
LiteFlow: Towards High-performance Adaptive Neural Networks
for Kernel Datapath

Junxue Zhang1,2, Chaoliang Zeng1, Hong Zhang3, Shuihai Hu4∗, Kai Chen1
1iSING Lab, Hong Kong University of Science and Technology

2Clustar 3UC Berkeley 4Huawei

Abstract
Adaptive neural networks (NN) have been used to optimize OS
kernel datapath functions because they can achieve superior per-
formance under changing environments. However, how to deploy
these NNs remains a challenge. One approach is to deploy these
adaptive NNs in the userspace. However, such userspace deploy-
ments suffer from either high cross-space communication overhead
or low responsiveness, significantly compromising the function per-
formance. On the other hand, pure kernel-space deployments also
incur a large performance degradation because the computation
logic of model tuning algorithm is typically complex, interfering
with the performance of normal datapath execution.

This paper presents LiteFlow, a hybrid solution to build high-
performance adaptive NNs for kernel datapath. At its core, LiteFlow
decouples the control path of adaptive NNs into: (1) a kernel-space
fast path for efficient model inference, and (2) a userspace slow path
for effective model tuning. We have implemented LiteFlow with
Linux kernel datapath and evaluated it with three popular datapath
functions including congestion control, flow scheduling, and load
balancing. Compared to prior works, LiteFlow achieves 44.4% better
goodput for congestion control, and improves the completion time
for long flows by 33.7% and 56.7% for flow scheduling and load
balancing, respectively.

CCS Concepts
• Networks→ Data path algorithms.

Keywords
Kernel Datapath, Adaptive Neural Network, Deployment
ACM Reference Format:
Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen.
2022. LiteFlow: Towards High-performance Adaptive Neural Networks for
Kernel Datapath. InACM SIGCOMM 2022 Conference (SIGCOMM ’22), August
22–26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3544216.3544229

1 Introduction
OS kernel datapath, a data path between higher-layer applications
and lower-layer network hardware implemented in OS kernel, has
∗Work done while Shuihai Hu was at Clustar

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00
https://doi.org/10.1145/3544216.3544229

provided a variety of important networking functions, including
congestion control (CC), packet filtering, scheduling and queue-
ing, etc. Recently, we have seen a rising trend of adopting adaptive
neural networks (NNs) to optimize them because adaptive NNs
can continuously learn and adapt to the varying network environ-
ments and outperform handcrafted optimization algorithms due
to their superb fitting capabilities. The adaptive NNs can simulta-
neously perform model inference to give prediction results based
on the input data and conduct model tuning to improve the in-
ference accuracy by retraining the NNs through these collected
data. So far, adaptive NNs have been used in CC [38, 47], packet
forwarding & routing [56], scheduling [23], etc., to optimize the
function performance, e.g., to achieve better goodput for CC, or
better flow completion time (FCT) for scheduling, etc. Taking CC
for an example, Aurora [38], a 3-layer NN, can achieve 38.5% better
latency than BBR [20] while quickly adapting to different network
environments.

Despite being promising, current deployment mechanisms for
adaptive NNs largely compromise the above advantages. One ap-
proach is to deploy the NNs in userspace [23, 38, 47, 56]. For exam-
ple, Aurora uses TensorFlow [10] and GYM [19] to deploy the NN
with pure userspace transport implementation: UDT [30]; MOCC
extends Aurora’s design and further uses CCP [48] to integrate the
userspace-deployed NN with the kernel-space networking stack.
Userspace deployment is easy with these existing mature tools but
requires the NNs to communicate with the kernel-space networking
datapath functions frequently. In this paper, we discover that no
matter how we choose the communication interval, the cross-space
communication hurts the datapath function performance, compro-
mising the benefit brought by the adaptive NNs. For example, our
experiments show that, with a large interval, e.g., 100ms, the good-
put of a single flow is 14.9% lower than a small interval, e.g., 1ms,
due to reduced responsiveness of the NN. In contrast, with a small
interval, the throughput of the datapath degrades by 40.4% when
handling many concurrent flows because of the non-negligible
overhead (§2.2). Orca has also observed this problem, but it takes a
two-level control design which mitigates but not completely solves
the performance issue [11].

An alternative approach is to implement adaptive NNs directly
in the kernel space. Existing works have explored two directions,
but they both suffer from performance issues. One direction is to
implement complete adaptive NNs, including both model tuning
and inference, in kernel space [14]. However, such implementation
suffers from inevitable datapath function performance degrada-
tion due to 2 reasons: (1) The model tuning algorithms required
by adaptive NNs consume significant computation resources, inter-
fering with the processing logics of datapath functions. (2) While
using advanced CPU instructions such as SIMD/FP instructions can

https://doi.org/10.1145/3544216.3544229
https://doi.org/10.1145/3544216.3544229

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

achieve high precision, it introduces overhead [3, 14, 53], further
deducting the datapath function performance. In our experiment,
we observe that adaptive NNs in the kernel space degrade the net-
work throughput by up to 90% even with mini-batch. The other
direction is to abandon the model tuning and convert the NNs
into lightweight NNs for inference only, e.g., the NN is optimized
via integer quantization [12, 31, 37, 42] or converted into a deci-
sion tree [51]. However, these lightweight NNs lack an important
property—learn and adapt to the environmental dynamics. Our
experiment results show that such a lack of adaptation capability
leads to > 30% performance degradation.

In this paper, we ask: Can we design high-performance adaptive
NNs for kernel datapath to optimize function performance? To an-
swer the question, we realize that the crux lies in the fact that
existing adaptive NNs perform model inference and model tuning
as a whole [23, 38, 47, 56]. However, model inference requires fast
execution, which is better suited in the kernel space; whereas model
tuning requires high-precision and intensive calculation, which is
better suited in the userspace.

Based on this observation, we present LiteFlow, a hybrid solution
that decouples the control path of adaptive NNs into a kernel-space
fast path for model inference and a userspace slow path for model
tuning, so that both model inference and model tuning can be
executed in the right place respectively. We note that the idea of
decoupling has been briefly mentioned in a recent work KMLib [14].
However, it does not identify the challenges behind such decoupling,
nor does it provide any design or implementation to realize the
idea. In contrast, by LiteFlow, this paper takes the first initiative to
fully explore the challenges and present comprehensive design and
implementation to address these challenges.

Specifically, we identify the following 3 challenges: (1) The de-
coupling method requires two NNs of different design targets: one
is compatible with kernel-space development environment (e.g.,
integer only, implemented in C) and can be efficiently executed in
kernel-space, the other is compatible with userspace machine learn-
ing frameworks, e.g., TensorFlow, etc. (e.g., use FP32, implemented
in Python). Thus, it requires non-trivial development and debug-
ging efforts. (2) As only the userspace-deployed NN is further tuned,
the kernel-space-deployed NN cannot timely react to the chang-
ing network environment, affecting the function performance. (3)
Tuning the userspace-deployed NN needs data from kernel-space,
leading to performance degradation caused by frequent cross-space
communication.

To solve these challenges, we design LiteFlow to (1) automati-
cally optimize the NN via high-precision integer quantization (i.e.,
performing integer quantization that can preserve high precision)
and leverages code transformation technology (i.e., translating code
written in one programming language into another) to generate a
kernel-space-compatible snapshot (it is named as snapshot because
it will not be further tuned); (2) conservatively update the snapshot
with the userspace-tuned NN (by considering both necessity and
correctness, see §3.3 for details) to make sure that it is accurate
under the changing environments; (3) perform online adaption with
batched data based on the observation that network characteristics
do not change at sub-second scale [55] to achieve high accuracy
and low overhead simultaneously.

We implement LiteFlow by realizing both the userspace and
kernel-space designs described above. In userspace, LiteFlow offers
standard interfaces for users to provide their own customized imple-
mentation of online adaptation functions. Thus, it can be integrated
with any learning frameworks and utilities, e.g., TensorFlow [10],
PyTorch [50], MXNet [24], GYM [19], etc. In kernel space, LiteFlow
is implemented with Linux kernel v4.15.0 and follows the modu-
larization principle to separate the whole function into different
kernel modules. Therefore, it is general and can support different
NNs for different datapath functions.

To showcase LiteFlow can enable high-performance adaptive
NNs in kernel datapath, we use it to optimize 3 popular kernel
datapath functions with 4 different NNs. For CC, we evaluate Lite-
Flow with Aurora [38] and MOCC [47]. Experiment results show
that for flow goodput, LiteFlow with these NNs can outperform
userspace-deployed NNs by up to 44.4% while suffering no more
overhead than kernel-space CC algorithms such as BBR and CU-
BIC. For flow scheduling, we evaluate LiteFlow with FFNN [55].
Experiment results show that LiteFlow with FFNN can outperform
userspace-deployed FFNN by 33.7% for long flows. For load balanc-
ing [61], we design an MLP model and use LiteFlow to enable it in
kernel datapath. Compared to userspace-deployed MLP, LiteFlow
with MLP can achieve 56.7% lower FCT for long flows.

