
DISCO: Memory Efficient and Accurate Flow
Statistics for Network Measurement

Chengchen Hu, Bin Liu, Hongbo Zhao
Computer Science and Technology Department

Tsinghua University
{huc,liub}@tsinghua.edu.cn; zhao-hb07@mails.tsinghua.edu.cn

Chunming Wu
Computer Science and Technology College

Zhejiang University
wuchunming@zju.edu.cn

Kai Chen, Yan Chen
Electrical Engineering and Computer Science Department

Northwestern University
{kchen,ychen}@northwestern.edu

Yu Cheng
Electrical and Computer Engineering Department

Illinois Institute of Technology
cheng@iit.edu

Abstract—A basic task in network passive measurement is
collecting flow statistics information for network state charac-
terization. With the continuous increase of Internet link speed
and the number of flows, flow statistics has become a great
challenge due to the demanding requirements on both memory
size and memory bandwidth in monitoring device. In this paper,
we propose a DIScount COunting (DISCO) method, which is
designed for both flow size and flow volume counting. For each
incoming packet of length l, DISCO increases the corresponding
counter assigned to the flow with an increment that is less
than l. With an elaborate design on the counter update rule
and the inverse estimation, DISCO saves memory consumption
while providing an accurate unbiased estimator. The method is
evaluated thoroughly under theoretical analysis and simulations
with synthetic and real traces. The results demonstrate that
DISCO is more accurate than related work given the same
counter sizes. DISCO is also implemented on network processor
Intel IXP2850 for performance test. Using only one MicroEngine
(ME) in IXP2850, the throughput can reach up to 11.1Gbps under
a traditional traffic pattern, and it increases almost linearly with
the number of MEs employed.

I. INTRODUCTION

In general, network measurement approaches can be clas-
sified into passive measurement and active measurement [3,
21]. The former measures the traffic traversing the traffic
monitors without the disruption of the normal traffic, while
the latter actively injects probe packets to infer the network
status (e.g., available bandwidth, packet loss ratio, delay) via
the inspections on the probe traffic’s output. In this paper, we
focus on passive measurement, which has been widely used
to characterize the status of the network, e.g., traffic matrix,
packet length distributions, user session durations, and etc.

One of the most important components in a passive mea-
surement system/infrastructure is the monitoring component.
It is tapped into a high-speed network link and maintains a
large number of counters for recording flow length statistics
information. A complete flow length statistics report includes
both flow size counting (which counts the number of packets
in a flow) and flow volume counting or flow byte counting
(which counts the number of bytes in a flow). Please note that,

flow size distribution [5, 12, 22] cannot indicate flow-specific
properties, e.g., accurate size estimation for a particular flow
or a subpopulation, which can be addressed by flow size
estimation.

With the continuous increase of Internet link speed and the
number of flows, fast and large memory is required to store
the monitoring results. For example, the processing time per
packet in a 40-Gbps link is only 12.8 ns in the worst case
(considering only 64-byte packets). This makes it necessary to
employ SRAMs and infeasible to use DRAMs only. However,
due to tremendous flow volume and potential millions of in-
process flows, a low density SRAM is susceptible to overflow
the counters for network applications with fine measurement
granularity [14]. The crux that off-the-shelf memory is either
low speed or low capacity has posed a great challenge to flow
statistics collection.

Generally, there are two categories of solutions in the
literature to solve the problem. The first one sets full-size
counters in DRAMs, and its key problem is how to slow
down the updates to the counters in order to match the
I/O (Input/Output) speed of DRAMs. Hybrid SRAM&DRAM
(SD) counter architectures fall into this category [18, 19,
23]. The idea is to store lower-order bits of each counter
in SRAMs and all the counter bits in DRAMs. SD solutions
propose a good architecture to set measurement counters, but
it also has limitations on 1) read access speed, 2) significant
communication traffic between SRAMs and 3) DRAMs across
the system bus, and extra pin connections.

The second one is the “SRAM-only counter” solutions
and the main challenge is reducing the required counter size
while providing accurate flow statistics. Random sampling is
a common approach to control the memory consumption of
flow size statistics [2, 6, 7, 9]. However, simple extensions
of sampling methods for flow byte counting will lead to
awkward performance in accuracy or processing speed. There
is a need of a new SRAM-based method to support flow byte
counting as well as flow size counting. Small Active Counters
(SAC) [20] can be utilized to count flow byte in SRAMs, but

81
 1420
 142

2344

321

packets

Full size

counter

DISCO

+81

+59

+1420

+220

+142

+9

691

+691

+33

Fig. 1. An example of the counting process of DISCO. For the four packets
of length 81, 1420, 142, 691, a full size counter is simply increased by the
packet length; while DISCO increases with discounted values as 59, 220, 9,
33. The counter value is compressed 7 times (2334/321) in this case.

needs an extra storage overhead to keep parameters for each
counter and extra processing overhead to frequently renormal-
ize the counter values. Two recent proposals, BRICK [10] and
CB [14], study the variable length counters to reduce the total
memory requirements for measurement. BRICK/CB and the
method proposed in this paper are complementary to each
other and can work together to achieve further reduction on
counter size.

