
Congestion Control for AI Workloads with Message-Level
Signaling

Yuxuan Li
Hong Kong University of Science and

Technology
Hong Kong, China

ylisn@connect.ust.hk

Zhenghang Ren
Hong Kong University of Science and

Technology
Hong Kong, China
zrenak@cse.ust.hk

Wenxue Li
Hong Kong University of Science and

Technology
Hong Kong, China

wlicv@connect.ust.hk

Xiangzhou Liu
Hong Kong University of Science and

Technology
Hong Kong, China

xliugg@connect.ust.hk

Kai Chen
Hong Kong University of Science and

Technology
Hong Kong, China
kaichen@cse.ust.hk

Abstract
Large-scale AI training is among the most demanding workloads in
datacenter networks. The unique characteristics of low flow entropy
exacerbate flow collisions under traditional Equal-Cost-Multi-Path
(ECMP) Load Balance (LB). To mitigate these issues, per-packet LB
mechanisms, such as packet spraying and adaptive routing, emerge
as a promising alternative to eliminate flow collisions. However,
since per-packet LB inherently rebalances traffic to absorb par-
tial congestion, existing Congestion Control (CC) algorithms over-
look this behavior and overreact to per-packet congestion signals
which only reflect individual path congestion rather than conges-
tion across multiple paths. Consequently, this overreaction leads to
unnecessary rate reductions, resulting in throughput degradation
in model training processes.

To tackle the incompatibility between current CC and per-packet
LB, we propose using message-level signals as a more accurate alter-
native to capture congestion across multiple paths. The key idea is
to leverage message delays rather than solely relying on per-packet
delays to better capture the global congestion state. Based on these
signals, we build MCC, a congestion control mechanism that is
compatible with per-packet LB for AI workloads. Specifically, MCC
adopts a window-based approach and reduces in-flight data only
when the global pipe is congested. Furthermore, considering the
challenges related to hardware programmability and compatibility,
MCC adopts a software-based approach to control traffic in collec-
tive communication libraries (CCLs), achieving both the efficiency
and independence of the NIC hardware. Our simulation results
demonstrate that MCC effectively alleviates congestion without
overreaction in collective communication operations.

CCS Concepts
• Networks→ Transport protocols.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

APNET 2025, Shang Hai, China
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1401-6/25/08
https://doi.org/10.1145/3735358.3735378

Keywords
Datacenter Networks, Congestion Control
ACM Reference Format:
Yuxuan Li, Zhenghang Ren, Wenxue Li, Xiangzhou Liu, and Kai Chen. 2025.
Congestion Control for AI Workloads with Message-Level Signaling. In
9th Asia-Pacific Workshop on Networking (APNET 2025), August 07–08, 2025,
Shang Hai, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3735358.3735378

1 Introduction
The growing scale of distributed AI training demands high-
throughput collective communication across tens of thousands
of GPUs, which has imposed significant pressure on the network in-
frastructure. However, traditional per-flow LB mechanisms, such as
ECMP, have been found insufficient for distributing AI workloads
due to flow collision problems [10]. These collisions not only re-
duce link utilization, but also impair AI communication throughput,
highlighting the need for finer-grained LB to fully utilize multiple
network paths for each flow. Therefore, per-packet LB techniques,
such as packet spraying [5] and Adaptive Routing (AR) [26], provide
promising solutions and effectively mitigate flow collision prob-
lems. They dynamically route packets across all available paths,
inherently has the ability to absorb internal congestion imbalances.

Although per-packet LB builds a promising foundation for AI
network transport, widely adopted CC mechanisms, such as DC-
QCN [28] are incompatible with per-packet LB and perform poorly
due to the following reasons:

• Congestion signals, such as Explicit Congestion Notification
(ECN) and packet Round-Trip Time (RTT), only represent
congestion on individual paths.

• The growing packet processing rate enforces coalescing
ACKs, preventing delay measurement on all packets and
identification of congestion across all paths.

• Traditional CCs overlook the dynamic rebalancing ability of
per-packet LB, thus often overreact to partial congestion on
individual paths.