On a more general note, we have seen an emerging trend to
move the networking functionalities into the userspace [30, 44] or
offload them to the hardware, e.g., SmartNICs [26, 45]. Nevertheless,
there is still a large body of works [27, 38, 48, 49, 58] remain on
the kernel network datapath which LiteFlow can directly apply to
improve their performance. Meanwhile, for SmartNIC-offloaded
adaptive NNs, we believe that LiteFlow’s idea, albeit not directly
applicable, can provide certain insight. For example, they can offload
a snapshot NN on the hardware for efficient inference while leaving
the model tuning part in the software stack for easy and flexible
implementations.

This work does not raise any ethical issues.

2 Background & Motivation
2.1 Adaptive Neural Networks for Kernel

Datapath Functions
Unlike traditional NN deployments which separate training from
inference, adaptive NNs combine them as a whole and can con-
tinuously learn and adapt to the varying network environment
while delivering superb performance. Therefore, there has been an
increasing trend to adopt them to optimize datapath function per-
formance. Applications of adaptive NNs for networking datapath
include congestion control [38, 47], flow scheduling [23], network
routing/forwarding [56], etc.

Unlike traditional optimization solutions, which heavily rely
on operators’ expertise to achieve ideal performance, NNs use a
data-driven approach to automatically and continuously learn the
optimization strategies without any human involvement, which can
quickly adapt to the dynamics. Furthermore, due to the tremendous
non-linear fitting capabilities of NNs, they have achieved better
performance than hand-crafted ones.

Despite being promising, how to deploy these NNs remains a
challenge. One approach is to deploy the NNs in the userspace, e.g.,
with TensorFlow [10], PyTorch [50], GYM [19], etc. When the kernel

LiteFlow: Towards High-performance Adaptive Neural Networks for Kernel Datapath SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

300 350 400 450 500 550 600 650 700 750
0

0.5

1

(a) CDF of goodput

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

(b) Queue length
Figure 1: Fine-grained cross-space communication is neces-
sary to achieve good network performance.

datapath function needs to make some updates, e.g., changing the
flow sending rate in response to network congestion, it will send
the required input data to the userspace-deployed NNs to calculate
the corresponding inference results. These results will then be sent
back to the kernel space for execution.

While the aforementioned userspace deployment simplifies the
implementation, it introduces a performance penalty. In order to
quickly react to network variations, the userspace-deployed NN
needs to perform frequent communication with the corresponding
kernel-space datapath functions. However, frequent communica-
tion between the two spaces will consume a lot of CPU resources,
reducing the amount of CPU resources that can be allocated to
the kernel datapath functions for executing their packet/traffic pro-
cessing logic. As a result, existing adaptive NNs cannot deliver
high performance when supporting a large number of concurrent
networking processing pipelines.
2.2 Performance Penalty
In this section, we perform testbed experiments to demonstrate the
performance degradation mentioned above. We choose congestion
control (CC), one of the most important network functions, as the
evaluated function. The algorithm we choose is Aurora [38]. We
deploy Aurora with TensorFlow [10] and GYM [19] to enable on-
line adaptation.1 To interact with the kernel-space CC function,
we further use CCP [48] to invoke the userspace-deployed Aurora
model (CCP-Aurora). CCP-Aurora requires cross-space commu-
nication to perform congestion control. We use TCP BBR [20], a
traditional CC algorithm completely implemented in the kernel
space, as the baseline. We build a testbed with 2 servers connected
to a Mellanox SN2100 [4] switch via 100Gbps Ethernet links. We
set the RTT to be 10ms via netem [6] to match the design of these
NN-based algorithms. Each server is equipped with one 4-core
2.60GHz CPU and is installed with Ubuntu (kernel version 4.15.0).
Note that one single TCP flow can reach around 1.6Gbps maximum
throughput with our testbed settings.
Fine-grained cross-space communication is necessary to
achieve good performance. In this experiment, we launch one
1We use code from Aurora’s official code repository: https://github.com/PCCproject/
PCC-RL/tree/master/src/gym/online

5 10 15 20 25 30
0

5

10

15

(a) 10ms communication interval

5 10 15 20 25 30
0

5

10

15

(b) 2.5ms communication interval
Figure 2: Toy example of how flow reacts to congestion when
controlled using Aurora with different intervals.

single flow controlled by CCP-Aurora. We also set the receiver link
to be 1Gbps (via switch configuration) and generate background
UDP traffic (constant rate at 0.1Gbps) to emulate network con-
gestion. The buffer size is 150KB. The network characteristics are
stable and match the training environment of Aurora. We consider
three communication intervals, i.e., 100ms, 10ms, and 1ms. For each
communication interval, we run the experiment for 10 seconds and
measure the average goodput of the flow every 0.1 seconds. The
CDF of the results is shown in Figure 1a.

As we can see, the achieved goodput decreases from 672.08Mbps
to 585.17Mbps on average when we increase the communication
interval. With a large communication interval, the datapath func-
tion cannot quickly reduce the sending rate at the sender side when
congestion arises in the network. As a result, severe packet loss
occurs in the network, degrading the goodput of the flow. In Fig-
ure 1b, we further measure the queue length of the bottleneck link.
We observe that the queue length is small and stable when setting
a small communication interval (e.g., 1ms). But when we increase
the interval, the queue length increases and oscillates significantly.
The results indicate that a fine-grained communication interval is
necessary to make the CCP-Aurora responsive enough to achieve
good network performance.

To help readers better understand the phenomenon, we will use
experiments to visualize it. As we cannot observe the ingress/egress
throughput of the bottleneck queue at a very fine-grained view on
our testbed, we conduct contrived toy experiments to visualize the
problem. We deploy Aurora with UDT [30] and configure UDT to
communicate with the Aurora model with an interval. The bottle-
neck link is an emulated link using Mahimahi [59], with bandwidth
and one-way RTT set as 12Mbps and 10ms, respectively. In our em-
ulated experiment, only a single flow is launched and we visualize
the ingress/egress speed of the bottleneck link when the flow is
controlled by different intervals, e.g., 10ms and 2.5ms.

The results are shown in Figure 2. We observe that, with a 10ms
communication interval, the sending rate of a flow cannot even
converge to the available bandwidth of the bottleneck link under
such a simple experiment setting. Consequently, the flow suffers
from degraded goodput. On the contrary, a 2.5ms communication

https://github.com/PCCproject/PCC-RL/tree/master/src/gym/online
https://github.com/PCCproject/PCC-RL/tree/master/src/gym/online

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

2 4 6 8 10
0

0.5

1

Figure 3: Fine-grained cross-space communication suffers
high overhead.

Figure 4: Software interrupt (softirq) caused by frequent com-
munication leads to the increasing overhead.

interval mitigates the problem and achieves better flow goodput.
The toy experiment further confirms that for NN-based CC algo-
rithms, such as Aurora, a fine-grained communication interval is
necessary even in very simple network environments.
Fine-grained cross-space communication suffers from high
overhead. In this experiment, we launch 𝑁 flows controlled by
CCP-Aurora (𝑁 = 2, 4, 6, 8, 10). Similarly, we vary the communi-
cation interval from 100ms to 1ms. As a baseline, we also run this
experiment with BBR, which does not have any overhead of cross-
space communication. For each communication interval, Figure 3
shows the normalized aggregated throughput of 𝑁 flows (normal-
ized by the aggregated throughput of BBR) as 𝑁 increases. Here we
use normalized values to highlight the performance degradation
caused by the cross-space communication.

We mainly have two observations. First, when the number of
flows increases, the normalized aggregated throughput of CCP-
Aurora decreases. Second, smaller communication interval leads
to worse performance. When there are 10 concurrent flows, the
normalized aggregated throughput with a 1ms interval is 5.5Gbps,
which is less than half of the baseline of 16.1Gbps.

The reason is that cross-space communication has significant
CPU overhead. When the kernel needs to invoke a userspace pro-
gram (i.e., to request the CCP-Aurora for inference results), it gen-
erates a software interrupt to switch the execution flow from the
kernel space to userspace, leading to extra overhead in handling
interruptions. When there are multiple concurrent flows, the re-
maining CPU resource is not sufficient to fully support the kernel
processing pipelines of a datapath function.