To support both flow size and flow byte counting and pro-
vide both off-line and on-line access to measurement results,
we propose a memory efficient and accurate flow statistics
method named DIScount COunting (DISCO) which keeps the
measurement results in SRAM only. The idea of DISCO is
to regulate the counter value to be a real increasing concave
function of the actual flow length (flow byte or flow size) n.
Figure 1 illustrates how DISCO counter updates with a real
trace segment input. For each incoming packet of l bytes, the
counter is increased by a number ∆ that is smaller than l.
With the compact increase each time, the counter value, i.e.,
the required counter size, is greatly compressed compared with
a full size counter like SD solution. In this way, the technical
challenge is how to determine ∆ and its inverse estimation.

By successfully overcoming these challenges, we make the
following contributions in this paper.
• We propose a flow statistics collection method for both

flow size and flow byte counting with better accuracy
than the related work under the same memory size.
The memory consumption grows sub-linearly with the
increase of the flow length, making the counters easily
implementable in a SRAM for on-line access.

• We conduct theoretic analysis and extensive evaluations
on real traces and synthetic data. The results validate
the design of DISCO on the high accuracy and small
memory consumption.

• We embed DISCO into Intel IXP2850 network processor
for real implementation evaluation. The results indicate
that only 96Kb on-chip memory is required for both
flow size and flow volume counting. When using one
MicroEngine(ME), the throughput can reach up to
11.1Gbps and the throughput keeps increasing if more
MEs are utilized.

It should be noted that, DISCO goes a big step beyond
Adaptive Non-Linear Sampling (ANLS) in our previous paper
to support flow byte counting [9]. Although we leverage the
same unbiased estimator for DISCO and ANLS for the sake
of same memory compression ratio, the counter update algo-
rithms are quite different. ANLS counter is always increased
by one for the sampled packets; while DISCO updates the
counter for every packet, and the counter increment depends
on the packet length as well as the counter value being
accumulated, instead of always one. As we will be discussed
in Section II and Section V, simple extensions on ANLS do
not work for flow volume counting. The basic idea of DISCO
is presented at [8] and this paper describes the detailed design,
analysis and experiments on DISCO.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the counter
update algorithm and the unbiased estimation of DISCO.
Section IV analyzes the properties of DISCO theoretically.
Section V evaluates the performance of DISCO under real and
synthetic traces. In Section VI, an implementation of DISCO
is described and tested. Finally in Section VII, we conclude
the paper.

II. RELATED WORK

A. DRAM-based full-size counters

A combined SRAM&DRAM (SD) counter architecture is
first proposed in [19]. The increments are first made only to
SRAM counters, and the values of each SRAM counter is
then committed to the corresponding DRAM counters before
being overflow. The key problem of this architecture is the
design of a Counter Management Algorithm (CMA), which
determines the order of the SRAM counters to be flushed to
DRAM counters [18, 19, 23]. While the contributions of the
SD solution is significant for many application scenarios, it
has its limitations. First, the read operation of SD can only
be done on DRAM side and thus it is quite slow. Second,
SD also significantly increases the amount of traffic between
SRAM and DRAM across the system bus, which may lead
to a serious bottleneck in real system implementation [10].
Third, it is a trend to integrate measurement functions into
routers; however, SD needs a dedicated SRAM and a dedicated
DRAM, which will consume extra pins connections, as well
as board areas.

B. Sampling based method

Sampling based method selects packets with a probabil-
ity and each selected packets will trigger a update to the
counter [2, 4]. With a sampling rate of p, if c packets have
been sampled in a n-packet flow train, the unbiased estimation
of the total packets is n̂ = c/p. There is a number of variation
of sampling based methods [1, 6, 9, 13], however, they are
designed for only flow size counting, and there could be two
extensions of it to possibly support flow volume counting.

The first extension (E1) is to increase the counter by the
size of the sampled packets instead of always one in the

setting of flow size statistics. Using the example in Figure 1,
if E1 samples the first and the third packet, the counter is
81+0+142+0=223. However, it may also only sample the first
and the fourth packet which increase the counter by 772. The
inverse estimations from these two samples are 446 and 1544,
respectively. Such method will easily mislead the estimation
of the total traffic unless the packet length variation of each
flow is rare. However, it is not the case as the examination on
real trace as Section V demonstrated.

The second way (E2) to extend sampling based method is to
view a packet of l bytes as l independent packets, i.e., to trigger
the sampling l times/rounds for the packet. Obviously, the
unbiased estimation, relative error and memory consumption
of such an extension are the same as original sampling method;
however, the per-packet processing complexity is as large as
O(l) on average and as O(lmax) in the worst case, where l and
lmax are the average and largest packet length, respectively.

ANLS is also a sampling based method proposed in our
previous work [9], which improves the measurement accuracy
for small flows. We extend ANLS in these two ways to ANLS-
I (like E1) and ANLS-II (like E2). Taking ANLS-I and ANLS-
II as illustration, we will use experiments to demonstrate in
Section V that the extensions of sampling based methods work
awkward for flow volume counting.

C. Small active counters

The term “active counter” is introduced in [20], which
allows estimation on per-packet basis without DRAM access.
Small Active Counters (SAC) is proposed to reduce the SRAM
space needed for the statistic counters [20]. For a q-bit counter,
it is divided into two parts, an estimation part A and an
exponent part mode. The estimator of SAC is n̂ = A · 2r·mode,
where r is a global parameter for all the counters. When
a packet of size l comes, SAC updates the counter with
l/2r·mode on average. If A overflows, SAC increases mode and
renormalize the counter. If mode overflows, r is incremented
and all the counters are re-normalized. SAC compresses the
counter size with small error, but it needs to be improved for
two main problems. First, SAC divides a counter into two
parts and the mode part of the counter is an extra overhead.
Second, when r increases, SAC needs to renormalize all the
counters and this renormalization will suspend the update of
the counter and may cause possible loss of necessary packet
updates.

