

Stream: Decentralized Opportunistic Inter-Coflow
Scheduling for Datacenter Networks

Hengky Susanto, Hao Jin, and Kai Chen
SING Group, Hong Kong University of Science and Technology

{hsusanto, hjinae, kaichen}@cse.ust.hk

Abstract— Coflow scheduling can improve application-level
communication performance for data-parallel clusters.
However, most prior coflow scheduling schemes are based on
the centralized approach, which achieve good performance but
suffers from high control overhead and scalability issue. On the
other hand, state of the art decentralized solution requires
switch modification, which makes it hard to implement. In this
paper, we present Stream, the decentralized and readily-
implementable solution for coflow scheduling. The key idea of
Stream is to opportunistically take advantage of many-to-one
and many-to-many coflow patterns to coordinate coflows
without resorting to the centralized controller, and then emulate
shortest coflow first scheduling to minimize the average coflow
completion time (CCT). We implement Stream with existing
commodity switches and show its performance using both
testbed experiments and large-scale simulations. Our evaluation
results show that Stream’s performance is comparable to the
centralized solution, and outperforms the state of the art
decentralized scheme by 1.77x on average.

I. INTRODUCTION
Network traffic in today’s data-parallel clusters is often

shaped by requirements at the application-level, and coflow
provides an abstraction that bridges application-level
semantic and the network [4, 15]. At the network level, coflow
refers to a set of parallel flows associated with a specific task
given by the application, and all flows in a coflow must be
completed for the completion of a communication stage. In
other words, minimizing coflow completion time (CCT) may
result in a shorter completion time of the corresponding task
and improve performance at application-level.

A number of proposals formulate coflow scheduling into
CCT minimization problem. Most of the prior schemes are
based on a centralized approach [4-9], where a single
controller makes the coflow scheduling decision for the entire
system. The centralized approach achieves good performance
but suffer from a high control overhead (e.g., synchronization,
fault tolerance, scalability, etc.). Alternatively, the state of the
arts decentralized solution [3] requires customized
modification in switches and this makes implementation and
deployment difficult. In this paper we present Stream, a
decentralized and readily-implementable solution for coflow
scheduling, which opportunistically takes advantage of many-
to-one and many-to-many coflow communication patterns
without relying on a central controller.

Many-to-one is a communication pattern of a single
receiver communicating with multiple senders to complete a
single coflow [19-24, 35]. We observe that receiver is a
natural position for coordinated coflow scheduling, since the
overall coflow information can be available there. To

minimize average CCT, Stream emulates conditional Shortest
Job First (C-SJF) by prioritizing smaller coflows over larger
ones. Stream assigns a priority to each coflow by considering
its total number of bytes received at the receiver and other
conditions such as the number of completed flows of the same
coflow; the priority is gradually decreased as the total number
of bytes received increases. Then, SJF is enforced by utilizing
priority queuing, a built-in function available in today’s
commodity switches, to ensure smaller coflows are prioritized
over larger coflows.

We extend the above scheme to the many-to-many pattern,
where multiple receivers communicate with multiple senders
[18, 20, 23] and a coflow consists of multiple sub-coflows.
Each sub-coflow is many-to-one. For this, Stream also utilizes
the receiver to schedule coflows. However, in this scenario
receivers of different sub-coflows may not directly exchange
information with one another, therefore the receivers of a
coflow may not have a full picture of the coflow (e.g., the total
bytes received in a coflow). The lack of shared information
may lead to poor outcomes. To resolve this challenge, Stream
complements C-SJF with three additional schemes. ሺ݅ሻ
Weighted-Priority: the priority decision is weighted such that
sub-coflows of the same coflow that arrive later will be
deprioritized faster.�ሺ݅݅ሻ Information-Relay: Stream also takes
advantage of senders that are serving multiple receivers of the
same coflow by relaying information (i.e. bytes received)
between these receivers. ሺ݅݅݅ሻ Child-to-Parent: in multi-stage
scenario where the completion of a parent sub-coflow is
dependent on the completion of child sub-coflows of the same
coflow, the receiver of child sub-coflow, upon its completion,
will communicate its size (bytes received) to the receiver of
the parent sub-coflow. This allows the receiver of the parent
sub-coflows to make better scheduling decision. By this
design, Stream is effective in prioritizing smaller coflows over
larger coflows in many-to-many scenarios.

We have implemented a Stream prototype and deployed it
in a small-scale testbed. Our implementation verifies that
Stream can be readily deployed in today’s commodity
datacenters without requiring modification to switch
hardware. Our testbed experiment results show up to 1.3ൈ
faster CCT on average and 1.87ൈ faster with mice coflow
compared to TCP fair sharing.

We further evaluate Stream through a large-scale trace-
driven simulation with a production trace of coflow traffic
from Facebook datacenter [4]. In the many-to-one scenario,
Stream shows 1.4ൈ and 1.77ൈ faster CCT on average
compared to the state of the art decentralized solution [3] and

2016 IEEE 24th International Conference on Network Protocols (ICNP)

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE

per-flow fair sharing scheme respectively (and 2.7ൈ and 5.1ൈ
faster respectively with mice coflows). At the same time,
Stream achieves comparable outcomes to the centralized
scheduler, Aalo [5]. For further evaluation, we include two
other case studies: multi-wave coflow (flows of the same
coflow arriving at different times) and bursty traffic (coflows
arriving within the same interval). Stream improves the
average CCT by up to 2.8ൈ in the multi-wave study and at
least 1.9ൈ faster in bursty traffic study compared to the
decentralized and per-flow fair sharing schemes. In many-to-
many scenario, the evaluation is performed by utilizing two
benchmarks: TPC-DS [5] query and Facebook Tao structure
[28]. Stream outperforms both Baraat and per-flow fair
sharing by up to 1.85ൈ faster on average. Compared to
centralized scheme, Stream achieves comparable performance
in both case studies.

This paper is organized as follows. We begin by
presenting background information in section II. Stream is
described in detail in section III. Simulation results are
presented in section IV, followed by previous related work in
section V and concluding remarks in section VI.

II. BACKGROUND
This section provides a general overview of coflow

structure, a description of coflows in production, and network
model.

Fig. 1. CDF plot: a) coflow size , b) length, and c) width from Facebook
datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].

Fig. 2. Network topologies: Big-Switch topology [4,5] (left), FatTree
topology [30] (middle), and a simple network topology (right).

Coflow structure. Cluster computing applications today
generally follow many-to-one model. For example, mapper
and reducers in Map-Reduce [18] are respectively the
receiver and senders in a coflow. Spark [20] is another
framework that utilizes many-to-one pattern for enabling data
reuse in applications. Others include Dryad [19], DryadLINQ
[21], SCOPE [22], Pregel [23], GraphLab [24], Tachyon [35],
etc. To confirm this finding, we have analyzed production
trace of coflow traffic from Facebook datacenter [4] and we
observe that many-to-one pattern is also found in the
production trace. Since this pattern is common among
applications, we design our proposed coflow scheduling
scheme to take advantage of the receiver in many-to-one
model to coordinate the flow transmission of coflow without
resorting on a central controller.

