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Abstract—Task-aware flow schedulers collect task information
across the data center to optimize task-level performance. How-
ever, the majority of the tasks, which generate short flows and
are called tiny tasks, have been largely overlooked by current
schedulers. The large number of tiny tasks brings significant
overhead to the centralized schedulers, while the existing decen-
tralized schedulers are too complex to fit in commodity switches.
In this paper we present OPTAS, a lightweight, commodity-
switch-compatible scheduling solution that efficiently monitors
and schedules flows for tiny tasks with low overhead. OPTAS

monitors system calls and buffer footprints to recognize the
tiny tasks, and assigns them with higher priorities than larger
ones. The tiny tasks are then transferred in a FIFO manner by
adjusting two attributes, namely, the window size and round trip
time, of TCP. We have implemented OPTAS as a Linux kernel
module, and experiments on our 37-server testbed show that
OPTAS is at least 2.2× faster than fair sharing, and 1.2× faster
than only assigning tiny tasks with the highest priority.

I. INTRODUCTION

Various data center applications perform a large number of

user tasks, which generate tons of flows into the networks and

endow them with rich semantics. For example, Coflow [9]

describes a group of flows of the same task, and enables

collaborative network scheduling to meet task-level goals. This

has motivated research efforts [10, 12, 13, 24] to improve the

performance of tasks/coflows.

Since the traffic in data centers conforms to a heavy-tail

distribution [12]. Less than 10% of the tasks generate more

than 98% traffic, and the majority (more than 90%) of the tasks

generate short flows and are called tiny tasks. The tiny tasks

usually deliver messages for user-facing applications such as

web search and online games, so the performance of tiny tasks

has significant impact on user experience.

The network traffic in data centers is bursty at the granular-

ity of seconds [8]. A single task usually comprises a group of

parallel flows. When many tasks running at the same time,

a large number of flows will occur simultaneously in the

network, and the packets of the tasks may cause long queues

in switch buffers, resulting in packet loss and long queuing

delay. This requires network schedulers to response quickly.

Since the quantity of tiny tasks in data center is quite

large, the optimization of network scheduling for them will

effectively improve user experience. This requires network

schedulers to be low overhead. Conventional flow scheduling
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techniques [5, 14] assign short flows with high priorities,

which optimizes flow-level metrics (e.g. flow completion time

or FCT) but cannot achieve task-level improvement. Recently-

proposed coflow-aware scheduling techniques use heuristics

such as FIFO-LM [13], SEBF [12] and D-CLAS [10]. They

consider coflow as the basic scheduling unit and improve per-

formance for tasks instead of independent flows. However, the

large number of tiny tasks brings significant overhead to the

centralized schedulers such as Varys [12], while the existing

decentralized schedulers such as Baraat [13] are too complex

to fit in commodity switches. Specifically, the state-of-the-art

coflow scheduling techniques cannot meet the requirements of

network scheduling for tiny tasks due to following reasons.

• Centralized scheduling overhead is not negligible. Tiny

tasks usually do not need high bandwidth or throughput,

but they usually require low-latency communication that

is sensitive to the network delay. For example, the central-

ized coflow-aware scheduler Varys [12] batches control

messages at O(100) milliseconds intervals which might

be significant to the overall execution time of tiny tasks.

• Not all flow information is available beforehand.

Current coflow schedulers require prior flow knowledge

to calculate scheduling policies. For example, Varys [12]

and RAPIER [24] assume the complete coflow informa-

tion (e.g., the flow sizes) to be available. In practice, it

is difficult to expose all the information from various

applications to network.

• Some requirements are expensive or impractical.

Existing task-aware schedulers need to modify the user

applications or even the switches, which requires signif-

icant engineering effort. For example, most commodity

switches still do not support the advanced functions

needed by Baraat [13].

To address these problems, in this paper we propose OP-

TAS, a lightweight, commodity-switch-compatible scheduling

system for tiny tasks without modification to applications or

switches. OPTAS obtains flow information by monitoring sys-

tem calls and buffer footprints to identify the tiny tasks. OPTAS

maintains a sorted tiny task list based on their arrive time. The

tiny tasks are assigned higher priorities than the large ones to

avoid blocking. OPTAS calculates the suggested window size

and ACK delay time at the receiver side to approximatively

transmit tiny tasks in a FIFO manner. The head task of the task

list will get bandwidth resource preferentially and no ACK
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Fig. 1: Motivating example

delay.

In summary, we make the following contributions.

