
Towards Minimal-Delay Deadline-Driven Data Center TCP

Li Chen
CSE, HKUST

lchenad@cse.ust.hk

Shuihai Hu
CSE, HKUST

shuaa@cse.ust.hk

Kai Chen
CSE, HKUST

kaichen@cse.ust.hk

Haitao Wu
Microsoft Research Asia
hwu@microsoft.com

Danny H. K. Tsang
ECE, HKUST

eetsang@ece.ust.hk

ABSTRACT
This paper presents MCP, a novel distributed and reactive trans-
port protocol for data center networks (DCNs) to achieve mini-
mal per-packet delay while providing guaranteed transmission
rates to meet flow deadlines. To design MCP, we first for-
mulate a stochastic packet delay minimization problem with
constraints on deadline completion and network stability.By
solving this problem, we derive an optimal congestion window
update function which establishes the theoretical foundation
for MCP. To be incrementally deployable with existing switch
hardware, MCP leverages functionality available on commod-
ity switch, i.e., ECN, to approximate the optimal window up-
date function. Our preliminary results show that MCP holds
great promise in terms of deadline miss rate and goodput.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design

General Terms
Design, Performance

Keywords
Data Center Networks, TCP, Deadline, Stochastic optimiza-
tion

1. INTRODUCTION
Cloud datacenter applications such as web search, retail, ad-

vertising, and recommendation systems, etc., generate a di-
verse mix of short and long flows that carry widely varying
deadlines [1, 6, 10, 11] due to their soft-real time nature. Flows
that fail to finish within their deadlines will not contribute to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

the application throughput and will be excluded from the net
results. This severely wastes network bandwidth, affects user-
perceived experience, and thus causes provider revenue loss [11].

However, today’s datacenter transport protocols such as TCP,
given their Internet origins, are oblivious to such flow dead-
lines which have already caused problems. For example, after
investigating a couple of production DCNs, people have wit-
nessed a substantial fraction (from7% to over25%) of flow
deadlines are not met, significantly degrading applicationre-
sponse quality and incurring operator revenue loss [11].

To address this issue, recent new incrementally-deployable
designs like DCTCP [1] and D2TCP [10] have been proposed
for DCNs. While DCTCP focuses on achieving high through-
put for long flows and low latency for short ones, D2TCP fur-
ther considers meeting deadlines as its primary objective.De-
spite generally improving packet latency by enforcing small
queue with low ECN marking threshold [5], they lack a the-
oretical foundation to achieve minimal delay or to meet flow
deadlines. Worse, as shown later, these schemes are funda-
mentally constrained because they cannot precisely estimate
or are, by design, not able to provide the right rates for dead-
lines. For example, DCTCP exhibits poor performance when
the required flow rates are higher than their fair-sharing rates
to meet their deadlines. While D2TCP uses deadline informa-
tion to modulate congestion window after congestion occurs,
i.e., far-deadline flows backoff more and near-deadline ones
backoff less, it is ineffective for long flows with deadlines.
This is because in the beginning long flows behave similarly
to DCTCP and always backoff for incoming flows, whereas
the increase in rate in the later stage when their deadlines ap-
proach may already not be enough to catch up (Section 2).

While explicit rate control mechanisms like D3 [11] and
PDQ [6] can potentially solve the above problems by schedul-
ing flows and assigning rates according to their sizes and dead-
lines in a coordinated manner, they require non-trivial switch
hardware modifications and are quite challenging to imple-
ment in practice. Most recently, pFabric [3] achieves near-
optimal flow completion times (thus better deadline meeting
rate) by the novel idea of decoupling flow scheduling from
rate control. However, it is a clean-slate design that requires
modifications on both network switches and end hosts.

In this paper, we present MCP, a novel distributed and re-

1

active transport protocol for DCNs while still can provide the
right transmission rates to meet flow deadlines and achieve
minimal per-packet delay. When designing MCP, we explic-
itly set out our design goals of not modifying switch hardware
and supporting incremental deployment. Thus MCP is along
the line of TCP variants adapted for DCNs such as DCTCP and
D2TCP, however, the key difference is that our MCP builds up
on the theoretical foundation we established for packet delay
minimization and flow deadline completion.

The key contributions of our work are as follows.

