Engines

To implement modular exponentiation and multiplication op-
erators as high-performance engines on hardware, FLASH
makes the following design decisions. First, instead of directly
offloading the modular exponentiation and multiplication op-
erators, we optimize the algorithms of the two operators to
make them suitable for the hardware implementation (§4.2.1).
Second, based on the optimized algorithms, FLASH further
leverages pipelining technologies to efficiently execute them
with high parallelism (§4.2.2). Third, we provide sufficient
on-chip memory for pipeline execution and make the data
transfer as part of the pipeline to efficiently exchange data
between off-chip memory and engines (§4.2.3).

4.2.1 Algorithm Optimization

The mathematical formulas of the two basic operators: mod-
ular exponentiation (Equation 1) and multiplication (Equa-
tion 2) are as follows:

Algorithm 1 Montgomery Modular Multiplication

> Given 3 input numbers X, Y and N, the Montgomery Modular Multi-

plication outputs Z =X -Y-R~' mod N, where R is a power of 2 and

[logy R] = [log, N].

Imput: X = (X;_1,..,X0), Y = (Yy_1,..,Yo), N= (Ny_1,...,No), N', where
N =(=N)"!' modr, > N’ is pre-computed in S1
r=2".d=log,N|+1, > rand d is used to split data
gcd(N,r) =1, with N x N'=—1 modr

Output: Z =ModMult(X,¥,N) =X x¥ x R~! mod N

1: Z= (Zd,l._..,Z()) =0

> Initialization

2: foralli=0,1,....d — 1 do >LooponY

33 o= [XoXYiliow

4: B=a+Z

5 g= [BxNow

6: S = o+ [q X NO]low

7: 8 =8 +2

8: Zy = [62]10w

9:  C=[d]hign

10: forall j=1,2,....d—1do > Loop on X

11 80 = [Xj—1 X ¥ilnignh + [g X Nj—1]nign

12: 8 = do+ [Xj X Yi]low + [q XNj]low

13: 62 :61+Zj+C

14: Zj,l = [52]10“,

15: C = [82)high > Carry higher bits

16: end for

17: Zyq=C

18: end for

19: if Z > N then

20: Z=Z—N

21: end if

22: return Z
P=m° modn m,e,n € 7" (1)
P=ab modn a,bneZ’ (2)

When used in cryptographic operations, all the numbers
a,b,m,n are large numbers, leading to high computation com-
plexity. Therefore, before designing FLASH’s engines, we
first apply some commonly-used optimization strategies in
the cryptographic research community to optimize the two
basic operators, including Binary Exponentiation [52] and
Montgomery Modular Multiplication [65], etc. The advan-
tages of using these optimization strategies are: (1) lowering
the number of multiplications used in modular exponentia-
tion from O(2V) to O(N) (N is the bit-width of e), and (2)
replacing the modulo operation with the hardware-friendly
bit-shifting operation. Appendix D provides details of how
they work.

After applying these optimization methods, FLASH’s mod-
ular exponentiation and multiplication operators require the
following four stages to complete the computation:

S1. Preparing common data needed in Montgomery space
based on the input data n. Since, in both Paillier and RSA
cryptosystems, n is decided by the public key, we can re-
use these prepared data for all computations with the same
public key. This is common in cross-silo FL applications
as they use one key for all cryptographic operations within
one application.
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S2. Performing input data pre-precessing and converting
them into Montgomery space.

S3. Performing computation in Montgomery form. Major op-
erations in this stage include large-number multiplication,
addition, and bit-shifting. No modulo operation is needed.

S4. Converting all output data of the operators out of Mont-
gomery space.

4.2.2 Pipelining

We next introduce how FLASH efficiently performs the above
four computation stages via inter- and intra-engine pipelining.
Inter-engine pipelining: To enable inter-engine pipelining,
FLASH employs an engine pipeline stage manager to control
the execution strategies for different stages. Figure 4 gives
an overview of how these stages are pipelined. First, FLASH
reserves S1 as a standalone stage, which can be executed
in advance once it obtains the public key. Second, for all
computation tasks with the same public key (Engine 1 and 3
in Figure 4), they can be executed in parallel once their data
preparation is completed (S1). The start time of these engines
may have a small gap of several clock cycles because FLASH
adopts a round-robin strategy to dispatch stage executions.
Third, for tasks with different keys (Engine 2 in Figure 4),
they can be executed independently.

Intra-engine pipelining: FLASH further performs intra-
engine pipelining within the most computation-intensive stage
S3 to accelerate the stage’s internal execution. The key de-
sign goals are: (1) FLASH should support variable bit-widths
thus the application can choose the key length based on their
security requirements; (2) the hardware resources should be
fully utilized to achieve superb performance.

To achieve the first goal, FLASH builds an efficient pipeline
that processes data based on radix-2" arithmetic [60] (we use
w = 64 in FLASH’s implementation). Given any input data,
we split it into d w-bit integers. For example, d = 16 when
bit-width of X is 1024, and d = 32 when bit-width of X is
2048. Theoretically, the pipeline can be adapted for input
data with any bit-width as long as the bit-width is or can be
extended by complementary zeros to the integer multiple of
d. After data splitting, the complete algorithm of S3 (Mont-
gomery Modular Multiplication) is shown in Algorithm 1.
Note, compared to the original Montgomery Modular Mul-
tiplication (shown in Algorithm D.2 in Appendix D.2), we
make the following optimizations to make the algorithm more

hardware-friendly: (1) the computation of S (i.e., line 6 in
Algorithm D.2) is separated into computations of lower w
bits and higher w bits so that the bit-width required in oper-
ations (e.g., addition) is halved; (2) the first iteration of the
inner loop where j = 0 is unrolled to remove the conditionals
in the original algorithm (i.e., line 7 to 9 in Algorithm D.2)
and keep the consistency of computation logic.

In Algorithm 1, the most computation-intensive operations
are the multiplications of X; x ¥; and g x N; respectively (both
operations require d> w-bit multiplications). Moreover, the
data required in these two multiplications are totally indepen-
dent. Therefore, we use two multipliers (one 64-bit multiplier
consists of 32 DSP48E2 slices [22] on our FPGA prototype),
Mul 1 and Mul 2, for these two multiplication operations and
reuse them to execute the rest of the multiplication operations
as well (operations assigned to Mul 1 and Mul 2 are marked
with red and green respectively in Algorithm 1). Since the
multiplier can continuously process data, to fully utilize the
multiplier, we have the following design decisions. First, we
design a circuit to fully pipeline the inner loop (line 10 to 16
of Algorithm 1). The circuit is shown in Figure 5 and due to
the limited space, we defer a detailed description of how it
works in Appendix E. Second, when the multiplications of
i-th iteration finish and some other operations are still under
execution, e.g., addition operations in the right part of the
Figure 5, FLASH allows direct starting the multiplications in
i+ 1-th iteration to minimize the delay between different iter-
ations. We also use Figure 6 to visualize how the operations
in S3 are efficiently pipelined.