• We model and analyze the task-aware flow scheduling

problem for tiny tasks.

• We design OPTAS, an efficient decentralized tiny-task-

aware flow monitoring and scheduling system.

• We have implemented OPTAS both in Linux kernel and

on network simulation platform [1], and evaluate OPTAS

on a real testbed. Our experiments show that OPTAS

improves the network performance of tiny tasks by over

2.2× compared with fair sharing and 1.2× compared with

priority queue.

To the best of our knowledge, we are the first to pro-

pose (and implement) a decentralized, commodity-switch-

compatible flow monitoring and scheduling system for tiny

tasks. The rest of this paper is organized as follows. Section II

introduces the key observations that inspire the design of OP-

TAS. Section III proposes the optimization model and presents

an overview of OPTAS. Section IV introduces the design and

implementation details of OPTAS. Section V introduces the

evaluation results. Section VI reviews the related work. And

finally Section VII concludes the paper.

II. MOTIVATION

Conventional fair sharing scheduling makes all the tasks

compete for network resources and the packets from all the

tasks intersect with each other, while recent flow scheduling

studies [5, 14, 21] have shown that the short flows should

be assigned with high priority to minimize the average flow

completion times (FCT). For example, suppose that each task

has one flow that will finish in 1 time unit if monopolizing

the whole network in Fig. 1a. For fair sharing, the average

completion time of the three tasks is 3 time units. In contrast,

if the network serves the three tasks one by one (as depicted

in Fig. 1b), then the average completion time decreases to 2

time units.

Therefore, it has been well accepted that all the tiny tasks

should be assigned with the highest priority. However, several

challenges have to been addressed to achieve this goal.

Tiny tasks are sensitive to scheduling latency. Centralized

coflow schedulers like Varys [12] make decisions according

to complete coflow information of the whole network. The
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Fig. 2: Overhead introduced by centralized scheduler.

centralized scheduling overhead mainly includes the time of

computing and communication, which severely affects the

performance of tiny tasks. To enable centralized scheduling,

the senders and receivers have to periodically report their

current states to the scheduler, then the scheduler computes

and enforces scheduling policies to the end-hosts (as shown

in Fig. 2). The scheduling latency is about serval milliseconds,

and the update period is O(100) milliseconds [12]. However,

the communication duration of tiny tasks is only about tens of

milliseconds. For example, Varys [12] simply ignores coflows

whose sizes are smaller than 25MB. Moreover, since the

quantity of tiny tasks is quite large, the accumulated latency

can not be neglected, and the overhead of centralized sched-

ulers makes them not applicable to tiny tasks. Therefore, tiny

tasks’ flows should be scheduled in a decentralized manner

for performance purpose.

It is challenging to obtain complete flow information. Task-

aware flow scheduling needs to know the flow information

ahead of time, which usually includes 4-tuple (task_id,

source, destination, flow_size). In general, it is

not easy or even impossible to obtain complete flow infor-

mation beforehand. First, it requires much engineering effort,

which includes modifications to operating systems and patch-

ing on applications, to expose flow information from the ap-

plication layer to network. For example, FLOWPROPHET [20]

requires to modify the distributed computing frameworks to

expose coflow semantic. Second, some flow information in

some specific applications is uncertain before communication.

For stream processing applications such as Apache Storm, the

flow sizes remain unknown until the processing is finished.

It is hard for the network to know coflow details. The

flows are generated by tasks running on end-hosts, and the

switches in the network cannot directly obtain the information

about the flows and tasks. To enforce task-aware scheduling

policies in the network, for instance, Baraat [13] employs a

logical centralized task id server to generate globally unique

ID for each task. It employs 26 bytes (which inform the

switches along the path about which flows belong to which

tasks) in the packet header to enable task-aware scheduling

in the network. Clearly, this requires advanced functions that

cannot be supported by state-of-the-art commodity switches



and that may conflict with other optimizing techniques.

The conclusion is that practical limitations such as scala-

bility and information availability must be considered when

scheduling the flows of tiny tasks. The state-of-the-art task-

/coflow-aware scheduling methods [10, 12, 13] cannot meet

the needs of network scheduling for tiny tasks.

III. ANALYSIS AND DESIGN OVERVIEW

In this section we first list the desirable properties of tiny

task scheduling, and then propose and analyze the optimizing

scheduling problem with constraints. At the end of this section

we present an overview of OPTAS, a lightweight, commodity-

switch-compatible monitoring and scheduling system for tiny

tasks.