In per-packet LB, packets within a network flow are dynamically
routed to multiple paths, and packets can be considered to traverse
a network pipe. However, the per-packet congestion signal only
reflects the congestion status of an individual path, failing to capture

https://orcid.org/0009-0003-9042-7285
https://orcid.org/0000-0002-8779-4768
https://orcid.org/0000-0002-8228-2552
https://orcid.org/0009-0000-2156-9683
https://orcid.org/0000-0003-2587-6028
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3735358.3735378
https://doi.org/10.1145/3735358.3735378
https://doi.org/10.1145/3735358.3735378


APNET 2025, August 07–08, 2025, Shang Hai, China Y. Li, et al.

the overall congestion of the network pipe. Moreover, per-packet
signals highly fluctuate as the degrees of congestion across paths
are different, making it difficult for CC algorithms to distinguish
transient local congestion on individual paths from real congestion
on multiple routes. As a result, when congestion arises on one path
while others remain uncongested, CC algorithms misinterpret it
as global congestion and slow down, leading to unnecessary rate
reductions and ultimately degrading overall throughput.

Moreover, the real-world network bandwidths across links are
intrinsically asymmetric and have imbalanced topology [2, 22, 23].
For instance, in networks with heterogeneous switch components,
imbalanced striping [27] occurs when the uplink number on a
switch is not an integer multiple of the total number of upper-
layer switches, thus inherently resulting in network asymmetry.
Additionally, link failures [11] are well-documented issues, and
any link between two switches that goes down can lead to uneven
bandwidth distribution, exacerbating network imbalance. In such
asymmetric topologies, CC overreaction is unavoidable, forcing
existing AI training practices to disable CC [10, 17] and rely on
priority-based flow control (PFC) to avoid network buffer overflow,
which further brings issues such as network deadlock [12] and
head-of-line blocking [9, 19].

Facing invalid packet-level congestion signals, we pose a key
question: How can we properly interpret congestion signals and con-
trol congestion under per-packet LB for AI training workloads? In
this paper, we answer this question by proposing message-level
signaling for congestion control in AI workloads. Our key finding
is that messages are more accurate units when acting as congestion
signals in a multipath network with per-packet load balancing. As
messages are split into multiple paths, they are inherently resilient
to single path congestion. Additionally, with message-level signals
properly interpreting congestion states across paths, we can pre-
vent unnecessary slowdowns and overreactions, thus maintaining
high throughput for AI training processes.

Achieving a message-level congestion control, however, has a
key challenge that message-level congestion control contradicts
with existing hardware offloaded transport in Network Interface
Cards (NICs). Existing CC algorithms, such as DCQCN, control at
packet-level and are implemented in NICs to ensure high through-
put. While commercial NICs are mostly non-programmable, ex-
tending current CC to support message-level signals is impracti-
cable, and implementing a new CC approach at those NICs can
be quite challenging. Moreover, with heterogeneous NIC envi-
ronments becoming inevitable, industry experience shows that
incompatibilities in CC algorithms are a major cause of perfor-
mance degradation [4, 15]. These limitations motivate us to build
a NIC-independent congestion control that does not rely on the
programmability of NICs.

We propose MCC, a message-level congestion control for col-
lective communication in AI workloads. AI flows are originally
generated through CCLs, which partition data volume into mes-
sages and transmit them in a pipeline fashion. As this inherent
structure facilitates message-level signaling for coarser-grained
congestion control, we implement MCC in CCLs to ensure efficient
congestion management.

At its core, MCC measures message delay and expected delay
of sampled packets within messages to regulate the number of

in-flight messages. For delay measurement, MCC interacts with
existing collective communication modules, which decompose the
traffic as regular-sized messages. Since each message is composed
of multiple packets and travels through multiple paths, message-
level signals aggregate congestion information across the network
pipe, providing dense and comprehensive sampling of network-
wide congestion. By capturing overall congestion rather than tran-
sient fluctuations on individual paths, message-level signals pre-
vent misinterpretations caused by localized congestion. To better
accommodate AI workloads, MCC leverages concurrent flows and
interconnect topologies for fast window adjustment.

This paper makes the following contributions:
• We identify message-level signals as more accurate conges-
tion indicators for multipath networking than packet-level
signals.

• We proposeMCC as a prototype to handle message-level con-
gestion signals in typical distributed AI training workloads,
offering better compatibility with per-packet LB compared
to current CC.

• Our preliminary results show that MCC outperforms the two
de-facto congestion control standards, DCQCN and TIMELY,
by reducing latency by at least 16 percent and improving
throughput by 22 percent in collective communication.

2 Background
Per-packet LB has been recognized as a promising solution to over-
come drawbacks in traditional flow-based load balancing, such as
ECMP. We explain the advantages of per-packet LB over ECMP
and analyze how existing CC mechanisms fail to handle congestion
signals properly under per-packet LB.

