www.ietdl.org

1ET Journals

Published in IET Communications
Received on 29th June 2009
Revised on 8th October 2009
doi: 10.1049/iet-com.2009.0404

A a

ISSN 1751-8628

Dynamic queuing sharing mechanism for
per-flow quality of service control
C. Hu*? Y. Tang® K. Chen® B. Liu’

1Department of Computer Science and Technology, Tsinghua University, China

2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, China
’Department of Electrical Engineering and Computer Science, Northwestern University, USA

E-mail: huc@ieee.org

Abstract: To achieve satisfying user experiences of diverse applications, quality of service (QoS) guaranteed
mechanisms such as per-flow queuing are required in routers. However, deployment of per-flow queuing in
high-speed routers is considered as a great challenge since its industrial brute-force implementation is not
scalable with the increase of the number of flows. In this study, the authors propose a dynamic queue
sharing (DQS) mechanism to enable scalable per-flow queuing. DQS keeps isolation of each concurrent active
flow by sharing a small number of queues instead of maintaining a dedicated queue for each in-progress flow,
which is novel compared to the existing methods. According to DQS, a physical queue is created and assigned
to an active flow upon the arrival of its first packet, and is destroyed upon the departure of the last packet in
the queue. The authors combine hash method with binary sorting tree to construct and manage the dynamic
mapping between active flows and physical queues, which significantly reduces the number of required
physical queues from millions to hundreds and makes per-flow queuing feasible for high-performance routers.

1 Introduction
Router-based per-flow quality of service (QoS) control

mechanisms were proposed in the literatures to achieve
advanced QoS guarantees [1, 2]. However, the traditional
per-flow QoS control needs to keep state for each in-
progress flow, and therefore it suffers from a great
scalability problem because of the dramatic increase in the
number of in-progress flows. Per-flow queuing is the
classical per-flow QoS control mechanism in the router.
Industrial per-flow implementation typically uses brute-
force method to build a large number of physical queues
and reserve a queue for every ‘in-progress’ flow. A flow is
an individual internet protocol (IP) session specified by a
five-tuple of source IP address, source port, destination IP
address, destination port and protocol identifier. A flow is
recognised as an in-progress one before its termination and
an in-progress flow is generally considered to be terminated
if an FIN packet is received for transmission control
protocol (TCP) flow or it lasts for a pre-defined time
interval. If the number of queues is larger than the number
of in-progress flows, an isolated queue is assigned for each

flow; otherwise several different flows would share a same
queue and the QoS guarantee of each flow is violated. To
avoid potential violation, at least 1 million queues need to
be maintained for today’s requirement with the brute-force
method [3]. However, it is almost infeasible since the
memory required to only keep the head and tail pointers of
all the queues is about 2 x 2%0 % log, 220 =40 M bits.
Further considering the storage of packet data and the
scheduling of 1 million queues, very large memory and
powerful processing capability are needed for such brute-
force methodology.

Related survey showed that the flow number could be up to
millions in an hour nowadays [4, 5]. The trend that the
increase of people’s demand is much faster than that of
computing hardware (e.g. processing speed, memory
capacity) motivates us to seek a more scalable and smarter
mechanism to support per-flow queuing in this paper. In
fact, the time a packet stored in a router is typically in
microsecond. We count the number of active flows (the
flows having packets stored in the router) every 10 ms from
different real traces, and observe that the number of active

472

© The Institution of Engineering and Technology 2010

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

flows is only in hundreds as demonstrated in our
previous work [6]. Similar results have also been reported

in [7].

Based on this observation, we propose a dynamic queue
sharing (DQS) mechanism to implement scalable per-flow
queuing in routers. The idea is that we only assign queues
for ‘active flows’ instead of in-progress flows in any snapshot
while still keeping the per-flow queuing feature: packets
from different flows are stored in different queues. An active
flow is defined as a flow that has packets buffered in
the router, and a silent flow is a flow that has no packet
stored. DQS only creates and assigns a physical queue for
an active flow and removes this queue when the flow
turns to be silent. By setting only a limited number of
queues and sharing them among simultaneous active flows,
the number of required physical queues can be significantly
reduced from millions to hundreds as we will show in
Section 6.

The rest of the paper is organised as follows. Related work is
briefly described in Section 2. Section 3 introduces the idea
and work flow of DQS mechanism. Section 4 presents the
organisations of active flow mapping (AFM) table. Section 5
shows one serial processing model and two parallel
processing models on the AFM table for DQS mechanism.
Section 6 performs the experiments and demonstrates the
evaluation results. Finally in Section 7, we conclude the paper.

2 Related work

Packet buffering, acting as one of the basic functions in a
router, is mainly responsible for holding arriving packets
during the time of traffic congestion to smooth the burst of
Internet traffic. In a packet buffering/queuing system,
related studies fall into three categories: enqueue
mechanism, dequeue mechanism and queue organisation
mechanism.

Enqueue mechanism determines whether to accept the
incoming packets or not and how to control the enqueue
traffic rate, known as active queue management (AQM) [8]
and admission control [9]. Random early detection (RED)
[10] is the most prominent work in AQM and a large
number of papers improve the stability [11], fairness [12]
and self-adaptation [13] of RED in a single queue. AQM
in a multi-queue/multi-class environment is also investigated
in [14, 15]. In [16], per-flow admission control is proposed
to allow QoS differentiation while maintaining the simple
user—network interface of the best effort InterNetw.
Proportional differentiated admission control is presented

in [17].

