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Abstract— Coflow scheduling can improve application-level 
communication performance for data-parallel clusters. 
However, most prior coflow scheduling schemes are based on 
the centralized approach, which achieve good performance but 
suffers from high control overhead and scalability issue. On the 
other hand, state of the art decentralized solution requires 
switch modification, which makes it hard to implement. In this 
paper, we present Stream, the decentralized and readily-
implementable solution for coflow scheduling. The key idea of 
Stream is to opportunistically take advantage of many-to-one 
and many-to-many coflow patterns to coordinate coflows 
without resorting to the centralized controller, and then emulate 
shortest coflow first scheduling to minimize the average coflow 
completion time (CCT). We implement Stream with existing 
commodity switches and show its performance using both 
testbed experiments and large-scale simulations. Our evaluation 
results show that Stream’s performance is comparable to the 
centralized solution, and outperforms the state of the art 
decentralized scheme by 1.77x on average.  

I. INTRODUCTION  
Network traffic in today’s data-parallel clusters is often 

shaped by requirements at the application-level, and coflow 
provides an abstraction that bridges application-level 
semantic and the network [4, 15]. At the network level, coflow 
refers to a set of parallel flows associated with a specific task 
given by the application, and all flows in a coflow must be 
completed for the completion of a communication stage. In 
other words, minimizing coflow completion time (CCT) may 
result in a shorter completion time of the corresponding task 
and improve performance at application-level.  

A number of proposals formulate coflow scheduling into 
CCT minimization problem. Most of the prior schemes are 
based on a centralized approach [4-9], where a single 
controller makes the coflow scheduling decision for the entire 
system. The centralized approach achieves good performance 
but suffer from a high control overhead (e.g., synchronization, 
fault tolerance, scalability, etc.). Alternatively, the state of the 
arts decentralized solution [3] requires customized 
modification in switches and this makes implementation and 
deployment difficult. In this paper we present Stream, a 
decentralized and readily-implementable solution for coflow 
scheduling, which opportunistically takes advantage of many-
to-one and many-to-many coflow communication patterns 
without relying on a central controller.  

Many-to-one is a communication pattern of a single 
receiver communicating with multiple senders to complete a 
single coflow [19-24, 35]. We observe that receiver is a 
natural position for coordinated coflow scheduling, since the 
overall coflow information can be available there. To 

minimize average CCT, Stream emulates conditional Shortest 
Job First (C-SJF) by prioritizing smaller coflows over larger 
ones. Stream assigns a priority to each coflow by considering 
its total number of bytes received at the receiver and other 
conditions such as the number of completed flows of the same 
coflow; the priority is gradually decreased as the total number 
of bytes received increases. Then, SJF is enforced by utilizing 
priority queuing, a built-in function available in today’s 
commodity switches, to ensure smaller coflows are prioritized 
over larger coflows. 

We extend the above scheme to the many-to-many pattern, 
where multiple receivers communicate with multiple senders 
[18, 20, 23] and a coflow consists of multiple sub-coflows. 
Each sub-coflow is many-to-one. For this, Stream also utilizes 
the receiver to schedule coflows. However, in this scenario 
receivers of different sub-coflows may not directly exchange 
information with one another, therefore the receivers of a 
coflow may not have a full picture of the coflow (e.g., the total 
bytes received in a coflow). The lack of shared information 
may lead to poor outcomes.  To resolve this challenge, Stream 
complements C-SJF with three additional schemes. ሺ݅ሻ 
Weighted-Priority: the priority decision is weighted such that 
sub-coflows of the same coflow that arrive later will be 
deprioritized faster.�ሺ݅݅ሻ Information-Relay: Stream also takes 
advantage of senders that are serving multiple receivers of the 
same coflow by relaying information (i.e. bytes received) 
between these receivers. ሺ݅݅݅ሻ Child-to-Parent: in multi-stage 
scenario where the completion of a parent sub-coflow is 
dependent on the completion of child sub-coflows of the same 
coflow, the receiver of child sub-coflow, upon its completion, 
will communicate its size (bytes received) to the receiver of 
the parent sub-coflow. This allows the receiver of the parent 
sub-coflows to make better scheduling decision. By this 
design, Stream is effective in prioritizing smaller coflows over 
larger coflows in many-to-many scenarios. 

We have implemented a Stream prototype and deployed it 
in a small-scale testbed. Our implementation verifies that 
Stream can be readily deployed in today’s commodity 
datacenters without requiring modification to switch 
hardware. Our testbed experiment results show up to 1.3ൈ 
faster CCT on average and 1.87ൈ faster with mice coflow 
compared to TCP fair sharing. 

We further evaluate Stream through a large-scale trace-
driven simulation with a production trace of coflow traffic 
from Facebook datacenter [4].  In the many-to-one scenario, 
Stream shows 1.4ൈ and 1.77ൈ faster CCT on average 
compared to the state of the art decentralized solution [3] and 
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per-flow fair sharing scheme respectively (and 2.7ൈ and 5.1ൈ 
faster respectively with mice coflows). At the same time, 
Stream achieves comparable outcomes to the centralized 
scheduler, Aalo [5]. For further evaluation, we include two 
other case studies: multi-wave coflow (flows of the same 
coflow arriving at different times) and bursty traffic (coflows 
arriving within the same interval). Stream improves the 
average CCT by up to 2.8ൈ in the multi-wave study and at 
least 1.9ൈ faster in bursty traffic study compared to the 
decentralized and per-flow fair sharing schemes. In many-to-
many scenario, the evaluation is performed by utilizing two 
benchmarks: TPC-DS [5] query and Facebook Tao structure 
[28]. Stream outperforms both Baraat and per-flow fair 
sharing by up to 1.85ൈ faster on average. Compared to 
centralized scheme, Stream achieves comparable performance 
in both case studies.  

This paper is organized as follows. We begin by 
presenting background information in section II. Stream is 
described in detail in section III. Simulation results are 
presented in section IV, followed by previous related work in 
section V and concluding remarks in section VI.  

II. BACKGROUND  
This section provides a general overview of coflow 

structure, a description of coflows in production, and network 
model. 

 
Fig. 1. CDF plot:  a) coflow size , b) length, and c) width from Facebook 
datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].   

 
Fig. 2. Network topologies: Big-Switch topology [4,5] (left), FatTree 
topology [30] (middle), and a simple network topology (right). 

