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Abstract—Flow completion times (FCTs) are critical for many
cloud applications. To minimize the average FCT, recent trans-
port designs, such as pFabric, PASE, and PIAS, approximate the
Shortest Remaining Time First (SRTF) scheduling. A common,
implicit assumption of these solutions is that the remaining time
is only determined by the remaining flow size. However, this
assumption does not hold in many real-world scenarios where
applications generate data at diverse rates that are smaller than
the network capacity.

In this paper, we look into this issue from system perspective
and find that the operating system (OS) kernel can be exploited
to better estimate the remaining time of a flow. In particular, we
use the rate of copying data from user space to kernel space to
measure the data generation rate. We design RAX, a rate aware
flow scheduling method, that calculates the remaining time of a
flow more accurately, based on not only the flow size but also the
data generation rate. We have implemented a RAX prototype in
Linux kernel and evaluated it through testbed experiments and
ns-2 simulations. Our testbed results show that RAX reduces
FCT by up to 14.9%/41.8% and 7.8%/22.9% over DCTCP and
PIAS for all/medium flows respectively.

I. INTRODUCTION

Many data center applications, such as web search, social
networking and data mining, have stringent latency require-
ments. As a result, the flow completion time (FCT) is critical
for application performance and user experience, and has
become one of the most important optimization goals for data
center transport [1, 2].

Recent proposals, such as pFabric [1], PASE [3], and
PIAS [2], minimize the average FCT by approximating the
ideal Shortest Remaining Time First (SRTF) scheduling. Ac-
cording to SRTF, we should always schedule a flow with
the smallest remaining time. In fact, these flow scheduling
proposals [1–3] schedule the flow with the smallest remaining
size with the implicit assumption that the remaining time is
determined only by the remaining flow size. However, this
assumption does not hold in many realistic scenarios, since
in practice real applications can generate data at diverse rates
that may be smaller than the network capacity, due to the
bottleneck sources, such as disks and CPUs. Take the disk-
bounded applications (e.g., MapReduce [4]) as an example, the
I/O bandwidth of hard disk drives (HDD) and solid state drives
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(SSD) are about 1Gbps and 6Gbps, which may be smaller than
that of the underlying (e.g., 10GbE) network. Furthermore, the
I/O throughput may drop significantly when multiple threads
simultaneously interact with the storage [5] (as detailed in
§II-A). Similarly, for computation-intensive applications (e.g.,
Dryad [6]), the CPU may fail to saturate the network when
performing complex computation. In all these cases, the data
generation rates represent the application’s actual demands for
the network, thus affecting the remaining times of flows (as
detailed in §II-B). This issue has been neglected in most prior
designs [1–3, 7]1, even the latest ones [8–10].

In this work, we argue that not only the flow size, but also
the flow data generation rate should be taken into account for
minimizing FCTs. Motivated by this, our goal in this paper
is to design an efficient flow scheduling scheme with the
following objectives:

• Rate-aware: The solution must be able to obtain the flow
data generation rates, in order to calculate the accurate flow
remaining times.

• Minimizing average FCT: It must leverage the flow
remaining times to minimize the average FCT.

• Being practical: It must work with commodity switches
and not require any modification of legacy TCP/IP stacks
or existing applications.

To acquire the data generation rate, we have analyzed the
life cycle of a flow from the system point of view and found
that we can obtain rich flow information from the OS kernel.
Specifically, we monitor the TCP send buffer status in the
kernel and use the data copy rate from user space to kernel
space to measure the data generation rate (§III-A). Then,
we design RAX, a rate-aware flow scheduling solution that
calculates the remaining time of a flow based on both flow
size and data generation rate (§III-B).