4.2.3 On-chip & Off-chip Memory

To provide sufficient on-chip memory for efficient pipeline
execution, FLASH allocates four memory units for each mod-
ular multiplication and exponentiation engine (shown in Fig-
ure 5). For our FPGA prototype implementation, we use 4 x
36Kbit BRAM units. While the on-chip memory is mainly
used for pipeline execution, FLASH further exploits external
memory (shown in Figure 3) for input, output and intermedi-
ate data storage. To achieve high performance, data exchange
between on-chip and off-chip memory is part of the pipeline
itself, i.e., when the data at the on-chip memory is consumed,
FLASH simultaneously fetches new data from the off-chip
memory, so that the data fetching time can overlap with the
computation time. As the data fetch time is typically shorter
than the computation time, it effectively hides the off-chip
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memory access latency, leading to perfect pipelining.
Moreover, we also design a hierarchical data distribution
mechanism to solve the design difficulties encountered when
manipulating large external memory. Specifically, instead of
directly using long paths to send data from the memory con-
troller to all engines, FLASH distributes data at multiple lay-
ers. Such a hierarchical mechanism leads to two advantages:
(1) low design difficulties: since a small fan-out with short
logical paths is required in each layer, the placement of the
circuits is much easier; (2) improved performance: because
the time constraints of the short path are much easier to meet,
such method can allow a high operating frequency. Due to the
limited space, we defer a detailed introduction in Appendix F.

4.3 Dataflow Scheduling

We now introduce how FLASH composes various cryp-
tographic operations over basic engines through dataflow
scheduling. First, we show how our engines can work at dif-
ferent modes (§4.3.1). Then, we present how different crypto-
graphic operations are constructed by combining particular
engines (§4.3.2).

4.3.1 Dynamic Engine Switching

To build various cryptographic operations over basic engines,
FLASH needs to enable dynamic engine switching between
modular exponentiation and multiplication. Mathematically,
modular exponentiation can be realized by performing modu-
lar multiplication multiple times. Thus, FLASH leverages a
hardware control module to achieve it without reconfiguring
hardware (it is almost impossible to reconfigure the ASIC).
Specifically, to accelerate modular exponentiation, FLASH
constructs a dataflow loop over the multiplication engine mul-
tiple times. In contrast, when the engine needs to execute
modular multiplication, FLASH directs the dataflow through
the modular multiplication engine once. While the design
works well for most cryptographic operations that use either
modular exponentiation or multiplication, it cannot directly
support operations that simultaneously require both modular
exponentiation and multiplication, e.g., Paillier encryption
(0O1), matrix multiplication (OS), in which FLASH has to
decide the ratio of engines in different modes.

How to decide the ratio? We use domain knowledge in
cross-silo FL applications to decide the ratio. Taking matrix
multiplication operation (OS) as an example, it first performs
ciphertexts and cleartexts multiplication (requires modular
exponentiation) and then ciphertexts addition (requires modu-

lar multiplication). Considering the modular exponentiation,
the exponent e is a cleartext, which has a common bit-width
of 64. As mentioned in §4.2.1, since we use Binary Exponen-
tiation to optimize the modular exponentiation, the number
of modular multiplication required may vary from 64 to 127
depending on the specific value of cleartext. On average, 96
modular multiplications are required. Thus, the throughput
of the modular exponentiation should be ~ 1/96 of modular
multiplication. Based on this, we can adjust the ratio of the
engines working in different modes to make the throughput of
both modular exponentiation and modular multiplication bal-
anced. In this way, the hardware resources can be efficiently
utilized and no engines will sit idle.

4.3.2 Building Cryptographic Operations

As shown in Figure 7a, the core idea of dataflow scheduling
is to use an on-chip controller to dynamically determine: (1)
which data paths (they are logical paths that do not reflect
the physical wiring) should be active, and (2) what to put
in the engine slots, based on which operation is offloaded.
Each engine slot contains one data splitting module and one
data merging module to distribute data to different engines
and aggregate results from these engines, respectively. These
data splitting and merging modules have physical wires to all
engines, and by configuring which wires are active, we can
logically assign engines to these engine slots. We also design
a hierarchical data distribution mechanism, as mentioned in
§4.2.3, for better performance.

Specifically, we can construct a Paillier encryption operator
by following the dataflow scheduling strategy shown in Fig-
ure 7b. As mentioned in §3.4, the Paillier encryption follows
equation: ¢ = (1 +mn)-r" mod n?. So we can distribute the
data m,n,n* to modular multiplication engines (these engines
are denoted E)) to calculate r; = mn mod n? and distribute
the data r,n,n> to modular exponentiation engines (these en-
gines are denoted E;) to calculate r, = ¥ mod n2. Then
the results can be further sent to modular multiplication en-
gine (these engines are denoted E3) to calculate (14r) x 2
mod n?. Please note that the 1+ r; is completed in the input
data pre-precessing stage (S2 in §4.2.1) with a lightweight
dedicated hardware module. The ratios of E, E; and E3 are
determined through the strategies discussed above, thus we
can assign particular numbers of engines to these engine slots.
Similarly, Figure 7c shows the dataflow used in Paillier de-
cryption. In this case, FLASH uses other modules besides
modular exponentiation and multiplication engines to real-
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ize the decryption operation. In particular, we use CRT to
optimize the decryption algorithm as discussed in §3.4, thus
FLASH implements several CRT modules to accelerate this
operation. We put all engines, working in modular exponenti-
ation mode, in the top left corner engine slot to achieve high
resource utilization.

4.4 Software Integration

While our current implementation integrates FLASH with
FATE, the design of FLASH is generic and works with other
cross-silo FL systems/frameworks. They can harness FLASH
by using the standard APIs.

For easy integration, FLASH provides Python NumPy-
similar APIs as shown in Listing 1. The Python APIs are
also wrappers of the C/C++ library: 1ibf1.so. Besides pro-
viding standard APIs, the 1ibf1l.so library manipulates the
status of all installed FLASH accelerators, such as tempera-
ture, workload, etc.

By using these APIs, users can easily create encrypted
scalar, vector, or matrix via Paillier or RSA encryption method.
Users can further perform homomorphic addition and mul-
tiplication operations over these data. To reduce the data
exchange between the FLASH accelerator and the host, we
put the computation results on the off-chip memory unless
the get APl is used. As shown in §4.2.3, the data exchange
between on-chip and off-chip memory is efficiently pipelined,
leading to better end-to-end performance. Moreover, since
1ibfl.so works in a stateless way, it can be easily scaled out
to support different tasks from various FL applications.