Coflow structure. Cluster computing applications today 
generally follow many-to-one model. For example, mapper 
and reducers in Map-Reduce [18] are respectively the 
receiver and senders in a coflow. Spark [20] is another 
framework that utilizes many-to-one pattern for enabling data 
reuse in applications. Others include Dryad [19], DryadLINQ 
[21], SCOPE [22], Pregel [23], GraphLab [24], Tachyon [35], 
etc. To confirm this finding, we have analyzed production 
trace of coflow traffic from Facebook datacenter [4] and we 
observe that many-to-one pattern is also found in the 
production trace. Since this pattern is common among 
applications, we design our proposed coflow scheduling 
scheme to take advantage of the receiver in many-to-one 
model to coordinate the flow transmission of coflow without 
resorting on a central controller. 

Coflows in production. The authors of [4] discover that 
coflow size follows the heavy trailed distribution. Only 8% 
(15%) of coflows has the size of at least 10 GB (1 GB) in 
Facebook datacenter, yet they are responsible for 98% 
(99.6%) of the traffic. In other words, the majority of coflows 
are relatively small coflow size (Figure 2a, 2b, and 2c). 
Findings of authors of [3] from Bing search application in 
Microsoft’s datacenter (Figure 4d), and a further investigation 
in [6] also concur that coflow size follows the heavy tailed 
distribution. A similar trend is also observed in [14] where the 
data-mining distribution has a very heavy tail with 95% of all 
data bytes belonging to 3.6% of flows larger than 35MB. This 
means the system is predominantly populated by shorter 
flows, but the traffic is mostly taken up by minority flows.  

Network model. The two popular network topologies 
(Figure 2) often used in scheduling scheme design for 
datacenter are: ሺ݅ሻ Big-Switch-based topology [4,5,10,13], a 
non-blocking datacenter fabric where processing and queue 
delay are negligible. This model only focuses on bottleneck 
in ingress and egress ports (machine NICs) which allows 
simpler computation. ሺ݅݅ሻ Tree-based topology [2, 3, 7, 8, 10, 
25] like FatTree [30]. To choose between these two 
topologies, we conduct few experiments in our testbed and 
NS-3 simulator with network topology illustrated in Figure 2 
(right). We discover that processing and queuing delay in 
switches in non-edge network does matter. Our finding 
confirms the results of [2, 10, 11 25]. The bottleneck shifts 
from edge and becomes more distributed because today’s 
NIC speed catches up to switches processing speed [31]. For 
this reason, we adopt the tree based topology and incorporate 
it into our design.  

III. STREAM DESIGN 
Stream is a decentralized solution that opportunistically 

takes advantage of many-to-one and many-to-many patterns 
to coordinate coflows. In the design, we consider the 
following coflow characteristics: the number of parallel 
flows (width), total bytes (size), and the longest flow in bytes 
(length). These characteristics determine the state of a 
coflow, for example, the number of flows in a coflow that 
have been completed, the amount of bytes received per 
coflow, etc. As prior works [3-9, 37], Stream assumes that 
information on coflow ID can be derived from upper layer 
applications.   

A. Problem Formulation 
Consider the following offline scheduling problem with  ݊ 

coflows in a system indexed by ܿ = 1, 2, …,�݊. Then, the 
objective of scheduling problem is as follows.   

�෍݁ݖ݅݉݅݊݅݉ ௖ݐ
௡

௖ୀଵ
�ǡ����������������������������������ሺͳሻ�� 

෍ݔ௙ ൑ ࣜ௟
௙א௟

ǡ݈׊��� א ǡ����������������������������������ሺͳǤܮ ܽሻ 

௙ݓ ൑ ௪࣮�ǡ݂׊��� א ܿǡ�������������������������������ሺͳǤ ܾሻ 

௜݌ ൏ ௜ǡ݌׊���௜ାଵǡ݌ ௜ାଵ݌ א ݂ǡ�������������������������ሺͳǤ ܿሻ 

௖ǡݐ�ݎ݁ݒܱ ௙ݓ ൒ ͲǤ Notation ݐ௖ denotes the completion time of 
coflow ܿ and it is described as the following expression: ݐ௖ ൌ

a) b) c) d) 
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���൫ݐ௙ȁ݂׊�� א ܿ൯ǡ where ݐ௙ denotes the completion time of 
flow ݂. In other words, ݐ௖ is determined by the completion 
time of the longest flow’s completion time in a coflow. 
Constraint (1.a) assures aggregate flow traversing link ݈ does 
not exceed link capacity ࣜ௟ . Constraints (1.b) and (1.c) assure 
starvation and packet out-of-order respectively are mitigated.  
It is also important to note CCTs minimization is an NP-Hard 
problem [3, 4] and reducible to Open Shop Problems [12].  

B. Many-to-one Pattern 
We begin by addressing coflow scheduling problem in 

many-to-one scenario on the premise that coflow size is 
unknown a priori.  

 
Figure 3. Stream overview in many-to-one scenario.      

Generally, Stream utilizes C-SJF to minimize the average 
CCT by prioritizing smaller coflows over larger ones. Figure 
3 summarizes Stream’s C-SJF: the receiver determines the 
priority of a coflow and communicates it to each sender. 
Next, the senders transmit data with the priority determined 
by the receiver. The priority is then enforced at switches by 
utilizing strict priority queuing, a built-in function available 
in today’s commodity switches.  

C-SJF is accomplished by first comparing the coflow size 
to a demotion threshold ࣮ at the receiver’s end: if the coflow 
size exceeds ࣮, then the coflow will be deprioritized, which 
results in deprioritization to all its flows. However, since 
coflow size is unknown a priori, a straightforward 
measurement may not be possible. To address this issue, our 
solution is inspired by [5, 25]. Initially every coflow is 
assigned to the highest priority and the priority is later 
adjusted as the information on the amount of bytes received 
becomes available at the receiver. Then, the receiver notifies 
its senders with new priority updates by embedding the 
updates in the ACK packet. Secondly, the scheme takes 
coflow condition into consideration in deciding the priority 
(e.g. number of completed flows). Thirdly, to ensure 
compatibility with the existing commodity switches, Stream 
performs the scheduling at the receiver’s end because 
information on coflow and its flows are accessible there. 
Lastly, SJF is enforced by utilizing multiple queues, which is 
commonly available in the existing commodity switches, to 
implement strict priority queuing (SPQ).  