A. Desirable Properties

The desirable properties of a scheduling system for tiny

tasks are listed as follows, which are the design goals of

OPTAS.

• Efficiency: The objective of optimization is to minimize

task completion times rather than flow-level metrics. By

distinguishing the flows according to their tasks and sizes,

OPTAS transfers flows of tiny tasks in high priority and

serializes them without interleaving.

• Scalability: Since tiny tasks are sensitive to network delay

and scheduling overhead, the network scheduling system

should not introduce extra overhead comparable to tiny

tasks’ computing overhead. To achieve scalability, OPTAS

does not adopt centralized scheduling and make decentral-

ized scheduling decisions at end-hosts.

• Flexibility: The scheduling system should not require

any special support from switches or modification to the

applications. Furthermore, it should not conflict with other

optimization techniques.

OPTAS optimizes network performance for tiny tasks by

carefully monitoring and scheduling their flows. Given multi-

ple tasks running in a network, OPTAS decides which tasks

are tiny tasks, determines appropriate TCP parameters for

each tiny task, and optimizes the average completion times

of all the tiny tasks. OPTAS can also adapt to incomplete flow

information and be complementary with current scheduling

systems (such as Varys [12] and RAPIER [24]).

B. Analysis

TCP is the de facto standard for reliable transport layer

protocol in data center communications. As a window-based

protocol, TCP has two parameters that control the network

flows, i.e., the window size and the round trip time. For

example, PAC [6] and ICTCP [22] use the two parameters for

congestion control. However, these flow-level protocols are ag-

nostic to task-level flow semantics, and flow-level optimization

does not necessarily improve task performance.

Since the flow sizes do not vary significantly in the situation

of tiny tasks, we consider the size of the longest flow of the

task as that of all the flows for simplicity. Assuming that n

tasks are running on the node, we formulate the problem to

minimize the task completion times as follows.

minimize
∑n

i=1 di (1)
s.t.

∀t,
n∑

i=1

∑ni

f=1 r
f
i (t) ≤ C (1a)

∀i, t, f,
∑tsi+di

t=ts
i

rfi (t) ·∆t ≥ Sf
i (1b)

rfi (t) =
w

f

i
(t)

rtt
f

i
(t)

(1c)

∀i, t, f, base rtt ≤ rttfi (t) < RTOmin (1d)

∀i, t, f, wf
i (t) ≥ Wmin (1e)

In the formulation, di is the duration of task i, and hence

the sum of di should be minimized. Symbol ni is number of

flows of task i, rfi (t) is the rate of fth flow of task i at time

t. The C is link capacity of the node. So that constraint (1a)
means the sum of bandwidth of all flows should not exceed

the link capacity. The wf
i (t) and rttfi (t) are the window size

and RTT (round trip time) respectively. In constraint (1b), tsi
is the start time of task i, ∆t is the scheduling interval, Sf

i is

the flow size. So the constraint (1b) means that all flows of

task i should have finished in the interval [tsi , t
s
i + di] . The

(1c) presents the fact that rate can be calculated as window

size divided by RTT. With constraint (1d), the valid value

range of RTT of any flow, where base rtt is the physical link

latency and RTOmin is the timeout threshold to trigger packet

retransmission. (1e) requires that the windows size should not

be smaller than Wmin.

Problem (1) defines the optimization goal and constraints

to fit in TCP. These constraints guarantee that flows of all the

tasks can be transferred smoothly without disturbing upper-

layer applications. However, the optimal solution is hard

to obtain, because the programming is nonlinear and varies

over time. OPTAS follows the constrains in the optimization

problem, and solves the problem in a practical way.

C. OPTAS in a Nutshell

We describe the network optimization framework of OPTAS

in Algorithm 1. OPTAS makes use of the window size and

round trip time to realize TCP-compatible, task-aware trans-

port layer control. When a packet arrives, OPTAS determines

which flow it belongs to, then checks whether the network

is congested. If so, OPTAS postpones the transmission of the

ACK for a calculated period of time. Once the network is not

congested or the delay time is out, OPTAS will send ACK

for the received packets. An ACK packet will carry suggested

window size from receiver to the sender side.

IV. DESIGN AND IMPLEMENTATION

A. Architecture

To achieve all these goals described in Section III-A, we

design and implement OPTAS. When implementing a network

layer task-aware scheduling system, we are essentially solving

the following sub-problems.