Coflows in production. The authors of [4] discover that
coflow size follows the heavy trailed distribution. Only 8%
(15%) of coflows has the size of at least 10 GB (1 GB) in
Facebook datacenter, yet they are responsible for 98%
(99.6%) of the traffic. In other words, the majority of coflows
are relatively small coflow size (Figure 2a, 2b, and 2c).
Findings of authors of [3] from Bing search application in
Microsoft’s datacenter (Figure 4d), and a further investigation
in [6] also concur that coflow size follows the heavy tailed
distribution. A similar trend is also observed in [14] where the
data-mining distribution has a very heavy tail with 95% of all
data bytes belonging to 3.6% of flows larger than 35MB. This
means the system is predominantly populated by shorter
flows, but the traffic is mostly taken up by minority flows.

Network model. The two popular network topologies
(Figure 2) often used in scheduling scheme design for
datacenter are: ሺ݅ሻ Big-Switch-based topology [4,5,10,13], a
non-blocking datacenter fabric where processing and queue
delay are negligible. This model only focuses on bottleneck
in ingress and egress ports (machine NICs) which allows
simpler computation. ሺ݅݅ሻ Tree-based topology [2, 3, 7, 8, 10,
25] like FatTree [30]. To choose between these two
topologies, we conduct few experiments in our testbed and
NS-3 simulator with network topology illustrated in Figure 2
(right). We discover that processing and queuing delay in
switches in non-edge network does matter. Our finding
confirms the results of [2, 10, 11 25]. The bottleneck shifts
from edge and becomes more distributed because today’s
NIC speed catches up to switches processing speed [31]. For
this reason, we adopt the tree based topology and incorporate
it into our design.

III. STREAM DESIGN
Stream is a decentralized solution that opportunistically

takes advantage of many-to-one and many-to-many patterns
to coordinate coflows. In the design, we consider the
following coflow characteristics: the number of parallel
flows (width), total bytes (size), and the longest flow in bytes
(length). These characteristics determine the state of a
coflow, for example, the number of flows in a coflow that
have been completed, the amount of bytes received per
coflow, etc. As prior works [3-9, 37], Stream assumes that
information on coflow ID can be derived from upper layer
applications.

A. Problem Formulation
Consider the following offline scheduling problem with ݊

coflows in a system indexed by ܿ = 1, 2, …,�݊. Then, the
objective of scheduling problem is as follows.

�෍݁ݖ݅݉݅݊݅݉ ௖ݐ
௡

௖ୀଵ
�ǡ����������������������������������ሺͳሻ��

෍ݔ௙ ൑ ࣜ௟
௙א௟

ǡ݈׊��� א ǡ����������������������������������ሺͳǤܮ ܽሻ

௙ݓ ൑ ௪࣮�ǡ݂׊��� א ܿǡ�������������������������������ሺͳǤ ܾሻ

௜݌ ൏ ௜ǡ݌׊���௜ାଵǡ݌ ௜ାଵ݌ א ݂ǡ�������������������������ሺͳǤ ܿሻ

௖ǡݐ�ݎ݁ݒܱ ௙ݓ ൒ ͲǤ Notation ݐ௖ denotes the completion time of
coflow ܿ and it is described as the following expression: ݐ௖ ൌ

a) b) c) d)

2016 IEEE 24th International Conference on Network Protocols (ICNP)

2

���൫ݐ௙ȁ݂׊�� א ܿ൯ǡ where ݐ௙ denotes the completion time of
flow ݂. In other words, ݐ௖ is determined by the completion
time of the longest flow’s completion time in a coflow.
Constraint (1.a) assures aggregate flow traversing link ݈ does
not exceed link capacity ࣜ௟ . Constraints (1.b) and (1.c) assure
starvation and packet out-of-order respectively are mitigated.
It is also important to note CCTs minimization is an NP-Hard
problem [3, 4] and reducible to Open Shop Problems [12].

B. Many-to-one Pattern
We begin by addressing coflow scheduling problem in

many-to-one scenario on the premise that coflow size is
unknown a priori.

Figure 3. Stream overview in many-to-one scenario.

Generally, Stream utilizes C-SJF to minimize the average
CCT by prioritizing smaller coflows over larger ones. Figure
3 summarizes Stream’s C-SJF: the receiver determines the
priority of a coflow and communicates it to each sender.
Next, the senders transmit data with the priority determined
by the receiver. The priority is then enforced at switches by
utilizing strict priority queuing, a built-in function available
in today’s commodity switches.

C-SJF is accomplished by first comparing the coflow size
to a demotion threshold ࣮ at the receiver’s end: if the coflow
size exceeds ࣮, then the coflow will be deprioritized, which
results in deprioritization to all its flows. However, since
coflow size is unknown a priori, a straightforward
measurement may not be possible. To address this issue, our
solution is inspired by [5, 25]. Initially every coflow is
assigned to the highest priority and the priority is later
adjusted as the information on the amount of bytes received
becomes available at the receiver. Then, the receiver notifies
its senders with new priority updates by embedding the
updates in the ACK packet. Secondly, the scheme takes
coflow condition into consideration in deciding the priority
(e.g. number of completed flows). Thirdly, to ensure
compatibility with the existing commodity switches, Stream
performs the scheduling at the receiver’s end because
information on coflow and its flows are accessible there.
Lastly, SJF is enforced by utilizing multiple queues, which is
commonly available in the existing commodity switches, to
implement strict priority queuing (SPQ).

Although it has been pointed out in [5] that SPQ may
introduce the risk of starvation and Weighted Fair Queuing
(WFQ) may provide a better solution, SPQ is preferable for
two reasons: first of all, priority queuing provides better in-
network prioritization and potentially achieves lower CCT.

Secondly, WFQ may cause TCP packet out of order problem.
We will address the starvation concern later in this paper.

Fig 4. (a) Coflow dependency in Claudera’ TPC-DS [4], and (b) Facebook’s
Tao Architecture [28,32], where each layer represents the webserver, cache
follower, cache leader, and database. (c) Coflow sub-ID of TPC-DS and (d)
Tao Architecture generated in Weighted-Priority Approach.

Coflow priority decision. Here, we present Stream’s priority
decision mechanism. Consider ܭ priority queues in the
commodity switches [1] and given coflow ܿ, priority ௙ܲ

௞
denotes ݇௧௛ priority queue assigned to flow ݂ א ܿ, such that
ͳ ൑ ݇ ൑ Then, the priority arrangement is defined as .ܭ
follows: ௙ܲ

ଵ ൐ ௙ܲ
ଶ ൐ ڮ ൐ ௙ܲ

௞ ൐ ڮ ൐ ௙ܲ
௄ǡ where ௙ܲ

ଵ is the
highest priority and ௙ܲ

௄ is the lowest priority. Every ௙ܲ
௞ is

associated to threshold ߬௞. Currently, existing commodity
switch typically supports 8 priority queues [1]. Let ௙ܲ denote
the priority assigned to ݂, such that ௙ܲ ൌ ௙ܲ

௞. Initially, all ݂ is
assigned to ௙ܲ

ଵ, such that ݂׊ א ܿǡ ௙ܲ ൌ ௙ܲ
ଵ. Therefore, given

flow size ݔ௙ ൒ Ͳ, the priority ௙ܲ is decided as follows.