In short, in the course of design and implementation of
RAX, we make the following contributions:
• We show that the data generation rates of flows play a key
role in minimizing FCTs. We analyze the complete flow
life cycle, extract information such as data generation rate

1While PDQ [7] computes the maximum sending rate for each flow, it only
considers the network bottlenecks instead of the application demands.
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Fig. 1. The life cycle of flow

and backlogged size from the OS kernel, and use them to
design RAX, the first data center flow scheduling solution
considering both factors.
• We have implemented a RAX prototype in Linux kernel,
which locates between the TCP/IP stack and the Network
Interface Card (NIC) driver. RAX does not require any
modification to user applications or legacy TCP/IP stacks,
and thus supports various operating systems. RAX is a hot-
pluggable kernel module, which is readily deployable on
running systems.
• To evaluate RAX, we build a small testbed with 10 servers
connected to a commodity Pronto-3295 Gigabit Ethernet
switch. Our experiments show that RAX can accurately
measure the data generation rates, and significantly outper-
form existing data center transports that only use flow size
to estimate the remaining time. For example, RAX reduces
the average FCT by up to 14.9% and 7.8% for all flows
and 41.8% and 22.9% for medium flows compared to
DCTCP [11] and PIAS [2], respectively. To complement the
small scale 1GbE testbed experiments, we further evaluate
RAX in a simulated large scale 10GbE network by using
ns-2 [12]. Our simulations show that RAX reduces average
FCT by 36% and 22% over DCTCP and PIAS, respectively.

II. FLOW: FROM SYSTEM PERSPECTIVE

From the network’s perspective, a flow refers to an appli-
cation data unit travels across network [13]. Using the flow
abstraction, all existing designs implicitly assume that flow
data is always ready for transmission. But from the system’s
perspective, this is not true and the reality is much more
complex. Fig. 1 shows the complete life cycle of a flow from
the system’s perspective. First, the data is generated from an
application, then it traverses the system stacks, and eventually
gets transmitted across the network.

Data generation: Applications generate data to be transmit-
ted through the network at different rates. The data generation
rate depends on various factors including application compu-
tational complexity, the CPU speed or the I/O throughput of
storage devices. We denote the flow data generation rate as
rg . It depends only on the server components, such as CPU
cores and hard disks, but not on the network.

Notation Description
rg data generation rate from application
rc data copy rate to kernel
rt data transmission rate across network
br size of remaining application data
bb size of data backlogged in the send buffer
bs size of data that has been sent into the network
C network interface card (NIC) capacity

TABLE I
MAIN VARIABLES
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Fig. 2. [Testbed] Measured generation rate distributions.

Data copying to kernel: After the data is generated, appli-
cations call network functions such as send(), sendto() and
write() to copy data into send buffer in the OS kernel. We use
rc to denote the data transmission rate from the application to
the kernel.

Data transmission: Finally, the network interface card (NIC)
transmits data from the send buffer into network. The trans-
mission rate is denoted as rt. Many factors determine the
transmission rate (rt), such as the link capacity, network load,
and scheduling policies.

A. Does flow data generation rate vary widely?

The data generation rate (rg) determines the real demand
for the network, which is a crucial factor in network flow
scheduling. However, we find that data generate rate varies
widely across applications and changes dynamically even
within an application. To study this, we measure the data
generation rate (rg) from two real world applications by
modifying them. The flow data generation rate is the flow size
divided by the data preparation time (excluding in-network
blocked time). The first application is FileBench [14], which
is a file system and storage benchmark that allows to generate
a large variety of workloads. The backend storage device
is hard disk, and the link capacity is 1Gbps. We choose
file server and mail server as two representative
workloads. The second application is HDFS [15]. We setup
HDFS as the backend storage of Spark [16] and run the
TeraSort benchmark. The rg distributions are shown in Fig. 2.
Applications have different demands for the network, e.g. the
file server averagely generates data 1.4× faster than the mail
server. Also within an application, it varies widely from 100
Mbps to 100 Gbps (1000× difference). This is because some
data is readily available in the memory ready to be transmitted
(e.g., cached), while other data may be in the disk and may
require further computation.
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Fig. 3. [Simulation] Motivating example. The average FCTs of pFabric(rem.
size) and pFabric(rem. time) are 0.185s and 0.165s respectively.

B. Does data generation rate impact flow completion times?
As shown above, the application data generation rate varies

widely. However, previous works largely overlook this impor-
tant fact, which results in sub-optimal scheduling results.