• We establish a theoretical foundation for optimal dis-
tributed rate control. We formulate a stochastic packet
delay minimization problem with constraints on deadline
completion and network stability. We then apply the Lya-
punov optimization framework to transform this problem to
a convex problem, so that an optimal congestion window
update function can be derived from the optimal solution
for the transformed convex problem. Our analysis confirms
the stability and the optimality of the algorithm.

• We design MCP, a practical near-optimal transport con-
trol protocol. Guided by the theory, we design MCP a prac-
tical implementation of the derived optimal algorithm. The
key goal of MCP is to leverage commodity switch available
functionalities to approximate the optimal congestion win-
dow update function. Thus, we propose an approximation
method to estimate the parameters in the optimal window
update function purely based on the ECN feedback bits, so
that no hardware modification is needed, and MCP can be
incrementally deployed to existing DCNs.

2. A MOTIVATING EXAMPLE
We identify the fundamental limitation of both DCTCP and

D2TCP using an illustrative example in Figure 1, which moti-
vates our design of MCP.

With DCTCP [1], due to its fair-sharing nature, forN flows
sharing a network link with capacityC and a switch buffer
with ECN marking thresholdK, the rate of each flow is upper-
bounded byC+K/RTT

N . This is because when the buffer queue
size reachesK, the switch starts to react by marking ECN
packets. In the subsequent RTT, the sender will reduce its con-
gestion window accordingly. Thus, the rate of DCTCP can

t

Source Window

(C+K/RTT)/N

Deadline

D2TCP

DCTCP

MCP

t=0

Expected Rate

Far-Deadline Phase Stable Phase Near-Deadline Phase

Figure 1: Motivating example

be roughly described as the blue sawtooth in Figure 1. In this
case, for a flow that requires more than this limited rate to meet
its deadline, e.g., the red line, DCTCP is by no means able to
provide the necessary rate to cater for the requirement.

D2TCP [10] builds up on DCTCP and adds deadline aware-
ness on top of it. It changes the congestion window update
function to incorporate deadline information when congestion
is detected: far-deadline flows backoff more, and near-deadline
flows backoff less. Thus, the windows size of D2TCP can be
roughly depicted as the purple sawtooth in Figure 1. In far-
deadline phase, D2TCP backoffs more than DCTCP, and in
stable phase, D2TCP operates very similarly to DCTCP, and
have to give up bandwidth if new flows joins the network. It is
evident that, while the D2TCP’s deadline-aware backoff strat-
egy certainly helps in some cases, it still cannot satisfy the
requirement specified by the red line. In near-deadline phase,
the increased rate is not enough to make up for the deficit in
the previous phases. One key reason is that D2TCP uses dead-
line information in its backoff in near-deadline phase, which is
already too late for it react to the stringent deadlines.

The key takeaway from the above analysis is two-fold. First,
explicitly enforcing small ECN threshold helps to achieve low
latency because packets always see small queues, however, it
imposes a fundamental constraint on flow rate and is harmful
for flows that require higher rates to meet their deadlines. To
prevent this rate-limiting behavior, we need a better scheme
to minimize the latency while not violating the deadlines. Sec-
ond, in order to meet deadline, the deadline information should
be respected throughout the lifetime of a flow instead of merely
in the backoff near-deadline stage which might be too late to
take effect. With flow size and deadline known at the source
before the transmission, the expected rate can be determined
and should be achieved throughout its lifetime.

This motivates our design of MCP. MCP is a protocol that
fully utilizes ECN feedback to determine a right transmission
rate for each flow. First, the rate should be high enough to sat-
isfy the flow deadline requirement. Second, the rate should be
as low as possible to ensure packets from short flows experi-
ence low latency. The behavior of MCP window update mech-
anism is shown in Figure 1, the deadline information impacts
the flow throughout its lifetime. Sources adapt their transmis-
sion rates according to the required rates of flows to meet dead-
lines and the current network congestion.

Note that such desirable properties of MCP are achieved not
by a heuristic design, but by the analysis built upon a theoret-
ical foundation. We formulate a stochastic delay minimiza-
tion problem with constraints on deadline completion, and we
derive an optimal congestion window update function from
its solution. The theoretical optimal window update function
guides the design of MCP, a practical transport protocol that
ensures the right transmission rates to meet flow deadlines,
while achieving the minimal delay.