III. DISCO:DISCOUNT COUNTING

DISCO is a probabilistic counting algorithm for flow length
statistics. The counting algorithm consists of the two parts: the
counter update part and the inverse estimation part. The former
one determines the increase of the counter for an incoming
packet of length l, while the latter one estimates the actual flow
length from the counter value with the counter update rule1.
For convenience, the main notations utilized in this paper are
first illustrated in Table I.

1l is set to be one for flow size counting, and is set to be the packet length
for flow volume counting.

A. Counter update

As mentioned in Section I, the goal of DISCO is to
compress the required counter bits so as to fit the counters
in SRAM. Suppose c is the counter value and n is the flow
length. We regulate the relationship between flow size and
counter value as n = f(c) or c = f−1(n) = g(n). Specifically,
DISCO uses such a function f(·) to control the increments of
the counter value,

f(c) =
bc − 1

b− 1
, (1)

where b > 1 is a pre-defined constant parameter. It is
obvious that f(·) is an increasing convex function and its
inverse function f−1(·) is an increasing concave function2. It
means that the “growing” of the counter value will be slower
than the linear increasing. If the counters could record decimal
fraction, the problem would be simple. The counter could be
just increased by ∆(c, l) from its previous value c when a
packet of l bytes comes, where ∆(c, l) = f−1(l + f(c)) − c.
And the actual flow length can be calculated from the counter
value c by f(c) with no error. Since there is no enough
memory size to maintain decimal counters in SRAM, we
could only rely on the integer counters. The error will be
accumulated if one simply rounds or truncates ∆(c, l). Instead,
we give a probabilistic counter update algorithm as illustrated
in Algorithm 1. When counter value is c and a packet of l

bytes comes, DISCO increases the counter by δ(c, l) + 1 with
probability of pd(c, l), and increases the counter by δ(c, l) with
probability 1−pd(c, l), where δ(c, l) and pd(c, l) are defined as

δ(c, l) = df−1(l + f(c))− ce − 1; (2)

pd(c, l) =
l + f(c)− f(c + δ(c, l))

f(c + δ(c, l) + 1)− f(c + δ(c, l))
. (3)

Algorithm 1 Counter update algorithm
/* A packet of l bytes comes*/
v = rand(0, 1);
/* rand() generate a random variable between 0 and 1 */
calculate δ(c, l) as formulated in (2);
calculate pd(c, l) as formulated in (3);
if v ≤ pd(c, l) then

c = c + δ(c, l) + 1

else
c = c + δ(c, l);

end if

Please note that, the larger the counter value and/or packet
length is, the smaller the increase of a counter is. And it can
be guaranteed that 0 ≤ pd ≤ 13.

2A real-valued function f defined on an interval is called convex, if for
any two points x and y in its domain and any λ in [0,1], we have f(λx +
(1− λ)y) ≤ λf(x) + (1− λ)f(y). A real-valued function f defined on an
interval is called concave, if for any two points x and y in its domain and
any t in λ in [0,1], we havef(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y).

3we use pd and pd(c, l), δ and δ(c, l) interchangeably in the rest of the
paper.

TABLE I
TABLE OF NOTATIONS

Notations Descriptions
m total number of packets
n the actual flow length
b a predefined parameter, b > 1
c counter value
ci, 0 < i ≤ m counter value after the arrival of the ith packet
l the bytes of an incoming packet
li, 0 < i ≤ m length of the ith packet
δ(c, l) counter increment with c and l
pd(c, l) probability for counter update according to c and l
f(c) unbiased estimation
n̂ the estimated flow length
t the number of possibilities of the counter values after m− 1 packets
s the number of possibilities of the counter values after m packets
uj , 1 ≤ j ≤ t possible counter value after m− 1 packets
vi, 1 ≤ i ≤ s possible counter value after m packets
Pj Probability that cm−1 = uj

Qi Probability that cm = vi

θ uniform integer increment size
T (S) traffic amount that lets the counter value to be S
e coefficient of variation of T (S)

B. Estimation from counter value

With the counter update rule described above, we can
estimate the actual flow length with an unbiased estimator f(c),
where c is the counter value. Prior to the proof on the unbiased
estimation, we first describe a general scenario of counting
process. Without loss of generality, we concentrate on a single
counter and suppose that, during a measurement interval,
there are m packets whose packet lengths are l1, l2, · · · , lm
(li, i = 1, 2, · · · , m, can be positive integer), respectively. The
counter value is updated to ci after the arrival of ith packet.
Learned from Algorithm 1, there are two possible choices
for the probabilistic update of the counter when a packet
comes. Therefore, after the arrival of the (m−1)th packet, the
counter value can be one of the t = 2m−1 values. Denote these
possible counter values as u1, u2, · · · , ut. For ∀j, 1 ≤ j ≤ t, the
probability p(cm−1 = uj) is denoted as Pj . Similarly, after the
arrival of the mth packet, the counter value will have s = 2m

possibilities, denoting as v1, v2, · · · , vs. And for ∀i, 1 ≤ i ≤ s,
the probability p(cm = vi) is denoted as Qi. The following
equations holds:

v2j−1 = uj + δ(uj , lm); (4)

v2j = uj + δ(uj , lm) + 1; (5)

Q2j−1 = Pj [1− pd(uj , lm)]; (6)

Q2j = Pjpd(uj , lm). (7)

Theorem 1: If c is the counter value, f(c) is an unbiased
estimation for DISCO.