Packet scheduling is the classical dequeue mechanism,
which allocates the link capacity to different users and
prioritises user traffic to meet various QoS requirements.
In round-robin-based schedulers [18, 19], the server polls
each queue in a cyclic order and serves a packet from any

www.ietdl.o

non-empty queue. Generalised processor sharing (GPS)
[20] is an ideal scheduling policy in that it provides an
exact max—min fair share allocation. However, GPS
assumes that its scheduler is able to serve all backlogged
sessions instantaneously and the capacity of the outgoing
link can be infinitesimally split and allocated to these
sessions. An important class of the so-called packet fair
queuing algorithms can be defined in which the schedulers
try to schedule the backlogged packets by approximating
the GPS scheduler, such as worst-case weighted fair
queuing [21], virtual clock [22], and self-clock fair queuing
[23]. Adaptive packet scheduling methods, which guarantee
bandwidth of the connection and optimise revenue of the
network service provider, are proposed for both wireless
and wired networks [24, 25]. In [26], the authors present
the idea of utility-based scheduling disciplines for adaptive
applications over the Internet.

Buffer/queue organisation is the basis of the queuing
system. It decides how to implement queues in a buffer and
how to associate flows with queues. This paper is in this
category. The industrial implementation of per-flow
queuing only provides a brute-force approach by means of a
quite large number of physical queues to buffer the arrival
flows [27]. Since the development of computing hardware is
slower than the increase of link speed and flow numbers [4],
brute-force methodology is not efficient and only guarantees
a static-aggregating flow performance. The buffer
management scheme to implement fair queuing in a gigabit
router was proposed in [28]. It has recently been observed
through trace studies and analytical evaluations that the
number of active flows in packet scheduler is measured
typically in hundreds even though there may be tens of
thousands of flows in progress [7]. It indicates the feasibility
of scalable per-flow queuing in [7], but it is still an unsettled
problem that how to implement scalable per-flow queuing in
practice. In our previous work [6], we have proposed a queue
sharing mechanism, which significantly reduces the number
of physical queues; however, its performance degrades
greatly for burst traffic. In fact, the mechanism in [6] is the
same as the serial processing model in this paper, and here
we further propose two parallel processing models to
improve performance under the burst traffic.

3 Work flow of DQS

For easy reference, we summarise the notations used in
Table 1. Suppose that the flow universe is /' = { f;}, the set
of active flow is 4 = {aj}A C F, and the set of physical
queue is O ={g;,}. We need to keep mapping between
active flows and physical queues denoted by a; — g¢;, which
is called the AFM. An AFM table is introduced to keep
the mapping between active flows and physical queues, in
which each entry contains two data fields: the identifier of
the (active) flow and the identifier of its corresponding
physical queue. When a flow’s state changes from active to
silent, its mapping entry is deleted from the AFM table
and the corresponding physical queue is withdrawn. When

rg

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

473
© The Institution of Engineering and Technology 2010

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

www.ietdl.org

Table 1 Notations used in the paper

the flow changes its state from silent to active, a physical
queue is allocated to this flow and its mapping entry is
created in the AFM table. The following packets from this
flow will be buffered in this dedicated queue
correspondingly during the active period of the flow. The
work flows of the processing for packet arrival and
departure are illustrated in Fig. 1. The flow identifier is
first extracted from the packet and then forwarded to an
AFM module. When a packet arrives from £, the module
first checks whether the flow £ is in the active list 4 or not
by looking for £ in the flow identifier field of AFM table
entries. If a hitting entry is found, the data ¢, in the queue
identifier field will be returned and the packet is pushed
into the corresponding ¢,; otherwise, a new queue g, is
assigned and an entry f; — ¢, is added. Once the physical
queue becomes empty, it is withdrawn immediately and its

mapping entry f; — ¢, is removed from AFM table.

Instead of maintaining the states of all the flows, DQS
only needs to manage a small number of physical queues,
and a mapping table between active flows and physical
queues. As a result, the scheduler is only aware of the
existence of physical queues rather than all the in-progress
flows, without sacrificing the per-flow management feature.
Consequently, the states in a router are reduced to
hundreds from millions at a cost of a delicate maintenance
of queues and operations on AFM table. The AFM

scheme will be discussed in the next section.

4 AFM scheme

The scheme presented in this section maintains the mapping
between flows and queues and helps a newly incoming packet
to find a proper queue to be pushed into. The set of active flow
A is a subset of flow universe /" and changes from time to
time. At time # and time #, it may be the same in the
quantity of flows, but the individual flows may have changed
a lot. The mapping scheme maintains a one-to-one
mapping between active flows 4 and physical queues Q.

Search f; -->¢; in AFM table

Notations Description
F={f} flow universe No [Push the packet into
A= {aj} the set of active flows
Q = {q} the set of physical queues]
Assign a new queue g,
S = {s} the set of sub-tables (slots) l
M the number of sub-tables (slots)
Push the packet into g
B the number of bits to identify a flow l
N the number of physical queues
Add mapping f;—» g
/ the number of active flows
w the memory required for the active
mapping scheme termination

a

Transmit packet from ¢,

<o

Yes

Delete mapping f; -->g;

termination

b

Figure 1 Workflow of DQS

a Processing when a packet arrives
b Processing when a packet departs

A queue is created on demand when a flow starts and is
removed when it terminates (more details are described in
Section 4.3), thus the numbers of elements in 4 and Q are
the same, but this number is much smaller than the elements
number in F. The mapping scheme requires a search
operation, which helps a packet (from an existing active flow)
find the proper queue to be pushed into. In addition, the
mapping scheme maintains insertion operations to create new
entries for new flows and holds deletion operations when

specific physical queues are removed from the AFM table.

