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ABSTRACT

Previous congestion control (CC) algorithms based on deep re-
inforcement learning (DRL) directly adjust flow sending rate to
respond to dynamic bandwidth change, resulting in high inference
overhead. Such overhead may consume considerable CPU resources
and hurt the datapath performance. In this paper, we present Spine,
a hierarchical congestion control algorithm that fully utilizes the
performance gain from deep reinforcement learning but with ultra-
low overhead. At its heart, Spine decouples the congestion control
task into two subtasks in different timescales and handles themwith
different components: i) a lightweight CC executor that performs
fine-grained control responding to dynamic bandwidth changes,
and ii) an RL agent that works at a coarse-grained level that gener-
ates control sub-policies for the CC executor. Such two-level control
architecture can provide fine-grained DRL-based control with a low
model inference overhead. Real-world experiments and emulations
show that Spine achieves consistent high performance across vari-
ous network conditions with an ultra-low control overhead reduced
by at least 80% compared to its DRL-based counterparts, similar to
classic CC schemes such as Cubic.
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1 INTRODUCTION

Driven by the tremendous successes achieved by deep reinforce-
ment learning (DRL) models in wide areas, e.g., games [32, 33, 39],
computer systems, and networking [16, 29, 30, 45], the community
∗Equal contribution. † Corresponding author.
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is exerting efforts to gain the same success on the network trans-
port by incorporating DRL into congestion control (CC) [1, 19, 27].
As one of the major advantages, DRL-based CC schemes have the
capability to adapt to variant network conditions with one single
control policy. Therefore, network engineers can be free from the
operational challenge of manually tuning CC hyperparameters for
unseen network conditions.

Despite being promising, previous DRL-based CC schemes suf-
fer from high computation overhead incurred by complex model
inference for sending rate adjustment (§2.2). Such high inference
overhead consumes non-negligible CPU resources [1] and inter-
feres with the datapath performance [47]. Existing solutions handle
the overhead issue by lowering the inference frequency to extend
the response interval [1, 19, 27]. During the interval, the CC is out
of DRL control, either making no rate adjustment [19, 27] or relying
on a classic scheme, e.g., Cubic in Orca [1], as a remedy. Therefore,
they fail to fully exploit the performance superiority provided by
DRL models and is vulnerable to network congestions due to the
coarse-grained control [47].

Given the above dilemma, we ponder a question: can aDRL-based
CC provide fine-grained control for every ACK while preserving
a low computation overhead? In this paper, we present Spine to
answer this question affirmatively.

At its heart, Spine adopts a hierarchical control architecture
consisting of a lightweight CC executor that reacts to every ACK
and loss event as well as a DRL-based policy generator that period-
ically generates control sub-policies for the CC executor to adapt
to the change of network condition, e.g., bandwidth capacity vari-
ation or flow arrivals and departures. Specifically, a sub-policy in
Spine is a lightweight parameterized control logic based on additive-
increase/multiplicative-decrease (AIMD) and can be defined by a
set of parameters outputted by the policy generator (§3.3). Com-
pared to the network event reaction (e.g., ACK and packet loss),
the sub-policy adaption for a new network condition is infrequent,
resulting in low-frequency DRL model inference. Therefore, Spine
can perform a fine-grained DRL-based CC with a low computation
overhead.

To support a timely network adaption while preserving a lower
model inference overhead, Spine leverages a flexible sub-policy
update strategy by further introducing a watcher module, a smaller
model compared to the policy generator (§3.4). The watcher judges
whether the current sub-policy still works well and triggers the
policy generator to update it if necessary. As a result, this flexible
update strategy significantly reduces the execution frequency of the
policy generator and potential cross-space (kernel and userspace)
communications involved by sub-policy update operations1, espe-
cially in a stable network condition.

1The CC executor can be enforced in kernel while the DRL model is usually executed
in userspace
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Figure 1: The performance of DRL-based CC schemes with

different control intervals.

We have implemented a fully functional Spine prototype in
Linux. We have integrated the CC executor with Linux kernel TCP
and implemented cross-space communication functionalities for
the RL model to update its sub-policy. Based on this prototype,
we performed efficient distributed training in various emulated
network conditions and evaluated it extensively. Experimental re-
sults show that Spine achieves consistent high performance across
emulated networks and real-world testbeds with ultra-low control
overhead. For example, when using Spine with a large monitor in-
terval of 300ms, Spine stills achieves higher throughput and lower
latency inflation compared to previous DRL-based CC schemes
using monitor interval of 30ms. Meanwhile, it takes a much lower
CPU utilization (2.6% for a single flow) reduced by at least 80%
compared to its DRL-based counterparts (131.5% for Aurora and
14.3% for Orca) and comparable to classic CC Cubic (1.1%).