How to collect flow information without modifying appli-

cations? For a given flow, OPTAS needs to know two kinds



Algorithm 1 The OPTAS Framework

1: procedure ACK(Packet p, Task t)
2: suggested window = CALCWINDOW(t)

3: send ACK packet for p
4: end procedure

Main loop:

5: while true do

6: if new packet p received then

7: find task t which p belongs to

8: if CongestionAvoidance() then

9: delay time = CALCDELAY(t)

10: set ack timer(delay time)

11: else

12: call ACK(p, t)
13: end if

14: end if

15: if ack timer.expire() then

16: call ACK(p, t)
17: end if

18: for task in task list do

19: if not CongestionAvoidance() then

20: send ACK of the task

21: end if

22: end for

23: end while

of information. The first is that the flow belongs to which task.

The second is whether the flow is small enough so that the

task might be tiny. Knowing the accurate flow sizes is helpful

but not mandatory in OPTAS.

How to deliver and enforce the policies? We aim to

design an in-network task-aware scheduling system, so OPTAS

employs two controllable attributes in TCP, which are window

size and RTT. The window size defines how much a sender

can transmit without receiving an acknowledgment. The RTT

can be controlled by delay ACK. since base rtt is the link

latency, and delay is the ACK delay time, so the real RTT is

rtt = base rtt+ delay

Each flow involves a sender and a receiver between which

the packets are transmitted. The scheduling policies can be

encoded in the TCP/IP header of the packets.

How to calculate scheduling policies? Firstly, OPTAS

assigns tiny tasks with priority higher than large tasks to avoid

head-of-line blocking. Secondly, we assign network resources

based on the start time of each tiny tasks. The task arrived

earliest will get bigger windows size and lower round trip

time than others. This strategy looks like FIFO, but is different

due to the subsequent tasks are not completely blocked. The

constraints (1d) and (1e) guarantee that all tasks can transmit

smoothly, or else the upper layer applications may get alarmed.

However, FIFO is not feasible for large tasks, due to the flow

sizes of large tasks vary intensely, which degrade performance

severely once a extreme large task arrives earlier than others.
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Fig. 3 depicts the architecture of OPTAS, which mainly

contains four modules: Task Monitor, Policy Calculator, Buffer

Monitor and Policy Enforcer. The Task Monitor and Policy

Calculator run on the receiver side, while the other two run

on sender side.

B. Workflow

Fig. 4 illustrates how the modules of OPTAS cooperate to

make scheduling decisions.

• On the receiver side, when a task starts a new flow, the

Task Monitor identifies its task_id. The Task Monitor

passes task_id to the Policy Calculator. Then, the

Policy Calculator knows about the relationships between

tasks and flows. The Policy Calculator sorts tasks ac-

cording to their start time, then calculates the suggested

window size and ACK delay time.

• On the sender side, the Buffer Monitor records send

buffer status and delivers to the Policy Enforcer. The

Policy Enforcer applies the suggested window size to the

packets about to send and encodes flow size judgement

in the outgoing packets.

• When a flow finishes, Task Monitor notifies the Policy

Calculator. Until all flows of the task finished, the task is

completed and removed from the task list.

C. Implementation

We now describe the implementation of the 4 modules of

OPTAS in detail.



Task Monitor

To obtain the relationships between tasks and flows, Task

Monitor tracks basic network functions such as tcp recvmsg.

For example, Task Monitor can record the PID of each task

at the entry of tcp recvmsg, which is used as task_id.

Flows with the same task_id are treated as a coflow. When

a flow is starting, Task monitor notifies the Policy Calcu-

lator with 4-tuple (task_id, source, destination,

flow_size∗). The source and destination are guide-

posts of the flow. The flow_size is optional, since it

sometimes can not be known beforehand. When a flow ends,

it will be removed from the flow list of its associated task. If

all flows of a task are completed, the task will be marked as

completed.

Buffer Monitor

On the sender side, the sender buffer can tell us how much

backlogged data is waiting to send [2]. When the data is

ready to send, the system function (e.g. tcp sendmsg) will

be called, the data will be copied from user space memory to

kernel space send buffer, then NIC (network interface card)

will read the buffer and transmit data to network. Thus, the

data backlogged in sendbuffer is the flow data ready to be

transmitted into network, we can infer flow sizes from the

send buffer status.

OPTAS sets one threshold to filtrate large tasks. We compare

the backlogged bytes in sendbuffer plus the transmitted bytes

through network to the threshold. While a flow transmitting,

if the sum of backlogged bytes and transmitted bytes is larger

than the threshold, we have enough confidence to say the flow

is a long flow, the task it involved is a large task.