Listing 1: FLASH’s NumPy-like APIs

import flash_np as np

# Generating two Paillier-encrypted arrays accelerated by FLASH
x1 = np.array([l, 2, 3], encryption="paillier")

x2 = np.array([4, 5, 6], encryption="paillier")

x3
x4
x5

x1l + x2 # Homomorphic addition
np.array([l, 2, 3], encryption=None)
x4 * x1 # Ciphertext & cleartext multiplication

x3.decrypt () # Decrypting the ciphertext

x5.decrypt ()
x3.get () # Transferring the data from accelerator to host
x5.get ()

Multi-accelerator Support: The server-side software also
enables multi-accelerator support. If there are multiple
FLASH accelerators on the server, when applications invoke
the APIs, 1ibf1.so will break the task into multiple sub-tasks
and dispatch them to multiple accelerators. The dispatching

strategy is the least workload first and can be configured to
use different strategies, such as round-robin.

S Implementation

Prototype Implementation with FPGA: We implement
FLASH with FPGA using ~ 30,000 lines of Verilog [84]
code. We use Xilinx Virtex UltraScale+ VU13P chip [23] in
our implementation. FLASH implements 300 modular expo-
nentiation and multiplication engines with the chip. As the
VUI13P chip consists of four dies, we need to distribute com-
ponents on different dies in a balanced way to achieve high
resource utilization. In our implementation, we first place
large modules such as PCle and DDR controllers on sepa-
rate dies with the consideration that they should be close to
the location of their corresponding I/O pins. Then, with the
settle-down of large modules, we place different numbers of
engines on different dies to make the resource utilization of
each die approximately the same to avoid the possibility of
local congestion. As a final note, the operation frequency of
our FPGA implementation is 300MHz while we achieved
~ 88% DSP resource utilization, which, to the best of our
knowledge, is relatively high in FPGA’s industry [92].

Server-side Software Stack Implementation: Our im-
plementation of FLASH’s server-side software contains ~
10,000 lines of C/C++ and Python code. This includes modi-
fications of FATE to harness FLASH’s acceleration capacity.
We mainly modify the federatedml module [3] in FATE
by replacing normal collection operations with FLASH’s
NumPy-like APIs. We further use Xilinx DMA (XDMA)
IP Reference driver [21] for high-performance direct memory
access through the PCle interface.

Evaluating FLASH as ASIC: We leverage multiple standard
software to assess the FLASH design as an ASIC. Specifi-
cally, we first use Synopsys Design Compiler [14] to convert
FLASH’s design logics into physical implementations, i.e.,
netlist, over both 12nm and 28nm technology libraries. Then,
we use Synopsys VCS [16] to verify that the generated netlist
functions correctly and use Synopsys Prime Time [15] for
static timing analysis to validate that the netlist satisfies all
timing constraints. More evaluation results of the ASIC per-
formance will be discussed in §6.5.

6 Evaluation

In this section, we first present our evaluation methodol-
ogy (§6.1). Then we show that for the nine cryptographic
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Figure 8: Performance of cryptographic operations.

Public Key N = 1024bit
Encryption (kOP/s)

Public Key N = 2048bit

Decryption (kOP/s) Encryption (kOP/s) Decryption (kOP/s)

107.707 6.033 19.373
1.15625 - -
5238 - -

- 0.561 0.563

Table 2: Resource consumption & performance comparison among FLASH and other Paillier accelerators.

FPGA Logic Cells DSP

FLASH VU13P 3,780,000 12,288 40.706
PCP[80] 7VX330T [25] 326,400 1,120 1.40625
HLS[91] VU9P [23] 2,586,000 6,840 5.238
SoC[31]  ZU9EG [26] 600,000 2,520

Models Datasets

RSA-PSI [45]
Vertical FL VLR [53] CreditCard [1]

SBT [42]

HLR CreditCard [1]

MLP FMNIST [86]

LSTM [57] Shakespeare [17]

Horizontal FL. DenseNet169 [59]
ResNet50 [55]

VGG16 [82]
Table 3: Models & datasets used in evaluation of FLASH.

Cifar-10 [66]

operations, FLASH achieves up to 14.0x and 3.4x accel-
eration over CPU and GPU (§6.2), translating up to 6.8x
and 2.0x speedup for realistic FL applications (§6.3), respec-
tively. Finally, we evaluate the performance of FLASH as an
ASIC (§6.5).

6.1 Methodology

Environment Setup: We use two X86 servers in our setup.
Each server is equipped with a Mellanox CX-4 NIC [6] and
connected to a Mellanox SN2100 [7] switch via 40Gbps DAC
cables. To reflect realistic networking situations in real-world
cross-silo FL deployments, we use netem [8] to limit the net-
working bandwidth to be 50Mbps . As to other hardware
configurations, each server is equipped with one Intel Xeon
Silver 4114 CPU [5], 192GB memory, and one FLASH accel-
eration card (In the multi-accelerator experiment, each server
will be installed with multiple acceleration cards). We deploy
FATE v1.5 as the cross-silo FL framework.

Schemes Compared: We mainly compare the performance
achieved by FLASH with that achieved by: (1) Original FATE
that uses a highly-optimized GMP library to execute crypto-
graphic operations with CPU (denoted as CPU in the follow-
ing charts). We choose Intel Xeon Silver 4114 CPU similar
to prior works [76]. All CPU experiments are executed with
all ten physical cores in parallel. (2) GPU-based accelerator

"More details on how network bandwidth affects FLASH are shown in
§6.4

(denoted as GPU). We extend the GPU implementation of
HAFLO [43] which only implements logistic regression. Note
that only the cryptographic operations are accelerated by GPU
in our experiments. We use NVIDIA P4 GPU because it has
the same technology of 16nm and achieves the closest INT8
TOPS as FLASH (although ~ 2x better. P4 reaches ~ 20
INTS8 TOPS while FLASH achieves ~ 12.9 INT8 TOPS).

Performance Metrics: We use the number of operations
performed per second (OP/s) as the metric when evaluating
the performance of cryptographic operations, and accelera-
tion ratio over CPU/GPU as the metric when evaluating FL.
applications.

6.2 Cryptographic Operations

To demonstrate that FLASH can efficiently accelerate the
nine cryptographic operations, we compare the performance
achieved by CPU, GPU, and FLASH, respectively. For oper-
ations O4 and OS, we also evaluate different exponent bit-
widths (32bit — 1024bit). The experiment results are shown
in Figure 8a. In general, FLASH can consistently outperform
CPU and GPU for all cryptographic operations. Specifically,
FLASH outperforms CPU by 7.7x — 14.0x and GPU by
1.4x —3.4x, showing that FLASH’s hardware architecture
fits the computational requirements of these cryptographic
operations. Furthermore, we observe that when handling a
larger exponent, FLASH tends to achieve a better acceleration
ratio. For example, FLASH achieves 13.6x acceleration than
CPU when evaluating O4 with e = 1024bit, but drops to 7.7 x
with e = 32bit. The results show that when the computation
is more intensive, i.e., with a large exponent, FLASH can
achieve even better performance.