Although it has been pointed out in [5] that SPQ may 
introduce the risk of starvation and Weighted Fair Queuing 
(WFQ) may provide a better solution, SPQ is preferable for 
two reasons: first of all, priority queuing provides better in-
network prioritization and potentially achieves lower CCT. 

Secondly, WFQ may cause TCP packet out of order problem. 
We will address the starvation concern later in this paper.    

 
Fig 4. (a) Coflow dependency in Claudera’ TPC-DS [4], and (b) Facebook’s 
Tao Architecture [28,32], where each layer represents the webserver, cache 
follower, cache leader, and database. (c) Coflow sub-ID of TPC-DS and (d) 
Tao Architecture generated in Weighted-Priority Approach. 

Coflow priority decision. Here, we present Stream’s priority 
decision mechanism. Consider ܭ priority queues in the 
commodity switches [1] and given coflow ܿ, priority ௙ܲ

௞ 
denotes  ݇௧௛ priority queue assigned to flow ݂ א ܿ, such that 
ͳ ൑ ݇ ൑  Then, the priority arrangement is defined as .ܭ
follows: ௙ܲ

ଵ ൐ ௙ܲ
ଶ ൐ ڮ ൐ ௙ܲ

௞ ൐ ڮ ൐ ௙ܲ
௄ǡ where ௙ܲ

ଵ is the 
highest priority and ௙ܲ

௄  is the lowest priority. Every ௙ܲ
௞ is 

associated to threshold ߬௞. Currently, existing commodity 
switch typically supports 8 priority queues [1]. Let ௙ܲ denote 
the priority assigned to ݂, such that ௙ܲ ൌ ௙ܲ

௞.  Initially, all ݂ is 
assigned to ௙ܲ

ଵ, such that ݂׊ א ܿǡ ௙ܲ ൌ ௙ܲ
ଵ. Therefore, given 

flow size ݔ௙ ൒ Ͳ, the priority ௙ܲ is decided as follows. 

௙ܲ ൌ ܭ െ ቜܭǤ��� ቆͳǡ
߬௞ ൅ �࣢௖ߙ
σ ௖א௙௙ݔ�

ቇቝ ǡݔ׌���������௙ ൐ Ͳǡ��������ሺʹሻ 

࣢௖ ൌ ߬௞ ൬
��௡೎

೑೙ೞ೓�
௡೎�

൅ ௡೎
σ �௫೑೑א೎

൰�ǡ������������������������ ሺ͵ሻ  

where ݊௖
௙௡௦௛ and ݊௖ in (3) denote the number of flows in 

coflow ܿ that have completed and the total number of flows 
in ܿ. The ratio ߬݇

σ ܿא݂݂ݔ�
 in (2) enforces SJF emulation. Observe 

that ܲ ௙ decreases as σ ௖א௙௙ݔ�  grows, which results in   ఛೖ
σ �௫೑೑א೎

൏

ͳ. This equality implies that coflow with σ ௖א௙௙ݔ� ൐ ߬݇, for 
݇ ൐ ͳ, will be deprioritized. The ceiling function in (2) 
assures that ௙ܲ is an integer. The rationale behind the ratio 
௡೎
೑೙ೞ೓�
௡೎�

 in (3) is to prioritize coflow that is suspected to be near 
completion. Ratio ௡೎

σ �௫೑೑א೎
  is also utilized to influence smaller 

coflows to be given higher priority. Since information may 
not be a priori known in every framework, ݊௖ is adjusted as 
new information becomes available. To summarize the 
discussion, ࣢௖  can be interpreted as a function that captures 
coflow conditions. This function can be further developed as 
part of our future work. At last, to assure packet arriving out 
of order is avoided, ܲ ௙ ൌ ൫ݔܽ݉ ௙ܲǡ ௙ܲ

ᇱ൯ǡ  where ܲ ௙
ᇱ is the previous 

decided priority.  

C. Many-to-many Pattern 
A coflow with many-to-many pattern may consist of 

multiple sub-coflows and there may exist dependency 
between sub-coflows. As illustrated in Figure 4, coflow with 
this pattern can be modelled with Directed Acyclic Graph 

a) 

b) 

c) 

d) 

2016 IEEE 24th International Conference on Network Protocols (ICNP)

3



 

 

(DAG). Similar observations are made in [5], that first sub-
coflows of a same coflows must be treated as a single entity. 
Second, a parent sub-coflow only completes when the child 
sub-coflows it depends on are completed. Some of the 
challenges with this pattern in decentralized environment 
include keeping track of the relationship among sub-coflows 
from the same entity, deciding an appropriate priority when 
coflow information is sparse, and sub-coflows within the 
same entity may not be aware of the existence of other sub-
coflows. To address these challenges, Stream utilizes 
Weighted-Priority, Information-Relay, and Child-to-Parent 
approaches. With these approaches, Stream opportunistically 
gathers information on bytes received. Then Stream utilizes 
C-SJF to coordinate coflow where each receiver of the same 
coflow manages its own sub-coflow.  

Algorithm 1: Sub Coflow ID Assignment 
1. InternalID[ ] // set of IDs proposed by parent 
2. |Parents|       // number of parents 
3. Procedure  Set_SubCoflowID (InternalID[ ] ) 
4.         If   ܦ ൌ ᇱ�ǡܦ ᇱܦǡܦ׊ א ����������ሾ�ሿǡ� then 
5.                SubCoFlowID = ����������ሾ�ሿ + |Parents| – 1. 
6.         Else  SubCoFlowID = ݉ܽݔሺ����������ሾ�ሿሻ 
7. End procedure 

Weighted-Priority (WP). Here, we propose a scheme to 
weigh the priority decision such that sub-coflows of the same 
coflow that arrive later will be deprioritized faster. Stream 
utilizes coflow’s internal ID that is used to identify its sub-
coflows to weigh coflow priority. Internal ID determined 
using algorithm 1 can be utilized as an indicator of the 
number of sub-coflows that is locally discovered by a sub-
coflow. For example, if the internal ID=4, it means there are 
at least 3 others sub-coflows in the entity. It can also be 
utilized to describe dependency between sub-coflows. For 
example, parents sub-coflow has a lower ID number than its 
children. Stream extends eq. (2) of C-SJF scheme and 
leverages internal IDs to weight the priority of each sub-
coflow by the following equations.  