௙ܲ ൌ ܭ െ ቜܭǤ��� ቆͳǡ
߬௞ ൅ �࣢௖ߙ
σ ௖א௙௙ݔ�

ቇቝ ǡݔ׌���������௙ ൐ Ͳǡ��������ሺʹሻ

࣢௖ ൌ ߬௞ ൬
��௡೎

೑೙ೞ೓�
௡೎�

൅ ௡೎
σ �௫೑೑א೎

൰�ǡ������������������������ ሺ͵ሻ

where ݊௖
௙௡௦௛ and ݊௖ in (3) denote the number of flows in

coflow ܿ that have completed and the total number of flows
in ܿ. The ratio ߬݇

σ ܿא݂݂ݔ�
 in (2) enforces SJF emulation. Observe

that ܲ ௙ decreases as σ ௖א௙௙ݔ� grows, which results in ఛೖ
σ �௫೑೑א೎

൏

ͳ. This equality implies that coflow with σ ௖א௙௙ݔ� ൐ ߬݇, for
݇ ൐ ͳ, will be deprioritized. The ceiling function in (2)
assures that ௙ܲ is an integer. The rationale behind the ratio
௡೎
೑೙ೞ೓�
௡೎�

 in (3) is to prioritize coflow that is suspected to be near
completion. Ratio ௡೎

σ �௫೑೑א೎
 is also utilized to influence smaller

coflows to be given higher priority. Since information may
not be a priori known in every framework, ݊௖ is adjusted as
new information becomes available. To summarize the
discussion, ࣢௖ can be interpreted as a function that captures
coflow conditions. This function can be further developed as
part of our future work. At last, to assure packet arriving out
of order is avoided, ܲ ௙ ൌ ൫ݔܽ݉ ௙ܲǡ ௙ܲ

ᇱ൯ǡ where ܲ ௙
ᇱ is the previous

decided priority.

C. Many-to-many Pattern
A coflow with many-to-many pattern may consist of

multiple sub-coflows and there may exist dependency
between sub-coflows. As illustrated in Figure 4, coflow with
this pattern can be modelled with Directed Acyclic Graph

a)

b)

c)

d)

2016 IEEE 24th International Conference on Network Protocols (ICNP)

3

(DAG). Similar observations are made in [5], that first sub-
coflows of a same coflows must be treated as a single entity.
Second, a parent sub-coflow only completes when the child
sub-coflows it depends on are completed. Some of the
challenges with this pattern in decentralized environment
include keeping track of the relationship among sub-coflows
from the same entity, deciding an appropriate priority when
coflow information is sparse, and sub-coflows within the
same entity may not be aware of the existence of other sub-
coflows. To address these challenges, Stream utilizes
Weighted-Priority, Information-Relay, and Child-to-Parent
approaches. With these approaches, Stream opportunistically
gathers information on bytes received. Then Stream utilizes
C-SJF to coordinate coflow where each receiver of the same
coflow manages its own sub-coflow.

Algorithm 1: Sub Coflow ID Assignment
1. InternalID[] // set of IDs proposed by parent
2. |Parents| // number of parents
3. Procedure Set_SubCoflowID (InternalID[])
4. If ܦ ൌ ᇱ�ǡܦ ᇱܦǡܦ׊ א ����������ሾ�ሿǡ� then
5. SubCoFlowID = ����������ሾ�ሿ + |Parents| – 1.
6. Else SubCoFlowID = ݉ܽݔሺ����������ሾ�ሿሻ
7. End procedure

Weighted-Priority (WP). Here, we propose a scheme to
weigh the priority decision such that sub-coflows of the same
coflow that arrive later will be deprioritized faster. Stream
utilizes coflow’s internal ID that is used to identify its sub-
coflows to weigh coflow priority. Internal ID determined
using algorithm 1 can be utilized as an indicator of the
number of sub-coflows that is locally discovered by a sub-
coflow. For example, if the internal ID=4, it means there are
at least 3 others sub-coflows in the entity. It can also be
utilized to describe dependency between sub-coflows. For
example, parents sub-coflow has a lower ID number than its
children. Stream extends eq. (2) of C-SJF scheme and
leverages internal IDs to weight the priority of each sub-
coflow by the following equations.

௙ܲ ൌ ܭ െ ቜܭǤ��� ቆͳ�ǡ
߬௞ ൅ �࣢௖ߙ

ܹ�σ ௖א௙௙ݔ�
ቇቝ������������������ሺͶሻ

Here, weight ܹ ൌ Ǥߙ ሺ݉݃݋݈ ൅ ͳሻ when ݉ ൐ ͳ. Otherwise,
ܹ ൌ ͳ. The log function is to limit ܹ’s influence on priority
decision. Variable ݉ denotes number of sub-coflows that is
discovered so far. Weight ܹ in eq. (4) is employed to allow
a faster deprioritization of sub-coflows that are members of a
large coflow. The internal ID is generated by parent sub-
coflows when they are invoking new sub-coflows (children)
using algorithm 1. The ID of the first batch of sub-coflows in
an entity is provided by “master” (or “manager”) whose task
is to invoke the first batch of sub-coflows [18, 20, 21, 23, 24].
When there are two or more parents assign different ID to the
same child, the largest ID is selected by the child. If there are
two or more parents assign a child with the same ID, then
child’s ID = ID + n_parents-1, where n_parent denotes the
number of child’s parents. For example, sub-coflow ଼ܥǡସ in
Figure 4c and 4d

Information-Relay (IR). In applications like Map-Reduce
[18], multiple receivers of the same coflow may share
common senders. In other words, a sender may serve multiple
receivers of the same entity at the same time. Stream takes
advantage of these senders to relay information (i.e. bytes
received) between receivers of the same coflow. The sender
first observes coflow ID and sub-coflow (internal) ID, for
example, the coflow ID of coflow ଼ܥǤଵ (in Figure 3.a) is ଼ܥ
and the internal ID is 1. Then, by comparing the coflow ID,
the sender knows that it is serving multiple receivers of the
same coflow. On this basis Stream leverages senders to relay
information (such as bytes received) between receivers by
piggybacking in data sent to its receivers. Then, the receiver
sums up the information on bytes received gathered from its
peers to determine the priority. Let ܵ denotes the total amount
of bytes received by receiver’s peers and ߚ denotes a weight
factor, the priority is determined by extending eq. (4), which
is described as in the following equation, eq. (5).

௙ܲ ൌ ܭ െ ቜܭǤ��� ቆͳ�ǡ
߬௞ ൅ �࣢௖ߙ

ܹ�൫ܵ�ߚ ൅ σ ௖א௙௙ݔ� ൯
ቇቝ������������������ሺͷሻ

Child-to-Parent (CP). We observe that the receiver of
parent sub-coflow is a natural position for gathering
information (bytes received) of its child sub-coflows because
it has access to the receivers of child sub-coflows. CP is
carried out in two stages. In the first stage, when a child sub-
coflow completes, the receiver of the child sub-coflow sends
a tuple, <Responses to query, sub-coflow size (bytes
received)>, to the receiver of the parent sub-coflow. In the
second stage, upon receiving a tuple, the parent sub-coflow
sums up the sub-coflow size of its child sub-coflows and
determine the priority utilizing eq. (5). This approach enables
Stream to capture large coflows that are made up of many
mice sub-coflows.

In addition, we also observe that threshold-based
approaches [5, 27] process large coflows and mice coflows
together until one of them exceeds the threshold for mice
coflow. Most likely that a mice coflow is made up of a few
mice sub-coflows. Thus, to detect large coflows earlier, the
threshold for highest priority is configured to detect mice sub-
coflows and, the larger coflows will be detected by parent
coflows using the approach described in the previous
paragraph.

By combining WP, IR, and BU with C-SJF, Stream
obtains the approximation of the number of sub-coflows, as
well as of the current coflow sizes. This allows Stream to
quickly direct coflows to the right queues and allocate
appropriate resources.