2 MOTIVATIONS

In this section, we explain the trend and difficulty of current learning-
based congestion control algorithms and how the characteristics of
CC motivate our hierarchical control logic.

2.1 DRL-based Congestion Control

Unlike supervised learning algorithms that focus on prediction
and classification tasks, reinforcement learning tackles sequen-
tial decision-making processes by maximizing the cumulative re-
ward in the long run during the interactions with the environment.
Armed with deep neural networks, deep reinforcement learning
plays the core role in achieving super-human performance in many
games and real-world decision-making tasks [33, 39]. Therefore,
researchers have recently incorporated DRL into congestion control
to seek to improve control policy and generalize to various unseen
network conditions [1, 19, 27]. While heuristic-based CC algorithms
hand-craft signal-response mapping based on some specific assump-
tions, DRL-based methods learn the mapping automatically from
the empirical data, thus showing better generalization and out-
performing specially engineered methods across various network
conditions [1, 19, 27].

2.2 Overhead vs. Performance

Despite being promising, DRL-based models spend several orders
of magnitude more time and consume much more computation
resources than those simple ACK response functions in classic CC
schemes. Empirical experiments in §7.1 have shown that previous
DRL-based CC schemes consume much more CPU resources than

Figure 2: The control logics of Spine and previous DRL-based

CC algorithms.

classic ones such as Cubic, and the overhead increases with the
control frequency. As a result, there may not be sufficient CPU
resources to fully support the kernel datapath processing pipelines,
resulting in degraded throughput, especially with multiple concur-
rent flows [47]. Furthermore, such DRL-based CC schemes are hard
to employ a small control interval, given the high model inference
latency.

However, adoptingDRL-based CC schemeswith a coarse-grained
control fails to fully unleash the potential of deep reinforcement
learning. We perform experiments to demonstrate the performance
degradation when the control frequency decreases. To demonstrate
how quickly these schemes respond to network changes, we em-
ulate a network with a minimum RTT of 30𝑚𝑠 and buffer size of
375𝐾𝐵, where the bottleneck link bandwidth changes every 10 sec-
onds. A portion of a 10-minute trace is shown in Figure 1(a). We use
a clean-slate DRL-based scheme Aurora [19] with different control
intervals to send traffic over the network and record the sending
rate. The results show that Aurora with a large control interval
(150𝑚𝑠) can hardly respond to bandwidth changes quickly due to a
less frequent 𝑐𝑤𝑛𝑑 adjustment, compared to Aurora with a small
control interval (30𝑚𝑠). Also, it tends to be more unstable under
static bandwidth due to the response lag2.

One way to improve the trade-off between overhead and perfor-
mance is to incorporate classic schemes back for fine-grained con-
trol. Orca [1] realizes it by building a two-level control framework
where the RL model and the underlying scheme (Cubic) control
the current 𝑐𝑤𝑛𝑑 simultaneously at different frequencies. By re-
straining the sending rate according to delay increase, Orca avoids
the bufferbloat issue caused by the loss-based CC Cubic. To show
how Orca works with different control intervals, we emulate the
same network with a static bottleneck link bandwidth (100𝑀𝑏𝑝𝑠)
and record the delay. The result is shown in Figure 1(b). It is obvi-
ous that introducing Cubic will not eliminate the requirement of
fine-grained control of the DRL model: when Orca interacts less
frequently with the 𝑐𝑤𝑛𝑑 (150ms), it can hardly restrain the sending
rate increased by Cubic after every ACK, leading to a higher packet
delay.