2.1 Necessity of Per-Packet Load Balance
Traditional LB mechanisms, such as ECMP, suffer from flow-
collision problems during communication in distributed AI applica-
tions. The root cause is that collective communication in AI training
workloads features fewer, larger flows and low entropy [10, 13],
which downgrades the entire throughput once two flows collide on
the same path even when other paths are idle. Existing alternative
techniques, such as QP scaling [10, 20] and flowlet routing [6], fail
to eliminate the issue and low entropy persists in the communi-
cation pattern. Flowlet-based LB relies on flowlet gaps to trigger
path switching, but rate shaping utilized by RDMA [18] leads to a
continuous flow of packets with minimal and unstable time gaps,
resulting in generating uneven packet groups and flow skew, which
cannot fully solve low-entropy challenges. Scaling QP balances
loads by assigning multiple QPs with different UDP source ports
to a single flow, enabling the traffic to traverse through different
paths. However, in some cases, the entropy cannot increase as ex-
pected [10]. Moreover, QP scaling requires maintaining more queue
pairs simultaneously, posing more challenges in resource allocation.

To fully eliminate path collision, per-packet LB is necessary for
its ability to spray packets to multiple paths and its flexibility to
route packets based on local congestion. Consequently, load balanc-
ing at packet granularity is suitable and efficient for AI workloads
to overcome the low-entropy challenges and fully leverage all avail-
able network paths.



Congestion Control for AI Workloads with Message-Level Signaling APNET 2025, August 07–08, 2025, Shang Hai, China

LEAF-0

SPINE-1SPINE-0

LEAF-1

S1 S2 S3S0 S5 S6 S7S4

l2: 50Gbps

l1: 100Gbps

50Gbps

l2: 100Gbps

50Gbps 50Gbps 50Gbps

down

Figure 1: Asymmetric network topology with link speed
downgrade.

2.2 CC Inefficiency under Per-packet LB
With per-packet LB fully leveraging paths for each flow, per-packet
signaling, such as ECN, falls short of indicating network congestion
because it is generated from a single path, leading to overreactions
of existing CC mechanisms. To illustrate this, we consider DCQCN,
the CC algorithm commonly deployed at scale with per-packet
signals, and set up a simulation experiment in NS-3 with adaptive
routing and DCQCN. We also consider adaptive routing without
CC and only relying on PFC.

Due to the fact that link failures as well as imbalanced striping
are common in real deployments, the actual bandwidths across
links in the network are not symmetric, but have some links with
lower bandwidths. Thus, we conduct the experiments in asymmetric
topology as shown in Figure 1, all the links between the leaf and the
spine switches have 100Gbps bandwidth, except for 𝑙2 from leaf0
to spine1 obtains only 50Gbps due to link failure (one of the two
50Gbps uplinks fails). We set up 8 servers and each with 8 GPUs,
and simulate distributed training with Data Parallelism (DP) degree
2, Tensor Parallelism (TP) degree 8, and Pipeline Parallelism (PP)
degree 4, where 8 GPUs in the same server form a TP group, 4 GPUs
under the same leaf switch form PP groups, and 2 GPUs across
different spine switches form DP groups. Thus, we can observe
one DP AllReduce traffic from server 𝑆0, 𝑆1, 𝑆2, 𝑆3 to 𝑆4, 𝑆5, 𝑆6, 𝑆7,
respectively, during one iteration.

We experiment with three DP traffic sizes: 0.5 GB, 1 GB, and 2
GB. The corresponding Collective Completion Time (CCT) results
of DCQCN+AR, PFC+AR are shown in Figure 2. In each message
sending process, AR without CC assistance, i.e. PFC+AR, outper-
forms DCQCN+AR. The abnormal results provide evidence that
DCQCN performs overconservative rate control decisions, thus an
even more aggressive sending with frequent PFC can lead to lower
CCT. The overreaction of DCQCN can also be observed in Figure 3,
where we record the link utilization of 𝑙1 and 𝑙2 when performing
DCQCN+AR. The link downgrades are frequently triggered in both
links, leading to around 1.51x CCT delays that harm AI training
performance, and achieved normalized throughput still below 60
percent.

The main reason for such link downgrades and performance
degrades is that packet-level signaling in DCQCN only reflects con-
gestion in single links, thus making senders overreact to temporary
congestion without a global understanding of the whole network
pipe. To illustrate this, we explore the relationship between ECN
marking and link utilizations, as shown in Figure 3.