Fig.5 depicts that the send buffer size changes along with

flow size when the flow sends its first few packets. The default

send buffer size is 1MB, when the flow size is smaller than

the sendbuffer capacity, the send buffer will not be full. When

the first few packets are about to send, send buffer of the flow

is filled by user data, so the occupied buffer size reflects the

size of flow. Therefore, the send buffer is a good indicator

for flow sizes. The flow size threshold is not a fixed value, it

depends on how we define a tiny task. In our definition, a tiny

task is all flows it involves are smaller than 1MB, so we set

the threshold 1MB.

Moreover, different applications and flows leave different

footprints on the send buffer. The send buffer footprints depend

on the flow size and specific application behaviour. On the

other hand, the data input rate can not fill out the send buffer

or the maximum buffer size is not large enough to distinguish

flows, the network is not the bottleneck anymore. Although the

send buffer is a good indicator for flow sizes, it is not always

accurate. Sometimes the send buffer fails to advise flow size

in advance.

We implement the task and buffer monitors by using jprobe

and netfilter. Jprobe is a probe tool provided by Linux kernel,

and netfilter is a series of hooks in various points in Linux

network stack. These hooks provide us convenience to monitor

the tasks and network stacks.
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Algorithm 2 The Delay ACK Algorithm

1: procedure CALCDELAY(Task t)
2: the bottleneck capacity is C
3: if t is task list.head then return 0

4: else

5: bmall is the overall throughput

6: if bmall ≥ αC then return Delaymax

7: else return delay calculated as Equation (2)

8: end if

9: end if

10: end procedure

Policy Calculator

Policy Calculator maintains a list of tasks, the tasks are

sorted by arrive time, that is the latest arrived task will be

added into the list tail. The head of task list has higher priority

then others, which means that network resources are assigned

to it preferably.

To solve the problem formulated above, the Policy Calcu-

lator computes the acknowledgement delay time when every

packet arrives. The detail algorithm is demonstrated in the

Algorithm 2. The procedure CALCDELAY calculates the delay

time for each task. If a task is at the head of task list, no

delay will added into it. Otherwise, the delay time is calculated

based on the remaining bandwidth. The actual throughput is

measured as the total number of bytes it received divided

by the time interval, then smoothed by an exponential factor.

bmall denotes the overall throughput. When bmall is larger than

the threshold αC, the delay time is Delaymax, where α
is a predefined threshold. In this paper, the default value

of α is 0.9. Delaymax is the maximum possible delay. If

we set the delay time larger than Delaymax, it may trigger

retransmission, which will hurt the goodput. If bm is smaller

than αC, the delay time will be calculated as

delay = min(ntwt/(αC − bmall)− base rtt,Delaymax) (2)

The min operation ensures that the delay is not larger than

Delaymax.

When the network is not congested or the delay time

expires, the Policy Calculator sends an acknowledgement, then

the flow will continue to transmit. When an acknowledgement

packet is about to send, the receive window of a task is

calculated based on whether it is the head of task and the



Algorithm 3 The Window Suggesting Algorithm

1: procedure CALCWINDOW(Task t)
2: wold

t is the old window size

3: wt is the window size of task t
4: if t is task list.head then

5: if bm ≥ αC then

6: wt = max(wold
t − 1,Wmin)

7: else if bm ≤ αC/2 then

8: wt = wold
t ∗ 2

9: else

10: wt = wold
t + 1

11: end if

12: else

13: wt = Wmin

14: end if

15: end procedure

overall throughput. OPTAS calculates the suggested window

size by using procedure CALCWINDOW in Algorithm 3, where

bm is the measured throughput of the first task in task list.

Policy Enforcer

The Policy Enforcer runs on the sender side and receives

messages from the Buffer Monitor and the Policy Calculator.

The Policy Enforcer performs two functions as follows.

1) The Policy Enforcer collects send buffer sizes from

the Buffer Monitor and the data size already sent,

then decides whether the flows are long flows, The

Policy Enforcer encodes the decision into the last bit

of Differentiated Services Code Point (DSCP) field of

packet headers.

2) The Policy Enforcer transfers packets in the window size

as the Policy Calculator suggests.

D. Discussion

OPTAS offers efficient tiny-task-aware scheduling in low

overhead, and is adaptive for incomplete flow information.

Here we remark on some specific cases:

Long term tasks: OPTAS also tasks care of background

services. Tasks of such services are often in long term running.

The accumulated data sizes of long term tasks are large, but

simply assigning them with low priority is not appropriate.