As we mentioned before, the five-tuple in the packet
header is employed to classify the flows. Since the five-
tuple in the packet header has 13 bytes (for IPv4), the flow
universe contains 2'%* elements totally. The number of
active flows in the buffer is very small relative to F, but it is
not an easy job to frequently search, insert and delete a
mapping entry in an extremely short interval, especially
when A changes frequently. We conquer the problem in
two steps. First, we use hashing to divide the whole AFM
table into a number of smaller sub-tables, and in this way,
the operations on these small AFM sub-tables can be

474
© The Institution of Engineering and Technology 2010

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

much faster. Second, we employ binary sorting tree (BST) to
organise the divided sub-tables, where search, insertion and
deletion can be easily and quickly performed.

4.1 AFM table splitting

Hashing is utilised to divide the whole AFM table into smaller
ones as indicated in Fig. 2. An array (direct-address table) is
introduced and denoted by S={s, £=1,...,M}, in
which each slot s, in the array points to a sub-table. Flows
with the same hash value A(f;) = % will be pointed to the
same slot s, to construct the AFM sub-table. The shade area
of active flow 4 in Fig. 2 will move from time to time within
the range of F, so the pointers to the sub-tables (S) also
change dynamically.

We have examined a number of hash functions to find an
even one so that approximately same amount of flows can be
hashed to each slot. As our previous work [6] indicated,
cryptographic hash functions such as MD5 and SHA-1
distribute flows evenly to slots. In a real implementation of
DQS using FPGA (field-programmable gate array), we use
another efficient hardware hash function: H3 function [29].
The hash calculation can be finished within one clock cycle
(the FPGA wused in our prototype is ALTERA Stratix
EPS80 and the frequency is 166 MHz) since the Hj only
requires AND operations and XOR operations. We
evaluate AFM splitting effect using A5 function with three
real traces: trace ‘CERNET’, collected from CERNET

www.ietdl.org

number of flows

0 10 20 30 40 50 60
index of slots
a

number of flows

100 |

0 50 100 150 200 250
index of slots

Figure 3 Number of flows hashed to each slot without
leaving flows

a There are 64 slots in total
b There are 256 slots in total

(ie. the length of sub-table in each slot) is quite small.
Table 2 gives a summary of the experimental results, where
P(i) means the probability that more than 7 flows hashed to
a same slot and « is defined as the ratio of the average
active flow number to the total slot number. Sub-table
length is the number of flows hashed to that sub-table and

Table 2 Active flows in each table slot using H; hashing
considering scheduling

(China Education & Research Network) [30]; trace
‘NLANRZ1’ and trace ‘NLANR2’ collected from [31]. We CERNET [NLANR1 [NLANR2
observe that the variation of the flow number in slots is 64 mean sub-table 2.65 212 2.91
slight. Fig. 3 shows the number of flows pointed to each length
slot after hashing with 64 slots and 256 slots. Note that we
do not consider the departure of flows in this experiment, Slots | worst sub-table 15 13 16
that is all the flows in each trace (each trace lasts 10 min) length
are considered to be active flows. If we take into account o 2.28 1.49 2.70
the scheduling (We adopt DRR [18] as the scheduling
algorithm and the scheduling rate is set so as to make the P(1) 0.531 0.346 0.693
traffic load to be 0.95.) and only count the concurrent P(2) 0.409 0.173 0.419
active flows, the number of active flows hashed to each slot
256 mean sub-table 1.34 1.24 1.42
length
sl %,
hEs) A s slots [worst sub-table 8 7 9
// slot s, length
‘ s a 057 | 037 | 068
g P(1) 0118 | 0049 | 0.149
P(2) 0.024 0.007 0.03
1024 | mean sub-table 1.09 1.03 1.12
/, length
slots worst sub-table 5 5 7
b @ s length
/
array or direct-address table o 0.14 0.09 0.17
Figure 2 Divide AFM table using hashing P 0.007 0.003 0.016
IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483 475

doi: 10.1049/iet-com.2009.0404 © The Institution of Engineering and Technology 2010

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

www.ietdl.org

the average sub-table length in Table 2 only considers the
sub-tables with at least one flow mapping, which should be
larger than one as a result. By introducing more slots, the
average and the worst case sub-table length decrease, as
well as P(1) and P(2). The results demonstrate that the
sub-table length is not very large and there is small
probability for queue length to be larger than 3 even only
64 slots are employed. In general, the larger the number of
slots, less flows hashed to a slot.

4.2 AFM sub-table organisation

We introduce the BST to organise all the flows hashed to the
same slot. Linked list can also be used here, and BST is
employed to improve the operation performance on the slot
whose length is large. The detailed comparisons of using
linked list and BST are described in [6]. Owing to the
page limit, only the organisation of BST is presented in
this paper. The pointer in slot s, now points to the root of
a constructed BST containing the flows hashed to s, or to
NULL (no flow hashed to it). For any node y in a BST,
the key value is the flow identifier number, which follows
the BST property: keys in the left subtree of y are smaller
than the key in node y, and the keys in the right subtree of
y are larger than the key in node y. The operations of
insertion and deletion of a flow cause the AFM sub-tables
to be changed, but the BST property in each sub-table
always holds.

(1) Search: The search operation begins at the root and traces
a path downwards in the tree. For each node it encounters, it
compares the identifier number of the searched flow with the
key value stored in that node. If they are equal, the search
terminates. If the identifier number of the searched flow is
smaller than the key value in the node, the search continues
in the left subtree of the node, since the search key could
not be stored in the right subtree as indicated by the BST
property. Symmetrically, if the identifier number of the
searched flow is larger than the key value of the node, the
search continues in the right subtree.