D. Practical Consideration
Multi-wave. Flows from the same coflow may arrive at
different times due to failures or stragglers [33]. Stream is
capable of handling events with multiple waves of arrival
flows as long as the flows use the appropriate coflow and sub-
coflow ID. The receiver keeps track of the amount of data
received regardless of the number of waves.

2016 IEEE 24th International Conference on Network Protocols (ICNP)

4

Starvation mitigation. To resolve starvation issue, when the
waiting exceeds pre-defined threshold, the sender of the
starving flow retransmits packets that have not been
acknowledged with higher priority assignment. The duplicate
packets will be dropped at the receiver by TCP [29] if there
is any. The process is repeated until the flow escapes the
starvation. Then, upon receiving a packet from the starving
flow, the receiver compares the priority of the recent received
packet with the priority currently assigned to the starving
flow. If they do not match, then the receiver increases that
coflow priority and notifies the sender of the starving flow
with new priority through the ACK packet.

Setting threshold. Although threshold is commonly used in
system design [3,4,10,25,27], there is very little study on how
threshold should be decided, such that system achieves
optimality. Authors of [25] attempt to formulate threshold
setting into convex optimization problem, but it uses too
many constraints in the formulation, which may not be
realistic. We attempt to compute the threshold for each
priority queue by utilizing eq. (6) from queuing theory [26].
We observe that doing this does not guarantee convexity, and
therefore it is possible that this is a non-convex problem (an
NP-Hard problem). At this point, the thresholds are decided
using exponentially-spaced threshold used in [5]. We will
further investigate the setting of threshold in our future work.

Number of queues required. Next, we address the question
of the number of queues required to ensure that our proposed
method will achieve a good performance.

Theorem 1. The performance improvement has diminishing
returns behavior as ݇ ՜ λ.
Proof. Let ܭ ൌ λ denote the number of priority queues and
 ௞ atݓ be the processing rate of a link. The waiting time ߤ
queue with priority ݇�߳ܭ� is described by equation from [26].

௞ݓ ൌ
ͳ
ߤ
��

�ͳ
݂ ς ൫ͳ െ σ ௜ߩ�

௝
௜ୀଵ ൯௞

௝ୀଵ
�ǡ�����������������������������ሺ͸ሻ

where ߩ௞ denotes the traffic load ݇௧௛ priority queue. Then,
we have ߩ௞ ൌ

ఒೖ
ఓ

 [26], where ߣ௞ denotes the arrival rate at ݇௧௛
priority queue. Observe that, given priority ௙ܲ

ଵ ൐ ௙ܲ
ଶ ൐ ڮ ൐

௙ܲ
௄, we have ݓଵ ൑ ଶݓ ൑ ڮ ൑ ௞ሻ be the utilityݓ௄Ǥ Let ܷሺݓ

function of ݓ௞ to evaluate the performance of the system. The
performance evaluation can be formulized as follows.
σ݁ݖ݅݉݅ݔܽܯ ܷሺݓ௞ሻ௄

௞ୀ଴ , where ܷሺݓ௞ሻ ൌ
ଵ
௪ೖ

. σ ܷሺݓ௞ሻ௄
௞ୀ଴ can also be

expressed as σ ܷሺݓ௞ሻ௄
௞ୀ଴ ൌ ଵ

௪భ
൅ ଵ

௪మ
൅ ଵ

௪య
൅ ڮ Ǥ൅ ଵ

௪಼
. Notice

���
௞՜ஶ

ܷሺݓ௞ሻ ൌ Ͳ , which also implies that the utility of ܷሺݓ௞ሻ
diminishes as ݇ ՜ λ. Thus, the performance improvement
follows the behavior of diminishing returns. ז

Theorem 1 implies that at some point the benefits of multiple
queues diminish as the number of queues increases, which is
consistent with findings in [5, 25] and confirmed by our
testbed and simulation results. We utilize 4 queues in our
experiments and achieve satisfactory outcomes.

Discussion. We acknowledge that the coflow patterns in
datacenter may not always follow many-to-one or many-to-
many, and further, it is not impossible that a coflow may

consist of individual flows. In these scenarios, Stream
behaves similar to existing scheduler like PIAS [25].

IV. EVALUATION
The performance of Stream is evaluated through

experiments in our testbed with 1G port switches and large-
scale simulation using Facebook data trace from [4,5]. Our
primary metric for comparison is the average CCT, and our
performance improvement factor is described as follows.

ݐ݊݁݉݁ݒ݋ݎ݌݉ܫ ൌ �
ݏܶܥܥ�݀݁ݎܽ݌݉݋ܥ
ݏܶܥܥ�ݏԢ݉ܽ݁ݎݐܵ

Ǥ

If the improvement is greater (smaller) than one, Stream is
faster (slower).

The main results are summarized as follows:
1. In testbed experiment, relative to TCP fair sharing, Stream

improves the average CCT by up to 1.3ൈ faster and the
average mice coflow CCT by up to 1.87ൈ faster.

2. Large-scale simulation shows that on average, Stream
outperforms state of the art decentralized solution (Baraat)
and per-flow fair sharing by up to 1.4ൈ and 1.71ൈ faster
respectively, and only trailing by 0.87ൈ compared to the
centralized solution, Aalo. For mice coflows, Stream is
2.7ൈ and 5.1ൈ better in comparison to Baraat and per-flow
fair sharing respectively, while achieving comparable
outcomes to Aalo.

3. In multi-wave scenario, Stream outperforms Baraat and
per-flow fair sharing by up to 1.7ൈ and 2.8ൈ faster.
Compared to Aalo, Stream achieves similar performance.

4. In many-to-many, on average Stream improves the
performance by up to 1.85ൈ and 1.9ൈ faster than Baraat
abd per-flow fair sharing respectively, while achieving
comparable performance to Aalo.

Fig. 5. Testbed Experiments with TCP and Stream of avg. CCT, avg. mice
coflows CCT, and 95th percentile avg. CCT. (a) Scenario one: 117 coflows
with 2160 flows. (b) Scenario two: 105 coflows with 1140 flows.

A. Testbed Experiment
Implementation: We build Stream prototype based on
modifying the TCP kernel module in Linux operating system.
Then, we implement client/server application to emulate
senders and receivers in many-to-one scenario by utilizing
socket programming. Here, client applications are the senders
and server applications are the receivers. We assume coflow
ID is provided by application layer in this implementation.
Hence, Senders utilize setsockopt to pass down coflow ID
from the application layer to the transport layer. This allows
the application layer to insert coflow ID into IP option field

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Avg. Mice 95th

Im
pr

ov
em

en
t

117 Coflows (2160 Flows)

a)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Avg. Mice 95th

Im
pr

ov
em

en
t

105 Coflows (1440 Flows)

b)

2016 IEEE 24th International Conference on Network Protocols (ICNP)

5

in TCP packet header. The ID is utilized to identify which
packet belongs to which coflow. At the receiver’s end, coflow
ID is extracted from packet received from its senders.

To communicate priority decision, the receiver utilizes the
reserve field in the TCP header of ACK to map the priority
(e.g. priority 2) to Differentiated Services Code Point (DSCP)
[29] bits of ACK packets that are sent to its senders. The 4
bits in Reserve field provides a range of integer 0 to 15, which
is sufficient to represent 8 priority queues.