Some background services (e.g. ssh and heartbeat) require

low latency. while some do not (e.g., HDFS rebalance and

index update). To guarantee the low latency requirement,

OPTAS resets the start time of a long term task after it stops

communication for a while.

Traffic patterns: We ignore the other traffic patterns (i.e.

one-to-many and many-to-many) due to a lack of cluster-wide

insight. For one-to-many or many-to-many communication,

multiple receivers are involved, it is hard to classify the sub-

coflows on these receivers as one coflow. This needs additional

query from the task controller (e.g. master of Spark).

Flow size skew: The flow sizes of some tasks may be skew,

due to they are mixed with short and long flows. We count

these tasks as large tasks, since the completion time depends

on the longest flow. Otherwise, they will block other tiny tasks

for a long while, if we put them in the tiny task list.

Sender side contention: The receiver side RTT the duration

from the time an ACK packet issued to the time packet with

sequence number ACK + WND received. Once the sender

is congested, the receiver side will observe a larger RTT

than usual. Then the receiver side will decrease the suggested

window size by one MSS.

V. EVALUATION

A. Methodology

Experiment Setup: We have implemented OPTAS as a Linux

kernel module and deployed it on our 37-server testbed. The

37 physical servers are Dell PowerEdge R320 servers with a

quad core Intel Xeons E5-1410 2.8GHz CPU, 24GB DDR3

memory, 500GB hard disk and one Broadcom NetXtreme

Gigabit Ethernet NIC. The OS is Debian 6.0 64-bit version

with kernel 2.6.32-5.

In our experiment, all the files are stored in RAM to testify

the network performance. The file sizes determine that whether

the task is tiny or not. We setup user applications using Redis,

a high-performance in-memory key-value store. In our testbed,

one server is a Redis client, while the other 36 server are

Redis servers. We run tasks on the client, which read data

from remote servers. Since each task involves a group of flows

into network, the completion time of each task is when its last

flow finished.

We use ICTCP [22] as the performance baseline. The reason

to choose ICTCP is that it is a fair sharing mechanism and can

alleviate incast congestion. The performance improvement is

calculated as

Improvement Factor =
Baseline duration

Optimized duration

To evaluate OPTAS performance, we generated the follow-

ing three types of traffic scenarios.

• Fixed flows and volume per task: In this scenario, the flow

count and volume per task are fixed. The total number of

flows and traffic volume are increased with the number

of tasks.

• Fixed tasks and volume per task: In this scenario, the

number of tasks and volume per task are fixed, while the

number of flows per task varies.

• Fixed tasks and flows per tasks: In this scenario, we fix

the number of tasks and flow count per task, the traffic

volume per task is randomized.

Summary of results: The main highlights of our results are

as follows.

• Effectiveness: When only tiny tasks are present, OPTAS

achieves at least 1.4× performance improvement over fair

sharing. Along with the tasks count ranges from 2 to 10,

the improvement factor rises from 1.43 to 1.59. When

tiny tasks are mixed with large tasks, OPTAS is at least
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Fig. 6: Improvements in average task completion times of tiny

tasks using OPTAS over fair sharing.

2.2× faster than fair sharing, and 1.2× than tiny tasks in

highest priority.

• Compatibility: OPTAS is compatible with other opti-

mization solutions for large coflows, such as Varys and

RAPIER. The integrated system consists of OPTAS and

Varys can reach performance improvement as much as

1.93×.

• Overhead: OPTAS brings negligible overhead to sys-

tem. The additional CPU and memory overhead OPTAS

introduced are positive relevant to the number of con-

current tasks, which are less than 1% and tens of KBs

respectively. The latency introduced by OPTAS is less

than 0.2%.

B. Effectiveness of OPTAS

Performance Improvement

Fig. 6 shows the improvements under the fixed flows and

volume per task scenario. All these tasks are tiny tasks, and

each task involves 8 flows and the size of each flow is 256KB,

the number of concurrent tasks ranges from 2 to 10. OPTAS

can transfer tasks at least 1.43× faster than fair sharing. The

improvement factor increases from 1.43× to 1.59× alone with

the number of concurrent tasks ranges from 2 to 10. The

omniscient is the situation that all flow information can be

known in advance, then we can choose the best scheduling

plan which is always schedule smallest task first (STF).