௙ܲ ൌ ܭ െ ቜܭǤ��� ቆͳ�ǡ
߬௞ ൅ �࣢௖ߙ

ܹ�σ ௖א௙௙ݔ�
ቇቝ������������������ሺͶሻ 

Here, weight ܹ ൌ Ǥߙ ሺ݉݃݋݈ ൅ ͳሻ when ݉ ൐ ͳ. Otherwise, 
ܹ ൌ ͳ. The log function is to limit ܹ’s influence on priority 
decision. Variable ݉ denotes number of sub-coflows that is 
discovered so far. Weight ܹ in eq. (4) is employed to allow 
a faster deprioritization of sub-coflows that are members of a 
large coflow. The internal ID is generated by parent sub-
coflows when they are invoking new sub-coflows (children) 
using algorithm 1. The ID of the first batch of sub-coflows in 
an entity is provided by “master” (or “manager”) whose task 
is to invoke the first batch of sub-coflows [18, 20, 21, 23, 24]. 
When there are two or more parents assign different ID to the 
same child, the largest ID is selected by the child. If there are 
two or more parents assign a child with the same ID, then 
child’s ID = ID + n_parents-1, where n_parent denotes the 
number of child’s parents. For example, sub-coflow ଼ܥǡସ in 
Figure 4c and 4d 

Information-Relay (IR). In applications like Map-Reduce 
[18], multiple receivers of the same coflow may share 
common senders. In other words, a sender may serve multiple 
receivers of the same entity at the same time. Stream takes 
advantage of these senders to relay information (i.e. bytes 
received) between receivers of the same coflow. The sender 
first observes coflow ID and sub-coflow (internal) ID, for 
example, the coflow ID of coflow ଼ܥǤଵ (in Figure 3.a) is ଼ܥ 
and the internal ID is 1. Then, by comparing the coflow ID, 
the sender knows that it is serving multiple receivers of the 
same coflow. On this basis Stream leverages senders to relay 
information (such as bytes received) between receivers by 
piggybacking in data sent to its receivers. Then, the receiver 
sums up the information on bytes received gathered from its 
peers to determine the priority. Let ܵ denotes the total amount 
of bytes received by receiver’s peers and ߚ denotes a weight 
factor, the priority is determined by extending eq. (4), which 
is described as in the following equation, eq. (5). 

௙ܲ ൌ ܭ െ ቜܭǤ��� ቆͳ�ǡ
߬௞ ൅ �࣢௖ߙ

ܹ�൫ܵ�ߚ ൅ σ ௖א௙௙ݔ� ൯
ቇቝ������������������ሺͷሻ 

Child-to-Parent (CP). We observe that the receiver of 
parent sub-coflow is a natural position for gathering 
information (bytes received) of its child sub-coflows because 
it has access to the receivers of child sub-coflows. CP is 
carried out in two stages. In the first stage, when a child sub-
coflow completes, the receiver of the child sub-coflow sends 
a tuple, <Responses to query, sub-coflow size (bytes 
received)>, to the receiver of the parent sub-coflow. In the 
second stage, upon receiving a tuple, the parent sub-coflow 
sums up the sub-coflow size of its child sub-coflows and 
determine the priority utilizing eq. (5). This approach enables 
Stream to capture large coflows that are made up of many 
mice sub-coflows.  

In addition, we also observe that threshold-based 
approaches [5, 27] process large coflows and mice coflows 
together until one of them exceeds the threshold for mice 
coflow. Most likely that a mice coflow is made up of a few 
mice sub-coflows. Thus, to detect large coflows earlier, the 
threshold for highest priority is configured to detect mice sub-
coflows and, the larger coflows will be detected by parent 
coflows using the approach described in the previous 
paragraph.  

By combining WP, IR, and BU with C-SJF, Stream 
obtains the approximation of the number of sub-coflows, as 
well as of the current coflow sizes. This allows Stream to 
quickly direct coflows to the right queues and allocate 
appropriate resources.  

D. Practical Consideration 
Multi-wave. Flows from the same coflow may arrive at 
different times due to failures or stragglers [33]. Stream is 
capable of handling events with multiple waves of arrival 
flows as long as the flows use the appropriate coflow and sub-
coflow ID. The receiver keeps track of the amount of data 
received regardless of the number of waves.   
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Starvation mitigation. To resolve starvation issue, when the 
waiting exceeds pre-defined threshold, the sender of the 
starving flow retransmits packets that have not been 
acknowledged with higher priority assignment. The duplicate 
packets will be dropped at the receiver by TCP [29] if there 
is any. The process is repeated until the flow escapes the 
starvation. Then, upon receiving a packet from the starving 
flow, the receiver compares the priority of the recent received 
packet with the priority currently assigned to the starving 
flow. If they do not match, then the receiver increases that 
coflow priority and notifies the sender of the starving flow 
with new priority through the ACK packet.  

Setting threshold. Although threshold is commonly used in 
system design [3,4,10,25,27], there is very little study on how 
threshold should be decided, such that system achieves 
optimality. Authors of [25] attempt to formulate threshold 
setting into convex optimization problem, but it uses too 
many constraints in the formulation, which may not be 
realistic. We attempt to compute the threshold for each 
priority queue by utilizing eq. (6) from queuing theory [26]. 
We observe that doing this does not guarantee convexity, and 
therefore it is possible that this is a non-convex problem (an 
NP-Hard problem). At this point, the thresholds are decided 
using exponentially-spaced threshold used in [5]. We will 
further investigate the setting of threshold in our future work.   

Number of queues required. Next, we address the question 
of the number of queues required to ensure that our proposed 
method will achieve a good performance.   

Theorem 1. The performance improvement has diminishing 
returns behavior as ݇ ՜ λ. 
Proof. Let ܭ ൌ λ denote the number of priority queues and 
 ௞ atݓ be the processing rate of a link. The waiting time ߤ
queue with priority ݇�߳ܭ� is described by equation from [26]. 