These coflow monitoring and priority notification
schemes are accomplished by adding a few lines in TCP
kernel in Linux. At last, threshold information can be stored
in a file to allow thresholds to be adjusted without re-
compilation.

To meet the required constraints described in problem
formulation (1), capacity constraint in (1.a) can be addressed
by utilizing Explicit Congestion Notification (ECN) [29]
based protocol (DCTCP [11]), starvation constraint in (1.b)
can be elevated by senders quickly performing the starvation
mitigation when the timer expires at 10ms, which is TCP
RTOmin [11]. To satisfy packet out of order constraint (1.c),
Stream only deprioritizes coflows only if it is required.

Testbed: 8 servers connected to a Pica8 P-3297 48-port 1
Gigabit Ethernet, 4-port 1 Gigabit Ethernet commodity
switch with 2MB shared memory, which supports strict
priority queuing with at most 8 classes of services queue [1].
Each server is a Dell Server: PowerEdge R320 with CPU
Intel(R) Xeon(R) CPU E5-1410 0 @ 2.80GHz, 8G memory,
and Broadcom 5720 Dual Port 1Gb LOM Gigabit Ethernet
NIC. Each server runs Ubuntu 14.04.2 LTS with Linux 4.0
kernel. In our switch, we enforce strict priority queuing and
classify packet based on the DSCP field.

Experiment: To evaluate Stream, we create two experiment
scenarios in which 6 machines are running senders and a
machine running receivers. In the first scenario, the
experiment is conducted with 2160 TCP flows that make up
117 coflows. In the second scenario, there are 1440 TCP
flows which make up 105 coflows. In both scenarios, we
added the 8th server to generate background traffic of 500
Megabits per second (50% of the link capacity) using iperf,
which is a common traffic characteristic in datacenter [16].
We compare the average CCT of Stream to the average CCT
of TCP fair sharing. This set of experiments is conducted
using 8 priority queues. Our heavy tailed traffic pattern is
randomly generated according to traffic patterns from
Facebook and Bing search (Microsoft) [4, 3], and is
illustrated in Figure 1.

Experiment results. Our testbed experiment demonstrates
that when compared to TCP fair sharing, Stream achieves
better performance by 1.3ൈ and 1.27ൈ on average in the first
and second scenario respectively, as illustrated in Figure 5.
Also, as depicted in the same figure, in both scenarios Stream
reduces the average CCT of mice coflows by up to 1.7ൈ and
1.87ൈ respectively. Moreover, Stream also has better
performance by up 1.58ൈ and 1.72ൈ at 95th percentile in
comparison to scheduler with regular per-flow sharing in
both scenarios. Through these instances, we demonstrate that

Stream performs better than TCP fair sharing, especially in
network with higher traffic load.

Table 1 (left) and table 2 (right). Table 1 describes network size of FatTree
topology. Table 2 describes flow distribution in multi-wave coflow.

 I II III IV V
Size A 1MB-100MB 100MB-1GB 1GB-10GB 10GB-100GB >100GB
Size B 6MB-1GB 1GB-10GB 10GB-100GB 100GB-1TB >1TB

Table 3. Five categories of coflow with different size in many-to-one pattern
(size A) and many-to-many pattern (size B).

Fig. 6. Single wave in network in 1G switches (Figure a and b) and network
in 10G switches (Figure c and d).

Fig 7. Average CCT improvement in 8 pods 1G and 10G networks according
coflow categories described in table 3.

B. Large-scale Simulations
In this section, we evaluate Stream’s performance in

many-to-one and many-to-many scenarios. In many-to-one
scenario, we consider trace-driven, bursty, and multi-wave
traffic. In many-to-many, we utilize benchmarks from
Cloudera [5] and Facebook [28,32]. In all our simulations, we
use a production traffic trace collected from Facebook
datacenter, specifically from 150-racks (3000 machines) [5].

0

0.2

0.4

K8 K16 K24 K32 K48

CT
T

 (m
s)

network Size

Avg Mice CCT

Baraat
Fair Sharing
Stream
Aalo

a)

0

10

20

30

40

50

60

70

K8 K16 K24 K32 K48

CC
T

(m
s)

Network Size

Avg CCT

Baraat
Fair Sharing
Stream
Aalo

b)

0

0.005

0.01

0.015

K8 K16 K24 K32 K48

CC
T

 (m
s)

Network Size

Avg Mice CCT
Baraat
Fair Sharing
Stream
Aalo

c)

0

10

20

30

40

50

60

70

K8 K16 K24 K32 K48
CC

T
(m

s)
Network Size

Avg CCT

Baraat
Fair Sharing
Stream
Aalo

d)

0

1

2

3

4

5

I II III IV V Avg

Im
pr

ov
em

en
t

Coflow Size Catergory

Avg CCT in 8 Pods Network (1G)
Baraat
Fair Sharing
Aalo

a)

0

0.5

1

1.5

2

I II III IV V AvG

im
pr

ov
em

en
t

Coflow Size Category

Avg CCT in 8 Pods Networks (10G)
Baraat Fair Sharing Aalo

b)

K Pods # of
Servers

of
Switches

k=8 128 80
k=16 1024 320
k=24 3456 720
k=32 8192 1280
k=48 27648 2880

Waves 1th 2nd 3th 4th

Single 100%
Two 90% 10%
Three 81% 9% 10%
Four 81% 9% 4% 6%

2016 IEEE 24th International Conference on Network Protocols (ICNP)

6

Simulation setting: We develop a flow-level simulator and
it accounts for the flow arrival and departure events, rather
than packet sending and receiving events. It updates the rate
and the remaining volume of each flow when event occurs.
We employ FatTree network topology [30] with up to 27,648
hosts (48 pods). We conduct our simulation with 1 Gigabit
(1G) switches to create a higher traffic load condition, as well
as 10 Gigabit (10G) switches where delay in non-network
edges is minimal. Our assumptions are: the switch has
sufficient buffer to store incoming data, each flow traverses
along one path, and coflow size follows heavy-tailed
distribution.

In our simulations, we compare Stream to per-flow fair
sharing, Baraat [3], and Aalo [5]. Per-Flow Fair-Sharing (FS)
is a scheme that shares the capacity equally among flows
traversing the same link. Baraat, a FIFO with limited
multiplexing (FIFO-LM) scheduler, is the state of the art
decentralized scheduler. To analyze how Stream performs
against centralized solution, we compare our solution to
Aalo. For simplicity, Aalo’s additional delay from managing
centralized system is not considered in the simulator and
information on coflow is made available instantaneously to
centralized controller. Additionally, based on findings in [5]
and results from our testbed experiment, 4 priority queues
provides the best outcome. Thus, Aalo and Stream employ 4
priority queues in their scheduling schemes. Moreover, in
principle, all schemes assume that coflow characteristics are
unknown ahead of time.

Traffic load. Stream is evaluated using traffic load by
replaying production traces from Facebook clusters [4, 5].
Bursty traffic pattern of coflows arriving at the same interval,
which is also common in datacenter [17, 32], is considered in
our study. We also incorporate the commonly used Equal-
cost multi-path routing (ECMP) [29] to route and load
balance flows in the flow simulator. Additionally, since TCP
is the common transport protocol in datacenter, we
implement rate limiter that behaves like TCP for all schemes,
except for Baraat where the rate limiter is implemented
according to its design in [3].