Note that the nodes encountered during the search
recursion form a path downwards from the root, and thus
the running time of search operation is O(5), where 5 is the
height of the tree. Therefore, in this case, the average
searching time can be estimated by the following lemma
and theorem.

Lemma 1: The average search length SL, of a randomly
built BST with % nodes is

SL, =

NI = O

10\ <A1 (1)
—1+2(1+—) - k=2
k =2

[

Proaf' Please see Appendix.

Denote P, as the probability that Z flows are hashed to a
same slot, and it can be presented as

AT R

Theorem 1: When the AFM sub-tables are organised by
BSTs, and P, is defined in (2), under the assumption of
simple uniform hashing, the expected time of a successful
search is

1 1\ 2 1\ &1
Z(M> (1 —A—4> +k§:2 P{z—1+2<1 +Z> 2 ;]
3)

Proof Please see Appendix.

(2) Insertion: Insertion only occurs after an unsuccessful
search for a new active flow. When a new active
flow comes, we first compare the flow identifier number
with the key in the root. If the identifier number is smaller,
we continue to trace the left subtree, and otherwise
we continue to trace the right subtree. This procedure
continues until it reaches the bottom of the tree, then
a new node is created in this position with the flow
identifier as the insertion key value. Consequently, the
inserted node must be a leaf node.

Theorem 2: When the AFM sub-tables are organised by
BSTs, under the assumption of simple uniform hashing,
the expected time to identify a new active flow, is bounded by

B Tl)] o

Proof.’ Please see Appendix.

In fact, the insertion repeats the searching procedure to
find a proper position to insert the node. Consequently, we
can combine search operation with insert operation to solve
our specific problem of flow mapping. If the incoming flow
is not found in the BST, a new node is created at the
position where the search operation terminates; otherwise,
the searching result is returned.

(3) Deletion: Each node contains a pointer to its parent.
Suppose that the node to be deleted is x whose parent is p.
The deletion of the node x is also not complicated and we
discuss it in three cases (without loss of generality, we

assume « is the left child of p):

e If the node « is a leaf node, that is, x has no children, we
just need to change the pointer of its parent p, which
originally points to x, to NULL after deletion. It will be
achieved in O(1) time.

476
© The Institution of Engineering and Technology 2010

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

e If the node x has only a single left (or right) child, we
delete x by making p directly point to the left (or right)
child of x. It will operate in O(1) time.

e If the node x has two children, we first make x’s right child
as the right child of the node with largest value in its left
subtree (can be spliced out by in-order traversing its left
subtree), and then make &’s left child as the child of p. The
running time is O(A) in this case, where 4 is the height of
the BST.

4.3 Management of physical queues

An intuitive and simple way to organise the queues is to
permanently divide the buffer into IV queues. Since in this
situation, the states of all NV queues need to be stored all
the time. Obviously, it will be inefficient for large NV
however, if NV is small, there will be a risk of blocking
packets when all the queues are occupied during busy
periods. Static dividing of queues may be a tradeoff
between implementation and performance. Unfortunately,
many applications cannot tolerate potential performance
degradation. We develop a mechanism to dynamically
create and release queues. For management efficiency, we
divide the storage space into blocks. All the blocks are of
the same size, saying 64 bytes. A packet is segmented into
a number of fixed-length data units (DU) (a data unit and
a block are of same size), and blocks are assigned to buffer
the packets. Blocks not assigned are called free blocks. A

stack is utilised to manage the free blocks, which stores the

pointers to the free blocks. Each physical queue is = ™
organised as a linked list to store all the DUs for the same o >

flow. When a new packet arrives, one or more blocks are
allocated depending on the packet size for the
corresponding queue; and once being forwarded, all the
blocks occupied by the packet will be withdrawn and
pushed into the free block stack. Corresponding head and
tail pointers of each queue, as well as the free block stack,
can be stored in a small on-chip or an external SRAM.
Therefore with such a buffer organisation a physical queue
can be dynamically created when a new flow enters the
buffer and dynamically released when all the packets in it
have been scheduled out, that is, the queue becomes empty.

5 Processing models

In this section, we propose three processing models
of DQS on AFM table: single-mapping-process,
single-task-queue (SPSQ_), multiple-mapping-process, single-
task-queue (MPSQ) and multiple-mapping-process,
multiple-task-queue (MPMQ).

In SPSQ_, there is only one process that operates on all the
AFM sub-tables and a task queue that buffers the entire
backlog mapping requests. It is a serial processing model,
where the flow ID is first hashed to an AFM sub-table and
a mapping process will then search the sub-table. Other
mapping requests of the following packets coming during

www.ietdl.org

the processing period will wait in a single task queue after
the hash operation. The architecture is as shown in Fig. 4a.
This processing model is the same as the mechanism in our
previous work [6]. Since the items kept in different AFM
sub-tables are independent, the operations on different
AFM sub-tables can be performed in parallel and we
further propose two parallel operation models, MPSQ_and
MPMQ _on AFM table.