Multi-accelerator Support: We inspect how FLASH per-
forms when we use multiple FLASH acceleration cards to
speed up cryptographic operations. We evaluate one, two
and three accelerators, denoted as FLASH-1, FLASH-2 and
FLASH-3 respectively. For space limitation, we only pick
some operations for demonstration: O1, 02, O3, O4 with
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e = 1024bit, O5 with e = 1024bit, and O7. The results are
shown in Figure 8b. We observe that for most cryptographic
operations, e.g., 01, 02, 04, O5 and O7, the overall perfor-
mance of FLASH is almost linear to the number of acceler-
ators: FLASH-2 achieves 1.90x — 1.98x while FLASH-3
achieves 2.89x —2.95x speedup for these operations. How-
ever, for O3, FLASH-2 and FLASH-3 only achieve 1.47x
and 1.80x acceleration, respectively. The reason is as fol-
lows: the computation workload of O3 is relatively low, thus
the control overhead, e.g., multi-accelerator synchronization,
takes a considerable portion, leading to non-linear speedup.
However, in the real-world use case, we envision that FLASH
with multiple accelerators would still be an efficient solution
to accelerate large-scale cross-silo FL applications.

Comparison with Other Paillier Accelerators: To give
readers a better understanding of how efficient the FLASH’s
hardware design is, we further compare FLASH with some
state-of-the-art hardware-based solutions, e.g., Paillier Crypto-
processor (PCP) [80], HLS [91], and SoC [31] based solutions.
Moreover, due to the limited hardware resources, some of
these works only implement a subset of cryptographic opera-
tions supported by FLASH. The comparison results are shown
in Table 2. PCP and HLS report their data with public key
N = 1024bit, while SoC uses N = 2048bit, thus we report the
performance of FLASH with both N = 1024 and 2048bit. The
results show that, compared to PCP, HLS and SoC, FLASH
consumes 10.97x, 1.80x, 4.88 x DSP resources, but deliv-
ers 28.95x%, 7.77x, and 10.75 x encryption acceleration and
93.15x%,20.56 %, and 34.38 x decryption acceleration, respec-
tively. The results demonstrate that by using inter- & intra-
engine pipelining and dataflow scheduling, FLASH can (1)
deliver much better performance if utilizing comparable re-
sources, and (2) support more complete functions.

6.3 Cross-silo FL Applications

We then present how FLASH can accelerate real-world cross-
silo FL applications, including both vertical and horizontal.
The models and datasets used are shown in Table 3. For ver-

tical FL, before performing the model training algorithms,
we first run a commonly used sample alignment algorithm:
RSA blind signature-based PSI (RSA-PSI). Then, we per-
form Vertical Logistic Regression (VLR) [53] and Secure
Boosting Tree (SBT) [42] algorithms over the data intersec-
tion (generated from PSI), respectively. For horizontal FL,
we mainly evaluate Horizontal Logistic Regression (HLR)
and five deep learning applications with different parameters.
Each application runs a fixed number of epochs.

RSA-PSI, VLR, SBT, and HLR: The performance of RSA-
PSI, VLR, SBT, and HLR is related to the data volumes. Thus
we evaluate FLASH with different data volumes. The re-
sults are shown in Figure 9. In general, FLASH consistently
outperforms CPU and GPU by achieving 1.6x — 6.8 and
1.1x —2.0x acceleration ratio respectively. The results have
demonstrated that by designing a tailored hardware accelera-
tion architecture for cross-silo FL, we can effectively speed
up FL applications and outperform the existing CPU/GPU
architectures. Furthermore, we also notice that for RSA-PSI
and VLR, GPU tends to reach a similar acceleration ratio as
FLASH while processing more data. The reason is that for
RSA-PSI and VLR, the cleartext computation, which is purely
executed on the CPU, takes a significant portion of the total
computation time. For example, in VLR, when handling 50K
data samples in one epoch, after sufficient acceleration, the
ciphertext computation takes < 10% of the total computation
time. Therefore, the performance is mainly decided by the
time of cleartext computation when the cryptographic opera-
tions are sufficiently accelerated, which leads to the results
that FLASH and GPU achieve similar acceleration ratios over
CPU. In contrast, for HLR and SBT, FLASH can achieve a
higher acceleration ratio than GPU because the cryptographic
operations of these two applications consume a significant
portion of the total computation time.

Deep Learning Applications: We have further evaluated five
deep learning models of different numbers of parameters with
horizontal FL. The results are shown in Figure 10. We find that
FLASH can outperform CPU and GPU by achieving 4.1x —
5.4x and 1.2x — 1.6 acceleration ratio respectively due to a
similar reason discussed above. Furthermore, we note that for
models with more parameters, e.g., DenseNet169, ResNet50,
VGG16, FLASH can achieve a higher speedup than models
with fewer parameters, e.g., MLP, LSTM. This experiment
implies that for more computation-intensive tasks, FLASH
can deliver more notable results.



28nm Technology Library (Actual Op. Frequency: 800MHz)

12nm Technology Library (Actual Op. Frequency: 1120MHz)

Area/Unit (mm?) # Unit Total Area (mm?) Area/Unit (mm?) # Unit Total Area (mm?)
PCle Gen3x 16 8.46 1 8.460 (6.56%) 525 1 5.250 (4.04%)
DDR4 Controller 7.25 2 14.500 (11.24%) 443 2 8.860 (6.81%)
Engine Logic 0.093 800 74.480 (57.72%) 0.046 1900 87.499 (67.26%)
Engine Memory 0.033 800 26.200 (20.30%) 0.014 1900 25.927 (19.93%)
Dataflow Scheduling & Others 5.399 1 5.399 (4.18%) 2.561 1 2.561 (1.97%)

Total

129.04 (99.26%)

130.10 (100.08%)

Table 4: ASIC resource evaluation for both 28nm and 12nm technology libraries.

Correctness: In addition to evaluating the performance of
the above nine cross-silo FL applications, we also validate
the final results of all compared schemes (we avoid the ran-
domness by setting an identical random seed). Results have
shown that all schemes yield identical results, showing that
FLASH does not affect the correctness of model training.

Summary: Implemented as an FPGA prototype, FLASH has
already largely outperformed CPU and achieved moderately
better performance than GPU with comparable price. We also
understand that high-end GPUs, e.g., A100 [9], H100 [10],
may outperform FLASH’s FPGA prototype due to more ad-
vanced foundry technology, which are also of much higher
price. However, they still share the drawbacks as mentioned
in §3.3. The goal of our paper is to design a more efficient
hardware acceleration architecture for cross-silo FL beyond
existing CPU/GPU architectures. As we will demonstrate in
§6.5, if implemented as an ASIC, the performance of FLASH
can be significantly improved, which should boost the accel-
eration ratio for these applications to a much higher level.