Many-to-one pattern. Here we provide an overview of
Stream’s performances in different network sizes in 1G and
10G networks. We then analyze how Stream performs under
heavier load. To evaluate Stream with different traffic loads
while preserving the authenticity of the original trace, we
increase the network size according as described in table 1.

In 1G network, on average, Stream achieves faster
completion time than Baraat and FS, by up to 1.4ൈ and 1.77ൈ
respectively (Figure 5b), but trailing by 0.87ൈ compared to
Aalo (within 13%). Stream achieves up to 2.7ൈ and 5.1ൈ
faster for mice coflows compared to Baraat and FS
respectively (Figure 6a). Compared to Aalo (centralized),
Stream is trailing by 0.76ൈ (within 24%).

In 10G networks, Stream on average achieves shorter
completion time than Baraat and FS by up to 1.5ൈ and 2.1ൈ
respectively, but trails 0.83ൈ compares to Aalo (Figure 6d).
For mice coflows, Stream outperforms Baraat and FS by up

to 1.8ൈ and 1.9ൈ faster respectively; and within 13% of Aalo
(Figure 6c).

Fig. 8. The improvement with 2, 3, and 4 waves coflow in 8 pods 1G
network. The evaluation is categorized into 5 groups described in table 3A.

Further, we break down Stream’s performance according
to different categories described in table 3 using 8 pods
network with 1G and 10G switches. As illustrated in Figure
7, Stream outperforms Baraat and FS across all categories in
both 1G and 10G networks. Stream’s lower average CCT
compared to FS results from the higher resource dedicated to
higher priority coflow. Especially for smaller coflows,
Stream outperforms FS by up to 5ൈ faster, as depicted in
Figure 7a. Also, Stream outperforms Baraat by up to 3ൈ
better in group I and II (Figure 7a). Baraat’s performance
suffers from lower priority mice coflows queuing behind
higher priority larger coflows. Stream avoids this problem by
allowing smaller coflows to jump ahead of the queue by
deprioritizing larger coflows. On average, Stream performs
comparably well to Aalo. Stream slightly trails behind Aalo
for smaller coflows, an expected outcome for centralized
system with complete information. This explanation does not
address why Stream converges quicker than Baraat when the
traffic load decreases (Figure 7). This question will be
addressed later in this paper.

Notice in figure 5 that as network size scales up (k-pod is
increased from 8 to 48), the average CCT improvement
converges because there are more resources available and the
traffic becomes more distributed from load balancing with
ECMP.

Multi-wave scheduling. We modify the original trace by
varying the maximum number of concurrent senders in each
wave according to configuration provided by [4] as described
in table 3. In Figure 8, we demonstrate the importance of
coflow states across waves in 8 pods network. Stream
outperforms FS across waves by 1.7ൈ and up to 2.8ൈ with
smaller coflows. Stream outperforms Baraat up to 1.9ൈ and
shares similar performance with Aalo across waves and
categories. Stream’s ability to approximate the states of a
coflow as a whole give it an advantage over FS. Stream
allows mice coflows to jump ahead of large coflows even
when they arrive later, while in Baraat mice coflow that come
later may end up queuing behind higher priority large
coflows.

Bursty traffic. We consider another scenario in datacenter
[17,32] where coflows arrive at the same time. The
simulation is performed in 8 pods 1G and 10G networks. The
original trace is modified such that all coflows arrive within
the same interval. Since Aalo and Baraat use FIFO in their

0

0.5

1

1.5

2

2.5

3

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

Im
pr

ov
em

en
t

Number of Waves

Baraat Fair Sharing Aalo

I II III IV V

2016 IEEE 24th International Conference on Network Protocols (ICNP)

7

schemes, we keep the same coflow ID and FIFO setting as
previous experiments. In 1G network, Stream outperforms
Baraat and FS by at least 1.9ൈ faster on average (Figure 9a).
Notice that for coflow group II, Stream performs up to 4ൈ
better than both Baraat and FS. Stream again achieves similar
outcomes with Aalo across the groups in this scenario. In 10G
network, Stream outperforms both Baraat and FS by 1.6ൈ and
1.7ൈ (Figure 9b) respectively, while Stream is within 7% of
Aalo across the groups.

Fig. 9. Improvement average CCT in bursty traffic in 1G and 10G networks.

Fig. 10. The CCT of the first 100 completed coflows with Baraat and Stream
in 1G and 10G networks.

In the following discussion we demonstrate why Stream
outperforms Baraat. Notice that in Figure 10, CCTs of the
first 100 coflows from Stream is flat, because they are
processed almost simultaneously and they complete at almost
the same time. In contrast, Baraat’s CCTs of the first 100
coflows rise linearly. This is because in FIFO, coflow that is
queued in the back must wait until all coflows ahead of it are
processed. Thus when coflows all arrive within the same
interval, those with lower priority end up with a longer wait
in the queue. The waiting time is even longer when there are
more high priority large coflows in the queue, because more
network resource are allocated to large coflows. As shown in
Figure 10, the higher the number of mice coflows, the longer
is the waiting time for mice coflows in the back of the queue.

We refer this phenomenon as LM-Effect which occurs
when there is more capacity allocated for limited
multiplexing (LM) than FIFO. Furthermore, LM-Effect is
propagated as flows traverse more queues, increasing the gap
between Stream and Baraat. With this insight, the intersecting
lines in Figure 10 can be interpreted as the limit of Baraat’s
improvement over Stream. Stream performs better than
Baraat when there is a higher number of mice coflows,
especially in datacenter where the majority (at least 90%) of
the population is mice coflows.

Fig. 11. Coflow scheduling with different number priority queues through
testbed and simulation experiments.

Fig. 12. Performance Improvement of Coflow with Many-to-many pattern
using TPC-DS query-42 benchmark in 8 pods 1G and 10G networks.

Fig. 13. Performance Improvement of Coflow with Many-to-many pattern
using Facebook-Tao structure benchmark in 8 pods (a) 1G and (b) 10G
networks.

Impact of number of queues: We conduct two experiments
with 2 to 7 priority queues in our testbed using similar setup
as in our previous testbed experiment with 30 coflows, and
through a simulation with 8 pods network and 1000 coflows.
The experiments are conducted in many-to-one scenario.
Here, our results show that 4 queues is sufficient to achieve
satisfactory result, similar to the findings in [5, 25]. We
observe that the performance improvement affected by the
number of queues follows the pattern of diminishing returns
(Figure 11), which confirms Theorem 1. Here, we observe
that the population of coflows in queue decreases as the
number of queue increases, as expected in a heavy tail
pattern.

0

1

2

3

4

I II III IV V Avg

Im
pr

ov
em

en
t

Coflow Size Category

Avg CCT in 8 Pods Network (1G)
Baraat Fair Sharing Aalo

a)

0

1

2

I II III IV V Avg

Im
pr

ov
em

en
t

Coflow Size Categories

Avg CCT in 8 Pods Network (10G) Baraat
Fair Sharing
Aalo

b)

0

0.2

0.4

0.6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

CC
T

(m
s)

1G network

Baraat
Stream

0

0.1

0.2

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

CC
T

 (m
s)

10G Network

Baraat
Stream

8.9

9

9.1

9.2

9.3

2 3 4 5 6 7

Av
g.

 C
CT

 (
m

s)

Number of Queues

Testbed

a)

39.3

40.3

41.3

42.3

2 3 4 5 6 7

Av
g.