We demonstrate the impact of data generation rate on flow
scheduling with a toy example. In this example, we setup two
flows, Flow A and Flow B. The flow sizes are 100MB and
150MB, and the data generation rates are 5 Gbps and 10
Gbps respectively. We use ns-2 [12] to simulate these flows
in a network, where a sender and a receiver connected by
one switch. The link capacity is 10Gbps. We use pFabric to
schedule these flows and compare it with a variant of pFabric
that uses the remaining time to prioritize flows. The remaining
time of a flow is the remaining size divided by the data
generation rate. The original pFabric sets explicit priority for
packets based on flow remaining size. Thus, it prioritizes Flow
A which is shorter than Flow B. However, because Flow A
cannot saturate the 10 Gbps link, the remaining bandwidth is
used for Flow B as shown in Fig. 3(a). As a result, the FCTs
of A and B are respectively 0.16s and 0.21s, and the average
is 0.185s. In contrast, our variant that uses SRTF scheduling
first schedules Flow B as shown in Fig. 3(b). The resulting
FCTs for Flow A and B are respectively 0.21s and 0.12s, and
the average is 0.165s. We observe that 1) data generation rate
affects flow completion times; and 2) flows scheduled using
the remaining time finish more quickly.

C. Can we accurately estimate the data generation rate?
The data generation rate in Fig. 2 is measured by modifying

applications. This will introduce huge burden for operators
in commodity data centers hosting a variety of applications,
which is highly undesirable. Therefore, we take a step back
and ask: can we obtain the data generation rate (rg) without
instrumenting applications? Before introducing our solution,
we first analyze the relationships among rg , rc and rt (as
shown in Figure 1 and Table I).

Case 1: When rg = rt,2 the network can fully satisfy the
application demand. Once the application data is generated,
it can be quickly copied to kernel space and delivered to the

2We ignore the case that rg < rt since the network transmission rate rt
is bounded by application data generation rate rg .
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Fig. 4. [Testbed] Relationships among rg , rc and rt with (a) adequate and
(b) insufficient send buffer. Note that rg and rc overlap in (a).

network without much delay. Therefore, in such scenario, rg =
rc = rt and very little data is backlogged in the send buffer.

When rg > rt, the network becomes the bottleneck of data
transfer. The excess data that cannot be immediately delivered
to network will get buffered in TCP send buffer. Based on the
availability of additional room in the send buffer, it results in
the following two possibilities.

Case 2: If the send buffer space is not enough (e.g., already
exhausted), the OS kernel will block the data copy from the
application (or defer it in non-blocking mode by returning
error for socket functions), thus pushing the buffer pressure
back to the application. In such scenario, the following relation
holds: rg > rc ≥ rt.

Case 3: If we have adequate send buffer space to buffer
excess data, the data copy from the application will not get
blocked. Therefore, we have rg = rc > rt.

Based on above analysis, we find that rg = rc when the
send buffer is large enough. Hence, we configure a large TCP
send buffer and directly measure rc to estimate rg without
patching applications (details in §IV ).

To evaluate the effectiveness of this method, we create a
simple example in which an application generates flow data at
500 Mbps and the transmission rate is limited at 100 Mbps.
Fig. 4 shows the rates (rg , rc and rt). rc and rt are measured
by our netfilter hook. The initial value of rg and rc is the line
rate of 1 Gbps. We give the flow a large send buffer (100 MB).
When send buffer is adequate for the flow, rc approximately
equals to rg . Fig. 4(b) demonstrates the case where send buffer
is small (16 KB by default). Once the send buffer is insufficient
for the flow, rc drops from rg to rt, as shown in Fig. 4(a).
We conclude that rc accurately represents rg when the send
buffer is sufficiently large.

III. RATE-AWARE FLOW SCHEDULING

The key insight of RAX is to schedule flows based on
their remaining time rather than size. In this section, we first
introduce how to estimate remaining time by leveraging rich
information obtained from OS kernel (e.g., estimated data
generation rate). Then, we propose a new flow scheduling
design that utilizes the estimated remaining time.
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A. Remaining Time Estimation
To perform Shortest Remaining Time First (SRTF) schedul-

ing, we need to calculate the shortest possible remaining
time: the time for a flow to finish in an idle network without
competing with other flows.