3. THEORETICAL FOUNDATION
3.1 System Model

Consider a DCN withL logical links, each with a capacity

2

of Cl bits per second (bps). In the network, the total number
of active sessions isS. At time t, sessions transmits exactly
one flow at a rate ofxs(t) bps, and the remaining data size is
denoted asMs(t), and the remaining time till deadlineδs(t).
Like D2TCP [10] and D3 [11], we assume applications pass
deadline information to the transport layer in the request to
send data. Defineγs(t) = Ms(t)/δs(t) as the expected rate
for sessions. We also do not consider the routing of the flow,
and assume that the flow from sessions will be routed through
a fixed set of linksL(s). For link l, denoteyl as the aggregated
input rate to linkl, andyl =

∑
s∈S(l) xs, where the set of flows

that pass through linkl is denoted asS(l).

3.1.1 Minimal Delay

Packet delay should be minimized, as the deadline comple-
tion for short and query flows is sensitive to it. As discussed
in Section 2, both DCTCP and D2TCP use small ECN mark-
ing threshold to obtain low delay, but this method imposes rate
limiting and may hurt the deadline completion of flows. On the
other hand, TCP is inherently aggressive, as the shortsighted
sources always expand for more bandwidth and may build up
long queue consequently, increasing the latency. We believe
this inherent aggressiveness should be counteracted by con-
sidering the long term average of network metrics. Instead of
limiting the ECN threshold, we decide to use the long term av-
erage of per-packet delay as the minimization objective of our
formulation.

Denotedl(yl) the delay that a packet experienced on link
l with load yl. For sessions, the average packet delay is∑

l∈L(s) dl(yl). The delay of linkl, dl(yl), is a function of
yl, the aggregated arrival rate at linkl. dl(yl) is a positive,
convex and increasing function. We define the objective func-
tion as the long term average of the summation of per-packet
delay of every source.

P0(x,y) = lim
T→∞

1

T

T−1∑

t=0

∑

s

{
∑

l∈L(s)

dl(yl(t))} (1)

3.1.2 Deadline Guarantee

In the our formulation, the long term average transmission
rate is required to be larger than the expected rate. This con-
straint is an approximation to the realistic DCN traffic, where
the flows cannot be infinitely long.

lim
t→∞

∑t
0(γs(t)− xs(t))

t
≤ 0, ∀s (2)

By incorporating this constraint, we are essentially guaran-
teeing that, for every flow that requiresγs, the transmission
ratexs is on average larger thanγs.

3.1.3 Network Stability

Denote the instantaneous queue length at linkl asQl(t).
The rate stability condition is therefore:limt→∞

Ql(t)
t = 0.

To stabilize the queues, the long-term average of aggregated

rates must satisfy:

lim
t→∞

t∑

t′

yl(t)/t ≤ Cl, ∀l (3)

Here the basic assumption is that the long-term average traf-
fic load generated in the network can be handled by the capac-
ity of the network, so that the network can be stabilized with
proper rate control scheme. Otherwise, there is not much a
transport layer rate control mechanism can do to avoid packet
loss. This constraint is later relaxed into the objective ofthe
minimization problem during the transformation, so that flows
that use rates that exceeds link capacity is penalized.

3.2 Problem Formulation
We aim to devise an optimal source rate control mechanism

to minimize overall per-packet delay in DCN with throughput
guarantee. A stochastic delay minimization problem is formu-
lated to encapsulate the above deadline (2) and network stabil-
ity constraints (3).

min
x(t),y(t)

P0(x(t),y(t))

subject to yl(t) =
∑

s∈S(l)

xs(t), ∀l

lim
t→∞

∑t
0(γs(t)− xs(t))

t
≤ 0, ∀s

lim
t→∞

t∑

t′

yl(t)/t ≤ Cl, ∀l

xs(t) > 0, ∀s

(4)

As mentioned above, the link capacity constraints are re-
laxed into the objective function to allow for temporary over-
loading of links. In the rest of this section, we apply the Lya-
punov optimization framework to transform this problem to a
convex problem, and then derive an optimal congestion win-
dow update function (see Section 3.5) based on the optimal
solution to the transformed convex problem.