6.4 FLASH Deep-dive

In this part, we mainly investigate (1) how the number of par-
ticipants and (2) how the varying network bandwidth affects
the performance of FLASH respectively.

Number of Participants: We evaluate VLR with two to five
participants and measure the acceleration ratio of FLASH
over CPU. The experiment result is shown in Figure 11a and
we observe that in general, the number of participants does
not largely impact the acceleration of FLASH.

Varying Bandwidth Setting: In this part, we use netem [8]
to limit the available bandwidth between the two participants
from 10Mbps to 100Mbps. We run VLR and measure the
execution time of one iteration with both CPU and FLASH.
Figure 11b shows the results and we can observe that when
the bandwidth is over 50Mbps, the running times of both CPU
and FLASH are stable, where FLASH outperforms CPU by
~ 3x. The results show that the varying network bandwidth
does not have a noticeable impact on FLASH.

6.5 ASIC Performance Assessment

Given that our FPGA-based prototype implementation of
FLASH has performance limitations due to the intrinsic draw-
back of FPGA (e.g., low operation frequency), in this section
we intend to demonstrate some preliminary results of how
FLASH performs as an ASIC. As introduced in §5, we use
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Figure 11: FLASH deep-dive.

standard software tools to assess the performance of FLASH
if implemented as an ASIC. We evaluate FLASH’s ASIC im-
plementation with two technology libraries: 28nm and 12nm.
Based on the industry experience, we set the operating fre-
quency to be 1000MHz and 1400MHz, respectively, for these
two technology libraries. Furthermore, we set the die area
to be ~ 130mm?. We believe this setting could balance the
performance and power consumption for FLASH.

The detailed evaluation includes the following steps: First,
we perform logic synthesis using Synopsys Design Com-
piler [14] to convert FLASH’s design into netlist under the
frequency and die area constraints. Table 4 illustrates the
results. With 28nm technology library, we can allocate 800
modular multiplication and exponentiation engines success-
fully, while with 12nm technology library, we can allocate
1900 such engines. Second, we use Synopsys VCS [16] and
Synopsys Prime Time [15] to confirm that both netlists are
valid and function correctly. The third step is to estimate the
performance gain of FLASH as an ASIC. Since the actual
operating frequency after physical design should be lower
than logic synthesis, we reduce the actual operation frequency
by multiplying 80% by the design target for a conservative
purpose.

Then, our final performance estimation is as follows. With
28nm technology library, we can allocate 2.67 X engines com-
pared to our FPGA implementation (800 v.s. 300), and the
operation frequency of these engines is 2.67x that of the
FPGA implementation (§00MHz v.s. 300MHz), leading to
an overall 7.11 x performance gain on modular exponenti-
ation operator (we use modular exponentiation operator as
the metrics since it can fulfill the computation capacity of
an engine). With 12nm technology library, we can allocate
6.33x engines (1900 v.s. 300) with 3.73x operation fre-
quency (1120MHz v.s. 300MHz), and achieve 23.64 x overall
performance improvement. To give our readers a better un-
derstanding of FLASH’s performance as an ASIC, we also



evaluate the modular exponentiation operator with a state-of-
the-art GPU — NVIDIA A100 [9], our results show that A100
can only achieve 5.78 x performance gain than our downscale
FPGA prototype. Finally, we estimate the power consump-
tion for a single engine, which is ~ 16.6mWatt with 28nm
technology library. Thus, the total power consumption for all
engines is ~ 13.28Watt. Although we do not have the power
consumption data of other parts, e.g., PCle controller, we be-
lieve the total power consumption of FLASH as an ASIC
should be significantly lower than the 120Watt of our FPGA
implementation.

7 Discussion

Benefit to Future GPU/TPU Design: Nowadays, GPU [9-
13] and TPU [63] have been widely adopted to accelerate
deep learning applications. These accelerators mainly target
accelerating convolution operations with tensors, where most
numbers are short floats. In contrast, FLASH targets accel-
erating the identified nine cryptographic operations that are
widely adopted in cross-silo FL. Moreover, most numbers
used in FLASH are large numbers with a bit-width of 2048
bit or even longer. However, in some cross-silo applications,
e.g., horizontal deep learning in §6.3, both convolution and
cryptographic operations exist. Therefore, we can foresee a
co-design of GPU/TPU with FLASH in the future. For ex-
ample, GPU/TPU can efficiently accelerate the local model
training while FLASH is used to accelerate the model encryp-
tion and aggregation. We will make FLLASH as an IP core in
the future, and thus GPU/TPU vendors can use FLASH in
their design to accomplish the aforementioned co-design.

FLASH v.s. Other GPU/FPGA Implementations: Some
existing works also target accelerating modular exponentia-
tion operations with GPU [43,54,61] or FPGA [29,31, 34,
35,80, 83,91], which leverage similar algorithm optimization
methods, e.g., Binary Exponentiation [52] and Montgomery
Modular Multiplication [65]. Yet, none of them performs a
thorough analysis towards all cryptographic operations used
in cross-silo FL and offloads them efficiently on the hardware-
based accelerator as FLASH. Moreover, our idea of com-
posing various cryptographic operations based on the two
basic operators via dataflow scheduling is designed for the
cross-silo FL scenarios, making FLASH a unique solution
compared to prior FPGA-based implementations. As a final
note, our design of FLASH is not limited to FPGA but is also
applied to ASICs.

Extending to Other Application Domains: While FLASH
is introduced for accelerating cross-silo FL, it can speed up
applications in other domains as well. First, the Paillier and
RSA cryptosystems used in cross-silo FL are also widely
adopted in other domains. Thus FLASH can accelerate appli-
cations built on them, e.g., electronic voting [47], electronic
cash [38], and threshold cryptosystem [46]. Second, since
FLASH’s core idea is to accelerate modular multiplication

and exponentiation operators, cryptographic systems/opera-
tions built on them, such as Diffie-Hellman key exchange [56],
can also benefit from FLASH.

8 Related Works

Besides the related works discussed in §7, we further cover
the following two related directions in this section.

Accelerating FL: Recently, due to the increasing deployment
of FL, various research works have emerged to accelerate FL.
MAGE proposes to optimize the secure computation from a
memory perspective [67]. BatchCrypt tries to optimize the
Paillier encryption by encoding a batch of quantized gradi-
ents into a long integer and encrypting it in one batch [95].
VF?Boost proposes a novel training protocol to reduce the
idle time of each participant [49]. Relative to them, we design
FLASH from a different angle: accelerating the cryptographic
operations used in FL, and our FLASH could be easily com-
bined with these prior works.