Proof:
From the general counting scenario described above, if

E[f(cm)] =
∑m

i=1 li, then f(c) is an unbiased estimation for
DISCO.

Denote Fi = E[f(ci)], ∀i = 1, 2, · · · , m, then we have,

Fm =

s∑

j=1

(f(vj)Qj)

=

t∑

j=1

(f(v2j−1)Q2j−1 + f(v2j)Q2j)

=

t∑

j=1

[f((uj) + δ(uj , lm) + 1)(Pjpd(uj , lm))

+f(uj + δ(uj , lm))Pj(1− pd(uj , lm))]

=

t∑

j=1

Pj{pd(uj , lm)[−f(uj + δ(uj , lm))

+f(uj + δ(uj , lm) + 1)] + f(uj + δ(uj , lm))}

=

t∑

j=1

Pj [lm + f(uj)](Substitute(3))

= lm + Fm−1. (8)

The counter value is zero when the first packet of size l1
comes, therefore,

pd(0, l1) =
l − f(δ)

f(δ + 1)− f(δ)
; (9)

δ(0, l1) = df−1(l1)e − 1; (10)

F1 = pd(0, l1)f(δ + 1) + (1− pd(0, l1))f(δ) = l1. (11)

Combine (8) and (11), the following equation holds by a
mathematical induction argument.

Fm = E[f(cm)] =

m∑

i=1

li. (12)

The assertion of the theorem follows.

IV. THEORETICAL ANALYSIS

A. Analysis on variation and error

Denote T (S) as the random variable that represents the total
traffic amount needed to let the counter value be S. We analyze
the coefficient of variation of T (S) which reflects the relative
error of the estimation with the assumption of uniform integer
increment size θ > 0. The coefficient of variation is defined as

e[T (S)] =

√
V ar[T (S)]

E2[T (S)]
. (13)

Theorem 2: With the uniform integer traffic increments θ >

0, the coefficient of variation of T (S) is,

e =





√
(b−1)(bS−b)

(b+1)(bS−1)
, θ = 1;

√
(b−1)[b2x(b2S−2x−1)−θbx(bS−x−1)(b+1)]

(b+1)[bx(bS−x−1)+(b−1)θ]2
, θ > 1.

(14)
Proof:

We define every incoming of θ traffic as a trial, and G(pc)

is a variable that describes the number of trials needed to
make one increment of the counter when the current counter
value is c. Since the traffic volume is θ in each trial, the traffic
required to let the counter size increase from c to c + 1 is
θG(pc). Obviously, G(pc) is a geometric random variable, i.e.,
E[G(pc)] = 1/pc and V ar[G(pc)] = (1 − pc)/p2

c , where the
probability pc = θ

f(c+1)−f(c)
= θ

bc .
Case 1)
If θ = 1, G(pc) is a geometric random variable, i.e.,

E[G(pc)] = 1/pc and V ar[G(pc)] = (1 − pc)/p2
c , where the

probability pc = θ
f(c+1)−f(c)

= θ
bc . We have:

E[T (S)] = E[

S−1∑

c=0

θG(pc)] =

S−1∑

c=0

bc =
bS − 1

b− 1
= f(S); (15)

V ar[T (S)] = V ar[

S−1∑

c=0

θ2G(pc)] =

S−1∑

c=0

1− pc

p2
c

=

S−1∑

c=0

b2c(1− 1/bc) =

S−1∑

c=0

b2c −
S−1∑

c=0

bc

=
b2S − 1

b2 − 1
− bS − 1

b− 1
. (16)

Substitute (15)(16) into (13),

e =

√
(b− 1)(bS − b)

(b + 1)(bS − 1)
. (17)

Case 2)
If θ > 1, the counter value increases to x after the first

trial, where f(x) ≤ θ ≤ f(x + 1). From the second trial, G(pc)

is also a geometric random variable, i.e., E[G(pc)] = 1/pc

and V ar[G(pc)] = (1 − pc)/p2
c , where the probability pc =

θ
f(c+1)−f(c)

= θ
bc . Therefore,

E[T (S)] = θ + E[

S−1∑
c=x

θG(pc)] = θ +
bx(bS−x − 1)

b− 1
; (18)

10
0

10
1

10
2

10
3

10
4

10
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

total traffic

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

θ=1

θ=40

Fig. 2. Coefficient of variation vs. flow length when b = 1.002, with different
increments.

V ar[T (S)] = V ar[

S−1∑
c=x

θ2G(pc)] =

S−1∑
c=x

θ2 1− pc

p2
c

=

S−1∑
c=x

b2c(1− θ/bc) =

S−1∑
c=x

b2c −
S−1∑
c=x

θbc

= b2x b2S−2x − 1

b2 − 1
− θbx bS−x − 1

b− 1
. (19)

Substitute (18)(19) into (13),

e =

√
(b− 1)[b2x(b2S−2x − 1)− θbx(bS−x − 1)(b + 1)]

(b + 1)[bx(bS−x − 1) + (b− 1)θ]2
. (20)

Combine case 1) and case 2), (14) follows.
From Theorem 2, we can derive the following corollary.
Corollary 1: ∀θ > 0,e is bounded by

√
b−1
b+1 .