As shown in Fig. 1, a flow is finished when all its bytes
are sent into network. To simplify our analysis, we assume
that the send buffer is large enough to hold any data delivered
from the application. The remaining data of a flow includes
the data already in the send buffer (bb) and the data that will
be generated by the application (br).

Therefore, a flow takes two steps to finish. The first step is
to drain backlogged data in the send buffer (bb), which can
be transmitted at NIC capacity (C). So the time of the first
step is bb/C. After the first step, we need to transmit data
that will be generated by the application (br). For the second
step, the transmission is either throttled by the application or
the network. So the time of the second step is br/min(rg, C).
Hence, the shortest possible remaining time Tr is given as
follows:

Tr =
br

min(rg, C)
+
bb
C

(1)

In above formula, C is known and bb can be read from the
send buffer status. However, we have no prior knowledge of
rg and br. Now we show how to estimate rg and br.
rg in above formula is indeed the data generation rate in the

future. Here, we use the latest measured data generation rate
as the estimation. As shown in §II-C, when the send buffer
is large enough, the copy rate rc is a good estimation for the
generation rate. To measure the copy rate (rc) for each flow, we
monitor the bytes copied (bc) from the application within time
interval (te). A copy rate sample τ is given as bc/te. However,
the application behavior may be unstable. For example, when
an application reads data from the disk, its disk I/O throughput
may be interfered by other I/O threads. Thus, we smooth rc
using exponentially weighted moving average (EWMA) as
follows: rc ← ατ + (1 − α)rc where α is the smoothing
factor between 0 and 1. As shown in Fig. 5, although the raw
sample rates oscillate drastically, the smoothed average rates
(α is 0.25) are relatively stable.

The other unknown variable is br, the size of remaining
data that will be generated by the application. Some previous

works [1, 3, 7, 17] assume that br can be obtained by
modifying applications. However, flow size information is not
available in many cases (e.g., HTTP chunked transfer and
database) [2, 18]. Moreover, modifying various applications
to get flow size information will increase operation burden.
Therefore, we prefer a simple approach to get or estimate br
without touching applications.

Many works [11, 19, 20] have shown that the flow size in
data centers typically follows heavy-tailed distribution: most
flows are small but the majority of all bytes are from a small
percent of large flows. For example, in a data mining work-
load [19], 80% of the flows are less than 10KB and 95% of all
bytes are in the ∼3.6% flows that are larger than 35MB. Under
such heavy-tailed distributions, the number of bytes already
sent is a good predictor for the remaining size [21]. Therefore,
we can use the data sent by the application, including the data
backlogged in the send buffer (bb) and the data sent into the
network (bs), to estimate the remaining size.

In summary, the estimation of remaining time (Test) can be
given as follows:

Test =
bs + bb

min(rc, C)
+
bb
C

(2)

where all variables can be obtained without modifying appli-
cations or OS.

B. Rate-Aware Flow Scheduling
To emulate SRTF, we need to allocate bandwidth based on

the estimated remaining time (Test) of each flow. Inspired
by [2], we leverage class of service queues available on
existing commodity switches to enforce it. Current commodity
switches typically provide 4-8 queues per egress port and
support strict priority queueing. To emulate SRTF, we need
to classify flows with smaller estimated remaining time into
higher priority queues. At the end host, RAX tracks the
per-flow state, computes the estimated remaining time, and
marks flow packets with the corresponding priority. The switch
simply classifies packets into different queues based on the
priority values carried by these packets.

According to Formula 2, the estimated remaining time keeps
changing in a flow’s life time. In this formula, bs + bb keeps
increasing. When rc and rt are stable, bb also keeps non-
decreasing. In such scenario, the flow priority keeps being
demoted, thus RAX performs similar to Multi-Level Feedback
Queue (MLFQ). However, RAX may perform differently
when rc changes dynamically, e.g., the flow priority may
increase when rc increases. Even during the priority demotion
process, a flow may bypass first several high priorities when
a send() function call copies a large amount of data from the
application to the send buffer, resulting in a large bb.