0.5GB 1GB 2GB
0

200

400

600

800

C
C

T
 (

m
s)

DCQCN+AR
PFC+AR

58.8

59.0

59.2

59.4

59.6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t 

(%
)

Normalized
Throughput

Figure 2: CCT and normalized throughput with three traffic
sizes in data parallel processing.

90 100 110 120
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 U
til

iz
at

io
n

l1 Utilization
l2 Utilization

0

2

4

6

8

EC
N

 S
ig

na
lin

g 
R

at
e 

(%
)

l1 ECN Rate
l2 ECN Rate

Figure 3: Link utilization and ECN marking rates of 𝑙1 and 𝑙2.

With adaptive routing, traffic from server 𝑆0 to 𝑆3 is distributed
to 𝑙1 and 𝑙2 according to local congestion states. While 𝑙2 has lower
available bandwidth, queues are quickly built up and reach the
ECN-mark threshold. Those per-packet ECN signals further trigger
receivers to send CNPs, thus servers 𝑆0 to 𝑆3 react by cutting down
sending rates in response to congestion signals. However, such ECN
marking only indicates congestion in 𝑙2, rather than that in 𝑙1. As
can be seen in Figure 3, it is obvious that the link downgrade in 𝑙1
has high relevance with frequent ECNmarking in 𝑙2, rather than the
ECN marks from itself. Thus, even though DCQCN rate deduction
alleviates congestion in 𝑙2, it also raises overreactions in 𝑙1, where
1 percent ECN signaling rate causes utilization to rapidly drop to
nearly 40 percent, causing downgrades in overall performance.

2.3 Opportunities from CCLs
As AI workloads are generally derived from CCLs, we found unique
features in CCLs can provide valuable opportunities to generate,
interpret, and leverage message-level congestion signals.
Chunk-based transport. In CCLs, initial messages are divided
into smaller message chunks, with each chunk associated with its
own Work Queue Element (WQE) and will be sequentially posted
to Send Queue (SQ) for NIC transmission. Since each chunk is
processed and transmitted independently, this mechanism allows
for message-level control that decides whether to send the next
chunk message. Moreover, as each message chunk typically sized
at 64KB that consists of several packets, it further supports the



APNET 2025, August 07–08, 2025, Shang Hai, China Y. Li, et al.

generation and reception of message-level congestion feedback,
thereby facilitating our message-level signaling CC algorithm.
Topology awareness and application demand perception.Dur-
ing initialization, CCLs detect system topology and identify avail-
able interconnect bandwidths, which will be used to set up com-
munication channels and further optimize communication. This
information can also be used to estimate in-flight capacity and prop-
erly interpret congestion signals for better controlling. Moreover,
the application-level requirements, for instance, the throughput
demands of AI training jobs, can also be perceived and utilized
to achieve CC fast recovery. Thus, the ability of CCLs to provide
valuable additional information can effectively enhance the CC
designs.
Mild incast. AI workloads are inherently resilient to incast prob-
lems as collective communication operations from CCLs are care-
fully designed and scheduled to avoid incast [7, 8, 13, 21]. For in-
stance, in an AlltoAll operation where all participants exchange
messages, CCLs schedule sending times to stagger arrivals at each
receiver. Moreover, recent work [17] carefully designs new CCL
for Mixure-of-Experts (MoE) training, which consists of substantial
AlltoAll operations, and significantly alleviates incast problems.
Therefore, when incast remains mild and fabric congestion can be
well-managed by per-packet LB, the network maintains a more
stable level of in-flight bytes. This stability allows CC mechanisms
to regulate in-flight data and leverage coarse-grained message-level
more effectively, preventing both excessive throttling and under-
utilization of bandwidth.

3 Message-level Congestion Signal
Existing CC mechanisms overreact to individual path congestion
in a network with per-packet LB. In contrast, MCC interprets con-
gestion signals on the message level and directly interacts with
AI application messages in collective communication. The regular-
sized messages and window-based in-flight message controlling
enable MCC to bypass NIC programmability limitations when im-
plementing congestion control.
Network pipe under per-packet LB. In multi-path transport with
per-packet LB, each switch node routes every packet to the least
congested port with adaptive routing. Thus, the network between
end hosts works as a pipe, and packets can take different paths in
this pipe from source to destination. However, under the network
pipe model, neither senders nor receivers know the actual paths
taken by each packet, as shown in Figure 4. Network congestion
happens in the following cases:

• Individual path congestion: some paths encounters link re-
duction or failures, causing asymmetric bandwidth across
links and port buffer build up.