Proof:
Obviously, e monotonously increases when S increases. If

θ = 1, divide both numerator and denominator of (17) by bS

and let S → ∞, we get e →
√

b−1
b+1 . If θ > 1, divide both

numerator and denominator of (20) by b2S and let S → ∞,
we get e →

√
b−1
b+1 .

Figure 2 depicts the relationship between coefficient of vari-
ation and total traffic according to Theorem 2. No matter θ = 1

or θ > 1, coefficient of variation increases to a same bounded
value as indicated in Corollary 1. In the figure,b = 1.002, so the
bound is 0.0316. This bound is increased with the increment
of b as demonstrated in Figure 3.

B. Analysis on memory cost

When the actual flow length is n, the expected counter value
is not equal to f−1(n). In fact, it is bounded by f−1(n).

Theorem 3: An upper bound of expected counter value
E[c(n)] is f−1(n), where f−1(n) is the inverse function of
f(c).

Proof:

1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009
0.02

0.03

0.04

0.05

0.06

0.07

0.08

b

la
rg

es
t c

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

(b
ou

nd
)

Fig. 3. Coefficient of variation vs. the parameter b. It is demonstrated that
smaller b leads to smaller Coefficient of variation, i.e., the relative error.

As indicated in (1), f(c) is a convex function, which satisfies

f(x) ≥ f(y) + (x− y)f ′r(y), ∀x, y > 0 (21)

where f ′r(·) is the derivative of f(·) on the right. Now, let x = c

and y = E[c]. We get,

f(c) ≥ f(E[c]) + (c− E[c])f ′r(E[c]) (22)
E[f(c)] ≥ E[f(E[c]) + (c− E[c])f ′r(E[c])]. (23)

From Theorem 1, E(f(c)) = n, then we obtain,

E[f(c)] = n ≥ f(E[c]) (24)

Since f(c) is an increasing function, we can have

E[c(n)] ≤ f−1(n) (25)

We run DISCO under different flow lengths for 50 times,
and calculate the expected (average) counter value for each
flow size. We compare these values with the bound indicated
in Theorem 3 and plot the gap between them in Fig. 4. The
figure shows that the bound in Theorem 3 is a tight one for
the specific sampling function defined in (1): the absolute gap
is quite small and the relative gap (absolute gap divided by n)
is approximately on the order of 10−4 or even below.

C. Relationship with ANLS

The counting process of ANLS can be presented as c ← c+1

with probability p(c), where c is the counter value. p(c) =

1/[f(c + 1) − f(c)], where f(c) is any real increasing convex
function satisfying f(0) = 0, f(1) = 1, f(c) < f(c + 1) ≤
bf(c) + 1 (b is a predefined parameter and b > 1). ANLS is
designed only for packet number counting. The corresponding
counter is increased by one when a packet is sampled. When
DISCO is used to count packet number, i.e., the length of
every packet is viewed as one (l = 1). In this way, DISCO is

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

n

G
ap

 b
et

w
ee

n
th

e
bo

un
d

an
d

th
e

ex
pe

ct
ed

 c
ou

nt
er

 v
al

ue

b=1.01
b=1.002

Fig. 4. Gap between the bound and the expected counter value.

equivalent to ANLS since the f(c) defined in (1) satisfies the
ANLS conditions described in [9].

V. SIMULATED EVALUATION

In this section, we present the experiment configurations
and results when DISCO is adopted to count flow volume and
flow size.

A. Simulation settings

As mentioned in Section I, SAC is the only method in
literature that can be implemented on SRAM for both flow
volume and flow size counting, so numerical comparisons on
estimation accuracy and memory consumptions between SAC
and DISCO are investigated.

For each counter, SAC needs s bits to record the exponent
part of the estimator (named as mode in [20]) and k bits to
keep the estimation part (named as A in [20]). Therefore, the
counter size of SAC is Ssac = s+k and in all our experiments
k is set to be 3.

We study how the accuracy changes with the increment of
counter size based on the real trace input. Relative error R is
defined as the absolute value of the distance between the real
flow length and the estimated flow length, i.e., R =

|n̂−n|
n . We

introduce average relative error, maximum relative error and
optimistic relative error for accuracy evaluation.
• Average relative error R̄ is the mean value of R over all

the counters.

• Maximum relative error Rmax is the largest R over all
the counters, which is a descriptor of the worst case.

• α-Optimistic relative error Ro(α) indicates the probability
guarantees of the relative error, which can be formulated
as

Ro(α) = sup {r|Pr{R ≤ r} ≥ α} (26)

8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

largest counter bits

av
er

ag
e

re
la

tiv
e

er
ro

r

DISCO
SAC

Fig. 5. Average relative error for flow volume counting.

8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

largest counter bits

m
ax

im
um

 r
el

at
iv

e
er

ro
r

DISCO
SAC

Fig. 6. Maximum relative error for flow volume counting.