Domain Specific Accelerator (DSA): DSA has recently
been an emerging research topic that adopts hardware, e.g.,
FPGA, ASIC, etc., to accelerate particular applications [37,
62,64,75,75,76,79,93,94]. For example, Tiara [94] uses
FPGA and a programmable switch to accelerate layer-4 load
balancing. FlowBlaze [75] offloads complex networking func-
tions to a NetFPGA SmartNIC. hXDP [37] proposes to use
FPGA to accelerate eBPF programs for fast XDP execu-
tion. MicroRec [62] offloads neural networks to FPGA to
implement efficient recommendation systems. Various DSAs
have been proposed to accelerate fully homomorphic encryp-
tion (FHE) [96], such as HEAX [76], F1 [78], BTS [64] and
CraterLake [79]. Similar to them, FLASH follows the princi-
ple of DSA to design a hardware-based solution to efficiently
accelerate cross-silo FL.

9 Conclusion

This paper presented FLASH, a hardware acceleration archi-
tecture for cross-silo FL. We have provided a fully functional
FPGA prototype and evaluated our design as an ASIC. Exten-
sive experiments with realistic applications and cryptographic
operations have shown that FLASH is a viable solution.
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Appendix
A Cross-silo Federated Learning

Cross-silo federated learning (FL) denotes the scenario where
companies or institutions collaboratively train machine learn-
ing models without data privacy leakage [39,40,44,48,88,89].
Compared with cross-device FL, where participants are mo-
bile devices, cross-silo FL focuses more on data security and
incentive mechanism. From the data partition angle, Yang
et al. proposed to categorize FL into horizontal FL, vertical
FL, and federated transfer learning [70]. Federated transfer
learning has rarely been applied in the industry and remains
in the research stage. In most cases, cross-device FL contains
only horizontal FL, while cross-silo FL usually contains both
horizontal and vertical FL. Because of the different data par-
tition situations, horizontal and vertical FL are different in
model construction, protocol design as well as the utilized
cryptographic systems.



A.1 Cross-silo Horizontal FL

Participants in horizontal FL have different sample ID spaces
but the same feature space, as shown in Figure 1a. Each partic-
ipant owns the labels of their samples. Therefore, horizontal
FL enlarges the number of training samples to train a model
with better generalization ability. In most cases, there is a
third-party central server for parameter aggregation.

The " iteration of the training process among three partic-
ipants is shown as follows:

1. All participants negotiate about keys for encryption.

2. Each participant i trains local model w/ with its own sam-
ples and encrypts its model weights to [[w!]] with either
additively homomorphic encryption (e.g., Paillier [74]).

3. Each participant i sends the encrypted weights to the central
server.

4. The server receives the encrypted local model weights
from all participants and aggregates them to global model
et
weights % where n stands for the number of partic-
ipants. Because the weights are encrypted via additively
homomorphic encryption, we can directly perform an ag-

gregation over the ciphertext.

5. The central server sends the aggregated global weights to
all participants.

6. Each participant receives the global weights and decrypts
them locally. Then the participant can update its local
model W;-H with the decrypted global model.
After the federated training process, each participant ob-
tains the same well-trained model. Thus, each participant can

perform model inference locally.

A.2 Cross-silo Vertical FL

Participants in vertical FL scenarios have the same sample
ID space but different feature spaces, as shown in Figure 1b.
Under normal circumstances, only one participant holds the
label of the FL task, which is called the active party. The other
participants without labeling information are called passive
parties. Compared with horizontal FL, vertical FL could en-
rich the feature information of samples. Unlike horizontal
FL, the training process of vertical FL is conducted after the
entity alignment stage, which aligns common samples while
protecting privacy. Besides, the training schema of vertical
FL is also different from horizontal FL. More specifically,
each participant only owns part of the model parameters cor-
responding to the local feature dimensions. Hence, vertical FL
cannot simply conduct the secure aggregation as horizontal
FL does. In addition, various machine learning algorithms do
not have a unified design of the vertical FL implementation.

Taking the federated linear regression [89] between two
participants as an example, we illustrate the training process
as follows:

1. Participants and the third-party central server negotiate
about keys for encryption.

2. Passive party B computes local point estimate u%, ; and
partial loss Lﬁi ; for the j aligned sample, then encrypts
them to [[uj ;] and [[Lj ;]| with Paillier [74]. Active party
A calculates local point estimate u .

3. Passive party B sends the encrypted numbers to the active
party A.

4. Active party A receives the encrypted numbers and com-
putes the total loss [[L}]] and the intermediate results [[d}]]
used to calculate gradients.

5. Active party A sends [[L]] to server and [[d"]] to passive
party B.
6. Party B and party A separately compute encrypted gradients
13 13

[[ﬁ]] and [[%H and add random masks.

7. Both parties send the encrypted and masked gradients to
the central server.

8. The third-party central server decrypts the received cipher-
text to get the plain-text masked gradients and sends them
back.

9. Party B and party A respectively remove the random masks
from gradients and update the local partial model.

All participants of vertical FL should be involved in the
inference stage since each of them only owns part of the whole
model.

A.3 Security Analysis of Cross-silo FL.

The adopted FL algorithms in this paper are proved secure
under the semi-honest assumption [42, 89]. The semi-honest
assumption means that each party does not violate the fed-
erated protocols and only tries to infer the sensitive data of
other parties from the received messages. For the horizon-
tal FL models, the transmitted model updates are protected
by additively HE for aggregation. Therefore, nothing can be
learned by the arbiter. Moreover, each party obtains the ag-
gregated model updates and can only calculate the average
model updates of the other parties. Hence, given more than
two parties, the model updates computed over the local data
of one party cannot be leaked to the other parties [89]. For the
vertical federated linear models, the transmitted intermediate
results are protected by random masks and HE, which reveals
no information. Furthermore, from the obtained model up-
dates, one party cannot infer the sensitive data of other parties
without prior knowledge of their data structures [89]. For
the vertical SecureBoost model, the active party with labels
could learn some information agreed in advance, such as the
instance spaces and the responsible parties of splits. However,
under the protection of HE, the original data records of one
party cannot be revealed to other parties, either [42].

B Paillier Cryptosystem

Paillier Cryptosystem [73] is a widely-used additively (i.e.,
partially) homomorphic encryption scheme. Paillier cryp-



tosystem supports two kinds of operations, including the ad-

dition of two values of ciphertext and multiplication between

ciphertext and cleartext. We will introduce Paillier key gener-

ation, encryption and decryption respectively in the following

section.

Key Generation: Key generation of Paillier Cryptosystem

follows the following steps.

1. Choose two random prime numbers p and g which satisfy
that ged(pg, (p — 1)(g— 1)) = 1, where ged stands for the
greatest common divisor.

2. Compute n=p-q.
3. Compute A =lcm(p— 1,4 — 1), where lem means the least
common multiple.

4. Randomly select an integer g which satisfies that
ged(L, (g8 mod n?),n) = 1. Function L,(x) is defined as
L,(x)=(x—1)/n.

5. Compute u = [L,(g* mod n?)]"!

mod 7.