In the MPSQ_model, it maintains one mapping process
for each AFM sub-table that is not empty and a single task
queue for all the backlog mapping requests as depicted in
Fig. 45. An incoming mapping request is first forwarded to
the hash function and is marked with an identifier to
indicate which sub-table as well as the corresponding
mapping process it is hashed to. After that, it is kept in the
task queue like what SPSQ_does. The request in the head
of the task queue can be directly sent to a mapping process
corresponding to the AFM sub-table it hashed to if this
mapping process is idle. Only when the consecutive
requests are hashed to a same sub-table, the task queue will
grow. Because multiple mapping processes exist in the
MPSQ_, the mapping results will leave the AFM table in a
different sequence from the original one as the mapping
request comes. The function of the ordering logic is to

A 4

STv

Active Flow
Mapping table

STw Lt

Active Flow
Mapping table

. f
n "
Task | f >
Hash on > |y
— —

. f
™
aweue >

Active Flow
Mapping table

\ 4

c

Figure 4 Processing model (MP stands for mapping process
and ST stands for sub-table in the figure)
a Logical architecture of SPSQ

b Logical architecture of MPSQ
¢ Logical architecture of MPMQ

477
© The Institution of Engineering and Technology 2010

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

www.ietdl.org

insure that the results will be returned in the same order as
that of the input side. An architecture based on tag-
attaching is used in the ordering logic. When an incoming
mapping request is distributed to the proper AFM sub-
table, a tag (i.e. sequence number) will be attached to it.
Then at the output side, the ordering logic uses the tags to
reorder the returning sequence. The allocation of new
queues to each sub-table is in serial to avoid possible conflict.

MPSQ_improves the performance of SPSQ_; however,
MPSQ_will suffer ‘head of line (HOL) block’ problem.
Suppose there are three consecutive mapping requests. First
two are hashed to ST and the third one is hashed to ST),.
Since the mapping process related to ST is occupied by
the first request, the second request has to wait in the task
queue and the third one will also be blocked even the
mapping process corresponding to ST, is idle. To solve
this problem, we extend the single task queue of MPSQ_
into M task queues, where M is the number of sub-tables.
That is the MPMQ_structure as shown in Fig. 4c. There is
one mapping process and one small task queue for each
AFM sub-table that is not empty. Since each AFM sub-
table has its own task queue, the HOL block problem does
not exist. Similar to MPSQ_ model, there is also a
reordering logic in MPMQ_model to keep the sequence of
output as input requests. The same as MPSQ, in
MPMAQ,, the allocation of new queues to each sub-table is
in serial to avoid possible conflict.

6 Evaluations

We utilise the aforementioned three traces to do the
evaluations, namely CERNET trace, NLANR1 trace and
NLANR2 trace (on OC-192 link). In the burst, the peak
traffic rates (We define traffic rate as follows: suppose the
packets arrive at time £, #, #, ..., #, and the packet length
is 2y, 2, %y, ---,%, Then the traffic rate at time # is
2;/(t;;1 —). The peak traffic rates are the largest traffic
rate.) of these three traces are 10, 2.5 and 1Gb/s,
respectively. In all the simulations illustrated in this section,
output bandwidth is shared among all the active physical
queues in a DRR manner [18].

The number of required physical queues is first evaluated.
From Table 3, we observe that the maximum (and average)
number of physical queues for each trace is only in the

order of hundreds. This fact accords with the expectation
that the queue number required is only in hundreds. Note
that, in the experiments where we configure a lighter work
load by increasing the output capacity, the number of
physical queues is even smaller. Although the average traffic
speed in CERNET trace is the smallest, the number of
flows in this trace is larger than the number of flows in
NLANRLI. For this reason, the physical queues needed for
CERNET trace are more than that for NLANRI.

Next, we check the operation time including searching
time, updating time and overall operation time under
SPSQ_processing model. Fig. 5 shows the searching time
for an existing flow and Fig. 6 depicts the time to identify
a newly arrived active flow and update the AFM table. The
results in these two figures do not consider the
computation time of hash function. The theoretic bound
stated in Theorems 1 and 2 are acceptable estimations
compared to the experimental results, and the margins
between the theoretic values and the experimental results
are partially caused by that the hashing is not so uniform
among different slots/AFM sub-tables. With the increase
of the number of AFM sub-tables, both the searching time
and updating time decrease. This trend is just as expected,
since the increase of M leads to the decrease of the scale of
AFM sub-tables. If M > 256, in all the traces, the average
time to search for an existing flow is less than 1.5 operation
cycles and the average time to identify a new active flow is
less than one operation cycle. For the sake of clearly
distinguishing the lines in the figure, the results for
NLANR2 and CERNET trace are not drawn in Figs. 5
and 6, which are similar. Taking into account the time to
compute the hash function, we investigate the average clock
cycles needed to return a queue g, for an incoming packet
no matter whether it belongs to a newly incoming flow or
an existing active one. Suppose the hash computation needs
one clock cycle, and each comparison on one node of BST
also needs one clock cycle.

Fig. 7 illustrates the experimental results for the average
overall operation time on CERNET trace, NLANR1 trace
and NLANR2 trace. This figure clearly demonstrates two

—a— TheoreticValue

2_5_1\ | —® ExperimentalValue

el
o
I
-

]
Table 3 Number of required physical queues E’ \\
Traces CERNET | NLANR1 | NLANR2 .g”

2 N
average trace speed 278.8 447.4 662.6 i -~ g
(Mb/s) ———
output capacity (Mb/s) | 293.5 470.9 697.4 A B e

Number of AFM sub-tables
max. queue number 352 239 385
Figure 5 Time cycles needed for searching an existing

average queue number | 146 95 173 active flow on trace NLANRI

478
© The Institution of Engineering and Technology 2010

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

| —=— TheoreticValue
® ExperimentalValue

updating Time (cycles)
@

1.0+ N
A

l\\\

0.5 =,
h .
~— .
0.0 T T T T AR nanaati]
32 B4 128 256 512 1024 2048 4098
Number of AFM sub-tables