B. Simulation results

The performance behavior of DISCO and SAC is first
investigated under a real trace for flow volume counting. The
real trace on OC-192 link is obtained from NLANR [16] which
represents totally 40G bytes traffic volume. In this real trace,
the number of flows is 100,728 and the average flow size is
409.5K bytes.

Figure 5 depicts the relationship between average relative
error and counter size when SAC and DISCO are used to count
flow volume. It is as expected that the average relative error
R̄ decreases with the increase of counter size for both two
methods. We observe from the figure that, the average relative
error of DISCO is smaller than SAC with the same counter

8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

largest counter bits

op
tim

is
tic

 r
el

at
iv

e
er

ro
r

R
o(0

.9
5)

DISCO
SAC

Fig. 7. Optimistic relative error (α(95)) for flow volume counting.

size. The margin between the two error curves becomes
smaller when the counter size increases. The reason is that
the relative error for both SAC and DISCO should converge
to zero when the counter size is set to be large enough as
a full-size counter (like SD). Figure 6 shows the maximum
relative error and indicates the similar trends as Figure 5. It
is demonstrated that DISCO is more accurate than SAC even
in the worst case. Figure 7 depicts the 0.95-optimistic relative
error curves for the two methods. The relative error of 95% of
the counters should be under the 0.95-optimistic error curve
for each counting method. Obviously, DISCO provides better
probabilistic guarantees of relative error than SAC.

The cumulative probability function of relative error using
the real trace is investigated and the result is shown in Figure 8
with the snapshot of 10-bit counters. Under DISCO, for 90%

of the flows, the flow volume estimation error is less than
0.04 and the estimation error of all the flows is less than
0.15. However, when employing SAC, these two numbers are
increased to 0.22 and 0.4, respectively.

The compression ratio of the counter size is also studied.
Although full-size SD counters do not have estimation errors,
its counter value increases linearly with the increase of flow
length (the slope is one). With a small estimation error, SAC or
DISCO only consumes a smaller counter for the statistics of a
large flow. Without renormalization, the counter value of SAC
increases linearly with a slope that is less than one and the
counter increment of DISCO is an increasing convex function
of the flow size/bytes as shown in Figure 9. The larger the
flow volume, the larger the memory efficient gain achieved by
using DISCO. As indicated in (1), f(0) = 0 and f(1) = 1, the
memory consumption of DISCO will not be larger than SD and
SAC, even for the smallest flow. Figure 9 also demonstrates
that DISCO is scalable for the potential dramatic increase of
flow volume in the Internet.

TABLE II
EXPERIMENT RESULTS UNDER DIFFERENT TRAFFIC SCENARIOS. R IS THE RELATIVE ERROR AND S IS THE COUNTER SIZE IN BITS

Scenarios Metric SAC DISCO SAC DISCO SAC DISCO
Scenario 1 Average relative error 0.089 0.052 0.045 0.031 0.025 0.016

counter bits 8 8 9 9 10 10
Scenario 2 Average relative error 0.177 0.096 0.091 0.079 0.054 0.038

counter bits 8 8 9 9 10 10
Scenario 3 Average relative error 0.143 0.097 0.094 0.063 0.061 0.041

counter bits 8 8 9 9 10 10
Real trace Scenario Average relative error 0.177 0.035 0.105 0.021 0.054 0.012

counter bits 8 8 9 9 10 10

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative error

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

DISCO
SAC

Fig. 8. Cumulative probability distribution of relative error.

Similar experiments are also conducted to study the per-
formance of SAC and DISCO when they are used to count
the flow size, i.e., the number of packets in a flow. In this
case, SAC is actually the same as Better NetFlow (BNF) [6]
and as shown in Section IV-C, DISCO is equivalent to ANLS.
Figure 10 plots the average relative error of estimated flow size
for each flow under the same counter size, which indicates that
DISCO is more accurate than SAC given the same memory
resources.

Besides the experiments under the real trace, we employ
other three synthetic traffic scenarios for evaluations. They
are:
• Scenario 1. Each flow has x packets, where x is a

random variable following Pareto distribution. The
shape parameter is 1.053 and the scale parameter is 4.
The packet length (bytes in a packet) follows truncate
exponential distribution between 40 and 1500 with
location parameter λ = 100. On average, a flow has
48.99 packets and 5.2K bytes traffic in this scenario.

• Scenario 2. Each flow has x packets, where x is a
random variable following Exponential distribution with
location parameter of 800. The packet length follows

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

co
un

te
r

va
lu

e

flow byte

full−size counter
DISCO
SAC

Fig. 9. Counter bits required under different flow volume.

truncate exponential distribution between 40 and 1500
with location parameter λ = 100. On average, a flow has
778.30 packets and 82.7K bytes traffic in this scenario.

• Scenario 3. Each flow has x packets, where x is a random
variable following Uniform distribution between 2 and
1600. The packet length follows truncate exponential
distribution between 40 and 1500 with location parameter
λ = 100. On average, a flow has 772.01 packets and
83.6K bytes traffic in this scenario.

Table II illustrates three snapshots when the counter sizes
are set to be 8 bits, 9 bits and 10 bits, respectively, for both
SAC and DISCO. Since the counter memory is determined by
the largest counter value for the fixed-length counter system,
in this paper, we use the largest counter bits for evaluation.
From the experiments, we observe that 1) the accuracy can be
improved with the increases of counter size, and 2) DISCO is
also more accurate than SAC even if their counter sizes are
configured to be the same. In other words, DISCO consumes
less counter size with the same accuracy as SAC.