 C
CT

 (
m

s)

Number of Queues

Simulation

b)

0
1
2
3
4
5
6
7
8
9

10
11
12

I

Im
pr

ov
em

en
t

a)

0

1

2

3

4

II III IV V avg

Im
pr

ov
em

en
t

Coflow Size Categories

8 Pods Network (1G) Baraat
Fair Sharing
Aalo

0

1

2

3

4

5

6

I II III IV V avg

im
pr

ov
em

en
t

Coflow Size Categories

8 Pods Network (10G) Baraat
Fair Sharing
Aalo

b)

0

4

8

12

16

20

24

28

I

Im
pr

ov
em

en
t

a)

0

1

2

3

II III IV V Avg

im
pr

ov
em

en
t

Coflow Size Category

8 Pods Network (1G) Baraat
Fair Sharing
Aalo

0

3

6

9

12

15

I

Im
pr

ov
em

en
t

b)

0

1

2

3

4

II III IV V Avg

Im
pr

ov
em

en
t

Coflow Size Catergory

8 Pods Network (10G) Baraat
Fair Sharing
Aalo

2016 IEEE 24th International Conference on Network Protocols (ICNP)

8

Many-to-many pattern. We utilize Cloudera Industrial
benchmark, TPC-DS query-42 (TPC-DS) [4], and Facebook
Tao structure (FB-Tao) [28, 32] to evaluate Stream in many-
to-many scenario (because Facebook trace only consists of
coflow with many-to-one). We incorporate benchmarks and
insights from [3, 4, 19, 21, 23, 24, 32] and reorganize the
original trace to generate a more realistic trace according to
DAG structure in Figure 2a and 2b. Each DAG structure is
made up of sub-coflows that are actually exact replications of
a coflow taken from the original trace; and each DAG
structure is mapped to a different coflow from the original
trace. The coflow size with many-to-many pattern is
described in table 3. Overall, Stream performs better than
Baraat and FS in both TPC-DS and FB-Tao structures, and
performs on average comparable to Aalo.

 With TPC-DS benchmark Figure 12 demonstrates that
Stream is 1.85ൈ better (on average) in comparison to Baraat
and FS, while Stream and Aalo shares similar performance
on average in both 1G and 10G networks. Also notice in
Figure 12 that Stream outperforms Baraat, FS, and Aalo in
category I by 7.43ൈ, 12.12ൈ, and 1.79ൈ respectively in 1G
network. In 10G network Stream performs better by 3.51ൈ,
6.19ൈ, and 1.02ൈ than Baraat, FS, and Aalo respectively. In
summary, relative to both Baraat and FS, Stream is at least
1.71ൈ better in 1G network and 1.83ൈ better in 10G network.
Stream’s performance is comparable to Aalo on average,
except in the middle category in both 1G and 10G network.

With FB-Tao, on average, Stream outperforms Baraat and
FS, by 1.75ൈ and 1.833ൈ faster respectively in 1G network
(Figure 13), while Stream achieves a comparable outcome to
Aalo. Stream also outperforms Baraat and FS by average
1.85ൈ and 1.9ൈ respectively in 10G network, and Stream is
only within 2% to Aalo. Moreover, Stream also outperforms
Baraat, FS, and Aalo with smaller coflow from category I by
16.9ൈ, 28.79ൈ, and 2.81ൈ respectively in 1G network, and
7.53ൈ, 15.68ൈ, and 1.1ൈ respectively in 10G network. In
Summary, Stream outperforms both Baraat and FS by at least
1.7ൈ in both 1G and 10G networks. In comparison to Aalo,
Stream performance is comparable across category except in
1GB-10GB and 10GB-100GB categories.

Stream performs overall better than Baraat and FS in this
scenario. By using WP, IR, and CP approaches, Stream is
able to quickly gather information (e.g. number of sub-
coflows in a coflow and sub-coflow state) and rapidly
estimate coflow state. Therefore, Stream can quickly
differentiate between small and large coflows and allocate the
appropriate resources. In contrast, Baraat’s scheduler only
utilizes information that is available at the switch, which may
result in less information for scheduling decision. As for FS,
its performance is inferior caused by lack of coordination.

On average, Stream’s performance is comparable to that of
Aalo. Observe specifically category 1 (6MB-1GB), Stream
outperforms Aalo by up to 2.8ൈ. This is because in Aalo large
and mice coflows may be processed together until a large
coflow is detected when bytes received exceeds the threshold
of mice coflow. This could lead to lower CCTs for mice

coflows. On the other hand, Stream differentiates between
small and large coflows at sub-coflow level because one of
our assumptions is that a mice coflow may consist of small
sub-coflows. Stream demotes large sub-coflows when their
individual bytes received exceeds the threshold of mice sub-
coflow. This way, a large coflow consisting of large sub-
coflows can be deprioritized early, even before it exceeds the
threshold of mice coflow. In the case of large coflow with
many mice sub-coflows, it will be detected by the parents of
mice sub-coflows with our Child-to-Parent scheme.

 For categories II and III which makes up to 20% of total
coflows, Aalo is more advantageous over Stream (0.4ൈ)
because Aalo is a centralized system with a global view,
enabling it to be more precise in distinguishing coflows with
similar characteristics, leading to better performance in these
two categories. This slight disadvantage does not negate
Stream’s superior performance in all categories compared to
other decentralized schemes.

Fig. 14. The impact of threshold value for first priority queue in 1G network
with Facebook TAO structure in Many-to-many scenario.

Trade-off. To evaluate how threshold selection may impact
CCTs in Stream, we employ different values as the threshold
for the highest priority queue in 8 pods 1G network of 4
priority queues with FB-Tao benchmark. As threshold value
increases, Stream allows larger size coflows to be processed
as mice coflows. While doing this improve the CCTs of some
coflows in the highest priority queue, it degrades others in the
same queue (Figure 14). This is because more coflows are
competing for the resources. The other effect is that a longer
processing delay in higher priority queue means a longer wait
in lower priority queue. This finding is consistent with
Kleinrock’s Conservation Law for priority scheduling [26]
which says that we cannot improve the response time of one
class of task by increasing its priority without hurting the
response time of at least one other class. Kleinrock’s
Conservation Law also applies to Baraat and Aalo where both
schemes sacrifice the performance of mice coflows to resolve
starvation of large coflows.

V. RELATED WORK
One of the early works on coflow scheduling is Orchestra

[6], where coflows are scheduled using FIFO. Varys [4] and
Aalo [5] later improved the performance in [6] by prioritizing
smallest-bottleneck-first and smallest-total-size-first in their
scheduling mechanisms. In comparison to other approaches,
Aalo [5] assumes coflow size is not known ahead of time.
RAPIER [7] and OMCoflow [37] incorporate routing

0

50

100

150

200

10
M

B-
10

0M
B

10
1M

B-
1G

1G
B-

10
BG

10
G

B-
10

0G
B

10
G

B-
1T

B
1T

B-
10

TB
10

TB
-1

8T
B

18
TB

-4
5T

B
72

TBnu
m

be
r o

f C
of

lo
w

s

Coflow Size

Size Distribution

a)
0.75

1.25

1.75

2.25

2.75

3.25

T(50) T(60) T(80) T(100) T(120) T(150) T(170)

N
or

m
al

iz
ed

 C
CT

Threshold (value)

Thresold Impact
10MB -100MB
100MB - 1GB
1GB - 100GB
100GB - 1TB
> 1TB

b)

2016 IEEE 24th International Conference on Network Protocols (ICNP)

9

algorithm into their schemes. Likewise, CORA [8] integrates
resource allocation solution into its flow scheduling scheme.
Following that, the authors of [9] consider coflows with
different levels of importance and reformulate the problem
into weighted CCTs minimization problem. CODA [36] is the
first work to leverage machine learning techniques to infer and
schedule coflows. These are all centralized approaches that
may provide good performance. However, centralized
approaches are generally hindered by the high overhead cost
of managing a centralized system.