• Global congestion: the aggregated ingress rate to a set of
ports has surpassed the total rate of the egress. For example,
global congestion may happen on a switch with oversub-
scribed upper links.

The global congestion is considered to be real congestion and
needs to slow down. And individual path congestion happens
mainly due to link failure and bandwidth cut-down that causes
temporary asymmetry in path throughput. Since congestion sig-
nals are path-agnostic, i.e., cannot notify end hosts about the path

Sender Receiver

Non-congested Paths, no ECN

Congested Paths, with ECN

Figure 4: Congestion signals on individual paths.

information, end hosts overreact to individual path congestion and
cut down sending rates, leading to underutilized links.
Message-level signals. To prevent overreaction in the congestion
of individual paths, we extract congestion information by mea-
suring the delay of messages and the delay of sampled packets
in messages. Different from packet-level signals that mislead end
hosts with individual path congestion and slow down on all routes,
message delays are determined by the delay of a sequence of pack-
ets that span across multiple paths, which can effectively reduce
the impact of individual path fluctuation. Moreover, we also cap-
ture and identify individual path congestion by sampling delays of
packets, and accordingly estimate the expected packet delay.

To support this design, MCC collects timestamps from NICs to
sample delays of packets in messages, which allows recording the
time when the packet is put into the wire or received from the
wire. With message-level signal carrying network pipe congestion
information, MCC smooths transient fluctuations caused by indi-
vidual path congestion and captures the global status of the entire
network pipe.
Signal interpretation.MCC interprets message delay and sampled
packet delay with target_msg_delay as well as target_max_delay.
The congestion is classified into three levels:

• Non-Congestion. If the message delay is less than tar-
get_msg_delay, and the sampled delays are less than tar-
get_max_delay, it indicates that the network pipe has suffi-
cient capacity to accommodate additional messages, allowing
senders to increase the congestion window and let AR to
switch route.

• Partial Congestion. When the message delay is lower than
target_msg_delay but the maximum sampled delay is larger
than target_max_delay, it means some paths exhibit conges-
tion while others remain underutilized. In this case, MCC
maintains the congestion window, leveraging AR’s inherent
ability to rebalance congestion by directing packets toward
less congested paths, thereby fully utilizing network capacity
without wasting bandwidth on non-congested paths.

• Global Congestion. In the case where the message delay is
larger than target_msg_delay, it indicates severe congestion
where all paths are saturated, and the entire network pipe is
congested.

4 Efficient Message-level Control
Message-level congestion controls are incompatible with the exist-
ing packet-level approach mainly because of the hardware offload
implementation and message-agnostic context on existing NIC
packet processing. Moreover, as NIC speed increases, processing



Congestion Control for AI Workloads with Message-Level Signaling APNET 2025, August 07–08, 2025, Shang Hai, China

Collective Communication

Messages Queue

...

next finish next send

Congestion 
Window 

All Reduce Broadcast All Gather

Operators

...

Message Delay Estimation Topology-Aware 
Window Adjustment

Figure 5: MCC operates in message granularity and directly
interacts with collective communication.

messages efficiently becomes critical. We build MCC to leverage the
message processing pipeline in existing collective communication,
which is as efficient as packet-based congestion control in NICs.

Figure 5 shows the key components and workflow of MCC. Com-
pared to existing general-purpose congestion controls, MCC dis-
tinguishes itself by cooperating with collective communications
in AI applications and limiting on-the-fly data through message-
level controlling. With the message delay estimation module, MCC
actively samples the delays of packets when transmitting mes-
sages to reflect individual path congestion, and records averaged
message delay as an indication of global network congestion. The
topology-aware window adjustment module cooperates with col-
lective communication to adjust the congestion window, achieving
fast convergence in congested networks. Moreover, the hardware-
independent implementation enables MCC to be readily deployable
to existing infrastructures, especially commercial NICs without
programmability and heterogeneous network environments.
Interaction with CCLs. As discussed in § 2.3, CCLs divide large
messages into smaller chunks (typically 64 KB) for transmission,
making it natural to treat these chunks as the basic unit for MCC’s
message-level signaling. Additionally, in AI training workloads,
incast is mild and fabric congestion is well-managed, and leverag-
ing message-level signals to regulate in-flight data can be enough
and efficient for congestion control. To achieve this, MCC adopts a
window-based congestion control approach to limit in-flight data,
but takes a different approach by shifting the window control gran-
ularity from per-packet to per-message, and making transmission
decisions at the message level.