Figure 6 Time cycles needed for updating the AFM table on
the arrival of a newly incoming flow on trace NLANR1

facts: (1) If the number of slots is well set (for example, no less
than 256), a packet can find a queue to be pushed into after
about two cycles on average, in all the three traces. (ii) The
operation time needed is a monotone decreasing function
of slots number; however, it has a diminishing gain.
Consequently, blindly increasing the number of slots
will lead to ineffectiveness in the sense of incurring
disproportional penalty in implementation cost vis-d-vis the
gain in decreasing search length. Considering the overhead
of increasing slots, we believe that it should be a good
tradeoft containing 256 slots. In the worst case when many
flows are occasionally hashed to one slot, the operation
clock cycles needed will be more than the average results
shown in Fig. 7. We investigate the effect of the worst case
in Fig. 8. This figure shows the CDF of operation clock
cycles in NLANR2 trace, when the flows are hashed to
256 slots. We observe that about 40% of the packets can
find their corresponding queues after only one clock cycle,
and about 84% of the packets can find their corresponding
queues in no more than two clock cycles. Only about
0.02% of the packets may encounter worst case and require
at most six operation cycles. The results for CERNET
trace and NLANRI1 trace are much better. Therefore for

the worst case concern: (i) the worst case may occur and

4.0 5

=— NLANR1 |
s NLANR2|
35 | —4&— CERNET|
.§ 10 NN ‘e
E \\\ ‘
o N
E ™,
i 254 ‘l\ \
5 \'
= Y
[e
8 204 e
=] A
L
e . L] -
1.5 Tl — :
T T T T T T T
32 64 128 256 512 1024 2048 4086

Number of AFM sub-tables

Figure 7 Average overall operation time: clock cycles
needed to return a queue identifier q, for an incoming
packet

www.ietdl.org

CDF

2 : 6

Time Cycle
Figure 8 Cumulative distribution function (CDF) of
operation clock cycles

about six operation cycles are required in this case; (ii) the
chance of meeting the worst case is very small (less than

0.02% in this case).

A state-of-art high-performance router usually equips
combined input and output queue switch architecture and
the switch fabric is required to provide a minimum speedup
of 2—1/X in order to provide 100% throughput in such
an architecture, where X is the number of input/output
ports [32]. In other words, the enqueue rate of the output
queue is 2 —1/X times faster than the dequeue rate.
Define speedup as the ratio between enqueue rate and
dequeue rate. The performance of SPSQ_will degrade
greatly when the speedup is larger than one. The results for
trace NLANRI1 are shown in Fig. 9 for illustration. For
this reason, we propose two parallel processing models to
improve the performance when the burst speedup is larger
than one. Fig. 10 depicts the relationship between
normalised throughput and speedup under different
processing models when the number of AFM sub-tables is
2° on trace NLANR1. Here, by normalised throughput we
mean the AFM mapping output rate against the packet
incoming rate. The normalised throughput is always
bounded by 1 because the mapping output rate can never
exceed the incoming rate. As shown in the figure, the
normalised throughput decreases with the increase of
speedup for all the three processing models. The
normalised throughput of MPSQ_is only slightly better
than the one of SPSQ_when speedup is larger than 3 since
the probability of HOL block is quite tremendous for large
speedup, but MPMQ _is always about five times better than
SPSQ.

The buffer sizes for the task queue under the three
processing models are demonstrated in Fig. 11 when the
number of AFM sub-table is 2° on trace NLANRI. In this
paper, the buffer size is measured in K bytes. The buffer
size for MPSQ_is smaller than the one of SPSQ_when
speedup is less than 3, and they become similar with
continuous increase of speedup. We calculate the total

memory of MPMQ_to be the product of the number of

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

© The Institution of Engineering and Technology 2

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

479
010

www.ietdl.org

o o~

Average searching time

MNoWw B

(X

hash table

sub-tables and the size of the largest task queues. The
memory size of MPMQ_increases with the growth of the
speedup and it is the least when the speedup is no larger
than 4. Since MPSQ_ and MPMQ_ provide larger
throughput than SPSQ_, the backlogged packets in MPSQ_
or in each MPMQ_ task queue should be smaller than
SPSQ. MPMQ_under large speedup requires largest total
buffer since it has to multiply the large number of queues.
In order to see the performance under tough situation, we
fix the speedup to 8 and check the performance with the
increase of the number of AFM sub-tables and the results

1% & & v
[—¢—spPsa |
09 | —»— wmPsa
| —o— MPMQ |
08 L
507
=
2 06
£
S 05f
&
E 04
203 -
o
02,
01
0)
1 2 3 4 5 6 7 8

speedup

Figure 10 Normalised throughput against speedup when
the number of AFM sub-table is 2°

180

—¥— SPSQ

160 5 mpsa

Buffer (K Byles)

speedup

Figure 11 Buffer size for task queue(s) against speedup
when the number of AFM sub-table is 2°

L L < |

Average updating time

MW

5]

Ny, g
2 2 speedup
hash table

Figure 9 Searching time (left) and updating time (right) when the speedup is larger than one on trace NLANR1

on NLANRI1 are indicated in Figs. 12 and 13. With the
increase of the number of sub-tables, the normalised
throughput increases while the buffer size decreases. This is
because when the size of sub-tables becomes larger, the
possibility of hash collision on successive packets becomes
less. Again, the throughput performance of MPMQ is the
best compared with SPSQ_ and MPSQ_ under this
experiment setting. Although the backlog (largest buffer
size) in each task queue of MPMQ_model is less than
3KB, the total required memory size could be 172550 KB.

The memory required for the mapping scheme is also very
small. As shown in Table 1, we denote the number of slots as
M, the number of active flows as /, the number of physical
queues as NV and the number of bits to identify a flow as B.
Then, the memory requirement for the mapping scheme Wis

W =M +[(3log, ! +log, N + B) (5)

For example, given 256 slots, 256 physical queues, /= 256
and B = 32, the memory required is only 16 K bits for the
AFM sub-tables. Obviously, it is easy to implement the
memory on an embedded on-chip SRAM, leading to a
great reduction on PCB area and wiring delay.