Although DISCO converges to ANLS when it is used to
flow size counting, simple extensions of ANLS presented in

0 0.5 1 1.5 2 2.5

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

flow size (number of packets)

re
la

tiv
e

er
ro

r
(a) DISCO

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

flow size (number of packets)

re
la

tiv
e

er
ro

r

(b) SAC

Fig. 10. The relative error of each flow for flow size counting. (a) is the
results for DISCO and (b) is the results for SAC.

TABLE III
EXPERIMENTAL RESULTS FOR ANLS-I

pkt. len. var.>10 average relative error
Scenario 1 100% 11.09
Scenario 2 100% 6.23
Scenario 3 100% 18.15
real trace 100% 6.26

Section II do not work well for flow volume counting. To be
fair, we compare DISCO with ANLS-I and ANLS-II given
the same memory size, i.e., all use 10-bit counters for each
flow. If ANLS-I is utilized, the relative errors are too large
to be acceptable as indicated in Table III, compared with the
results of DISCO shown in Table II. The large relative error of
ANLS-I is caused by the large variations of the packet length.
For example, the variation is larger than 10 for 62.78% of the
flows in real trace and for 100% of other three synthetic traces.
The mean variation over all the flows in each trace scenario is
in the magnitude of 103−104. In addition DISCO is at least ten
times faster than ANLS-II. The execution time ratio of DISCO
over ANLS-II is illustrated in Table IV. It increases with the
growth of the average flow length in different scenarios.

VI. IMPLEMENTATION AND PERFORMANCE TEST

In order to give a more comprehensive evaluation on
DISCO, we have implemented DISCO on Intel network pro-
cessor IXP2850 platform [11, 15]. IXA SDK 4.0 simulation
environment is employed for performance validation.

TABLE IV
RATIO BETWEEN EXECUTION TIME OF ANLS-II AND DISCO

Scenario 1 Scenario 2 Scenario 3 real trace
15.03 28.34 31.53 189.88

Traffic

Generator

ME
#
N
-
1

.

.
.

.

.
 .

Scratchpad

Lookup Table

DISCO

ME
#
0

DISCO

ME
#
N
-
1

Exact

Counting

ME
#
0

Exact

Counting

ME
#
N
-
1

.

.
.

.

.
 .

.

 .
 .

SRAM

...

Traffic

Generator

ME
#
0

Fig. 11. Implementation of DISCO and the test-bench on IXP 2850.

The architecture of DISCO implementation and its test-
bench, is depicted in Fig. 11. Four IXP2850 MicroEngines
(ME) are utilized to function as traffic generators (TGEN).
In order to mimic ultra high traffic input rate, TGEN only
generates packet handlers instead of the whole packets. Each
packet handler contains the flow ID and the packet length. The
packet handlers are first forwarded to a specific “Scratchpad
Ring”, which is typically used as packet handler FIFO in
IXP2850. Next to the packet handler FIFO, four MEs are
equipped with DISCO logic (Algorithm 1) to update counters.
In order to check the accuracy, an exact counting element is
also designed and a copy of each synthetic packet handler is
passed to it.

logb(X) and bX are required to obtain δ and pd in (2)
and (3). However, IXP2850 does not have instructions to
deal with logarithm and power computation directly. We pre-
compute logb(X) and bX , and then use a lookup table to get
its value when a logarithm or an exponentiation operation
occurs. The logarithm table and power table are combined
into one “Log & Exp” table in our implementation. For each
32-bit entry of the table, the leftmost 20 bits are used for
power computation and the rightmost 12 bits are employed
to keep logarithm results. There is no need to keep too many
table entries for very large X and we only store 3K entries
for logb(X) and bX , X ≤ 3072 and the memory of the
pre-computation table is 96Kb with 3K entries. With simple
shift and sum operation, we could calculate the values for
X > 3072.

Prior to presenting the experimental results, we first describe
the traffic pattern generated for performance tests. There are
2560 flows generated, where 20% of flows carries 80% of
the traffic volume4. The packet length is uniformly distributed

4It is well known today that, Internet exhibits an “80-20” feature for its
traffic [17], i.e., 80% of Internet packets are generated by 20% of the flows.

TABLE V
THROUGHPUT ON IXP 2850 PLATFORM

Burst len. Pkt Len. # ME error Throughput
1 64-1kB 4 0.013 39.0Gbps
1 64-1kB 2 0.013 22.0Gbps
1 64-1kB 1 0.013 11.1Gbps
1-8 64-1kB 4 0.007 104.8Gbps
1-8 64-1kB 2 0.007 55.3Gbps
1-8 64-1kB 1 0.007 28.6Gbps

between 64B and 1KB. We first check the situation where
burst length of any flow is only one, i.e., any two packets
from a same flow are intersected by packets of other flows.
We enable 1, 2 and 4 MEs in this experiment and the results
are shown in the first half of Table V. The throughput with
only one ME reaches up to 11.1Gbps with a relative error of
0.013 and it is competent enough to serve for flow statistics
on majority of the Internet backbone links. In addition, the
throughput increases slightly smaller than the linear increase
of the number of MEs.