Fig. 7 shows the improvements using OPTAS over fair

sharing for varying task width. These are 8 tiny tasks running

simultaneously, the number of flows per task ranges from 2 to

14. The 4 lines in Fig. 7 are the total volume of tasks, which

are 1MB, 2MB, 3MB and 4MB respectively. The improvement

factor falls steady in the interval [1.47, 1.77]. However, when

the width exceeds 12, severe congestion happens in ICTCP,

the goodput of ICTCP declines, so the improvement factor

increases rapidly.

The performance of OPTAS also depends on the tasks arrive

rate (as shown in Fig. 8). The X-axis in Figure 8 is the number

of tasks per second, and the Y-axis is the improvement factor

over fair sharing. When the server is busy, such as 10000 tasks

per second, the improvement of OPTAS is as high as 1.46×.

When the task arrive rate drops, the performance improvement

declines too. When the rate is down to 10 tasks per second,
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Fig. 7: Improvements in average task completion time using

OPTAS over fair sharing for varying task width.
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Fig. 8: OPTAS’s performance when the arrive rate of tiny tasks

varies.

OPTAS does not obtain performance gain any more. That is

because tiny tasks do not collide with each other on network

when the arrive rate is low.

These experiments prove that how OPTAS can improve

network performance when only tiny tasks exist. However,

the tiny tasks are mixed with large tasks in real data center

environment. We answer the following questions: (i). How tiny

tasks will perform with large tasks mixed? (ii). How large tasks

be delayed when tiny tasks always preempt them?

We demonstrate how OPTAS performs when mixed with

large tasks in Fig. 9. The tasks are classified into four classes

based on two dimension metrics, size and width. The mixing

ratios between these classes come from the Facebook trace

which is introduced by literature [12]. The detailed recipes

are listed in TABLE I.

When tiny tasks are mixed with large tasks, the scheduler

always assigns the tiny tasks with higher priority than large

tasks. In the legend of Fig. 9, “O” means that tiny tasks

are scheduled by OPTAS while the large tasks are in fair

sharing, in the context that they have higher priority. As

a comparison to “O”, the “F” means under tiny tasks are

scheduled preferentially, the intra tiny tasks are scheduled in

fair sharing way. The “T” and “L” are the improvement factors

of tiny tasks and large tasks respectively.

In Fig. 9, O/T denotes OPTAS for tiny tasks, F/T denotes

fair sharing between tiny tasks. By observing Fig. 9, we can

make four conclusions.

1) When the tiny and large tasks are mixed, OPTAS can

improve the performance of tiny tasks significantly.



Size short short long long

Width narrow wide narrow wide

Normal 52% 16% 15% 17%

Mix-N 48% 40% 2% 10%

Mix-W 22% 15% 24% 39%

Mix-S 50% 17% 10% 23%

Mix-L 39% 27% 3% 31%

TABLE I: The mixing ratios of tiny and large tasks from the

Facebook trace [12].

Normal Mix-N Mix-W Mix-S Mix-L
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Fig. 9: OPTAS’s performance under different mixing ratios

with comparison to only assigning tiny tasks with high priority.

The improvement factors of tiny tasks ranges from 2

to 3.9 under different mixing ratios. The performance

improvements are above 2 due to a little sacrifice of

large tasks.

2) Compared to fair sharing between tiny tasks (“F/T”),

OPTAS outperforms by about 20%. The improvement

of OPTAS depends on how the tiny and large tasks are

mixed.

3) The degradation of large tasks is less than 0.1% when

they are preempted by tiny tasks (“O/L” and “F/L” in

Fig. 9).

4) The black dot dash line line in Fig. 9 is the overall

improvement counts for both tiny and large tasks. Since

most network traffic is generated by large task, if we

only optimize tiny tasks and abandon large one, the

average overall improvement is only 1.02×.

Therefore, OPTAS can optimize tiny tasks significantly

with little impact on large tasks. However, the performance

optimization for large tasks is left to other techniques, such as

Varys, RAPIER when the complete coflow information can be

known, and Aalo when the information remains unknown. We

simulate how the system performs when we integrate OPTAS

and Varys together.

Scheduling Overhead

Since OPTAS is implemented as a background kernel mod-

ule, the overhead is hard to measure directly. In our experi-

ments, we do not observe obvious CPU and memory resources

consumption. When OPTAS does not output performance
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Fig. 10: The overall performance improvement when integrate

OPTAS with Varys.

improvement, the overhead of it can be measured by the

performance degradation. As the last two bars in Fig. 8, OPTAS

will add a little overhead into the tasks, which is about 0.2%.

In conclusion, the resources consumption and the overhead of

OPTAS is negligible.