After the above computation, we will obtain the public key:
(n,g) and private key: (A,u) respectively.

Encryption: The encryption algorithm of Paillier is straight-
forward and follows the following equation.

c=g"-/" modn? (B.1)

Optimization of Encryption: The encryption can be ac-
celerated by assigning public key g as n+ 1. Therefore, the
encryption algorithm is simplified as follows.

n

c=g"-r" modn®

=n+1)"-r"
mor\ (B.2)

= )" mod n?

(3 (7)1 mo

= (1 mon)-r]

mod n?

mod n?

One modular exponentiation operation is saved by this
optimization. FLASH uses the optimized encryption for better
performance.

Decryption: Paillier ciphertext c is decrypted to plaintext m
with both public key (n,g) and private key (A, u):

m=L,(c* modn?)-u modn (B.3)

Optimization of Decryption: The workload of the decryp-
tion algorithm of Paillier can be reduced with the Chinese
Remainder Theorem (CRT). In this scheme, prime numbers p
and g generated with the key pair are considered as the private

key. The process of optimized decryption is shown below:

1. Compute /, = L,(g?~! mod p?)~!

L,(g7! modg?)™! modgq.

mod p and h, =

2. Compute m, = L,(c”P~! mod p?)-h, mod p and m, =
L,(c?"! modg?)-h,; modgq. Function L,(x) and L,(x)
are defined by L,,(x) = (x—1)/p and L,(x) = (x—1)/q.

It can be proved that m, =m mod p and m; =m mod g,

where m is the plaintext corresponding to ciphertext c.

3. Apply CRT to recombine the modular residues. m =

CRT(m,,m,) mod pgq.

With the optimization above, the workload can be reduced
to only about one-quarter of the original decryption algorithm,
leading to better performance. FLASH also uses optimized
decryption in its implementation.

C RSA Intersection

RSA (Rivest—Shamir—Adleman) is an asymmetric public-
private key method used to securely transfer data [77]. The
whole RSA algorithm mainly contains three operations: key
generation, encryption, and decryption.

Key Generation: The generation process is shown below:
Randomly choose two distinct prime numbers p and gq.
Compute n=p-q.

Compute A(n) =lem(p— 1,4 —1).

b=

Randomly choose a number e such that 1 < e < A(n) and
ged(e,A(n)) = 1.

5. Compute d by solving d-e =1 mod A(n).

Generally speaking, (n,e) is regarded as a public key, while
d is regarded as a private key.

Encryption: Using public key (n,¢), plain-text message m
is encrypted to cipher-text message c:

c=m’

mod n. (C4)

Decryption: Using private key d, cipher-text message c is
decrypted to plain-text message m:
m=c? modn. (C.5)

RSA-based PSI: The RSA-based private set intersection can
protect the privacy of sample ID out of the intersection set
with the mechanism of blind RSA signature [45, 69]. We take
the two-party setting as an example. Party A contains three
user IDs, i.e., X4 = {x1,x2,x3}, while party B contains four
user IDs, i.e., Xg = {x1,x2,%4,x5}. They want to find their
common users via RSA-based intersection:

1. Party A generates RSA keys n,e,d and sends public key
(n,e) to party B.

2. Party B blinds and encrypts its user IDs X to 9 = {H (x)
mod n-r* modn) | x € Xp}, where r is a unique random
number for each x, and sends 93 to party A.

3. Party A signs the received 93, obtains Zg = {y¢ modn =
r-H(x)¢ modn|y€ 9} and sends Z to party B.

4. Party A also signs its own user IDs, gets Dx = {H (H(x))? |
x € X3 } and sends Dy to party B.

5. Party B unblinds the received Zg and obtains D = {H (z/r
mod n) = H(H(x))? | z € Zg}.



6. Party B computes Dy N D = {H(H(x1))*,H(H(x2))?}
and gets common user IDs {xj,x2}.
H(-) denotes the hash function. After party B knows the
overlapping users, it could choose whether to inform party A
according to different scenarios.

D Modular Exponentiation & Multiplication
Algorithm Optimization

D.1 Binary Exponentiation

Modular exponentiation is defined as P = m® mod N, as
shown in Equation 1. In the naive algorithm, m is multiplied
by itself for e times, and the algorithm uses e — 1 multipli-
cations to obtain the result. Therefore, if e is a large integer,
the computation time is dramatic. As a result, to optimize
the computation, people usually apply binary exponentiation
optimization to reduce the dramatic computation time. Al-
gorithm D.1 shows the process of the binary exponentiation
optimization algorithm.

Algorithm D.1 Binary Exponentiation

Input: m, e, N, where N > 0
Output: P =m® mod N

1. P=1

2: whilee > 1do
3 if e is odd then
4 P=P-m mod N
5 end if
6: e=e>1
7
8:
9:

> Initialization

m=m? modN

end while
return P

The idea of binary exponentiation is to reduce the number
of multiplications by using the binary representation of the
exponent e. As a result, we only need to compute at most
2|log, e| multiplications, which is much smaller than e — 1.
Since the time complexity of modular exponentiation is de-
termined by the number of multiplications, binary exponenti-
ation can reduce its time complexity from O(e) to O(loge).
Worth mentioning, the modulo computation can be performed
after each multiplication because of the distribution law in
modular arithmetic: (¢ mod N)(b mod N) =ab mod N.

Summary: By using the binary exponentiation optimization
algorithm, we can largely optimize the time complexity of
modular exponentiation computation.

D.2 Montgomery Modular Multiplication

After applying the binary exponentiation optimization algo-
rithm as shown in §D.1, we lower the time complexity of
modular exponentiation computation by reducing the num-
ber of multiplications. However, after each multiplication, we
have to perform one modulo operation. Although we can
implement modulo operation on hardware with Cyclic Reduc-
tion and Barrett Reduction algorithms [32], the performance

Algorithm D.2 Montgomery Modular Multiplication

> Given three input numbers X, Y and N, the Montgomery Modular

Multiplication outputs Z=X -Y-R~! mod N, where R is a power

of 2 and |log, R| = [log, N].

Input: X = (Xy_1,...X0), ¥ = Yg_1,..,Y), N = (Ng_1,....,No),
N', where
N' =(-N)"! modr, > N’ is pre-computed in S1
r=2%d=|log,N|+1, > rand d is used to split data
gcd(N,r) =1, with N x N' = -1 modr

Output: Z = ModMult(X,¥,N) =X x¥ xR~ mod N

. Z=(Z4_1,.-,Z9) =0 > Initialization
2: foralli=0,1,...,d—1do > LooponY
3: q:(Z0+XOXYi)><N/ mod r

4. C=0

5. forall j=0,2,....d—1do > Loop on X
6: §=Zj+XjxYi+qxN;+C

7: if j > 0 then

8: Zi 1 =S modr

9: end if

10: C=S>w > Carry higher bits
11:  end for

12: Zyj1=C

13: end for

14: if Z > N then
15: Z=Z7Z—-N
16: end if

17: return Z

of these algorithms is still not satisfying because of the divi-
sion operations used in these algorithms. Therefore, FLASH
utilizes Montgomery Modular Multiplication [65] to replace
the modulo operation with a bit-shifting operation, which is
more hardware-friendly.