To confirm this, we use mpstat [5] to measure the CPU usage
when there are 10 active flows. We measure the CPU usage un-
der CCP-Aurora with different communication intervals. We also
measure the CPU usage of kernel BBR as our baseline. Figure 4
shows the portion of CPU cycles spent on different tasks. As we
can see, with BBR, the software interrupts only take 15.4ms (mainly
for handling packet receiving logic), occupying only ∼12.6% of the
total CPU execution time. In contrast, with CCP-Aurora, when we
decrease the communication interval from 100ms to 1ms, the time

0 10 20 30 40 50 60
0

500

1000

Figure 5: Lack of online adaptation leads to performance
degradation with traffic dynamics.

spent on handling software interrupts dramatically increases from
30.8ms to 133.9ms. The portion of time handling software inter-
rupts over total execution time increases from 20.6% to 72.3%. It is
worthwhile to note that the software interrupts are mainly caused
by cross-space switching rather than Aurora’s userspace execution.
The result indicates that a fine-grained communication interval will
consume a significant amount of CPU resources, leaving limited
CPU resources for executing normal packet processing logics for
datapath functions. As a result, userspace NN deployment suffers
from high overhead when supporting many concurrent flows. In
some cases where the CPU is not the bottleneck, e.g., the available
bandwidth is the bottleneck for Internet settings, we will not see
considerable performance degradation. However, we believe they
still suffer the cross-space communication overhead to some extent.
Conclusion: When pursuing high-performance datapath func-
tions, the userspace deployment of NNs has an inherent problem
of suffering from either high overhead or low responsiveness. No
matter how we set the communication interval, we encounter an
inevitable performance penalty.

2.3 What about Adaptive Neural Networks
Direct in Kernel-space Datapath?

To eliminate the performance penalty caused by the cross-space
communication, one may deploy the adaptive NNs in the kernel
space. There are two existing directions but they both suffer from
function performance degradation.

One approach is to directly implement the adaptive NNs, both
the NN optimization and inference, in kernel space. This approach
introduces dramatic NN development and debugging difficulties
since we have to use system programming languages such as C
and suffer from various constraints, e.g., limited library support,
etc., in kernel space. Although there are some research works, such
as KMLib [14], targeting at lowering the development difficulties
for NNs in kernel space, they still suffer from inevitable perfor-
mance degradation issues. To realize NN adaptation, we have to
implement the model optimization algorithms, such as Stochastic
Gradient Descent (SGD) [18], ADAM [41], etc. As these algorithms
require over-complicated computations, e.g., gradient calculation,
directly implementing adaptive NNs in kernel space degrades the
performance. Furthermore, in an integer-only development envi-
ronment, implementing these algorithms either suffers accuracy
loss (e.g., approximation using lookup table) or enlarged overhead
of using SIMD/FP instructions [14]. With the same testbed men-
tioned in §2.2, we have implemented an SGD optimizer in kernel
space to optimize a hand-crafted C version of Aurora. Our exper-
iment results show that the throughput drops by up to 90% even
with batched data.

LiteFlow: Towards High-performance Adaptive Neural Networks for Kernel Datapath SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Another approach is to abandon the NN optimization and con-
vert the NNs to one-time lightweight NNs for inference only. These
lightweight NNs are potential to be executed efficiently in kernel
space since we can perform integer quantization [12, 31, 37, 42]
to avoid using SIMD/FP instructions or transform the NNs into a
C/C++-based decision trees [51] which are compatible with kernel
space. However, these lightweight NNs lose an important property—
learning and adapting to the dynamics. Our experiments show that
without such property, the datapath functions suffer from dramatic
performance loss. In our experiment, we hand-craft a lightweight
Aurora model optimized via integer quantization and deploy it in
kernel space. Initially, we tune the pattern of background traffic as
that when we train the Aurora model, then we randomly change
the traffic pattern every 20 minutes. We measure the goodput of
a single flow and the results are shown in Figure 5. From the ex-
periments, we observe that when the training environment fits the
testbed environment, Aurora can reach ideal performance. Yet when
the environment dynamically changes, the performance of Aurora
degrades because it cannot learn and adapt to the new environment.
Conclusion: Directly deploying adaptive NNs in kernel space leads
to suboptimal performance because of either large implementation
complexity/overhead or lack of adaptation towards the changing
environment.

3 LiteFlow
Given the current adaptive NN deployment solutions, either in
userspace or in kernel space, have an inherent problem of function
performance loss, we ask: Can we build high-performance adaptive
neural networks for kernel datapath to optimize datapath functions?
Our answer is LiteFlow, a hybrid solution to build high-performance
adaptive NNs for kernel datapath.

Instead of adopting one control path for both model inference
and model optimization as the state-of-the-art adaptive NNs do,
LiteFlow decouples model inference from model optimization into
two paths so that each of them can be executed in the right place.
Specifically, LiteFlow builds a kernel-space path, i.e., fast path, for
model inference, and a path from kernel space to userspace, i.e.,
slow path, for model tuning.
Why LiteFlow Works? As discussed above, LiteFlow puts the
NN inference in the fast kernel-space path while leaving NN op-
timization in the slow path. Our insight is that (1) NNs for kernel
datapath functions require very frequent inference to be responsive.
Thus, putting them in the kernel space can reduce the overhead.
(2) Model tuning, i.e., online adaptation, is suitable in userspace be-
cause it can benefit from easy-to-use APIs, advanced features (such
as floating point/multi-thread support) brought by mature software
and libraries in the userspace.
DesignChallenges: Although the decoupling idea has been briefly
mentioned in KMLib [14], the challenges behind the idea are left
unexplored. To the best of our knowledge, we are among the first to
identify these challenges and provide comprehensive designs and
implementations to address these challenges by proposing LiteFlow.

Specifically, we identify the following 3 challenges:
C1. The decoupling method requires two NNs of different design

targets: one is compatible with the kernel-space environment
and can be efficiently executed there, while the other one is

Original NN

Kernel Datapath

Training/Online
Adaptation
Algorithm

NN Input Collector

NN Output Enforcer

NN Snapshot

LiteFlow Components User Customized Components

DL Framework

NN Snapshot
Generation NN Evaluation NN Snapshot

Update
Online

Adaptation

LiteFlow

Fast Path for
NN Inference

Slow Path for NN
Optimization

Figure 6: LiteFlow Architecture.

compatible with userspace machine learning frameworks. Thus,
users have to develop two NNs, and suffer from restrictions in
kernel-space as discussed in §2.3, which introduces non-trivial
development and debugging efforts.

C2. Since only the userspace-deployed NN is further tuned, the
snapshot in the kernel space cannot timely react to the changing
network environment, degrading the function performance.

C3. Tuning the userspace-deployed NN requires continuously de-
livering data from kernel space to userspace. Such frequent data
exchange causes massive cross-space communication, yielding
a large overhead.
To address these challenges, we design LiteFlow to:

• automatically optimize the NN via high-precision integer quanti-
zation and leverages code transformation technology to generate
a kernel-space-compatible snapshot.

• conservatively update the snapshot with the userspace-tuned NN
to make it accurate under the changing environment. Specifi-
cally, LiteFlow considers both correctness: LiteFlow waits for the
online adaption to converge, and necessity: LiteFlow minimizes
the number of snapshot updates to avoid the interference of
function performance caused by kernel-space locks.

• batchwisely perform online adaption based on the network char-
acteristics to simultaneously achieve high accuracy and low
overhead.
Existing related works [9, 12, 14, 28, 32, 37, 40, 42, 43, 51, 54]

that fail to simultaneously solve the 3 challenges do not lead to a
practical and deployable solution (see more discussions in §6).
Architecture & Workflow. Figure 6 shows the architecture of
LiteFlow. LiteFlow is a hybrid framework, which consists of both
userspace and kernel-space components. LiteFlow also provides
APIs for users to implement their customized model tuning algo-
rithms (more details in §4).

The workflow of LiteFlow is as follows: Given a userspace-
designed and trained NN, LiteFlow first generates the NN snap-
shot, which will be deployed in the kernel-space fast path for infer-
ence (§3.1). Meanwhile, LiteFlow also collects the input and output

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

data of the snapshot to further tune the userspace-deployed NN in
the slow path in a batchmode (§3.2). After every training batch, Lite-
Flow evaluates whether it needs to update the snapshot from both
correctness and necessity aspects (§3.3 and §3.4). It is worthwhile
to note that LiteFlow does not explicitly evaluate the performance
of a NN but relies on the common wisdom that online adaptation is
likely to lead to a better NN after it converges. We will show how
LiteFlow works in detail in the following sections.

3.1 NN Snapshot Generation

In order not to compromise the performance gain brought by adap-
tive NNs, LiteFlow has to generate accurate and efficient kernel-
compatible snapshots. To achieve it, LiteFlow first performs high-
precision integer quantization to (1) avoid the overhead of using
SIMD/FP instructions and (2) keep high accuracy. Second, to make
the snapshot kernel-compatible, LiteFlow leverages code translation
technics to transform the userspace NN into a kernel module.
High-precision Integer Quantization: Directly performing
vanilla integer quantization [37, 42] causes dramatic accuracy loss
in kernel space. For example, we have a NN for CC, and its output is
the portion 𝛼 of the line rate as target sending rate, thus, 𝛼 ∈ [0, 1].
After we perform integer quantization, 𝛼 ∈ {0, 1}, which causes the
target sending rate to be either 0 or line rate, leading to dramatic
performance degradation. In order to prevent such accuracy loss,
LiteFlow performs an input/output scaling before quantization. In
the above case, we will add a scale-up layer after the original output
layer, thus, the output becomes 𝛼 ′ = 𝛼 ×𝐶 , where 𝐶 denotes the
scaling factor and is usually a large integer, e.g., 1000. As a result,
𝛼 ′ ∈ {0, 1, ..., 1000}, thus the sending rate is ⌊ 𝛼′×line rate

𝐶
⌋, which

does not lose much accuracy. Figure 7 shows the statistics of ac-
curacy loss caused by LiteFlow’s quantization towards different
NNs. We observe that by using proper scaling, e.g., 1000 × scaling,
LiteFlow’s quantization loses 2% accuracy on average.
Automatic Layer-wise Code Translation: The idea is based
on the observation that NNs are usually composed of repetitive
and enumerative building blocks – layers. Therefore, LiteFlow can
maintain kernel-space implementations of each type of layer, i.e.,
layer template. Listing 1 shows the template of kernel-space imple-
mentation of a fully connected layer. The template contains only
computation logic but leaves all data as placeholders.