௞ݓ ൌ
ͳ
ߤ
��

�ͳ
݂ ς ൫ͳ െ σ ௜ߩ�

௝
௜ୀଵ ൯௞

௝ୀଵ
�ǡ�����������������������������ሺ͸ሻ 

where ߩ௞ denotes the traffic load ݇௧௛ priority queue. Then, 
we have ߩ௞ ൌ

ఒೖ
ఓ

 [26], where ߣ௞ denotes the arrival rate at ݇௧௛ 
priority queue. Observe that, given priority ௙ܲ

ଵ ൐ ௙ܲ
ଶ ൐ ڮ ൐

௙ܲ
௄, we have  ݓଵ ൑ ଶݓ ൑ ڮ ൑  ௞ሻ be the utilityݓ௄Ǥ Let ܷሺݓ

function of ݓ௞ to evaluate the performance of the system. The 
performance evaluation can be formulized as follows. 
σ݁ݖ݅݉݅ݔܽܯ ܷሺݓ௞ሻ௄

௞ୀ଴ , where ܷሺݓ௞ሻ ൌ
ଵ
௪ೖ

. σ ܷሺݓ௞ሻ௄
௞ୀ଴  can also be 

expressed as σ ܷሺݓ௞ሻ௄
௞ୀ଴ ൌ ଵ

௪భ
൅ ଵ

௪మ
൅ ଵ

௪య
൅ ڮ Ǥ൅ ଵ

௪಼
. Notice 

���
௞՜ஶ

ܷሺݓ௞ሻ ൌ Ͳ , which also implies that the utility of ܷሺݓ௞ሻ 
diminishes as ݇ ՜ λ. Thus, the performance improvement 
follows the behavior of diminishing returns. ז   

Theorem 1 implies that at some point the benefits of multiple 
queues diminish as the number of queues increases, which is 
consistent with findings in [5, 25] and confirmed by our 
testbed and simulation results. We utilize 4 queues in our 
experiments and achieve satisfactory outcomes. 

Discussion. We acknowledge that the coflow patterns in 
datacenter may not always follow many-to-one or many-to-
many, and further, it is not impossible that a coflow may 

consist of individual flows. In these scenarios, Stream 
behaves similar to existing scheduler like PIAS [25]. 

IV. EVALUATION 
The performance of Stream is evaluated through 

experiments in our testbed with 1G port switches and large-
scale simulation using Facebook data trace from [4,5]. Our 
primary metric for comparison is the average CCT, and our 
performance improvement factor is described as follows.  

ݐ݊݁݉݁ݒ݋ݎ݌݉ܫ ൌ �
ݏܶܥܥ�݀݁ݎܽ݌݉݋ܥ
ݏܶܥܥ�ݏԢ݉ܽ݁ݎݐܵ

Ǥ 

If the improvement is greater (smaller) than one, Stream is 
faster (slower).   

The main results are summarized as follows: 
1. In testbed experiment, relative to TCP fair sharing, Stream 

improves the average CCT by up to 1.3ൈ faster and the 
average mice coflow CCT by up to 1.87ൈ faster. 

2. Large-scale simulation shows that on average, Stream 
outperforms state of the art decentralized solution (Baraat) 
and per-flow fair sharing by up to 1.4ൈ and 1.71ൈ faster 
respectively, and only trailing by 0.87ൈ compared to the 
centralized solution, Aalo. For mice coflows, Stream is 
2.7ൈ and 5.1ൈ better in comparison to Baraat and per-flow 
fair sharing respectively, while achieving comparable 
outcomes to Aalo.  

3. In multi-wave scenario, Stream outperforms Baraat and 
per-flow fair sharing by up to 1.7ൈ  and 2.8ൈ faster. 
Compared to Aalo, Stream achieves similar performance. 

4. In many-to-many, on average Stream improves the 
performance by up to 1.85ൈ and 1.9ൈ faster than Baraat 
abd per-flow fair sharing respectively, while achieving 
comparable performance to Aalo.     

 
Fig. 5. Testbed Experiments with TCP and Stream of avg. CCT, avg. mice 
coflows CCT, and 95th percentile avg. CCT. (a) Scenario one: 117 coflows 
with 2160 flows. (b) Scenario two: 105 coflows with 1140 flows. 

A. Testbed Experiment  
Implementation: We build Stream prototype based on 
modifying the TCP kernel module in Linux operating system. 
Then, we implement client/server application to emulate 
senders and receivers in many-to-one scenario by utilizing 
socket programming. Here, client applications are the senders 
and server applications are the receivers. We assume coflow 
ID is provided by application layer in this implementation. 
Hence, Senders utilize setsockopt to pass down coflow ID 
from the application layer to the transport layer. This allows 
the application layer to insert coflow ID into IP option field 
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in TCP packet header. The ID is utilized to identify which 
packet belongs to which coflow. At the receiver’s end, coflow 
ID is extracted from packet received from its senders. 

To communicate priority decision, the receiver utilizes the 
reserve field in the TCP header of ACK to map the priority 
(e.g. priority 2) to Differentiated Services Code Point (DSCP) 
[29] bits of ACK packets that are sent to its senders. The 4 
bits in Reserve field provides a range of integer 0 to 15, which 
is sufficient to represent 8 priority queues.  

These coflow monitoring and priority notification 
schemes are accomplished by adding a few lines in TCP 
kernel in Linux. At last, threshold information can be stored 
in a file to allow thresholds to be adjusted without re-
compilation.  

To meet the required constraints described in problem 
formulation (1), capacity constraint in (1.a) can be addressed 
by utilizing Explicit Congestion Notification (ECN) [29] 
based protocol (DCTCP [11]), starvation constraint in (1.b) 
can be elevated by senders quickly performing the starvation 
mitigation when the timer expires at 10ms, which is TCP 
RTOmin [11]. To satisfy packet out of order constraint (1.c), 
Stream only deprioritizes coflows only if it is required.  

Testbed: 8 servers connected to a Pica8 P-3297 48-port 1 
Gigabit Ethernet, 4-port 1 Gigabit Ethernet commodity 
switch with 2MB shared memory, which supports strict 
priority queuing with at most 8 classes of services queue [1]. 
Each server is a Dell Server: PowerEdge R320 with CPU 
Intel(R) Xeon(R) CPU E5-1410 0 @ 2.80GHz, 8G memory, 
and Broadcom 5720 Dual Port 1Gb LOM Gigabit Ethernet 
NIC. Each server runs Ubuntu 14.04.2 LTS with Linux 4.0 
kernel.  In our switch, we enforce strict priority queuing and 
classify packet based on the DSCP field.  