1 E— L I]
—¥— SPSQ
09 —»— MPSQ
—e— MPMQ
08
507
=
E 0.6 g
Zos /
2 /
E oar /
2 0.3/
¢
0.2
» » R
e (____/_’:f_k;’;:)*;(———i-(———x
G T 3 9 1b 1 12

Number of AFM sub-table (2)

Figure 12 Normalised throughput against the number of
AFM sub-tables when speedup is 8

480
© The Institution of Engineering and Technology 2010

IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483
doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from IEEE Xplore. Restrictions apply.

www.ietdl.org

850y ' ;,’\.__ — priority scheduling’, IEE Proc. Commun., 2005, 152, (5),
500} L % —»— MPSQ pp. 548-558
450/ /\ | —e—wmrma|
400} f ""\ [2] BRADEN R, CLARK D., SHENKER s.: ‘Integrated
T 3s0f f : services in the internet architecture: an overview’,
i‘ 25l / \// - RFC1633, 1994
‘% 2501
mm/ [3] http://www.lightreading.com/document.asp?site=
lightreading&doc_id=22628&page_number=8, accessed

150

100

50~
]

of sub—table (2%)

Figure 13 Buffer size for task queue(s) against the number
of AFM sub-tables when speedup is 8

7 Conclusions

Per-flow queuing mechanism suffers a great scalability problem
with the dramatic increase in the number of in-progress flows.
In this paper, we first confirm the measurement result that the
number of concurrent active flows in the routers is typically in
hundreds even though there may be tens of thousands of flows
in-progress. Based on this observation, we have proposed a
DQS mechanism to implement scalable per-flow queuing in
high-performance routers.

Compared with industrial implementation of per-flow
queuing, the main benefit achieved by DQS is a great
reduction of the number of the required physical queues from
millions to hundreds at the expense of organisation and
operation on an AFM table. When the number of slots of
AFM is 256, the operation delay for a packet to find a queue
to be pushed into is about two cycles on average under a serial
processing model for normal traffic condition. Compared to
serial processing model, parallel processing models improve the
throughput performance by about five times even under
congested conditions. With 256 slots, the system only costs
16 K bits memory, which can be implemented in an on-chip
memory. In addition, the idea of DQS can be extended to
other per-flow control mechanism which is also our future work.

8 Acknowledgments

This work is supported by NSFC (60625201, 60873250,
60903182), Specialized Research Fund for the Doctoral
Program of Higher Education of China (20060003058),
973 project (2007CB310701) and open project of state key
laboratory of networking and switching technology
(SKLNST-2008-1-05). Part of the work is presented at
‘Per-flow queuing by dynamic queue sharing’, IEEE
INFOCOM 2007.

9 References

Augest 2006

[4] EsTAN c., VARGHESE G.: ‘New directions in traffic
measurement and accounting’. Proc. ACM SIGCOMM,
Pittsburgh, US, August 2002, pp. 323-336

[5] FRALEIGH C., MOON S., LYLES B., ET AL.: ‘Packet-level traffic
measurements from the sprint IP backbone’, IEEE Netw.,
2003, 17, (6), pp. 6-16

[6] Hu cC., CHEN X., TANG Y., LIU B.: ‘Per-flow queueing by
dynamic queue sharing’. Proc. INFOCOM, Anchorage, US,
May 2007, pp. 1613-1621

[7] KORTEBI A., MUSCARIELLO L., OUESLATI S., ROBERTS J.: ‘Evaluating
the number of active flows in a scheduler realizing fair
statistical bandwidth sharing’. Proc. ACM SIGMETRICS,
Banff, Canada, August 2005, pp. 217-228

[8] BRADENB., CLARK D., CROWCROFTJ., ETAL.: ‘Recommendations
on queue management and congestion and congestion
avoidance in the internet’, RFC2309, 1998

[9] M™assouLlL., ROBERTS J.: ‘Arguments in favour of admission
control for tcp flows’. Proc. 16th Int. Teletraffic Congress,
Edinburgh, Scotland, June 1999, pp. 33-44

[10] FLovD s., JAacoBsON v.: ‘Random early detection gateways
for congestion avoidance’, IEEE/ACM Trans. Netw., 1993, 1,
(4), pp. 397-413

[11] OTT TJ., LAKSHMAN TV., WONG L.: ‘SRED: stabilized RED".
Proc. INFOCOM, New York, US, May 1999, pp. 1346—-1355

[12] 7aNG A, WANG)., Low s.: ‘Understanding CHOKe:
throughput and spatial characteristics’, IEEE/ACM Trans.
Netw., 2004, 12, (4), pp. 694-707

[13] FLOYD 5., GUMMADI R., SHENKER S.: ‘Adaptive red: an
algorithm for increasing the robustness of red’s active
queue management’. ACIRI, Technical Report, 2001

[14] https://www.cisco.com/en/US/docs/ios/11_1/feature/
guide/WRED.html, accessed October 2009

[15] Huc, uuB.: ‘Design of modified red implemented in a
class based ClOQ switch’. Proc. 16th Int. Conf. on Computer

[1] siEw CK., FENG G., LONG F, ER M.H.: ‘Congestion Communication, Beijing, China, September 2004,
control based on flow-state-dependent dynamic pp. 655-660
IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483 481

doi: 10.1049/iet-com.2009.0404 © The Institution of Engineering and Technology 2010