LiteFlow further scans the quantized NN to extract the parame-
ters and synthesize them with a certain template. Listing 2 shows
the synthesized kernel-space implementation of a fully connected
layer. Next, LiteFlow combines the implementations of all lay-
ers into a complete source code file. Eventually, LiteFlow invokes
GCC [2] to compile the code into a kernel module, which can be
installed in the kernel space. However, some layers are difficult to
be converted into kernel-space compatible and optimized ones. For
example, these layers use functions that are not supported in the
kernel space, such as tanh activation function. For these layers, Lite-
Flow uses lookup table to approximate these functions with high
precision and low computation complexity. Compared to function-
based approximation methods, i.e. using Taylor Series [29] to con-
vert the function into a polynomial, LiteFlow’s design of lookup
table has the following two advantages: (1) it can ensure persistent
high-precision approximation while function-based approximation

0 5 10 15 20 25
0

0.5

1

Figure 7: LiteFlow’s integer quantization does not lose much
accuracy by adding scaling layers.
methods are accurate only within a certain range, (2) it has a con-
stant computation complexity, which is preferred in the kernel
datapath. In contrast, function-based approximation solution has
an increasing computation complexity when using higher-degree
Taylor Series for higher accuracy.
static void fc_{{ prefix }}_comp (s64 *input, s64 *output)

{

{% for i in range(0, output_size) %}

output[{{ i }}] =

{%- for j in range(0, input_size) -%}

(input[{{ j }}] + {{ input_offset }}) * ({{ weights[i][j] }} + {{

weight_offset }})

{%- if not loop.last %} + {% endif -%}

{%- endfor %} + ({{ bias[i] }});

...

{% endfor %}

}

Listing 1: Template of fully connected layers (We use Python
Jinja [8] as the template engine).

static void fc_5_comp (s64 *input, s64 *output)

{

output[0] = (intput[0] + 0) * 55 + ... + (intput[15] + 0) * (-16 + 0) +

(-1180);

...

}

Listing 2: Synthesized kernel-space implementation of a
particular fully connected layer.

3.2 Online Adaptation
To learn and adapt to the network dynamics, LiteFlow further en-
ables online adaptation for the NN in the slow path. To achieve
it, LiteFlow has to deliver the training data from kernel space to
userspace, e.g., congestion signals, flow status, etc. If we perform
such data exchange oncewe receive new data (receive a new packet),
similar to the problem in §2.2, the cross-space communication com-
promises the performance gain achieved by adaptive NNs.

To design a low-overhead online adaptation mechanism, we
observe that for datapath functions, the environment characteristics,
such as traffic patterns and flow size distributions, etc., usually do
not change at sub-second timescales [39, 55]. Thus, NN tuning
in a batch mode is sufficient. Based on this observation, LiteFlow
accumulates the training data in kernel space as a batch and delivers
the batched data to userspace for tuning the NN in the slow path
every 𝑇 time. Moreover, the batch data delivery interval decides
the performance of LiteFlow. A small interval leads to dramatic
overhead caused by frequent cross-space communication (similar
to the problem discussed in §2.2) while a large interval degrades
NN’s ability to learn the environmental changes. Micro-benchmark
experiment results in §5.1 recommend to set the interval𝑇 between
100ms and 1000ms. In our implementation, we set 𝑇 = 100ms.
Is the Batched-mode Suitable for Optimizing Datapath Func-
tions? Although the batch-mode used by LiteFlow cannot contin-
uously tune the NN, we show through experiments that NN tuning

LiteFlow: Towards High-performance Adaptive Neural Networks for Kernel Datapath SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

0

500

1000

Figure 8: Before Aurora’s online adaptation finishes ex-
ploration, the performance of Aurora is unstable and sub-
optimal.
with batched data is more suitable for kernel datapath functions
because online adaptation does not continuously lead to better
functional performance. As a result, we do not need to update the
NN snapshot in an online manner but should design a mechanism
to update the NN at the right time (§3.3). Figure 8 shows the online
adaptation progress of Aurora and we can observe that Aurora
takes ∼ 800 iterations (receiving around 800 packets) to perform
thorough explorations. We also generate different snapshot NNs
every 100 iteration and measure the average goodput if we deploy
these snapshots in the fast path. The goodput is shown on the right
Y-axis. From the experiment results, we find that only when the
online adaptation finishes the exploration, the NN in datapath can
achieve ideal performance.

Worth mentioning, NN tuning via reinforcement learning is
usually performed with a simulator in userspace, Thus, in this
case, both online and batched modes should yield identical training
efficiency because we can emulate the online mode by feeding the
batched data sequentially into the simulator.
3.3 NN Synchronization Evaluation
After model tuning, LiteFlow evaluates whether it should update
the NN snapshot with the tuned NN from correctness and necessity
perspectives.
Correctness: As discussed in §3.2, the online adaptation takes
time to converge to optimal performance. Thus, we will perform
NN synchronization until the online adaptation finishes exploration
to deploy the correct snapshot in the datapath, i.e., the one with
optimal performance instead of an unstable one. LiteFlow achieves
it by continuously observing user-defined metrics, e.g., training loss
value, to determine if the exploration converges. Note that LiteFlow
users can flexibly choose their metrics in LiteFlow (more details in
§4) and we use training loss as the metric as it works well in our
implementation.
Necessity: Since updating the NN snapshot influences the datapath
function performance (more details in §3.4), we should conserva-
tively update the snapshot only when it’s necessary. To evaluate
such necessity, we introduce the definition of fidelity loss. Let 𝑓
denotes the NN in the userspace, and 𝑓 ′ denotes the NN snapshot.
Given the input data x. We have fidelity loss 𝐿(x) defined as:

𝐿(x) = |𝑓 ′(x) − 𝑓 (x) | (1)

Similar to previous work [13], our fidelity loss evaluation is based
on the assumption that data characteristics in the past (used for
training) are similar to the upcoming ones (used for inference).
Furthermore, as discussed in §3.2, LiteFlow delivers training data
to the userspace in a batch mode to reduce the cross-space com-
munication overhead. We will calculate the fidelity loss over every
x ∈ X to obtain the minimal 𝐿(x), where X denotes the set of all

data in one batch. It is necessary to update the NN snapshot only
when the minimal fidelity loss exceeds a user-defined threshold,
i.e., the difference between the two NNs is large enough. Here, we
use the minimal fidelity loss as the necessity metric to make the
NN snapshot synchronization as conservative as possible to mini-
mize the performance interference caused by snapshot updates. For
the threshold, we set it as 𝛼 × (𝑂𝑚𝑎𝑥 −𝑂𝑚𝑖𝑛), where 𝑂𝑚𝑎𝑥 is the
maximum output value of the NN and 𝑂𝑚𝑖𝑛 is the minimum. For
example, in Aurora, 𝑂𝑚𝑎𝑥 is 1 and 𝑂𝑚𝑖𝑛 is 0. For 𝛼 , we empirically
set it to be %5, which delivers good performance in our experiments.
3.4 NN Snapshot Update
As discussed above, deploying a NN snapshot in kernel space causes
potential performance interference for datapath functions. The key
reason is the existence of locks, which causes dramatic waiting time
if the locking mechanism is not properly designed.

Specifically, when updating the NN snapshot, LiteFlow has to
leverage a kernel lock (usually a spin lock) to temporally prevent
the NN snapshot from being used by other functions’ control flows.
The direct approach follows 3 steps: (1) acquiring a spin lock; (2)
deploying a new NN snapshot in kernel space; (3) releasing the
lock. Such an approach has a critical performance issue: the lock-
ing time is significant because NN update requires transferring
large data, e.g., model parameters, from userspace to kernel space.
Consequently, functions relying on the NN will wait for the lock,
eventually causing performance issues, e.g., TCP timeout.