We need to use a series of thresholds to distinguish flow
priorities. Formally, there are K priorities in total. Priority 1
is the highest while K is the lowest. Correspondingly, there
are K + 1 thresholds. A flow is assigned to priority i if its
Test satisfies Qi−1 ≤ Test < Qi, where Qi is the threshold
of priority i. Note that Q0 = 0 and QK = ∞. Compared to
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previous works [1, 2], the best value for Qi depends not only
on the flow size distribution, but also on the data generation
rate, which is difficult to derive. Therefore, in RAX, we
employ exponential thresholds. The threshold for queue i is
chosen to be

Qi = Q1 × Ei−1 (3)

where E is the base that determines how much slower a flow
can be in this priority queue. For the web search workload [11]
in 1GbE network, a slow flow may take more than 200ms
to complete, which is 154× longer than the fast ones. We
typically use E = 2 and Q1 = 1280µs for 1GbE network,
E = 2 and Q1 = 160µs for 10GbE network. We find that such
simple threshold setting works well in our testbed experiments
and simulations.

Different from MLFQ, RAX may incur packet reordering
when the priority increases. Packet reordering may seriously
degrade the throughput. To avoid this impact, we temporarily
disable the duplicate ACK mechanism at the sender side
while the flow priority increases. In addition to this, another
promising solution is enabling re-sequence buffer [22] at the
receiver side.

IV. IMPLEMENTATION

Most features of RAX are implemented at the end host
except for priority queueing configuration at the switch. We
have implemented a RAX prototype in Linux kernel. The
prototype has two main components: measurement of data
copy rate and priority tagging. We now introduce them in
detail while leaving the switch configuration to §V-A.

A. Measurement of Data Copy Rate
The rate measurement module measures the per-flow data

copying rate to estimate data generation rate. To achieve
this, we leverage jprobes to hook two kernel functions
tcp_sendmsg and tcp_sendpage which copy data to the
TCP send buffer. When hooked kernel functions are called,
we identify the flow it belongs to and update corresponding
statistics, such as copy data size and elapsed time since last
call.

The rate we measured from system layer is the data copy
rate rc. And we intend to use rc as an estimation of the
data generation rate rg . As previously discussed (§II-C), the
send buffer size is crucial to the estimation accuracy. Linux
performs auto-tuning of the TCP send buffers. By default,
the minimal, initial and maximum send buffer sizes allowed
for a single TCP socket to use are 4KB, 16KB and 208KB
respectively, the maximum send buffer space shared by all
sockets is 4MB. We can control these parameters by config-
uring net.ipv4.tcp_wmem and net.core.wmem_max
through the sysctl command. We enlarge per-flow send
buffer size to 2MB to make the data copy rate measurement
accurate. The overall send buffer space is enlarged to 200MB
accordingly to hold concurrent flows. The send buffer can
easily hold more than 100 concurrent flows of realistic data
center workloads [11, 19].

Having a large send buffer does not harm the network: 1)
This is the recommended practice in high speed datacenter
networks. In data center environment, the RTTs at 50 and 99
quantile are 326µs and 2.43ms respectively [23], so the BDP
is at least 400KB (326µs×10Gbps). Thus, the default settings
is not fit for high throughput and low latency datacenter
networks. 2) Servers in data centers usually have tens even
hundreds of GBs of RAM, so large send buffer is acceptable.
3) Similar approach has been used to buffer traffic and estimate
traffic demand [24, 25].

The send buffer may still be not large enough to hold the
data for an ultra long and fast flow. In this situation, rc tends
to underestimate rg . However, the underestimation usually
does matter because the ultra long flows result in low priority
queues anyway.

B. Tagging Packet Priority
To enforce the desired scheduling in the network, RAX as-

signs priorities to flows by comparing their remaining times
with the thresholds at the end hosts. RAX then tags each
outgoing packet with corresponding priority.

The priority tagging module is implemented by the
NF_IP_LOCAL_OUT hook of netfilter [26]. The netfilter hook
intercepts all outgoing packets. When a packet comes in, the
hook queries the flow table to get its flow entry with the
protocol, the IPs and ports of its source and destination. Then
the hook calculates priority for the corresponding flow of the
packet. The priority is encoded into the DSCP field in the
IP header. Finally, the netfilter hook returns NF_ACCEPT to
admit the packet.