3.3 Transformation Using Lyapunov Optimiza-
tion

Using the Lyapunov optimization theorem and thedrift-plus-
penalty method [9], the minimization of long term average
are substituted with an equivalent convex minimization prob-
lem (5).

min
x(t),y(t)

∑

s

{V
∑

l∈L(s)

dl(yl(t)) + Zs(t)γs(t)/xs(t)

+
∑

l∈L(s)

Ql(t)xs(t)}

subject to yl(t) =
∑

s∈S(l)

xs(t), ∀l

(5)

where V is a non-negative weight that is chosen as desired to
affect a performance tradeoff, and is set to be 1 for the rest of

3

the paper. In this transformation, the inequality constraints in
(4) need to be transformed into virtual queues,Zs(t). These
queues take the expected rateγs(t) as input and the actual rate
xs(t) as output. We have:

Zs(t+ 1) = [Zs(t) + γs(t)− xs(t)]
+, ∀s

Virtual queuesZs(t) stores the difference in the expected trans-
mission rate and actual transmission rate, and the queue lengths
are essentially historical deviation from expected rates of the
flows.

With the transformed problem, we developed an adaptive
source rate control algorithm by greedily minimizing the up-
perbound of the Lyapunov drift.

3.4 Optimal Solution
By considering the properties of the optimal solution and the

KKT conditions [4] of the above problem, we obtain a primal
algorithm to achieve optimality for (5).

d

dt
xs(t) = (f ′

s(xs(t)) −
∑

l∈L(s)

λl(t)) (6)

wherefs(xs) = −Zs(t)γs(t)/xs(t) − Qs(t)xs(t), λl(t) =
d′l(yl(t)), andyl(t) =

∑
s∈S(l) xs(t).

We establish the stability and optimality of the rate update
formula (6) by proving the following theorem.

THEOREM 1. let

Π(x) =
∑

s

fs(xs(t)) −
∑

s

∑

l∈L(s)

dl(
∑

s∈S(l)

xs). (7)

Π(x) is strictly concave in x. The unique solution x
∗ that

maximizes Π(x) is a stable point of the dynamic system, to
which all trajectories converge.

Proof: f ′′

s (xs) = −p′′s (xs) = −2Zs(t)Ms(t)/τs(t)
x3
s

< 0, for

xs > 0. Sincedl(yl) is convex and positive, thusd′′l (yl) >
0. Π′′(x) =

∑
s(f

′′

s (xs) −
∑

l∈L(s) dl(yl)) < 0, therefore
Π(x) is a concave function. Also,dΠ(x)/dxs = f ′

s(xs) −∑
l∈L(s) d

′

l(yl). f ′

s(xs) = Zs(t)Ms(t)/τs(t)x
2
s − Qs(t) is

an decreasing function, and approaches infinity as x goes to
0. On the other hand,dl(yl) is strictly increasing,d′l(yl) >
0. It follows that there exist an unique valuexs such that
dΠ(x)/dxs = 0 for xs > 0.
Π(x) is therefore strictly concave with an interior maxi-

mum. The maximalx∗ is unique, and can be identified by
dΠ(x)/dxs = 0.

d

dt
Π(x) =

∑

s

∂Π

∂xs

d

dt
xs(t) = [

∑

s

fs(xs(t))

−
∑

s

∑

l∈L(s)

dl(
∑

s∈S(l)

xs)]
2 ≥ 0

(8)

which demonstrates thatΠ(x(t)) is strictly increasing with re-
spect tot, unlessx = x

∗. Π(x) is therefore a Lyapunov func-
tion of the dynamic system, and the theorem follows.✷

3.5 Optimal Congestion Window Update Func-
tion

As proven above, Formula (6) stabilizes and minimizes the
per-packet delay of the network. With the optimal dynamics
of the system determined, each flow should adjust their trans-
mitting rate according to (6), which can be expressed as:

d

dt
xs(t) = (Θ(γs(t), xs(t))−

∑

l∈L(s)

(Ql(t) + λl(t))) (9)

whereΘ(γs(t), xs(t)) =
Zs(t)Ms(t)
τs(t)x2

s
(t) = Zs(t)γs(t)

x2
s
(t) .

Let τs(t) be the RTT of flows at timet. We can then derive
the equivalent optimal window updating function:

Ws(t+ τs(t))←Ws(t) + τs(t)(Θ(γs(t),
Ws(t)

τs(t)
)

−
∑

l∈L(s)

(Ql(t) + λl(t)))
(10)

One way to interpret this result is to consider the 2 terms
that constitute the difference between the two window sizes.
The first (source term) isΘ(γs(t), xs(t)), which is an increas-
ing function ofγs, and a decreasing function forxs. A large
γ for a flow means that this flow have large remaining data
and/or a urgent deadline. This term ensures that the flow will
be more aggressive as its urgency (characterized byγ) grows.
The second (network term),

∑
l∈L(s)(Ql(t) + λl(t)), summa-

rizes the congestion in the links along the path. If any of the
links are congested, the source rate at each source that usesthe
link will curtail their transmission rate. With these two terms,
our analysis above shows that this updating function will lead
to a stable and minimal delay system.