To solve the problem, LiteFlow adopts an active-standby-switch
approach. Basically, LiteFlow maintains one NN snapshot as active,
another snapshot as standby. Only the active snapshot is used for
inference. Moreover, LiteFlow designs an inference router to switch
the role of the two snapshots by forwarding the inference request
to different snapshots. The workflow is shown in Figure 9. First, as
Figure 9a shows, the inference request is sent to the inference router
and then forwarded to the active snapshot. When LiteFlow updates
the snapshot, as shown in Figure 9b, it generates and deploys a new
snapshot as the standby one instead of directly replacing the active
one. Although this process may take significant time, the datapath
function can still use the active snapshot for inference, and no lock
is acquired. Finally, as Figure 9c demonstrates, after the standby
snapshot is deployed, the inference router can change the role of the
two snapshots, making the standby snapshot as the active one and
forwarding the inference requests to it. During this process, only
a small part of the code in the inference router acquires a lock (3
lines of code to change a pointer in LiteFlow’s implementation),
causing a delay of only several nanoseconds.
Flow Consistency: While promising, the active-standby-switch
approach may cause flow inconsistency potentially. Flow inconsis-
tency refers to a problem that some packets of one flow are served
by an old NN snapshot while others are served by a new snapshot.
Under this circumstance, flows will suffer from performance vibra-
tion. Taking CC as an example, a sudden change of flow sending
rate may cause queue overflow, leading to performance degradation.
Thus, to prevent flow inconsistency, we design a flow cache in the
inference router to ensure that packets of one flow will use the
same NN for inference.2

2LiteFlow users can easily disable flow cache for a particular datapath function if it
does not require flow consistency.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

Slow Path

Datapath

Fast Path

Inference Router

Active

Standby

(a) Inference

Slow Path

Datapath

Fast Path

Inference Router

Active

Standby

Install

(b) Install

Slow Path

Datapath

Fast Path

Inference Router

Active

Standby

(c) Lock
Figure 9: LiteFlow adopts active-standby-switch approach to
mitigate the performance impact of locks.

When a NN inference request comes, LiteFlow calculates its flow
ID and uses the flow ID as the key to look up the flow cache. The
flow cache is a kernel-space hash table with flow ID as the key and
pointer to a NN as the value. If there is a cache hit, then we directly
use the pointer to find the NN for inference. If there is a cache miss,
then we go back to the inference router to use the active NN for
inference. Meanwhile, we move the pointer to the active NN to
the cache for future use. When a flow finishes, e.g., by receiving
TCP FIN packet, we remove it from the cache. We also set up a
timeout mechanism to remove inactive records. Each NN maintains
a reference count starting from 0. The counter increases when we
cache a NN’s pointer and decreases up on removal of a pointer. A
NN module can be removed from the kernel space only when the
reference count reaches 0.

4 Implementation
We provide a hybrid implementation of LiteFlow, which contains
both userspace and kernel-space implementations.
4.1 Userspace Implementation
The userspace implementation of LiteFlow provides a set of Python
interfaces for users to implement. It further provides a service to
accept a user-defined Python class that implements those inter-
faces. By allowing users to implement the interfaces, LiteFlow is
not tightly coupled with any deep learning or reinforcement learn-
ing frameworks, therefore, LiteFlow users can use their preferred
frameworks to optimize the NNs. Moreover, by providing these
standard APIs, LiteFlow can flexibly support new NN-based algo-
rithms (additional implementation efforts may be needed for a new
input collector & output enforcer module and we will discuss it
later). Specifically, these interfaces are:
• NN Freezing Interface: The interface is used by LiteFlow to
generate the NN snapshot (§3.1). To implement the interface,
users should save the model and return the path to the saved
model.

• NN Evaluation Interface: This interface is used to evaluate the
NN synchronization (§3.3). The interface requires LiteFlow users
to realize two functions: (1) returning the stability value, e.g.,
training loss. LiteFlow monitors the value for some time to deter-
mine if the online adaptation converges, i.e., the value changes
in a small range; (2) calculating the output of the userspace-
deployedNNwhen given a set of input data. LiteFlow’s userspace
service further communicates with the LiteFlow kernel-space

module (more details in the next section) to calculate the fidelity
loss of the NN snapshot.

• NN Online Adaptation Interface: This interface is used to
enable online adaptation for NNs in the slow path (§3.2). To
implement the interface, LiteFlow users have to include the
scripts/programs to tune the NNs. As discussed above, users can
leverage any deep learning frameworks, e.g., TensorFlow [10],
or reinforcement learning utilities, e.g., GYM [19], to implement
model tuning logics.
After receiving the user-defined Python class, LiteFlow’s

userspace service first invokes the NN Freezing Interface to obtain a
saved NN. Then LiteFlow further leverages TensorFlow Lite [10] to
quantize the NN, and generates the snapshot to be deployed in the
kernel-space fast path. Second, it fetches data from kernel space in
a batch mode via netlink and invokes NN Online Adaptation Inter-
face to tune the userspace-deployed NN. After each training batch,
LiteFlow further invokes the NN Evaluation Interface to determine
if the snapshot needs updating based on both the correctness and
necessity metrics.
4.2 Kernel-space Implementation
LiteFlow is implemented with Linux kernel v4.15.0. As one of Lite-
Flow’s design goals is to be generic to support adaptive NNs for
various datapath functions, we follow the modularization principle
to design LiteFlow’s kernel-space components. Figure 10 shows how
LiteFlow is divided into different modules and we will introduce
each module in the following sections.
LiteFlow Core Module: This module realizes 4 major functions.
The first function is LiteFlow’s core logic, including NN evaluation
and updating logics discussed in §3.3 and §3.4. Second, it imple-
ments a NN manager. The NN manager uses a linked list to manip-
ulate all installed NN snapshots. It provides lf_register_model
API to install new snapshots. The third function is to implement
the collector & enforcer manager to integrate NNs with different
datapath functions (will be introduced later). Finally, LiteFlow core
module provides a unified inference interface lf_query_model for
other kernel-space modules to use the NN. Table 1 summaries the
APIs provided by the LiteFlow core module.
LiteFlow Netlink Server Module: This module is registered
with kernel-space netlink subsystem to communicate with the
LiteFlow userspace service. Two types of messages are transferred
through this netlink channel: (1) the newly-collected data for
online adaptation, and (2) the output of the NN snapshot when
given a set of input data for necessity evaluation.
NN Module: Each NN snapshot is a separate kernel module. As
discussed in §3.1, LiteFlow generates kernel-space implementation
of the snapshot and invokes GCC to compile it into a kernel mod-
ule (.ko file). LiteFlow userspace service invokes insmod system
call to install the module. In the initial function of the module, we
have to invoke the lf_register_model to register the NN with
the LiteFlow core module. During the registration, we need to tell
LiteFlow the input and output size of the NN. Worth mentioning,
all code of this module is automatically generated by LiteFlow.
Input Collector &Output Enforcer: To support various datapath
functions, LiteFlow should give the flexibility to integrate adaptive
NNs with different datapath functions. Therefore, LiteFlow requires

LiteFlow: Towards High-performance Adaptive Neural Networks for Kernel Datapath SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

LiteFlow Userspace Service

LiteFlow Netlink Server Module

Netlink Client

LiteFlow Core Module

Kernel Datapath

Input Collector Output Enforcer

Collector & Enforcer Manager

NN Manager

dataflow control flow

NN
Module

…

register

LiteFlow Core Logic

NN
Module

Userspace

Kernel-space

NN
Module

Figure 10: The principle of LiteFlow’s kernel-space imple-
mentation is modularization.

users to implement their own data collection (e.g., collecting ECN
bytes, TCP status, etc.) and output enforcement logics (e.g., setting
the congestion window, flow priority, etc., based on the output of
the NN) in kernel datapath. Users can use lf_register_io and
lf_unregister_io APIs to dynamically add or remove data collec-
tion and output enforcement modules. Furthermore, the API will
check whether the required input and output size of NN in these
user-defined modules are consistent with the installed NN. In this
paper, we have implemented three such modules:
• LiteFlowCongestionControlModule:Themodule is plugged
into the Linux kernel networking stack as a customized CC
algorithm. Each time it receives an ACK, the module collects
congestion signals, such as average throughput, etc., and uses
a NN to predict the target sending rate. To enforce the sending
rate in the datapath, the module performs flow pacing by setting
the sk_pacing_rate property.

• LiteFlow Flow Scheduling Module: The module is plugged
into the Linux netfilter subsystem to modify the outbound traffic.
It collects metrics such as flow gap, flow start time, etc., and uses
a NN for flow size prediction. It further tags priority to packets
based on the prediction results [16].