Real traffic often shows burst of flows, i.e., a number of
back-to-back packets from a same flow comes continuously.
In this case, the performance can be improved by delaying
the update to SRAM counters. Instead of updating the counter
for each incoming packet, counter is increased at the end of
each burst period. A small naive on-chip counter is first used
to fully record the flow length in a burst before its possible
overflow. When a burst is over, the counter value is viewed
as the bytes from a single packet and Algorithm 1 is used to
update the counter. We check the performance improvement
for this modification on processing. When the burst-length is
a uniform random number between 1 and 8, the throughput is
increased by about 2.5 times and the relative error is reduced
to a half value. Considering the worst case where all the
packets are 64B and arrive without burst, 8 MEs are needed to
achieve 10Gbps throughput. Table lookup and counter update
on SRAM are the main operations of DISCO. One write and a
read operation on SRAM using IXP 2850 takes about 186 ns,
and the time can be approximately reduced to 10-20 ns using
FGPA/ASIC to implement operations on SRAM. Therefore,
the performance of DISCO can be roughly improved ten times
when porting the implementation to a FPGA/ASIC design.

VII. CONCLUSION

Acquiring both the flow size and the flow byte statistics in
a same algorithm with improved accuracy and low memory
occupation is always a target when implementing in real
network equipments. In this paper we have proposed a DIS-
count COunting (DISCO) method to achieve this goal by an
elaborate design of the counter update rule and the unbiased
estimator. We theoretically model the DISCO algorithm and
give a systemic analysis on its accuracy and counter/memory
requirements. Extensive experimental evaluations with real
traces and synthetical data validate the theoretical results. A
real implementation is made on the Intel IXP2850 network

processor with an inspiring outcome that only 96Kb memory
is required and a throughput of 11.1 Gbps can be achieved
by only using one MEs. The throughput increases almost
linearly when multiple MEs are employed. This makes DISCO
performance/cost effective for practical applications.

ACKNOWLEDGMENT

This work is supported by NSFC (60903182, 60873250,
60625201), 973 project (2007CB310702), Tsinghua University
Initiative Scientific Research Program and open project of
State Key Laboratory of Networking and Switching Technol-
ogy (SKLNST-2008-1-05).

REFERENCES

[1] B.-Y. Choi, J. Park, and Z.-L. Zhang. Adaptive random sampling for
load change detection. In ACM SIGMETRICS 2002, pages 272 – 273,
2002.

[2] Cisco. Sampled netflow data sheet. http://www.cisco.com.
[3] K. Claffy and S. McCreary. Internet measurement and data analysis:

Passive and active measurement. http://www.caida.org.
[4] K. C. Claffy, G. C. Polyzos, and H.-W. Braun. Application of sampling

methodologies to network traffic characterization. In ACM SIGCOMM
1993, pages 194–203, 1993.

[5] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions
from sampled flow statistics. In ACM SIGCOMM 2003, pages 325–336,
2003.

[6] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better netflow.
In ACM SIGCOMM 2004, pages 245 – 256, 2004.

[7] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In ACM SIGCOMM 2002, pages 323 – 336, 2002.

[8] C. Hu, B. Liu, and K. Chen. Poster: Compressing flow statistic counters.
In IEEE ICNP 2009 (poster), 2009.

[9] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen. Accurate and
efficient traffic monitoring using adaptive non-linear sampling method.
In INFOCOM 2008, Phoenix, USA, 2008.

[10] N. HUA, B. Lin, J. J. Xu, and H. C. Zhao. Brick: A novel exact active
statistics counter architecture. In ANCS 2008, 2008.

[11] E. J. Johnson and A. R. Kunze. IXP2400/2800 Programming. Intel
Press, 2003.

[12] A. Kumar, M. S. amd J. J. Xu, and J. Wang. Data streaming algorithms
for efficient and accurate estimation of flow size distribution. In ACM
SIGMETRICS 2004, pages 177–188, 2004.

[13] A. Kumar and J. Xu. Sketch guided sampling – using on-line estimates
of flow size for adaptive data collection. In IEEE INFOCOM’06, 2006.

[14] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani.
Counter braids: A novel counter architecture for per-flow measurement.
In ACM SIGMETRICS, 2008.

[15] U. R. Naik and P. R. Chandra. Designing High-Performance Networking
Applications. Intel Press, 2004.

[16] NLANR. Passive measurement and analysis (pma). http://pma.nlanr.net.
[17] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang. SIFT: a simple

algorithm for trucking elephant flows and taking advantage of power
laws. In the 43rd Allerton Conference on Communication, Control, and
Computing, 2005.

[18] S. Ramabhadran and G. Varghes. Efficient implementation of a statistics
counter architecture. In ACM SIGCOMM’03, 2003.

[19] D. shah, S. Iyer, B. Prabhakar, and N. McKeown. Maintaining statistics
counters in router line cards. IEEE Micro, 22(1):76–81, 2002.

[20] R. Stanojevic. Small active counters. In IEEE INFOCOM’07, 2007.
[21] G. Varghese and C. Estan. The measurement manifesto. ACM Computer

Communication Review, 34:9–14, 2004.
[22] L. Yang and G. Michailidis. Sampled based estimation of network traffic

flow characteristics. In INFOCOM 2007, 2007.
[23] Q. Zhao, J. J. Xu, and Z. Liu. Design of a novel statistics counter archi-

tecture with optimal space and time efficiency. In ACM SIGMETRICS
2006, 2006.