V. EVALUATION

We evaluate RAX with both testbed experiments and large-
scale ns-2 simulations. Our evaluation centers around the
following questions:

• How accurate our rate measurement is? With enlarged
send buffers, we show that the copy rate can accurately
represent the data generation rate. Most of the measured
rates fall within the ±10% range of the true value, and the
coefficient of variation is no more than 0.055. We also show
the impact of different send buffer capacity settings.
• How does RAX perform in practice? Our testbed experi-
ments show that RAX reduces average FCT by up to 14.9%
and 7.8% compared to DCTCP and PIAS respectively.
The major improvement is attributed to the medium flows,
RAX reduces the average FCT of medium flows by up
to 41.8% and 22.9% over DCTCP and PIAS respectively.
The results from multiple data generation rate distributions
verify the performance improvement of RAX.
• How robust is RAX? We evaluate RAX with different
threshold settings and show RAX is robust to misconfigured
thresholds. We also prove that a single packet does not
experience huge increase in delay with large send buffer.
• How does RAX perform in large-scale clusters? The
large-scale ns-2 simulation results show that RAX greatly
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outperforms DCTCP and PIAS in average FCT by 35.6%
and 21.5% respectively. RAX shows at most 26.4% perfor-
mance gap in overall average FCT compared to pFabric,
which is state-of-the-art near optimal information-aware
scheduling scheme.

A. Testbed experiments
Testbed setup: We built a small scale prototype system for
RAX with 10 servers. Each server comprises of a 4-core Intel
E5-1410 2.8GHz CPU, 8GB memory, a 500GB hard disk, and
a Broadcom BCM5719 NetXtreme Gigabit Ethernet NIC. The
operating system running on each server is Debian 6.0 64bit
operating system with Linux 3.18.11 kernel. These servers are
connected to a Pronto 3295 48-port Gigabit Ethernet switch
with 4MB shared memory. To measure data generation rate
in the high speed network, we connected two servers to the
10GbE ports in the switch. Each server is equipped with an
Intel 82599EB 10GbE NIC.

At the switch side, we set 8 priority queues and enable
per-port ECN marking. The ECN marking threshold is 20KB.
At end hosts, the RTOmin is 10ms, and the send buffer size
per flow is 2MB if not specially mentioned in the following
experiments. For RAX, the smoothing factor α for copy rate
measurement is 0.25.
Workload: We modify traffic generator of [27] to generate
traffic with specific data generation rate distributions. We use
the web search workload [11] and the data mining workload
[19] from production data centers whose flow size distributions
are shown in Fig. 6. The arrival of flows conforms to a Poisson
process. The flow data generation rates follow the distributions
from Fig. 2, which are file server, mail server and hdfs. For
testbed experiments, the traffic load is represented by the
actual throughput at the receiver side.
Schemes compared: We compare RAX with DCTCP, a
transport protocol that has been widely used in production
data centers; and PIAS, a size-based flow scheduling scheme.
We use the open source implementations of DCTCP and PIAS
to conduct the following experiments.
Data generation rate measurement: We first verify the
accuracy of the rate measurement. We measure the flow copy
rates while controlling the data generation rate at 200 Mbps,
500 Mbps, 800 Mbps for 1Gbps link and 2000 Mbps, 5000
Mbps, 8000 Mbps for 10Gbps link. We set the send buffer
space allowed for a single TCP socket to 2 MB. Since the
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Fig. 7. [Testbed] Measured copy rates are consistent with the real generation
rates.

average flow size is 1.6MB, the send buffer is capable of
holding flows. We conduct 5000 flows in this experiment.
These flows arrive according to a Poisson process. Fig. 7
shows the CDFs of measured copy rates using 1Gbps link
(Fig. 7(a)) and 10Gbps link (Fig. 7(b)). From Fig. 7, we
can see that the measured copy rates are consistent with the
real flow data generation rates. More than 95% measurements
fall into the generation rate ±10% interval. The minimal
and maximum coefficient of variation are 0.017 and 0.055
respectively. With both 1Gbps and 10Gbps links, a wide range
of generation rates, the measured copy rates are accurate to
represent the flow data generation rates. This result confirms
that we can obtain accurate generation rates when the send
buffer is adequate.
Impact of send buffer capacity: The accuracy of data gen-
eration rate measurement relies on having large send buffers.
One may be curious about the impact of send buffer capacity
on rate measurement. We configure multiple send buffer sizes
range from 128KB to 4MB to evaluate their impact on copy
rate measurement accuracy.