• LiteFlow Path Selection Module: The module is integrated
with XPath [35] for explicit path control. It collects congestion
signals, such as ECN bytes, smoothed RTT, etc., and uses a NN
for path selection. It further leverages explicit path control to
enforce path selection.
Next, we discuss how LiteFlow can support new NN-based algo-

rithms. On one hand, LiteFlow has already provided the above 3
modules, which offer some commonly-used features. For example,
for CC, LiteFlow Congestion Control Module can collect signals
including average throughput, average latency, and latency gradi-
ent, which are used by existing works [38, 47]. The module further
collects ACKed bytes, ECN bytes, and other CC metrics for future
use. If the input features required by the new NN-based algorithms
are already provided by our modules, LiteFlow users can directly
use these modules. On the other hand, if LiteFlow users need fea-
tures beyond our modules or they aim to optimize new datapath
functions, e.g., queue discipline, they need to develop their own

API Definition

lf_register_model Register a new NN snapshot to LiteFlow

lf_register_io Register a new input/output module to LiteFlow
lf_unregister_io Unregister an input/output module from LiteFlow

lf_query_model Unified inference interface

Table 1: API of LiteFlow core module.
input collector & output enforcer modules. Specifically, they have
to build a new kernel module, in which they collect their required
features as a vector and then use LiteFlow’s API lf_query_model
for inference. Meanwhile, they have to implement the logic to
enforce the output of the inference to the datapath as well. How-
ever, developing a new input collector & output enforcer requires
extensive domain knowledge and involves complex kernel-space
programming, which remains a challenge for LiteFlow.

5 LiteFlow Applications
To showcase LiteFlow can enable high-performance adaptive
NNs for kernel datapath, we use it to optimize 3 popular dat-
apath functions with 4 different NNs and evaluate their perfor-
mance. Please note that we mainly compare LiteFlow with prior
works [38, 47, 48, 55] which all adopt userspace NN deployment. We
do not compare LiteFlow with pure kernel-space NN deployment
due to the significant performance degradation as discussed in §2.3,
which makes it an impractical solution.
5.1 LiteFlow for Congestion Control
Congestion control (CC) is among the most important network
functions. The CC function collects congestion signals, such as
RTT, ECN bytes, etc., as the input of the NN, and performs NN
inference to obtain the output of the NN — the sending rate of the
flow. The sending rate will be further enforced to control the speed
of the flow to mitigate network congestion. Moreover, the NN can
continuously learn and adapt to the network dynamics to tune itself
for better CC in the future. The evaluated NNs are as follows:
• Aurora: Aurora uses a reinforcement learning algorithm and
builds a NN with two hidden fully-connected layers with 32 and
16 neutrons respectively [38]. Aurora extends GYM [19] to build
a Python-based networking simulator for NN training and online
adaptation. We use Aurora’s original code for evaluation [1].

• MOCC:MOCC uses multi-objective reinforcement learning and
builds a NN with two hidden fully-connected layers with 64 and
32 neutrons respectively [47]. It improves Aurora’s design to
adding the multi-objective feature, which shows better perfor-
mance over Aurora.
We use LiteFlow to enable both Aurora (LF-Aurora) and

MOCC (LF-MOCC) in kernel datapath, and also use LiteFlow Con-
gestion Control Module introduced in §4 to integrate the NNs with
the kernel datapath. We use the testbed from §2.2.
Schemes Compared: We mainly compare LF-Aurora and LF-
MOCC with (1) pure userspace deployment of these NNs and (2)
traditional CC algorithms in the kernel space. For pure userspace
deployment, we use Congestion Control Plane (CCP) [48] to deploy
the NNs, i.e., CCP-Aurora, and CCP-MOCC. CCP requires frequent
cross-space communication, and in our evaluation, we vary the
communication interval from per-ACK to per-100ms. For traditional
CC algorithms in the kernel space, we choose CUBIC [33] and
BBR [20] for evaluation.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

820.43 851.16 810.10

672.08
620.65

585.17

840.39 790.12 782.60 672.12

Figure 11: [Congestion Control] Compared to userspace-
deployed NNs, LF-Aurora and LF-MOCC can achieve better
and more stable flow goodput.

0 10 20 30 40 50 60
0

500

1000

Figure 12: [Congestion Control] LF-Aurora and LF-MOCC
can learn and adapt to the environmental dynamics.

Congestion Control Performance: In this experiment, we
mainly evaluate the performance of congestion control, i.e., how
well can LiteFlow handle network congestion using these NNs?
Note that we mainly compare different deployment mechanisms of
the same NN-based model instead of comparing different NN-based
algorithms and traditional heuristic algorithms. The testbed setting
is similar as §2.2, where we use netem to set the RTT to be 10ms. In
this experiment, we also set the receiver link to 1Gbps (via switch
configuration) and generate background UDP traffic (constant rate
at 0.1Gbps) to emulate congestion. Then, in each setting, we launch
one flow controlled by different schemes and measure its goodput.
The results are shown in Figure 11 and the error bar indicates the
standard deviation.

We make the following observations. First, flows controlled by
LF-Aurora and LF-MOCC achieve higher goodput than those con-
trolled by CCP-Aurora and CCP-MOCC. LF-Aurora and LF-MOCC
achieve comparable results to CCP-Aurora-ACK and CCP-MOCC-
ACK (we will show in Figure 13 that small intervals cause large
overhead) and largely outperforms CCP-Aurora-100ms and CCP-
MOCC-100ms by up to 44.4% (from 845.12Mbps to 585.17Mbps)
and 26.6% (from 851.16Mbps to 672.12Mbps) respectively. Second,
the standard deviation of goodput achieved by LF-Aurora and LF-
MOCC is much smaller than CCP-Aurora and CCP-MOCC with
large communication intervals. The experiment results show that
by eliminating the cross-space communication, LiteFlow makes
the NNs more responsive, thus leading to better and more stable
performance than userspace-deployed NNs.
Online Adaptation: In this experiment, we mainly evaluate how
LiteFlow with these NNs can adapt to environmental dynamics.
We use a similar setting in §2.3. We also disable the NN adaptation
function of LiteFlow for comparison (LF-Aurora-N-O-A). Figure 12
shows the results.

Compared to LF-Aurora-N-O-A, which has a dramatic goodput
drop when the environment changes, LF-Aurora and LF-MOCC

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 13: [Congestion Control] LF-Aurora and LF-MOCC
suffer frommuch lower overhead than CCP-Aurora and CCP-
MOCC, and achieves comparable overhead as pure kernel-
space implementations.

can learn and adapt to such dynamics, thus achieving significantly
better goodput. Furthermore, LF-MOCC achieves a faster adaptation
speed (less than 10 minutes) than LF-Aurora (around 13 minutes),
which shows a similar trend as that in the MOCC paper [47].

The experiment results show that by enabling online adaptation,
even with batched data, LiteFlow allows the NNs to efficiently learn
and adapt to the environmental dynamics.
Overhead: We launch 𝑁 concurrent flows in one experiment
in a non-congested environment (𝑁 = 2, 4, 6, 8, 10). In different
experiments, flows are controlled by different schemes. We measure
the aggregated throughput of the network to denote the overhead
caused by these NNs. As a baseline, we also launch flows controlled
by BBR and CUBIC respectively, both implemented in kernel space.
Figure 13 shows the results, and all results are normalized to the
aggregated throughput achieved by BBR. Here we use normalized
values to highlight the throughput loss.

We have two observations. First, LF-Aurora and LF-MOCC
achieve comparable performance to kernel BBR (the performance
loss is <5%) and outperform CUBIC by 17.5%. The reason why those
NN-based solutions can even outperform CUBIC, a pure kernel
implementation, is that these NNs are actually less complicated
than CUBIC in which the complex CUBIC function needs to be
calculated. Second, LF-Aurora and LF-MOCC largely outperform
CCP-Aurora and CCP-MOCC by up to 63.5%. These experimental
results show that by eliminating the overhead caused by cross-
space communication, LiteFlow with NNs can achieve comparable
performance to pure kernel-space implementations.
Batch Data Delivery Interval: To understand how the batch
data delivery interval 𝑇 affects the performance of LiteFlow, we
further perform a micro-benchmark experiment with LF-Aurora.
We choose different parameters and measure (1) the overhead of
LiteFlow using mpstatwhen launching 10 concurrent flows (similar
to §2.2) and (2) the average goodput of a single flow (the setting is
similar to the previous online adaptation experiment). The result is
shown in Figure 14.

We observe that when the batch data delivery interval is set be-
tween 100ms and 1000ms, the overhead, i.e., the software interrupt
time over total CPU execution time, is within ∼ 14.1%, achieving
similar results as pure kernel CC implementation (∼ 12.6%). Further-
more, the goodput of a flow is not compromised. This experiment
confirms that with a proper batch data delivery interval, LiteFlow

LiteFlow: Towards High-performance Adaptive Neural Networks for Kernel Datapath SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Figure 14: [Congestion Control] Micro-benchmark experi-
ment of how batch data delivery interval affects the perfor-
mance (N-O-A denotes no online adaptation).

can reduce the overhead caused by existing user-space NN deploy-
ment mechanisms without compromising the NN performance.
High Throughput & Low Latency: Please note that all the
above 4 experiments are performed in a network configuration
with ∼10ms RTT. Readers may wonder how LiteFlow performs in
high throughput & low latency environments, such as DCN. In this
experiment, we stop using netem for extra latency which creates
a high throughput & low latency setting. We have tried to tune
Aurora to fit in this setting, but unfortunately, we fail to make Au-
rora achieve high throughput. Therefore, we create a dummy case,
where the NN has the same structure as Aurora but always sets the
sending rate to the line rate by modifying the code generated by
LiteFlow (LF-Dummy-NN). We launch 𝑁 concurrent flows in one
experiment in a non-congested environment (𝑁 = 2, 4, 6) and mea-
sure the aggregated throughput. Due to space limitation, we omit
the detail results and only present the summary: LF-Dummy-NN
can achieve as high throughput as pure kernel-space BBR, where
the performance degradation is within 5%.