Implementing in CCLs is easier and can be more effective com-
pared with other alternatives. Since congestion signals are collected
from messages which are directly posted by applications, packet-
level congestion control struggles to process them effectively. The
presence of multiple concurrent messages within the application
necessitates signal aggregation, which packet-level mechanisms
are not designed to handle. The CCL implementation approach is
as efficient as hardware-offloaded transport because it controls in
message granularity, allowing end hosts to get high throughput
with little CPU usage.

During runtime, CCLs post message chunks to the Send Queue
(SQ) and poll for completion events upon successful transmission.

Parameters Values

initial_target_msg_delay msg_size/bw + target_max_delay / 2 = 92 us
initial_target_max_delay net_base_rtt + queue_delay =64 us

Table 1: Parameter settings in evaluation.

MCC intercepts these events and aggregates feedback frommultiple
paths to evaluate the attainable bandwidth for the entire network
pipe. Based on this aggregated feedback, MCC dynamically adjusts
the sending rate by modifying the inflight window size in mes-
sage granularity. This window-based approach ensures that inflight
data remains proportional to the network pipe’s capacity, avoiding
overreaction while maintaining high throughput.
Fast convergence. Existing CCLs, such as NCCL [1], inherently
detect communication topology and interconnect bandwidth to
optimize communication patterns for collective operations. MCC
leverages this capability by incorporating topology-aware feedback
into its congestion control decisions. Specifically, MCC uses topol-
ogy and bandwidth information to estimate the optimal window
size, accounting for variations in link capacities and congestion
hotspots.

In the beginning, MCC finds the congestion hotspots with the
highest oversubscription ratio and decides the window increase
unit with the ratio. For example, with an 8:1 oversubscription, we
add 1/8 Bandwidth-Delay-Product (BDP) to the window. Thus, a
new message will be issued once the available window size is larger
than the message size.

5 Evaluation
Evaluation setup. To validate the effectiveness of MCC, we con-
duct simulations in NS-3 in TACC platform [24, 25], and simulate
representative micro-benchmarks in AI training workloads. In par-
ticular, we focus on AllReduce which is the most widely used oper-
ation in both TP and DP. The simulation uses the topology shown
in Figure 1, which consists of 8 servers and 4 switches and serves
as the communication fabric for collective messages. We config-
ure 4 AllReduce groups, identical to those described in Section 2.2,
with each transmitting a 250MB message. Since flows in collective
communication are typically highly synchronized, we measure the
CCT to better reflect the end-to-end efficiency of the operation. We
further report the throughput improvement achieved by MCC to
demonstrate its performance gains. In addition, we monitor the
link utilization of 𝑙1 and 𝑙2 over the window where partial conges-
tion occurs to highlight MCC’s ability to mitigate overreaction to
partial congestion. The initial congestion control parameters are
configured as summarized in Table 1.
Baselines. To illustrate the efficiency of our CC algorithms, we
utilize DCQCN, TIMELY as our baseline approaches for comparison
with MCC under AR load balancing. We tune DCQCNmainly based
on the parameters recommended by HPCC [16]. As DCQCN and
TIMELY represent distinct congestion control algorithms that rely
on different per-packet congestion signals, our results highlight the
inefficiencies of per-packet signaling and demonstrate that MCC
outperforms both.
Results.The results are depicted in Figure 6. We can find in Fig-
ure 6a that the link utilization in the non-congested path 𝑙1 remains
nearly 100 percent without significantly downgrading in partial



APNET 2025, August 07–08, 2025, Shang Hai, China Y. Li, et al.

10 20
Time (ms)

0.00

0.25

0.50

0.75

1.00

Li
nk

 U
til

iz
at

io
n

l1 Utilization
l2 Utilization

(a) Link utilizations of 𝑙1 and 𝑙2.

DCQCN TIMELY MCC

60

80

100

120

C
C

T
 (

m
s)

0

5

10

15

20

25

T
hr

ou
gh

pu
t 

Im
p. 

(%
)

+15.9%

+21.7%

(b) CCT and throughput im-
provement.