Experiment: To evaluate Stream, we create two experiment 
scenarios in which 6 machines are running senders and a 
machine running receivers. In the first scenario, the 
experiment is conducted with 2160 TCP flows that make up 
117 coflows. In the second scenario, there are 1440 TCP 
flows which make up 105 coflows. In both scenarios, we 
added the 8th server to generate background traffic of 500 
Megabits per second (50% of the link capacity) using iperf, 
which is a common traffic characteristic in datacenter [16]. 
We compare the average CCT of Stream to the average CCT 
of TCP fair sharing. This set of experiments is conducted 
using 8 priority queues. Our heavy tailed traffic pattern is 
randomly generated according to traffic patterns from 
Facebook and Bing search (Microsoft) [4, 3], and is 
illustrated in Figure 1.  

Experiment results. Our testbed experiment demonstrates 
that when compared to TCP fair sharing, Stream achieves 
better performance by 1.3ൈ and 1.27ൈ on average in the first 
and second scenario respectively, as illustrated in Figure 5. 
Also, as depicted in the same figure, in both scenarios Stream 
reduces the average CCT of mice coflows by up to 1.7ൈ and 
1.87ൈ respectively. Moreover, Stream also has better 
performance by up 1.58ൈ and 1.72ൈ at 95th percentile in 
comparison to scheduler with regular per-flow sharing in 
both scenarios. Through these instances, we demonstrate that 

Stream performs better than TCP fair sharing, especially in 
network with higher traffic load.  

 

 

Table 1 (left) and table 2 (right). Table 1 describes network size of FatTree 
topology. Table 2 describes flow distribution in multi-wave coflow. 

 I II III IV V 
Size A 1MB-100MB 100MB-1GB 1GB-10GB 10GB-100GB >100GB 
Size B 6MB-1GB 1GB-10GB 10GB-100GB 100GB-1TB >1TB 

Table 3. Five categories of coflow with different size in many-to-one pattern 
(size A) and many-to-many pattern (size B). 

 

  
Fig. 6. Single wave in network in 1G switches (Figure a and b) and network 
in 10G switches (Figure c and d). 

 

 
Fig 7. Average CCT improvement in 8 pods 1G and 10G networks according 
coflow categories described in table 3. 

B. Large-scale Simulations 
In this section, we evaluate Stream’s performance in 

many-to-one and many-to-many scenarios. In many-to-one 
scenario, we consider trace-driven, bursty, and multi-wave 
traffic. In many-to-many, we utilize benchmarks from 
Cloudera [5] and Facebook [28,32]. In all our simulations, we 
use a production traffic trace collected from Facebook 
datacenter, specifically from 150-racks (3000 machines) [5].   
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Simulation setting: We develop a flow-level simulator and 
it accounts for the flow arrival and departure events, rather 
than packet sending and receiving events. It updates the rate 
and the remaining volume of each flow when event occurs. 
We employ FatTree network topology [30] with up to 27,648 
hosts (48 pods). We conduct our simulation with 1 Gigabit 
(1G) switches to create a higher traffic load condition, as well 
as 10 Gigabit (10G) switches where delay in non-network 
edges is minimal.  Our assumptions are: the switch has 
sufficient buffer to store incoming data, each flow traverses 
along one path, and coflow size follows heavy-tailed 
distribution. 

In our simulations, we compare Stream to per-flow fair 
sharing, Baraat [3], and Aalo [5]. Per-Flow Fair-Sharing (FS) 
is a scheme that shares the capacity equally among flows 
traversing the same link. Baraat, a FIFO with limited 
multiplexing (FIFO-LM) scheduler, is the state of the art 
decentralized scheduler. To analyze how Stream performs 
against centralized solution, we compare our solution to 
Aalo. For simplicity, Aalo’s additional delay from managing 
centralized system is not considered in the simulator and 
information on coflow is made available instantaneously to 
centralized controller. Additionally, based on findings in [5] 
and results from our testbed experiment, 4 priority queues 
provides the best outcome. Thus, Aalo and Stream employ 4 
priority queues in their scheduling schemes. Moreover, in 
principle, all schemes assume that coflow characteristics are 
unknown ahead of time.  

Traffic load. Stream is evaluated using traffic load by 
replaying production traces from Facebook clusters [4, 5]. 
Bursty traffic pattern of coflows arriving at the same interval, 
which is also common in datacenter [17, 32], is considered in 
our study. We also incorporate the commonly used Equal-
cost multi-path routing (ECMP) [29] to route and load 
balance flows in the flow simulator.  Additionally, since TCP 
is the common transport protocol in datacenter, we 
implement rate limiter that behaves like TCP for all schemes, 
except for Baraat where the rate limiter is implemented 
according to its design in [3].  

Many-to-one pattern. Here we provide an overview of 
Stream’s performances in different network sizes in 1G and 
10G networks.  We then analyze how Stream performs under 
heavier load. To evaluate Stream with different traffic loads 
while preserving the authenticity of the original trace, we 
increase the network size according as described in table 1. 

In 1G network, on average, Stream achieves faster 
completion time than Baraat and FS, by up to 1.4ൈ and 1.77ൈ 
respectively (Figure 5b), but trailing by 0.87ൈ compared to 
Aalo (within 13%). Stream achieves up to 2.7ൈ and 5.1ൈ 
faster for mice coflows compared to Baraat and FS 
respectively (Figure 6a). Compared to Aalo (centralized), 
Stream is trailing by 0.76ൈ (within 24%).  

In 10G networks, Stream on average achieves shorter 
completion time than Baraat and FS by up to 1.5ൈ and 2.1ൈ 
respectively, but trails 0.83ൈ compares to Aalo (Figure 6d). 
For mice coflows, Stream outperforms Baraat and FS by up 

to 1.8ൈ and 1.9ൈ faster respectively; and within 13% of Aalo 
(Figure 6c).  

 
Fig. 8. The improvement with 2, 3, and 4 waves coflow in 8 pods 1G 
network. The evaluation is categorized into 5 groups described in table 3A. 