For 1Gbps link, the data generation rate of all flows is
500Mbps. The average load of the sender side is 800Mps.
We show the measured data copy rates in Fig. 8(a). The error
bars show the measurement accuracy. When the send buffer
size is only 128KB, the coefficient of variation is 0.28. After
we enlarge the send buffer size from 128KB and 1MB, the
coefficient of variation is still as high as 0.24. That is because
the send requests are blocked due small send buffer sizes, so
the rate measurement is not accurate. Once the send buffer size
reaches 2MB, the coefficient of variation sharply decreases
to 0.07. Note that the average flow size is 1.66MB, 2MB is
large enough for send buffer to hold most flows. However,
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Fig. 8. [Testbed] The measured data copy rates under different send buffer
capacity sizes.

further increasing the send buffer size to 4MB does not provide
significant accuracy improvement. As shown in Fig. 8(b), the
experiments on 10Gbps link provide similar results.
Results with realistic workloads: Among the 10 servers, one
acts as the receiver, the others are senders. The receiver fetches
data from senders. The data generation rate distribution is file
server. We present the results of web search workload and data
mining workload in Fig. 9 and Fig. 10 respectively. The x-axis
presents the average load of the receiver. For the web search
workload, RAX improves the average FCT over DCTCP and
PIAS by 14.9% and 7.8% respectively. RAX outperforms
PIAS by medium flows, and breaks even with PIAS by short
and long flows. Because PIAS always assigns short flows
with the highest priority, it is hard to beat PIAS with short
flows. Similarly, long flows (10 MB, ∞) usually stay in the
lowest priority queue for both RAX and PIAS. The major
improvement comes from the medium flows. RAX reduces
the average FCT of medium flows compared to DCTCP and
PIAS by up to 41.8% and 22.9% respectively.

Since the data mining workload is extremely biased, most
flows are short while a few ultra long flows dominate the
average FCT, the performance improvement of RAX is rather
limited. For the data mining workload, RAX reduces the
average FCT compared to DCTCP and PIAS by up to 3.3%
and 2.5% respectively.
Results with different distributions: Besides with file
server distribution, we also conduct experiments with other
two data generation rate distributions in Fig. 4. The load of
the receiver is 900Mbps. We present the overall average FCTs
and the average FCTs of medium flows in Fig. 11. The results
show that RAX outperforms DCTCP and PIAS with different
distributions, especially for medium flows.
Impact on packet delays: We evaluate the impact of large
send buffers on the packet delays in a testbed experiment.
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Fig. 9. [Testbed] The FCTs of web search workload.
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Fig. 10. [Testbed] The FCTs of data mining workload.

We start flows with unlimited data generation rates from web
search workload to saturate the send buffer. Then we measure
the FCT from the sender to the other receiver by sending a flow
with only 1KB payload. Since background flows are saturating
all send buffer space, and the NIC becomes severely congested.
The congestion at NIC leads to increase in flow completion
times. However, it is not introduced by large send buffers. We
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Fig. 11. [Testbed] The average FCTs of web search workload with different
data generation rate distributions.
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Fig. 12. [Testbed] Normalized delay when per-flow send buffer size varies.

compare multiple per-flow send buffer sizes in this experiment.
To quantify the impacts, the packet delays are normalized to
the default per-flow send buffer size of Linux (16KB). From
Fig. 12, we can see that large send buffers do not introduce
huge increase in packet delay.
System overhead of RAX implementation: To evaluate the
overhead of RAX implementation, we use iperf to saturate
the 10 Gbps link. The goodput is around 9.4Gbps with and
without RAX. The CPU overhead introduced by RAX is
smaller than 1%. The memory usage is proportional to the
number of concurrent flows with each flow consuming tens of
bytes memory.