Figure 6: Simulation Results for AllReduce.

congestion. Though with different congestion signals, per-packet
RTT as well as ECN both react regressively to congestion in 𝑙2, ig-
noring the capacity of 𝑙1 and underutilizing the corresponding link.
Thus, as can be seen in Figure 6b, by avoiding the unnecessary slow-
down, MCC achieves up to 22 percent higher throughput, and the
CCT of both DCQCN and TIMELY are significantly longer than that
of MCC, and MCC achieves 16 percent ~27 percent lower latency.
With AllReduce being the most common operation in modern AI
distributed training, improving control efficiency in AllReduce is
of great necessity.

6 Related Work
Multi-Path transport with per-packet LB. There have been
multi-path transports leveraging available paths in networks to
achieve efficient transmission. MP-RDMA [18] utilizes the 5-tuple
hash feature in ECMP and indirectly controls packets to tra-
verse multiple paths by modifying UDP source ports at endpoints.
STrack [13] is designed specifically for AI workloads, and carefully
devises an adaptive load balancing scheme to address low-entropy
challenges. Unlike these works, which focus on designing transport-
layer protocols to support multi-path transmissions and depend on
endpoints for path selection, MCC leverages switches to perform
per-packet LB and make path choices. Additionally, MCC focuses
on designing a CC mechanism that is compatible with per-packet
LB, emphasizing congestion management rather than the creation
of new protocols.
CC with application-level participation. Researchers have pro-
posed congestion control methods that leverage application-level
information and avoid complexities associated with hardware mod-
ifications. RoGUE [14], Flor [15] design protocols that take message
chunks as congestion control units to alleviate CPU costs for tradi-
tional workloads. Meta [10] leverages Clear-To-Send (CTS) signals
and the buffer recycling scheme in CCLs for AI workload CC and
necessitates modifications in network switches. DeepSeek v3 [3]
eliminates reliance on CC algorithms altogether by focusing on
NCCL optimizations and other techniques for networks that com-
bine computation, communication, and storage traffic. MCC differs
from them as it is specifically tailored for AI workloads, and fully
integrates CCL information to achieve hardware-independent con-
gestion control.

7 Conclusion
In this paper, we present MCC that offers compatibility with per-
packet LB for collective communication in AI workloads. MCC

exploits the effectiveness of message-level signals under per-packet
LB thus accurately interpreting global congestion states in the high-
bandwidth network pipe. Additionally, MCC fully leverages the
opportunities provided by CCLs and is integrated into CCLs. Such
hardware-independent implementation enables more flexible de-
ployment of MCC, especially for non-programmable commercial
NICs and heterogeneous network environments. Our preliminary
results verify that MCC is effective with per-packet LB in AI train-
ing workloads, providing higher throughput, lower CCT without
overreaction.

Acknowledgments
We thank the anonymous reviewers for their insightful comments.
This work is supported in part by the Hong Kong RGC TRS T41-
603/20R, the GRF 16213621, and the ITC ACCESS. Kai Chen is the
corresponding author.

References
[1] 2025. NVIDIA Collective Communications Library (NCCL) | NVIDIA Developer.

https://developer.nvidia.com/nccl. (2025).
[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM. 503–514.

[3] Wei An, Xiao Bi, Guanting Chen, Shanhuang Chen, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Wenjun Gao, Kang Guan, Jianzhong Guo, Yongqiang
Guo, Zhe Fu, Ying He, Panpan Huang, Jiashi Li, Wenfeng Liang, Xiaodong Liu,
Xin Liu, Yiyuan Liu, Yuxuan Liu, Shanghao Lu, Xuan Lu, Xiaotao Nie, Tian Pei,
Junjie Qiu, Hui Qu, Zehui Ren, Zhangli Sha, Xuecheng Su, Xiaowen Sun, Yixuan
Tan, Minghui Tang, Shiyu Wang, Yaohui Wang, Yongji Wang, Ziwei Xie, Yiliang
Xiong, Yanhong Xu, Shengfeng Ye, Shuiping Yu, Yukun Zha, Liyue Zhang, Haowei
Zhang, Mingchuan Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao
Zhao, Shangyan Zhou, Shunfeng Zhou, and Yuheng Zou. 2024. Fire-Flyer AI-
HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning. (2024).
arXiv:cs.DC/2408.14158 https://arxiv.org/abs/2408.14158

[4] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. 2023. Empowering azure storage with {RDMA}. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 49–67.

[5] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu, Lihua Yuan,
Yixin Zheng, HaitaoWu, Yongqiang Xiong, and DaveMaltz. 2013. Per-packet load-
balanced, low-latency routing for clos-based data center networks. In Proceedings
of the ninth ACM conference on Emerging networking experiments and technologies.
49–60.