Further, we break down Stream’s performance according 
to different categories described in table 3 using 8 pods 
network with 1G and 10G switches. As illustrated in Figure 
7, Stream outperforms Baraat and FS across all categories in 
both 1G and 10G networks. Stream’s lower average CCT 
compared to FS results from the higher resource dedicated to 
higher priority coflow. Especially for smaller coflows, 
Stream outperforms FS by up to 5ൈ faster, as depicted in 
Figure 7a. Also, Stream outperforms Baraat by up to 3ൈ 
better in group I and II (Figure 7a).  Baraat’s performance 
suffers from lower priority mice coflows queuing behind 
higher priority larger coflows. Stream avoids this problem by 
allowing smaller coflows to jump ahead of the queue by 
deprioritizing larger coflows. On average, Stream performs 
comparably well to Aalo. Stream slightly trails behind Aalo 
for smaller coflows, an expected outcome for centralized 
system with complete information. This explanation does not 
address why Stream converges quicker than Baraat when the 
traffic load decreases (Figure 7). This question will be 
addressed later in this paper.  

Notice in figure 5 that as network size scales up (k-pod is 
increased from 8 to 48), the average CCT improvement 
converges because there are more resources available and the 
traffic becomes more distributed from load balancing with 
ECMP. 

Multi-wave scheduling. We modify the original trace by 
varying the maximum number of concurrent senders in each 
wave according to configuration provided by [4] as described 
in table 3. In Figure 8, we demonstrate the importance of 
coflow states across waves in 8 pods network. Stream 
outperforms FS across waves by 1.7ൈ  and up to 2.8ൈ with 
smaller coflows. Stream outperforms Baraat up to 1.9ൈ and 
shares similar performance with Aalo across waves and 
categories. Stream’s ability to approximate the states of a 
coflow as a whole give it an advantage over FS. Stream 
allows mice coflows to jump ahead of large coflows even 
when they arrive later, while in Baraat mice coflow that come 
later may end up queuing behind higher priority large 
coflows.  

Bursty traffic. We consider another scenario in datacenter 
[17,32] where coflows arrive at the same time. The 
simulation is performed in 8 pods 1G and 10G networks. The 
original trace is modified such that all coflows arrive within 
the same interval. Since Aalo and Baraat use FIFO in their 
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schemes, we keep the same coflow ID and FIFO setting as 
previous experiments. In 1G network, Stream outperforms 
Baraat and FS by at least 1.9ൈ faster on average (Figure 9a). 
Notice that for coflow group II, Stream performs up to 4ൈ 
better than both Baraat and FS. Stream again achieves similar 
outcomes with Aalo across the groups in this scenario. In 10G 
network, Stream outperforms both Baraat and FS by 1.6ൈ and 
1.7ൈ (Figure 9b) respectively, while Stream is within 7% of 
Aalo across the groups.  

 

 
Fig. 9. Improvement average CCT in bursty traffic in 1G and 10G networks. 

  
Fig. 10. The CCT of the first 100 completed coflows with Baraat and Stream 
in 1G and 10G networks.  

In the following discussion we demonstrate why Stream 
outperforms Baraat. Notice that in Figure 10, CCTs of the 
first 100 coflows from Stream is flat, because they are 
processed almost simultaneously and they complete at almost 
the same time. In contrast, Baraat’s CCTs of the first 100 
coflows rise linearly. This is because in FIFO, coflow that is 
queued in the back must wait until all coflows ahead of it are 
processed. Thus when coflows all arrive within the same 
interval, those with lower priority end up with a longer wait 
in the queue. The waiting time is even longer when there are 
more high priority large coflows in the queue, because more 
network resource are allocated to large coflows. As shown in 
Figure 10, the higher the number of mice coflows, the longer 
is the waiting time for mice coflows in the back of the queue. 

We refer this phenomenon as LM-Effect which occurs 
when there is more capacity allocated for limited 
multiplexing (LM) than FIFO. Furthermore, LM-Effect is 
propagated as flows traverse more queues, increasing the gap 
between Stream and Baraat. With this insight, the intersecting 
lines in Figure 10 can be interpreted as the limit of Baraat’s 
improvement over Stream. Stream performs better than 
Baraat when there is a higher number of mice coflows, 
especially in datacenter where the majority (at least 90%) of 
the population is mice coflows.  

 
Fig. 11. Coflow scheduling with different number priority queues through 
testbed and simulation experiments. 

  

 
Fig. 12. Performance Improvement of Coflow with Many-to-many pattern 
using TPC-DS query-42 benchmark in 8 pods 1G and 10G networks. 

  

  
Fig. 13. Performance Improvement of Coflow with Many-to-many pattern 
using Facebook-Tao structure benchmark in 8 pods (a) 1G and (b) 10G 
networks. 

Impact of number of queues: We conduct two experiments 
with 2 to 7 priority queues in our testbed using similar setup 
as in our previous testbed experiment with 30 coflows, and 
through a simulation with 8 pods network and 1000 coflows. 
The experiments are conducted in many-to-one scenario. 
Here, our results show that 4 queues is sufficient to achieve 
satisfactory result, similar to the findings in [5, 25]. We 
observe that the performance improvement affected by the 
number of queues follows the pattern of diminishing returns 
(Figure 11), which confirms Theorem 1. Here, we observe 
that the population of coflows in queue decreases as the 
number of queue increases, as expected in a heavy tail 
pattern.  
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Many-to-many pattern. We utilize Cloudera Industrial 
benchmark, TPC-DS query-42 (TPC-DS) [4], and Facebook 
Tao structure (FB-Tao) [28, 32] to evaluate Stream in many-
to-many scenario (because Facebook trace only consists of 
coflow with many-to-one). We incorporate benchmarks and 
insights from [3, 4, 19, 21, 23, 24, 32] and reorganize the 
original trace to generate a more realistic trace according to 
DAG structure in Figure 2a and 2b. Each DAG structure is 
made up of sub-coflows that are actually exact replications of 
a coflow taken from the original trace; and each DAG 
structure is mapped to a different coflow from the original 
trace.  The coflow size with many-to-many pattern is 
described in table 3. Overall, Stream performs better than 
Baraat and FS in both TPC-DS and FB-Tao structures, and 
performs on average comparable to Aalo. 

 With TPC-DS benchmark Figure 12 demonstrates that 
Stream is 1.85ൈ better (on average) in comparison to Baraat 
and FS, while Stream and Aalo shares similar performance 
on average in both 1G and 10G networks. Also notice in 
Figure 12 that Stream outperforms Baraat, FS, and Aalo in 
category I by 7.43ൈ, 12.12ൈ, and 1.79ൈ respectively in 1G 
network. In 10G network Stream performs better by 3.51ൈ, 
6.19ൈ, and 1.02ൈ than Baraat, FS, and Aalo respectively. In 
summary, relative to both Baraat and FS, Stream is at least 
1.71ൈ better in 1G network and 1.83ൈ better in 10G network. 
Stream’s performance is comparable to Aalo on average, 
except in the middle category in both 1G and 10G network.  