Wang et al. [24] demonstrated that, the total memory
consumption of send buffers on each sender is always smaller
than 200MB. We also observe that even when the sender is in
heavy load (i.e. outgoing throughput is 900Mbps), the number
of concurrent flows is no more than 60, the memory usage of
all send buffers rarely goes beyond 120MB.
Parameter sensitivity: RAX has two parameters: Q1,
the threshold for the first priority and E, the base from
Equation 3. To demonstrate the robustness of RAX with
respect to parameter settings, we test RAX with different
settings with the web search workload. We vary Q1 from 960
to 1920 usec, while E ranges from 2 to 5. As shown in Fig. 13,
we observe that the performance of RAX is relatively stable
with respect to threshold settings.

B. Large-scale cluster simulations

Simulation setup: We simulate a large-scale cluster by using
ns-2. The topology is leaf-spine, there are 4 spine switches
and 9 leaf switches in network. The link capacity between
leaf and spine is 40 Gbps. Each leaf switch is connected
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Fig. 13. [Testbed] The overall average FCTs with different threshold settings.
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Fig. 14. [Simulation] The average FCTs of web search workload.

with 16 end-hosts, so 144 end-hosts in total. The bandwidth
between end-host and leaf switch is 10 Gbps. This is a
non-oversubscribed network, and the round trip time (RTT)
across the whole network is 82µs. We use packet spraying
for load balancing [28]. The data generation rate distribution
for simulation is synthesized from distributions in Fig. 2, but
with 10× magnification to fit for the 10Gbps environment. For
simulated experiments, the traffic load is represented by new
incoming flows per seconds.

Performance in large-scale clusters: Fig. 14 shows the
performance improvement of RAX over DCTCP and PIAS.
As shown in Fig. 14(a), RAX reduces the average FCT by up
to 35.6% and 21.5% compared to DCTCP and PIAS respec-
tively. The simulation results are consistent with our testbed
experiments. RAX achieves best performance improvement
for medium flows. As shown in Fig. 14(b), RAX reduces the
average FCT of medium flows by up to 50% compared to
DCTCP, and up to 35.4% compared to PIAS.

The gap between RAX and the information-aware solu-
tion: We compare RAX with pFabric(rem. time) (discussed
in § II-B), which is state-of-the-art near optimal information-
aware scheduling scheme. We also conduct an information-
aware variant of RAX (noted as RAX+) for comparison.
Fig. 15 shows the overall average FCTs of RAX, RAX+ and
pFabric(rem. time). RAX shows at most 26.4% performance
gap in overall average FCT compared to pFabric(rem.time).
RAX+ achieves comparable performance compared to pFab-
ric(rem.time).
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pFabric(rem. time).

VI. RELATED WORK

Flow scheduling schemes are designed to minimize the
average flow completion times. We summarize the previous
flow scheduling works into two categories based on their
information sources: application-informed flow scheduling
[1, 3, 7, 17, 29] and network-informed flow scheduling [2, 30].

Applications-informed flow scheduling schemes directly ob-
tain flow information from applications. These works approxi-
mate the SRTF discipline to minimize the average FCT. Three
noteworthy drawbacks of application-informed schemes are as
follows: (i) They need great effort on modifying applications
to obtain flow size information. (ii) These designs require
either unpractical support from switch hardware [1], complex
arbitration [3, 7] or customized end-host transport [17, 29].
Network-informed flow scheduling schemes [2, 30] adopt
the non-clairvoyant scheduling (such as LAS and MLFQ) to
minimize FCTs. These works use bytes sent information to
estimate the flow size, which would be efficient for heavy-
tailed flow size distributions. Again, existing flow scheduling
works pay close attention to the network bottlenecks, and
largely overlook the application demands.

VII. CONCLUSION

In this paper, we investigate the importance of the flow data
generation rates in minimizing FCTs. We design RAX, an
efficient rate-aware flow scheduling approach, that calculates
the remaining time of a flow based on both flow size and
data generation rate. We have implemented a RAX prototype
in Linux kernel, which is compatible with legacy transport,
readily deployable with commodity hardware. Both testbed
experiments and simulations show that RAX reduces the
average FCT compared to DCTCP and PIAS.
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