C. Trace-Driven Simulation

We integrate OPTAS with Varys [12] and evaluate it in the

NS-2 simulator. The performance is compared against fair

sharing. In our simulation, the Varys scheduler is implemented

with global coflow knowledge and all schedulers do not

produce any additional overhead. We synthesize the trace for

simulation according to the “Normal” recipe in TABLE I.

In the legend of Fig. 10, “OPTAS” means that the tiny tasks

are scheduled by OPTAS, while the large tasks are fair sharing;

“Priority” means that the tiny tasks are in high priorities and

fair sharing inside both tiny and large tasks; The performance

improvement of tiny tasks in OPTAS is about 1.38× than tiny

tasks in high priorities.

However, the transmission time in network is dominated

by the large tasks. If we leave the large tasks unoptimized,

the overall performance improvements are just 1.03× and

1.02× in OPTAS and priority respectively. When we integrate

OPTAS with Varys, OPTAS takes care of the tiny tasks, while

Varys focuses on the large tasks. “O+V” means that OPTAS

integrated with Varys; “P+V” means that the tiny tasks are in

highest priority and the large tasks are scheduled by Varys.

Both “O+V” and “P+V” can achieve improvement above

1.93×, and “O+V” is a little higher. Fig. 10 shows that OPTAS

together with Varys can achieve better optimizations for both

tiny tasks and overall performance.

VI. RELATED WORK

A. Flow scheduling

Various scheduling schemes have been developed to meet

different design goals, such as congestion control [6, 22],

performance isolation [4, 18], failure recovery [23] and flow

scheduling [5, 14, 16, 21]. They focus on scheduling inde-

pendent flows to achieve better network utilization and reduce



the average flow completion time (FCT). For example, PDQ

[14] and pFabric [5] are flow scheduling schemes to minimize

FCT by assigning flows with priorities. Congestion avoidance

techniques, such as ICTCP [22] and PAC [6], improve the

goodput by eliminating incast congestion. ICTCP and PAC

schedule flows by adjusting the window size and the proactive

delay respectively, which are also used by OPTAS. All these

flow scheduling studies do not take into account the flow

dependency semantics and thus are coflow-agnostic. On the

other hand, traffic managers, such as Hedera [3] and MicroTE

[7], cannot directly be used to optimize coflows either.

B. Task-aware network scheduling

Recently, collaborative scheduling of network resource and

computing tasks receives much attention from researchers.

Orchestra [11] optimizes the transfer times by aware of

communication patterns and uses FIFO among the patterns.

Coflow [9] defines a kind of network abstraction of parallel

flows. Varys [12] and RAPIER [24] apply coflow concept

to their network optimizations. Both of them employ cen-

tralized schedulers, which introduce significant overhead to

short flows. RAPIER jointly considers coflow scheduling and

routing, OPTAS has the potential to achieve this by cooperating

with some source routing works (e.g. XPath [15]). Hadoop-

Watch [17] and FlowProphet [20] expose coflow information

from distributed computing frameworks to coflow schedulers.

They can only work on specific applications. Baraat [13] is

a low overhead, decentralized task-aware scheduling scheme,

which needs centralized server to sort tasks in FIFO order.

Unfortunately, Baraat can not be implemented using existing

commodity switches. Aalo [10] schedules coflow without

prior knowledge, and performs well even for tiny coflows by

avoiding coordination. However, rate control on short flows is

not accurate. Theoretical work [19] provides an approximation

algorithm for coflow scheduling problem, which has been

proved as a NP-Hard problem.

OPTAS outperforms prior task-aware schedulers in three

ways. First, OPTAS schedules tiny tasks in low overhead,

which pads the short slab of centralized schedulers. Second,

OPTAS works fine with TCP without assumptions of impracti-

cal support from commodity switches, thus is deploy-friendly.

Third, OPTAS does not require to modify user applications,

which saves a lot of engineering effort.

VII. CONCLUSION

In this paper, we present an efficient tiny-task-aware flow

monitoring and scheduling system called OPTAS. The key

design of OPTAS are two-fold. (i) OPTAS obtains necessary

information without any modification of user applications. (ii)

OPTAS schedules flows of tiny tasks by adjusting the window

size and the time to send ACKs. We have implemented OPTAS

as a Linux kernel module, and evaluated it both on our 37-

server testbed and in the NS-2 simulator. The results show that

OPTAS can efficiently improve the performance of tiny tasks.

OPTAS is at least 2.2× faster than fair sharing, and 1.2× faster

than only assigning tiny tasks with the highest priority.
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