4. PRACTICAL MCP ALGORITHM
The source term can be easily obtained by each source, but

the network term is not straightforward. Since the sum of all
prices,λl, and queue lengths,Ql, are needed along the path,
aggregated per-hop information is necessary for this optimal
dynamics to work. For OpenFlow [8], the sum can be stored
in an additional field in the packet header, and the switch adds
and stores its own price and queue length to this field for ev-
ery packet. However, current commodity switches are not ca-
pable of such operations. To devise a practical implementa-
tion, we use the readily accessible functionality in commodity
switches, the ECN mechanism.

4.1 ECN-based Window Update
At the beginning of the transmission, the initial window size

is set toRTT × γs(0). γs(0) is the average transmission rate
that flow s attempts to achieve throughout its life time, and
therefore is a good starting point. In fact, as proven above,
MCP is guaranteed to achieve the optimal congestion window
size for any starting point. The RTT is an estimated value from
the handshake packets.

The focus of our approximation is the metric at bottleneck
link of each flow, as the source term is self-maintained in each

4

W

Q

K

Figure 2: Queue length approximation

source. We approximate the second term in (10), which is the
sum of two single terms: the queue length of this bottleneck
link, and also its link price.

We denoteF as the fraction of packets that were marked in
the last window of packets, and we do not compute the moving
average as in DCTCP [1] since we are interested in attaining
an estimation that is closest to the instantaneous queue length.
F is updated for every window of packets.

Figure 2 demonstrates the method to estimate the queue
length fromF . The fraction marked by ECN is less than the
red portion, thereforeF ≤ Q−K

W , andQ ≥ K + F ×W . We
take the lower bound as the estimate,Q̂, thusQ̂ = K+F×W .

For the price, we adopt the M/M/1 queue delay formula [7],
d(y) = 1/(C−y), wherey is the arrival rate to the link, andC
the link capacity. Therefore the price of the link is proportional
to the derivative of the delay function,d′(y) = (C − y)−2, for
different weights assigned by sources. The arrival rate canbe
directly obtained by two consecutive queue estimations at the

source. The estimated̂y(t) = Q̂(t)−Q̂(t−τs(t))
τs(t)

.
The window update function therefore becomes

Ws(t+ τs(t))←Ws(t) + τs(t)(Θ(γs(t),
Ws(t)

τs(t)
)

− (K + Fs(t)Ws(t) + λ(t)))

(11)

whereλ(t) = (C − Fs(t)Ws(t)−Fs(t−τs(t))Ws(t−τs(t))
τs(t)

)−2

Every source needs only two consecutive window sizes and
fractions of ECN marked packets to compute its window up-
date. We demonstrate that the gap between this approximation
and the optimal scheme is close in the evaluation. In general,
MCP changes the window update behavior of traditional TCP
while preserving its functionalities for reliable transmission.

4.2 Handling Failures
We assume the long-term average load of the network does

not exceed the physical network capacity, i.e., constraint(4).
However, in practice, link or other failures may occur, reduc-
ing the capacity and rendering this assumption invalid. The
virtual queueZs(t) stores the difference between the actual
rate and the expected rate, i.e., the rate that is ‘left over’in the
transmissions. In case of failure,Zs(t) may grow rapidly, and
forces the source to send at a higher rate, overloading the net-
work. To prevent this, we stipulate that the source will abort
the transmission of a flow whenZs(t) > maxl∈L(s) Cl, as it
implies that even the largest link capacity along its path isno
longer sufficient for the flow to finish before deadline. Abort-
ing flows that are impossible to meet their deadlines gives
more opportunities for other flows to meet their deadlines.

5. PRELIMINARY NUMERICAL RESULTS
As preliminary study, we compare MCP against DCTCP

and D2TCP using numerical simulations in Matlab, and our
immediately next step is packet-level simulations and realim-
plementation.