The process of applying Montgomery Modular Multiplica-
tion includes three major steps: (1) converting the data into
Montgomery space, (2) computing the modular multiplica-
tion in the Montgomery space, and (3) converting the data
back from Montgomery space. Before going into details, we
will first describe Algorithm D.2. This algorithm implements
efficient Ax Bx R~ mod N in a hardware-friendly way. The
key optimization of the algorithm is the introduction of the
divider R = r¢. Thus the division can be easily implemented
by bit-shifting since r is a power-of-2 integer, and after the
division, the result is an integer within [0,2N) and no more
modulo operation is needed. Afterward, we will show details
of each step in the following sections.

Converting the data into Montgomery space: Before ap-
plying Montgomery Modular Multiplication, the input num-
bers should be converted to Montgomery space. The conver-
sion formula is A = a-R mod N. It can also be written as
A=a-R*-R " modN, so we can leverage Algorithm D.2
to efficiently calculate it. In the formula, a is one of the mul-
tiplicands of modular multiplication. A is the Montgomery
space of a. N is the modulus. R is a power of 2 and it satisfies
the condition that |log,R| = |log,N .
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Figure D.1: FLASH adopts hierarchical data distribution to enable efficient data exchange between on-chip and off-chip memory.

Computing the modular multiplication in the Mont-
gomery space: We can directly use Algorithm D.2 to ef-
ficiently calculate the modular multiplication.

Converting the data back from Montgomery space: To
convert a number out of Montgomery space, the conversion
formula is p = P-R~' mod N. p is the result of modular
multiplication. P is the Montgomery format of p. Similarly,
we can leverage Algorithm D.2 to complete the computation.

Parameter Computation: In the above steps, we notice
that if N, which is usually the public key in cryptosystems,
remains unchanged, R%? mod N (e.g., used in converting the
data into Montgomery space) and (—N)~! mod r (e.g., line 3
and 8 in Algorithm D.2) remain constant values. We call these
constant values parameters in this paper, and we show that we
can compute these parameters in advance and avoid duplicate
calculations to improve the performance further.

Summary: By applying the Montgomery Modular Mul-
tiplication, we mainly replace the modulo operation with
a hardware-friendly bit-shifting operation, which improves
the performance of modular multiplication/exponentiation on
hardware.

E The Montgomery Modular Multiplication
Circuit Design

In this section, we will describe how our Montgomery Modu-
lar Multiplication Circuit works (shown in Figure 5).

According to Algorithm 1, the outer loop iterates over
operand Y. Therefore, the circuit sequentially reads differ-
ent ¥; from RAM Y and performs execution over them. The
workflow of our Montgomery Modular Multiplication circuit
contains four steps. Steps 1 and 2 in the following introduc-
tion focus on the workflow for a fixed ¥; while steps 3 and 4
show how we bridge the operations between iterations with
different i and obtain the final result. We use Reg to represent
the register group.

1. Xp and ¥; are sent to Mul 1 to get a 2w-bit multiplication
result. The higher w bits of the result are cached in Reg 7;.
The lower w bits, denoted as o in Algorithm 1, are cached
in both Reg o and r7. The numbers stored in Reg o are
used for the calculation of B via Add 5. With B and N’
available, their multiplication result g can be obtained from
the output of Mul 2. After that, g is sent back to the input of
Mul 2 and multiplied with Ny. Similarly, the higher w bits
of the multiplication result are cached in Reg r3 and the

lower w bits are sent to Reg rg. Combining data cached in
r7 and rg, it is straightforward to get 8; and &, with several
addition units. The results of addition, Zy and C, are cached
in Reg Zp and Reg C for subsequent operations.

2. Following step 1, the inner loop for j begins. Different

iterations of the inner loop are fully pipelined, which im-
plies the jth iteration is executed by the circuit just one
cycle after the (j — 1)th iteration. At the beginning of the
pipeline, Mul 1 and Mul 2 simultaneously calculate X; x Y;
and g x N;. The higher w bits and lower w bits of the results
are separately cached in different registers. Please note that
we use Reg rs and rg to register the higher w bits in the
circuit for one more cycle compared to the lower w bits
so that §; can be calculated through the addition between
higher w bits from the (j — 1)th iteration and lower w bits
from the jth iteration (i.e., line 12 in Algorithm 1). After
the calculation of 8, the subsequent calculation of &, can
also be simply executed by the adders in the pipeline. The
intermediate results, Z;_; and C, are cached in RAM Z and
Reg C.

3. We begin the execution of the (i + 1)th iteration of the outer

loop when all the multiplications in the ith iteration accom-
plish. Although some operations like addition are still in
progress, the multipliers are free to start the multiplications
in Step 1 for the (i + 1)th iteration.

4. After accomplishing the outer loop, the result Z should be

stored in RAM Z. If Z < N, we directly output Z. Other-
wise, we calculate Z — N as the final output.

F Hierarchical Data Distribution

While the design in §4.2.3 is efficient, it also introduces a
practical problem. As shown in Figure D.la, FLASH adopts
AXI interconnect to manipulate the external memory [68,72].
However, as the on-chip memory units are placed near each
engine for low latency, naively distributing data from the AXI
interconnect to these memory units, as shown in Figure D.1b,
leads to high fan-out near interconnect and long data paths.
These two issues will cause (1) large design difficulties for
circuits placement because there are too many long paths to be
placed near interconnect; (2) degraded performance because
long paths cause large delay for the circuits.

To solve the problem, we design a hierarchical data dis-
tribution mechanism as shown in Figure D.lc. Instead of
directly sending data to all engines, FLASH distributes data
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at multiple layers. At each layer, the data distributors receive
data from the previous layer and further distribute data to the
data distributors/engines in the next layer. Suppose we have
m engines and n layers, the fan-out of each data distributor is
~ log, m, which is much smaller than m. As a result, FLASH
achieves a much smaller fan-out and shortened logical data
path. These two advantages first reduce the design complexity
because a small fan-out with short logical paths will make
the circuits’ placement much easier. Furthermore, they also
improve performance because they allow a high operating
frequency by restricting the delay of all logic paths. In our
FPGA implementation, the delay of all logic data paths is
within 3.3ns, thus we can achieve a high FPGA operation
frequency of 300MHz [20].

G Software Stack Architecture

Figure G.2 illustrates how FLASH integrates with the cross-
silo FL software. As introduced in §4.4, FLASH’s software
stack contains Xilinx DMA Driver [21], 1ibfl.so library
and its corresponding Python wrapper.
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