5.2 LiteFlow for Flow Scheduling
Flow scheduling is employed to complete flows quickly and/or
to meet deadlines [22]. Most flow scheduling algorithms assume
the flow size is known, while it is not practical in most cases [17].
Recently, people begin to use learning-based solutions to predict
the flow size to achieve better flow scheduling [55]. We choose
one of such solutions to evaluate how LiteFlow can improve flow
scheduling.
FFNN: FFNN is a feed-forward neural network used to predict flow
size in FLUX [55]. FFNN has 2 hidden layers with a ReLU activation
function. Each hidden layer has 5 neutrons. We use LiteFlow to
enable FFNN (LF-FFNN) in kernel datapath, and also use LiteFlow
Flow Scheduling Module introduced in §4 to integrate the NN with
the kernel datapath.
Schemes Compared: We mainly compare LF-FFNN with pure
user-space inference solutions. We deploy FFNN with Tensor-
Flow [10] in user space and implements a cross-space commu-
nication method to pass the predicted priority to kernel space and
use a kernel module similar to LiteFlow flow scheduling module
to tag priority. The kernel module also collects metrics needed by
the FFNN and sends it back to the user-space deployed NN for
inference.

To make the comparison comprehensive, we implement the com-
munication in two different ways: one is to use char device (char-
FFNN), the other is to use netlink (netlink-FFNN). We also disable
the online adaptation for LF-FFNN for evaluation (LF-FFNN-N-O-
A).

0 5 10 15 20
0

0.5

1

Figure 15: [Flow Scheduling] LF-FFNN can achieve the lower-
est end-to-end latency when predicating flow size.

Figure 16: [Flow Scheduling] LF-FFNN can largely outper-
form other schemes due to its fast predication speed and
online adaptation capability.

Experiment Settings & Methodology: As flow scheduling usu-
ally needs large-scale testbed with advanced switch hardware, we
use both testbed and simulator-based experiments in this section.
We first measure the prediction latency of LF-FFNN, char-FFNN,
and netlink-FFNN on our testbed. Second, we encode the inference
latency in our simulator. For LF-FFNN, we use ns3-gym [7, 62]
to further allow NN to adapt to the changing environment. The
simulated topology is a 2×2 spine-leaf topology with 32 servers.
We use DCTCP [15] as our CC algorithm. The workload we use is
also from the DCTCP paper.
Predication Latency: First, we measure the prediction latency of
the three mechanisms on our testbed, and Figure 15 shows the CDF
of measured latency. The average inference latency of LF-FFNN is
around 2.19𝜇s, which is 49.5% smaller than char-FFNN (4.34𝜇s) and
73.6% smaller than netlink-FFNN (8.09𝜇s). Moreover, the prediction
latency of LF-FFNN is more stable than userspace deployed NN. The
results demonstrate that LiteFlow can largely reduce the predication
latency by eliminating the cross-space communication. We will
show subsequently that the fast inference can eventually result in
better flow completion time (FCT).
Flow Completion Time: We further evaluate how LiteFlow with
FFNN performs in large-scale networks through simulated exper-
iments. In this experiment, we launch ∼ 4000 flows and measure
their FCT. The results are shown in Figure 16 (the Y-axis is in log
scale). We further break the results into FCT of short flows (<10KB),
middle flows (10-100KB), and long flows (>10KB).

We mainly make two observations. First, LF-FFNN can largely
outperform the other two userspace-deployed solutions in all cases.
Particular, LF-FFNN outperforms char-FFNN by 10.9% for short
flows (377𝜇s vs 423𝜇s) and 33.7% for long flows (60232𝜇s vs 90823𝜇s).
The results show that by reducing the prediction latency, LiteFlow
can benefit flow scheduling applications in a large-scale environ-
ment. Second, LF-FFNN can outperform LF-FFNN-N-O-A by 6.0%
for short flows (377𝜇s vs 401𝜇s) and 23.0% for large flows (60232𝜇s

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

Figure 17: [Load Balancing] LF-MLP can outperform other
schemes in supporting load balancing function.

vs 78201𝜇s). The results further demonstrate that by enabling on-
line adaptation, LiteFlow is well suited for optimizing datapath
functions in a large-scale deployment full of dynamics.

5.3 LiteFlow for Load Balancing
Load balancing is critical for data centers with multiple paths to
deliver high throughput and low latency. Researchers have started
to leverage NNs at end hosts to intelligently and adaptively select
paths to optimize the traffic load among all available paths [57, 60].
In this section, we design a multi-layer perceptron model (MLP) for
traffic load balancing and evaluate it with LiteFlow to see how can
LiteFlow improve the NN-based load balancing function.
MLP: MLP model has 2 hidden layers with a ReLU activation func-
tion, and each layer has 12 neutrons. We use supervised learning
to optimize the MLP model and the model is optimized for better
flow completion time.

We develop and train the MLP model with TensorFlow [10]. We
use LiteFlow to enable MLP (LF-MLP) in kernel datapath, and also
use LiteFlow Path Selection Module introduced in §4 to integrate
the NN with the kernel datapath.
Schemes Compared: Similarly, we design a user-space deploy-
ment of MLP model via char device (char-MLP) as §5.2. Further-
more, we also disable the online adaptation feature of LiteFlow for
comparison (LF-MLP-N-O-A). We also use ECMP [34] as a baseline.
Experiment Settings: We use a 2×2 spine-leaf topology with 8
servers. We use DCTCP [15] as our CC algorithm. We also use the
web search traffic workload mentioned in the DCTCP paper for
evaluation.
Experiment Results: We mainly measure the FCT of different
schemes and the results are shown in Figure 17 (the Y-axis is in log
scale). Similarly, we also break the results into FCT of short flows,
middle flows, and long flows.

We make the following three observations. First, LF-MLP
can largely outperform other schemes. It outperforms userspace-
deployed MLP, i.e., char-MLP, by 34.3% (278𝜇s vs 423𝜇s) on short
flows and 56.7% (12922𝜇s vs 29812𝜇s) on long flows. Second, to
our surprise, char-MLP even performs worse than the naive load
balancing scheme, ECMP. We believe the reason is that char-MLP
suffers from increasingly large overhead caused by cross-space
communication which leads to severe datapath performance degra-
dation. Third, LF-MLP can perform better than LF-MLP-N-O-A,
which again confirms that it is crucial for NNs to learn and adapt to
the environment to deliver superb performance in the networking
context.

6 Related Works
Userspace-deployed NNs: Recently, NNs have been extensively
used to optimize networking datapath functions since they can
learn and adapt to environmental variations, making them ideal
solutions in networking environment which is full of dynamics.
NNs have been used in CC [11, 38, 47], packet classification [46,
51], packet forwarding & routing [56], scheduling [23, 55], load
balancing [57, 60], etc. Various frameworks are designed to deploy
these adaptive NNs in the userspace [10, 24, 25, 50]. An easy way to
integrate the NNs with kernel-space datapath is using tools such as
CCP [48]. However, these userspace-deployed adaptive NNs suffer
from performance degradation as discussed in §2.2.
Lightweight NNs for Inference: Converting a NN into a light-
weight one has been a mature technology to achieve efficient NN
inference. Specially, in the embedded system/hardware accelerator
context, integer quantization [28, 37, 42] has been used to opti-
mize NN inference on low-power IoT devices [9, 43], FPGA [12],
GPU [32, 40] and SmartNICs [54]. Moreover, in the networking com-
munity, NuevoMatch proposes to convert a NN into a C/C++-based
decision tree for efficient execution [51]. While we can leverage
these lightweight NNs to deploy the NN in kernel-space for effi-
cient inference, they cannot react to environmental dynamics, thus
causing suboptimal performance as discussed in §2.3.
Kernel-space Deployment of both Model Training & Infer-
ence: KMLib [14] targets at building a complete NN training and
inference library directly in the kernel space. However, to sup-
port these functions, it has to sacrifices NN accuracy by utilizing
low-precision model training [36]. Furthermore, using SIMD/FP
instructions further degrades the performance as discussed in §2.3.
Worth-mentioning, although KMLib can work in a decouplingmode
which is similar to LiteFlow, it does not explore the challenges
behind such decoupling design. Therefore, it is impractical to be
deployed to optimize kernel-space datapath functions.
Online Adaptation: Online adaptation, i.e., online machine learn-
ing, presents a set of machine learning algorithms that can optimize
NNs over a stream of sequential data [21, 52, 63]. In the networking
context, online adaptation is also widely adopted [23, 38, 55–57, 60].
However, lack of an efficient deployment mechanism leads to rare
adoption of these adaptive NNs in the production environment.