With FB-Tao, on average, Stream outperforms Baraat and 
FS, by 1.75ൈ and 1.833ൈ faster respectively in 1G network 
(Figure 13), while Stream achieves a comparable outcome to 
Aalo. Stream also outperforms Baraat and FS by average 
1.85ൈ and 1.9ൈ respectively in 10G network, and Stream is 
only within 2% to Aalo. Moreover, Stream also outperforms 
Baraat, FS, and Aalo with smaller coflow from category I by 
16.9ൈ, 28.79ൈ, and 2.81ൈ respectively in 1G network, and 
7.53ൈ, 15.68ൈ, and 1.1ൈ respectively in 10G network. In 
Summary, Stream outperforms both Baraat and FS by at least 
1.7ൈ in both 1G and 10G networks. In comparison to Aalo, 
Stream performance is comparable across category except in 
1GB-10GB and 10GB-100GB categories. 

Stream performs overall better than Baraat and FS in this 
scenario. By using WP, IR, and CP approaches, Stream is 
able to quickly gather information (e.g. number of sub-
coflows in a coflow and sub-coflow state) and rapidly 
estimate coflow state. Therefore, Stream can quickly 
differentiate between small and large coflows and allocate the 
appropriate resources. In contrast, Baraat’s scheduler only 
utilizes information that is available at the switch, which may 
result in less information for scheduling decision. As for FS, 
its performance is inferior caused by lack of coordination.      

On average, Stream’s performance is comparable to that of 
Aalo. Observe specifically category 1 (6MB-1GB), Stream 
outperforms Aalo by up to 2.8ൈ. This is because in Aalo large 
and mice coflows may be processed together until a large 
coflow is detected when bytes received exceeds the threshold 
of mice coflow. This could lead to lower CCTs for mice 

coflows. On the other hand, Stream differentiates between 
small and large coflows at sub-coflow level because one of 
our assumptions is that a mice coflow may consist of small 
sub-coflows. Stream demotes large sub-coflows when their 
individual bytes received exceeds the threshold of mice sub-
coflow.  This way, a large coflow consisting of large sub-
coflows can be deprioritized early, even before it exceeds the 
threshold of mice coflow. In the case of large coflow with 
many mice sub-coflows, it will be detected by the parents of 
mice sub-coflows with our Child-to-Parent scheme. 

 For categories II and III which makes up to 20% of total 
coflows, Aalo is more advantageous over Stream (0.4ൈ) 
because Aalo is a centralized system with a global view, 
enabling it to be more precise in distinguishing coflows with 
similar characteristics, leading to better performance in these 
two categories. This slight disadvantage does not negate 
Stream’s superior performance in all categories compared to 
other decentralized schemes. 

  
Fig. 14. The impact of threshold value for first priority queue in 1G network 
with Facebook TAO structure in Many-to-many scenario. 

Trade-off. To evaluate how threshold selection may impact 
CCTs in Stream, we employ different values as the threshold 
for the highest priority queue in 8 pods 1G network of 4 
priority queues with FB-Tao benchmark. As threshold value 
increases, Stream allows larger size coflows to be processed 
as mice coflows. While doing this improve the CCTs of some 
coflows in the highest priority queue, it degrades others in the 
same queue (Figure 14). This is because more coflows are 
competing for the resources. The other effect is that a longer 
processing delay in higher priority queue means a longer wait 
in lower priority queue. This finding is consistent with 
Kleinrock’s Conservation Law for priority scheduling [26] 
which says that we cannot improve the response time of one 
class of task by increasing its priority without hurting the 
response time of at least one other class. Kleinrock’s 
Conservation Law also applies to Baraat and Aalo where both 
schemes sacrifice the performance of mice coflows to resolve 
starvation of large coflows.  

V. RELATED WORK  
One of the early works on coflow scheduling is Orchestra 

[6], where coflows are scheduled using FIFO. Varys [4] and 
Aalo [5] later improved the performance in [6] by prioritizing 
smallest-bottleneck-first and smallest-total-size-first in their 
scheduling mechanisms. In comparison to other approaches, 
Aalo [5] assumes coflow size is not known ahead of time. 
RAPIER [7] and OMCoflow [37] incorporate routing 
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algorithm into their schemes. Likewise, CORA [8] integrates 
resource allocation solution into its flow scheduling scheme. 
Following that, the authors of [9] consider coflows with 
different levels of importance and reformulate the problem 
into weighted CCTs minimization problem. CODA [36] is the 
first work to leverage machine learning techniques to infer and 
schedule coflows. These are all centralized approaches that 
may provide good performance. However, centralized 
approaches are generally hindered by the high overhead cost 
of managing a centralized system.  

The other alternative is the decentralized approach. The 
current decentralized coflow scheduling scheme is pioneered 
by Baraat [3], a heuristic that adopts FIFO with some level of 
multiplexing that allows mice flows to be processed in the 
background in the presence of large coflows. Otherwise, mice 
flows are processed according to FIFO. However, this 
approach has a few drawbacks. Since the scheduling decision 
is made locally at switches, this makes gathering information 
on coflow more challenging for the scheduler if flows of a 
same coflow that do not traverse through the same switch. 
Additionally, the solution also requires switch source code 
modification, which is not deployable friendly. Optas [27] is 
the other decentralized scheduling, but is designed specifically 
for a special case of coflows of size 4MB or less. Different 
from these solutions, our proposal solves general coflow 
scheduling problem by opportunistically taking advantage of 
many-to-one and many-to-many patterns.  

VI. CONCLUSION 
Stream is a coflow scheduling scheme that minimizes 

CCT in decentralized fashion. It opportunistically takes 
advantage of the receiver in many-to-one and many-to-many 
communication patterns, utilizing C-SJF and WP-IR-CP 
approaches. The outcomes from both our testbed experiments 
and large-scale network simulation demonstrate that Stream 
is an effective and practical solution in improving network 
performance in datacenter, performing particularly well in 
heavier traffic. Finally, we also demonstrate that our solution 
is readily implementable. 
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