The simulation setting is as follows. We use a 128-node
three level fattree to simulate a simple DCN environment. The
link capacity is 10G for ToR (Top-of-Rack) to aggregation
link, and 40G for aggregation to core link. We generate three
types of traffic, i.e., query (2KB to 20KB), short (100KB to
1MB), and long flows (1MB to 100MB). The flow sizes are
drawn from an exponential distribution with mean equals to
1MB, and capped at 100MB. The deadlines are calculated based
on the flow types and the corresponding share of the band-
width. Each node will abort its flows as soon as the flows
fail to meet deadlines. The load of the network is adjusted by
setting the arrival rate of the flows at the nodes. To compare
with DCTCP and D2TCP, we set their ECN marking thresh-
old as 64 packets. The simulation runs for 30 seconds. The
optimal scheme is denoted by “MCP-Opt”, and its congestion
window update function follows (10). The practical approxi-
mation (11) is denoted as“MCP-Approx”.

We first examine the deadline miss rate. It is obvious that
MCP outperforms DCTCP and D2TCP for all flows. For query
and short flows, all schemes performs similarly under 10%
maximum load. However, the rates diverge as load increases.
For query flows, MCP-Opt and MCP-Approx manage to main-
tain deadline miss rate close to zero, with lower than 2% even
at maximum load. For short flows, the deadline miss rates
of the two MCP schemes are consistently low and close to
zero, as compared to around 40% for DCTCP and 20% for
D2TCP. For long flows, MCP again demonstrates advantages
over D2TCP and DCTCP. Even with the loads increase to max-
imum, less than 4% of long flows miss their deadlines for
MCP. On the other hand, D2TCP and DCTCP cannot provide
enough bandwidth for the long flows with various deadlines
properly, resulting in 50% and 70% deadline missed at 80%
maximum load. As shown across Figure 3 (a, b, c), MCP is
able to meet almost all deadlines, and to achieve network sta-
bility under heavy loads, as a result of MCP’s ability to find
and sustain theright rate for every flow. However, DCTCP
and D2TCP are not able to precisely capture the rate require-
ments of flows.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12
x 10

5

Load

M
B

Overall Goodput

MCP−Opt
D2TCP
DCTCP
MCP−Approx
Traffic Threshold

Figure 4: Numerical simulation results: overall goodput

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

Load

P
ro

b.
(a) Deadline Miss for Query Flows

MCP−Opt
D2TCP
DCTCP
MCP−Approx

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

Load

P
ro

b.

(b) Deadline Miss for Short Flows

MCP−Opt
D2TCP
DCTCP
MCP−Approx

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

Load

P
ro

b.

(c) Deadline Miss for Long Flows

MCP−Opt
D2TCP
DCTCP
MCP−Approx

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6
x 10

5

Load

M
B

(d) Goodput for Query flows

MCP−Opt
D2TCP
DCTCP
MCP−Approx
Traffic Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3
x 10

5

Load

M
B

(e) Goodput for Short flows

MCP−Opt
D2TCP
DCTCP
MCP−Approx
Traffic Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2
x 10

5

Load

M
B

(f) Goodput for Long flows

MCP−Opt
D2TCP
DCTCP
MCP−Approx
Traffic Threshold

Figure 3: Numerical simulation results: deadline miss rate and goodput

In Figure 3 (d, e, f), we compare the goodput of the proto-
cols for 3 traffic types. Goodput is defined as the amount of
data transmitted successfully within the deadlines. The black
dotted line is the amount of traffic sent from the nodes for each
load level (denoted as “Traffic Threshold”), and the perfor-
mance of MCP-Opt and MCP-Approx is close to this traffic
threshold for all traffic types. On the other hand, although
D2TCP and DCTCP can achieve most of the traffic at 10%
maximum load, these two protocols fall off at high load lev-
els for all traffic types. As for the overall performance across
all traffic types (Figure 4), MCP satisfies almost all traffic re-
quirements for having close-to-zero deadline miss rates.

6. RELATED WORKS
DCTCP ensures low latency for short flows and high through-

put for long flows, yet it shows no concern for meeting dead-
lines. The bandwidth is shared equally among flows with vastly
different deadlines, resulting in higher deadline miss rate. In
D2TCP, when congestion occurs, far-deadline flows back off
aggressively, while near-deadline flows back off only a little
or not at all. This approach is problematic in handling flows
with rate requirements, for example, long flows with deadlines.
MCP, on the other hand, determines the appropriate rate based
on the demand rate of the flow and the network congestion,
and can accommodates more generic traffic types.