7 Conclusion
This paper proposed LiteFlow, a hybrid solution to enable high-
performance adaptive NNs for kernel datapath functions. Experi-
ment results with 3 popular datapath functions have demonstrated
that LiteFlow is a viable solution for achieving its design goals.

Acknowledgments
We thank the anonymous SIGCOMM reviewers and our shepherd
Prof. Ahmed Saeed for their constructive feedback and suggestions.
This work is supported in part by the Key-Area Research and Devel-
opment Program of Guangdong Province (2021B0101400001), the
Hong Kong RGC TRS T41-603/20-R, GRF-16215119, GRF-16213621,
and the NSFCGrant 62062005. Kai Chen is the corresponding author.

LiteFlow: Towards High-performance Adaptive Neural Networks for Kernel Datapath SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

References
[1] 2020. Aurora Codebase. https://github.com/PCCproject/PCC-RL. (2020).
[2] 2020. GCC, the GNU Compiler Collection. https://gcc.gnu.org. (2020).
[3] 2020. Linux Kernel v4.1.5. https://lwn.net/Articles/654091/. (2020).
[4] 2020. Mellanox SN2100 Switch. https://www.mellanox.com/products/ethernet-

switches/sn2000. (2020).
[5] 2020. mpstat. https://man7.org/linux/man-pages/man1/mpstat.1.html. (2020).
[6] 2020. netem. https://man7.org/linux/man-pages/man8/tc-netem.8.html. (2020).
[7] 2020. ns3-gym. https://www.nsnam.org/news/2018/12/07/ns3-gym-app.html.

(2020).
[8] 2020. Python Jinja. https://jinja.palletsprojects.com/en/3.0.x. (2020).
[9] 2022. Neural Network Optimization with AIMET. https://

developer.qualcomm.com/blog/neural-network-optimization-aimet. (2022).
[10] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In USENIX OSDI.

[11] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic meets mod-
ern: a pragmatic learning-based congestion control for the internet. In ACM
SIGCOMM.

[12] Mohamed S Abdelfattah, David Han, Andrew Bitar, Roberto DiCecco, Shane
O’Connell, Nitika Shanker, Joseph Chu, Ian Prins, Joshua Fender, Andrew C
Ling, et al. 2018. DLA: Compiler and FPGA overlay for neural network inference
acceleration. In IEEE FPL.

[13] Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. 2017. Net-
trim: Convex pruning of deep neural networks with performance guarantee. In
NeurIPS.

[14] Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok. 2020. KMLIB: To-
wards Machine Learning for Operating Systems. In Proceedings of the On-Device
Intelligence Workshop, co-located with the MLSys Conference.

[15] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
center tcp (dctcp). In ACM SIGCOMM.

[16] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-
center transport. In ACM SIGCOMM.

[17] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.
Information-agnostic flow scheduling for commodity data centers. In USENIX
NSDI.

[18] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.
In COMPSTAT. 177–186.

[19] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[20] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-based congestion control. ACM Queue 14,
5 (2016), 20–53.

[21] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games.
Cambridge university press.

[22] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. 2016. Scheduling mix-
flows in commodity datacenters with karuna. In ACM SIGCOMM.

[23] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimization. In
ACM SIGCOMM.

[24] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[25] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system. In
USENIX NSDI.

[26] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In USENIX NSDI.

[27] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller.
2021. BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack
Processing.. In USENIX NSDI.

[28] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. 2021. A survey of quantization methods for efficient neural network
inference. arXiv preprint arXiv:2103.13630 (2021).

[29] Thomas G Goodwillie. 2003. Calculus iii: Taylor series. Geometry & Topology 7,
2 (2003), 645–711.

[30] Yunhong Gu and Robert L Grossman. 2007. UDT: UDP-based data transfer for
high-speed wide area networks. Computer Networks 51, 7 (2007), 1777–1799.

[31] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and
Huazhong Yang. 2016. From model to FPGA: Software-hardware co-design for
efficient neural network acceleration. In IEEE Hot Chips.

[32] Saransh Gupta, Mohsen Imani, Harveen Kaur, and Tajana Simunic Rosing. 2019.
Nnpim: A processing in-memory architecture for neural network acceleration.
IEEE Trans. Comput. 68, 9 (2019), 1325–1337.

[33] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[34] Christian Hopps et al. 2000. Analysis of an equal-cost multi-path algorithm.
Technical Report. RFC 2992, November.

[35] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, Hao Wang, Hongze Zhao,
and Chuanxiong Guo. 2015. Explicit path control in commodity data centers:
Design and applications. In USENIX NSDI.

[36] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[37] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
IEEE CVPR.

[38] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
2019. A deep reinforcement learning perspective on internet congestion control.
In ICML.

[39] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center traffic: measurements & analysis. In
ACM IMC.

[40] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo Kim.
2019. 𝜇layer: Low latency on-device inference using cooperative single-layer
acceleration and processor-friendly quantization. In EuroSys.

[41] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[42] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342 (2018).

[43] Aayan Kumar, Vivek Seshadri, and Rahul Sharma. 2020. Shiftry: RNN inference
in 2kb of RAM. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[44] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In ACM
SIGCOMM.

[45] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M Swift, and TV Lakshman. 2017. UNO: Uniflying host and smart NIC
offload for flexible packet processing. In SoCC.

[46] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet classification.
In ACM SIGCOMM.

[47] Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai Chen, and
Xin Jin. 2022. Multi-Objective Congestion Control. In ACM EuroSys.

[48] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring endpoint congestion control. In ACM SIGCOMM.

[49] John Ousterhout. 2021. A linux kernel implementation of the homa transport
protocol. In USENIX ATC 21.

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS.

[51] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A Computational
Approach to Packet Classification. In ACM SIGCOMM.

[52] Doyen SAHOO, Hong Quang PHAM, Jing LU, and Steven CH HOI. 2018. Online
deep learning: Learning deep neural networks on the fly. In IJCAI.

[53] Peter Jay Salzman, Michael Burian, and Ori Pomerantz. 2007. The linux kernel
module programming guide. (2007).

[54] Giuseppe Siracusano, Davide Sanvito, Salvator Galea, and Roberto Bifulco. 2018.
Deep learning inference on commodity network interface cards. In NeurIPS.

[55] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida, Ce Zhang,
and Ankit Singla. 2019. Is advance knowledge of flow sizes a plausible assump-
tion?. In USENIX NSDI.

[56] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning
to route. In ACM HotNets.

[57] S. WilsonPrakash and P. Deepalakshmi. 2019. Artificial Neural Network Based
Load Balancing On Software Defined Networking. In INCOS.

[58] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and Anirudh
Sivaraman. 2021. Synthesizing Safe and Efficient Kernel Extensions for Packet
Processing. In ACM SIGCOMM.

[59] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip
Levis, and Keith Winstein. 2018. Pantheon: the training ground for Internet
congestion-control research. In USENIX ATC.

[60] Haipeng Yao, Xin Yuan, Peiying Zhang, Jingjing Wang, Chunxiao Jiang, and
Mohsen Guizani. 2019. A Machine Learning Approach of Load Balance Routing

https://github.com/PCCproject/PCC-RL
https://gcc.gnu.org
https://lwn.net/Articles/654091/
https://www.mellanox.com/products/ethernet-switches/sn2000
https://www.mellanox.com/products/ethernet-switches/sn2000
https://man7.org/linux/man-pages/man1/mpstat.1.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.nsnam.org/news/2018/12/07/ns3-gym-app.html
https://jinja.palletsprojects.com/en/3.0.x
https://developer.qualcomm.com/blog/neural-network-optimization-aimet
https://developer.qualcomm.com/blog/neural-network-optimization-aimet

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai Chen

to Support Next-Generation Wireless Networks. In IWCMC.
[61] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.

Resilient datacenter load balancing in the wild. In ACM SIGCOMM.
[62] Junxue Zhang, Wei Bai, and Kai Chen. 2019. Enabling ECN for datacenter

networks with RTT variations. In ACM CoNEXT.
[63] Martin Zinkevich. 2003. Online convex programming and generalized infinitesi-

mal gradient ascent. In ICML.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Adaptive Neural Networks for Kernel Datapath Functions
	2.2 Performance Penalty
	2.3 What about Adaptive Neural Networks Direct in Kernel-space Datapath?

	3 LiteFlow
	3.1 NN Snapshot Generation
	3.2 Online Adaptation
	3.3 NN Synchronization Evaluation
	3.4 NN Snapshot Update

	4 Implementation
	4.1 Userspace Implementation
	4.2 Kernel-space Implementation

	5 LiteFlow Applications
	5.1 LiteFlow for Congestion Control
	5.2 LiteFlow for Flow Scheduling
	5.3 LiteFlow for Load Balancing

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