[6] Peirui Cao, Wenxue Cheng, Shizhen Zhao, and Yongqiang Xiong. 2024. Network
Load Balancing with Parallel Flowlets for AI Training Clusters. In Proceedings of
the 2024 SIGCOMM Workshop on Networks for AI Computing. 18–25.

[7] Vinton Cerf and Robert Kahn. 1974. A protocol for packet network intercommu-
nication. IEEE Transactions on communications 22, 5 (1974), 637–648.

[8] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch the whole lot
in an action: Rapid precise packet loss notification in data center. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14). 17–28.

[9] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang, and Fengyuan Ren. 2020.
Re-architecting congestion management in lossless ethernet. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20). 19–36.

[10] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, Shuqiang Zhang, Mikel Jimenez Fernandez, Shashidhar Gandham, and
Hongyi Zeng. 2024. RDMA over Ethernet for Distributed Training at Meta
Scale. In Proceedings of the ACM SIGCOMM 2024 Conference (Acm Sigcomm
’24). Association for Computing Machinery, New York, NY, USA, 57–70. https:
//doi.org/10.1145/3651890.3672233

[11] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: measurement, analysis, and implications. In
Proceedings of the ACM SIGCOMM 2011 Conference. 350–361.

[12] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of the 2016 ACM SIGCOMM Conference. 202–215.

[13] Yanfang Le, Rong Pan, Peter Newman, Jeremias Blendin, Abdul Kabbani, Vipin
Jain, Raghava Sivaramu, and Francis Matus. 2024. STrack: A Reliable Multipath

https://developer.nvidia.com/nccl
https://arxiv.org/abs/cs.DC/2408.14158
https://arxiv.org/abs/2408.14158
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3651890.3672233


Congestion Control for AI Workloads with Message-Level Signaling APNET 2025, August 07–08, 2025, Shang Hai, China

Transport for AI/ML Clusters. arXiv preprint arXiv:2407.15266 (2024).
[14] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya Akella, and Michael M Swift.

2018. Rogue: Rdma over generic unconverged ethernet. In Proceedings of the
ACM symposium on cloud computing. 225–236.

[15] Qiang Li, Yixiao Gao, Xiaoliang Wang, Haonan Qiu, Yanfang Le, Derui Liu, Qiao
Xiang, Fei Feng, Peng Zhang, Bo Li, et al. 2023. Flor: An open high performance
{RDMA} framework over heterogeneous {RNICs}. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23). 931–948.

[16] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In Proceedings of the ACM special interest
group on data communication. 44–58.

[17] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437 (2024).

[18] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. {Multi-Path} trans-
port for {RDMA} in datacenters. In 15th USENIX symposium on networked systems
design and implementation (NSDI 18). 357–371.

[19] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting network support
for RDMA. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 313–326.

[20] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, et al. 2024. Alibaba hpn: A data center
network for large language model training. In Proceedings of the ACM SIGCOMM
2024 Conference. 691–706.

[21] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: congestion signals are simple and effective for network load

balancing. In Proceedings of the ACM SIGCOMM 2022 Conference. 207–218.
[22] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J Freedman. 2013. Scal-

able, optimal flow routing in datacenters via local link balancing. In Proceedings
of the ninth ACM conference on Emerging networking experiments and technologies.
151–162.

[23] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17). 407–420.

[24] Kaiqiang Xu, Decang Sun, Han Tian, Junxue Zhang, and Kai Chen. 2025.
{GREEN}: Carbon-efficient Resource Scheduling for Machine Learning Clusters.
In 22nd USENIX Symposium on Networked Systems Design and Implementation
(NSDI 25). 999–1014.

[25] Kaiqiang Xu, Decang Sun, Hao Wang, Zhenghang Ren, Xinchen Wan, Xudong
Liao, Zilong Wang, Junxue Zhang, and Kai Chen. 2025. Design and Operation of
Shared Machine Learning Clusters on Campus. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1. 295–310.

[26] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. 2012. DeTail: Reducing the flow completion time tail in datacenter networks.
In Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication. 139–150.

[27] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: Weighted cost multipathing for improved
fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems. 1–14.

[28] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.


	Abstract
	1 Introduction
	2 Background
	2.1 Necessity of Per-Packet Load Balance
	2.2 CC Inefficiency under Per-packet LB
	2.3 Opportunities from CCLs

	3 Message-level Congestion Signal
	4 Efficient Message-level Control
	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