D3 [11] tackles the missed deadlines in DCN using a cen-
tralized and proactive approach, which requires the switches to
be modified significantly [10]. As a comparison, MCP is a dis-
tributed approach, which is more suitable in a highly dynamic
environment such as DCN.

In the attempt to achieve ultra-low latency, HULL [2] sacri-
fices the transmission rate and flow completion time for large
flows by reserving bandwidth headroom. Since DCTCP is a
key component of HULL, HULL shares the same problems.

Recently, pFabric [3], by decoupling flow scheduling and
rate control in DCN transport layer, has shown near-optimal
performance for high priority flows and high utilization in sim-
ulations. As flow scheduling is performed in the network fab-
ric, pFabric requires clean-slate design in the transport layer,
and non-trivial hardware modification. As a comparison, MCP
requires no hardware modifications, and is readily deployable.

Similar to pFabric, PDQ [6] minimizes FCT by means of
preemptive flow scheduling. Besides difficulties in implemen-
tation, PDQ potentially suffers from large overhead, as switches
need to reach consent to set the rates of the flows. We, how-
ever, believe that an implicit and reactive scheme is more suit-
able for DCN, since the environment is highly dynamic.

7. CONCLUSION AND FUTURE WORK
We have proposed MCP, a novel transport protocol to min-

imize packet delay while providing guaranteed rates to meet
flow deadlines. MCP follows the line of TCP variants like
DCTCP and D2TCP that requires no switch hardware modifi-
cation and support incremental deployment. To design MCP,
we formulate and solve a stochastic delay minimization prob-
lem, and adapt the derived optimal algorithm to a practical
MCP protocol, which fully utilizes currently available switch
functionality, i.e., ECN, to determine theright transmission
rate for every flow. Theoretical analysis shows the validityof
MCP. Preliminary results show the potential of MCP in terms
of deadline meet rate and goodput.

We anticipate two directions for future research. Theoret-
ically, we seek to improve the system model to incorporate
more practical setting, as well as analyze performance bounds
of MCP. Practically, we will further polish MCP design and its
practical approximation, evaluate it using packet-level simula-
tors, and then implement and experiment with MCP in a real
DCN testbed environment.

6

8. REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data center TCP (DCTCP),” inProceedings of the
ACM SIGCOMM 2010 conference, ser. SIGCOMM ’10.
New York, NY, USA: ACM, 2010, pp. 63–74. [Online]:
http://doi.acm.org/10.1145/1851182.1851192.

[2] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda, “Less is more: trading a little
bandwidth for ultra-low latency in the data center,” in
Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association,
2012, pp. 19–19. [Online]:
http://dl.acm.org/citation.cfm?id=2228298.2228324.

[3] M. Alizadeh, S. Yang, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker, “Deconstructing
datacenter packet transport,” inProceedings of the 11th
ACM Workshop on Hot Topics in Networks, ser.
HotNets-XI. New York, NY, USA: ACM, 2012, pp.
133–138. [Online]:
http://doi.acm.org/10.1145/2390231.2390254.

[4] S. Boyd and L. Vandenberghe,Convex Optimization.
New York, NY, USA: Cambridge University Press,
2004.

[5] S. Floyd, “TCP and explicit congestion notification,”
ACM SIGCOMM Computer Communication Review,
vol. 24, no. 5, pp. 8–23, 1994.

[6] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing
flows quickly with preemptive scheduling,”SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 127–138,
Aug. 2012. [Online]:
http://doi.acm.org/10.1145/2377677.2377710.

[7] L. Kleinrock, Theory, volume 1, Queueing systems.
Wiley-interscience, 1975.

[8] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: enabling innovation in campus
networks,”ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[9] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic
power allocation and routing for time-varying wireless
networks,”Selected Areas in Communications, IEEE
Journal on, vol. 23, no. 1, pp. 89–103, 2005.

[10] B. Vamanan, J. Hasan, and T. Vijaykumar,
“Deadline-aware datacenter tcp (D2TCP),”SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 115–126,
Aug. 2012. [Online]:
http://doi.acm.org/10.1145/2377677.2377709.

[11] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron,
“Better never than late: meeting deadlines in datacenter
networks,” inProceedings of the ACM SIGCOMM 2011
conference, ser. SIGCOMM ’11. New York, NY, USA:
ACM, 2011, pp. 50–61. [Online]:
http://doi.acm.org/10.1145/2018436.2018443.

7