The other alternative is the decentralized approach. The
current decentralized coflow scheduling scheme is pioneered
by Baraat [3], a heuristic that adopts FIFO with some level of
multiplexing that allows mice flows to be processed in the
background in the presence of large coflows. Otherwise, mice
flows are processed according to FIFO. However, this
approach has a few drawbacks. Since the scheduling decision
is made locally at switches, this makes gathering information
on coflow more challenging for the scheduler if flows of a
same coflow that do not traverse through the same switch.
Additionally, the solution also requires switch source code
modification, which is not deployable friendly. Optas [27] is
the other decentralized scheduling, but is designed specifically
for a special case of coflows of size 4MB or less. Different
from these solutions, our proposal solves general coflow
scheduling problem by opportunistically taking advantage of
many-to-one and many-to-many patterns.

VI. CONCLUSION
Stream is a coflow scheduling scheme that minimizes

CCT in decentralized fashion. It opportunistically takes
advantage of the receiver in many-to-one and many-to-many
communication patterns, utilizing C-SJF and WP-IR-CP
approaches. The outcomes from both our testbed experiments
and large-scale network simulation demonstrate that Stream
is an effective and practical solution in improving network
performance in datacenter, performing particularly well in
heavier traffic. Finally, we also demonstrate that our solution
is readily implementable.

Acknowledgements. This work is supported in part by the
Hong Kong RGC ECS- 26200014, GRF-16203715, GRF-
613113, CRF-C703615G, HKUST-PDF, and the China 973
Program No.2014CB340303. We thank our shepherd Javad
Grader, the anonymous ICNP reviewers, and members from
HKUST SING Lab for their valuable feedback. We thank
Zhouwang Fu and Ge Chen for assisting our experiments.

Reference
[1] http://www.pica8.com/documents/pica8-datasheet-picos.pdf
[2] M. Alizadeh, , et al., “Less is More: Trading a little Bandwidth for

Ultra-Low Latency in theDataCenter”, Usenix NSDI 2012.
[3] F. Dogar, et al, “Decentralized Task-Aware Schduling for Data Center

Networks”, ACM SIGCOMM, 2014.
[4] M. Chowdhury, Y. Zhong, and I. Stoica, ”Efficient Coflow Scheduling

with Varys”, ACM SIGCOMM, 2014.
[5] M. Chowdhury and I. Stoica, ”Efficient Coflow Schduling Without

Prior Knowldege”, ACM SIGCOMM, 2015.

[6] M. Chowdhury, et al,”Managing Data Transfer in Computer Clusters
with Orchestra”, ACM SIGCOMM, 2011.

[7] Y. Zho, et al, “RAPIER: Integrating Routing and Scheduling for
Coflow-aware Data Center Networks”, IEEE INFOCOM 2015.

[8] Z. Huang, et al “Need for Speed: CORA Scheduler for Optimizing
Completion Time in the Cloud”, INFOCOM 2015.

[9] Z. Qiu, et al, “ Minimizing the Total Weighted Completion Time of
Coflows in Datacenter Networks”, ACM SPAA, 2015.

[10] M. Alizadeh, et al, “pFabric:Minimal Near-Optimal Datacenter
Transport”, ACM SIGCOMM, 2013.

[11] M. Alizadeh, et al, “Data Center TCP (DCTCP)”, ACM SIGCOMM,
2010.

[12] S. Gawiejnowicz, “Time-Dependent Scheduling”, Springer 2008.
[13] M. Alizadeh, et al., “CONGA: Distributed Congestion-Aware Load

Balancing for Datacenters:, ACM SIGGCOMM, 2014.
[14] A. Greenberg et al., “VL2: a Scalable and Flexible Data Center

Network”, SIGCOMM 2009.
[15] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for

Cluster Applications”, USENIX HotNets, 2012.
[16] A. Munir, et al, “Friends, not Foes – Syntehsizing Exiting Transport

Strategies for Data Center Networks, ACM SIGCOMM, 2014.
[17] T. Benson, A. Akella, and D. A. Maltz, ”Network Traffic

Characteristics of Data Centers in the Wild”, ACM IMC, 2010.
[18] J. Dean and S. Ghemawat, “MapReduce: Simplifed Data Processing on

Large Clusters”, USENIX OSDI, 2004.
[19] M. Isard, et al, “ Distributed Data-Parallel Programs from sequential

Building Block”, EuroSys, 2007.
[20] M. Zhaharia, et al., “Resilent Distributed Datasets: A Fault-Tolerant

Abstraction for in-Memory Custer Computing”, USENIX NSDI, 2008.
[21] Y. Yu, et al., “DryadLINQ: A System for General-Purpose Distributed

Data-Parallel Computing Using a High Lelvel Language”, USENIX
OSDI, 2012.

[22] R. Chaiken, et al.”SCOPE: Easy and Efficient Parallel Processing of
Massive Dataset”, VLDB, 2008.

[23] G. Malewicz, et al.,”Pregel: A System for Large-Scale Graph
Processing”, ACM SIGMOD, 2008.

[24] Y. Low, et al., “Distrubted GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud”. PVLDB 2012.

[25] W. Bai, et al, ”Information-Agnostic Flow Scheduling for Comodity
Data Centers”, USENIX NSDI, 2015.

[26] L. Kleinrock, “Queuing Systems, Vol 2 Coomputer application”, New
York, Wiley, 1976.

[27] Z. Li, et al, “OPTAS: Decentralized Flow Monitoring and Scheduling
for Tiny Tasks”, IEEE INFOCOM, 2016.

[28] N. Bronson, et al, “TAO: Facebook’s Distributed Data Store for the
Social Graph”, USENIX ATC, 2013.

[29] J. Kurose and K. Ross, “Computer Networking, a Top Down Approach
6th addition”, Pearson, 2013.

[30] M. Al-Fares, A. Laukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture”, ACM SIGCOMM, 2008.

[31] A. Vahdat, et al,”Scale-Out Networking in the Data Center”, IEEE
Micro, Vol. 30 , Issue 4, p. 29-41, 2010.

[32] A. Roy, et al, “Inside the Social Network’s (Datacenter) Network,” in
ACM SIGCOMM 2015.

[33] G. Anantharnarayanan, “PACMan: Coordinated memory caching for
parallel” in USENIX NSDI, 2012.

[34] R. Bifulco, et al.”Improving SDN with InSpired Switches”, ACM
SOSR, 20016.

[35] H. Li, et al.,” Tachyon: Reliable, Memory Speed Storage for Cluster
Computing Frameworks”, IEEE SOCC, 2014.

[36] H. Zhang, et al.,”CODA: Toward Automatically Identifying and
Scheduling Coflows in the Dark”, ACM SIGCOMM, 2016.

[37] Y. Li, et al.,”Efficient Online Coflow Routing and Scheduling”, ACM
MOBICHOC, 2016.

2016 IEEE 24th International Conference on Network Protocols (ICNP)

10