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

www.ietdl.org

[16] KORTEBI A., OUESLATI S., ROBERTS J.: ‘Cross-protect: implicit
service differentiation and admission control’. Proc. IEEE
HPSR, Phoenix, US, 2004, pp. 56—60

[17] sALLES R.M., BARRIA J.A.: ‘Proportional differentiated
admission control’, IEEE Commun. Lett., 2004, 8, (5),
pp. 320-322

[18] SHREEDHAR M., VARGHESE G.: ‘Efficient fair queueing using
deficit round-robin’, IEEE/ACM Trans. Netw., 1996, 4, (3),
pp. 375-385

[19] Guo c.: ‘Improved smoothed round robin schedulers
for high-speed packet networks’. Proc. IEEE INFOCOM,
Phoenix, US, May 2008, pp. 906—-914

[20] PAREKH A.K., GALLAGER R.G.: ‘A generalized processor
sharing approach to flow control in integrated services
networks: the single node case’, IEEE/ACM Trans. Netw.,
1993, 1, (3), pp. 344-357

[21] BENNETTJLCR., ZHANG H.: ‘WF?Q; worst-case weighted fair
qgueuing’. Proc. IEEE INFOCOM, San Francisco, US, March
1996, pp. 120-128

[22] zHANG L.: ‘Virtual clock: a new traffic control algorithm
for packet switching networks’. Proc. ACM SIGCOMM,
Philadelphia, US, August 1990, pp. 19-29

[23] cGoLestani s..: ‘A self-clocked fair queueing scheme for
broadband applications’. Proc. IEEE INFOCOM, Toronto,
Canada, 1994, pp. 636—646

[24] JOUTSENSALO J., VIINIKAINEN A., HAMALAINEN T., WIKSTROM M.:
‘Pricing based adaptive scheduling method for bandwidth
allocation’, AEU-Int. J. Electron. Commun., 2007, 61, (2),
pp. 118-126

[25] wu Y, kwoK Y.K., WANG J.: ‘An adaptive packet scheduling
algorithm for efficient downlink bandwidth allocation in
UWB based wireless infrastructure networks’, Comput.
Commun., 2007, 30, (9), pp. 2087—-2095

[26] sALLEs R.M., BARRIA J.A.: ‘Utility-based scheduling
disciplines for adaptive applications over the internet’,
IEEE Commun. Lett., 2002, 6, (5), pp. 217-219

[27] Agere Inc.: ‘Technical guide to the APP550TM and
APP530TM traffic manager’, white paper, 2004

[28] SUTER B., LAKSHMAN T., STILIADIS D., CHOUDHURY A.: ‘Buffer
management schemes for supporting tcp in gigabit
routers with per-flow queuing’, IEEE J. Sel. Areas
Commun., 1999, 17, (6), pp. 1159-1169

[29] RAMAKRISHNA MYV., FU E., BAHCEKAPILI E.: ‘Efficient hardware

[30] http://dragonlab.org/traffic/, accessed July 2007
[31] http://pma.nlanr.net, accessed July 2007

[32] CHUANG ST, GOEL A., MCKEOWN N., PRABHAKAR B.: ‘Matching
output queueing with a combined input output queued
switch’. Proc. IEEE INFOCOM, New York, USA, March
1999, pp. 1030—-1039

[33] CORMEN TH., LEISERSON C.E., RIVEST R.L., STEIN C.: ‘Introduction
to algorithms’ (The MIT Press, 2001, 2nd edn.)

10 Appendix

Proof of Lemma 1: SL; is denoted as the average search
length of a randomly built BST with % nodes, and it is
obvious that SLy = 0 and SL; = 1. When % > 2, it can

be formulated as

b—

2

—_

x| =

[1+iSL,+ 1)+ (k—i—1)(SL,, , + 1] (6)

x| =

i=

Each term 0-SLj,1-SL,,...,(A—1)-SL,;, appears

twice in the summation, so we have the recurrence

k=1

2 .
SLk=1+k—2;zSLi, k>2)
Since, we further have
=1 =2
Y iSL;=(k—1)SL, ; + Y iSL, (8)
i=1 i=1
Therefore
1 2 1
Given SL; = 1, the following equation can be achieved
SL —%—1+2 1+1 il (10)
Pk k) i

In conclusion,

SLk =

g

Proof of Theorem 1: The expected value of successful
search length is

/
hashing functions for high performance computers’, IEEE E[SL,] = Z SL, P, (11)
Trans. Comput., 1997, 46, (12), pp. 1378—-1381 =0
482 IET Commun., 2010, Vol. 4, Iss. 4, pp. 472—-483

© The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0404

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

www.ietdl.org

where SL, is defined in Lemma 1. Substitute (2) and (1) into Thus, the unsuccessful search length is
(11), and we can obtains the expected time of a successful
search as follows
/
. N T N E[UL] =) HP, (13)
=)1-= Pli-142(142)3 2 =
<M>(M> +; k|:/€ +2< +k> P ’}
0 which will be bounded by
Proof of Theorem 2: Still, P, is defined in (2). The bound
on the expected height Hj of a randomly built BST with % ‘(] 1\ 1\ 7* k+3
nodes has been verified in [33] as follows ; YIAVY 1- M log, 3 -1
kE+3
H, < log2< 3 > -1 (12) -
IET Commun., 2010, Vol. 4, Iss. 4, pp. 472-483 483
doi: 10.1049/iet-com.2009.0404 © The Institution of Engineering and Technology 2010

Authorized licensed use limited to: Tsinghua University Library. Downloaded on March 30,2010 at 04:57:45 EDT from |IEEE Xplore. Restrictions apply.