Is it possible to get rid of the trade-off between control granu-
larity and model performance of DRL-based CC? Our observation
is that all the previous DRL-based schemes focus on directly ad-

justing the current sending rate. As a result, the RL agent needs
to perform two subtasks: i) to consistently update sending rate in
high frequency to timely respond to dynamic bandwidth changes;
2We also tested Aurora and Orca re-trained with a larger interval (150ms) and action
range (5 * original action). However, due to the slow response, their model performance
degrades severely with dramatic oscillation compared to their counterparts trained
with an interval of 30ms.
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Figure 3: The high-level architecture of Spine.

ii) to adapt its current event-action mapping to the change of net-
work condition when the link changes or flows arrive and depart.
While DRL-based schemes are good at subtask (ii) for their capa-
bilities to generalize to various network conditions, the overhead
issue keeps them from responding to dynamic bandwidth changes
quickly, resulting in sub-optimal performance. On the other hand,
classic schemes are good at subtask (i) due to their simple hardwired
signal-action mapping but can hardly automatically adapt to the
network conditions where their assumptions no longer hold. Thus,
we argue that in order to achieve high model performance with low
overhead, we need to decouple the CC task and adopt a hierarchical
architecture to handle the two subtasks in different timescales.

2.3 Key Design Decisions

Inspired by §2.2, our key design decision is to detach the time-
consuming DRL processing from quick sending rate adjustment. To
achieve this, Spine builds a hierarchical policy structure powered by
DRL, which learns a DRL model that generates sub-policies instead
of sending rates. A sub-policy can be regarded as a parameter-
ized mapping from packet-level events to sending rate adjustment,
which is simple and fast compared to the DRL model, thus enabling
instantaneously responding to network signals at fine-grained level.
As shown in Figure 2, the DRL agent periodically observes the cur-
rent network condition and generates a sub-policy. As the network
changes, the DRL agent keeps updating the current sub-policy at a
coarse-grained level. This design brings several benefits to solve
the dilemma between performance and overhead as follows:
• By generating sub-policy instead of volatile 𝑐𝑤𝑛𝑑 and sending
rate, we greatly reduce the required work frequency for DRL
model, resulting in a much lower overhead than previous DRL-
based CC algorithms. As a result, the overhead issue is no longer
a severe concern when designing DRL-based CC algorithms. (§
7.1)
• By learning to control every single response at fine-grained level
through sub-policy, Spine achieves consistent high performance
across various network conditions, even in dynamic ones where
the link capacity varies drastically. (§7.2)
• The hierarchical policy architecture enables a more flexible pol-
icy update strategy. After inspecting the network condition, the
DRL model can judge whether the current sub-policy still works

Figure 4: The time diagram of Spine’s hierarchical control

logic.

properly. If so, the DRL model has no need to update the sub-
policy, saving the cost of model inference and cross-space com-
munication. This adaptive strategy further lowers the framework
overhead significantly under stable network conditions (§ 7.5.1).

3 DESIGN

3.1 Overview

Figure 3 overviews Spine. It consists of three blocks: a policy gen-

erator, a watcher and a CC executor. The policy generator and the
watcher together form the RL agent that traces the traffic pattern
and updates the current sub-policy. The CC executor is imple-
mented in the kernel to enforce the control sub-policy generated
by the RL agent, adjusting sending rate responding to ACK and
packet loss. Observing the packet statistics collected, the watcher
checks whether the deployed sub-policy is still working well under
the current network condition. If so, the RL agent takes no action.
Otherwise, it will trigger the policy generator module and submit a
report encoding the network condition information. Once activated
by the watcher and receiving a new report, the policy generator
will output a new sub-policy and update it in the CC executor. In
addition, it will update the watcher so as to continue supervising
the updated new sub-policy.

As a result, Spine utilizes a hierarchical control logic. As shown
in Figure 4, the policy generator, watcher and CC executor run in
different timescales. The CC executor provides fine-grained control
to respond to every acknowledgement. For every monitor interval
(MI), the watcher observes the packet statistics as the current state
input of the RL agent and triggers the policy generator once in a
while. Finally, the policy generator works in a flexible signal-driven
style: it only updates the watcher and the executor when triggered.
As a result, the policy generator will not be triggered when the
current sub-policy works well and thus have a much lower average
working frequency. In addition, the watcher is generally smaller
compared to the policy generator due to its simple learning target
and thus has a smaller regular computation cost than previous
DRL-based schemes.

We will introduce each block in detail in the following sub-
sections. §3.2 introduces the basic components of the RL agent,
including input state and reward definition. We leave the action
definition to §3.3 as it relates to the sub-policy used in the CC ex-
ecutor. §3.4 introduces the hierarchical LSTM model architecture
that combines policy generator and watcher modules in the RL
agent, and its training algorithm is given in §5.
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𝑡ℎ𝑟 The average throughput.
𝑙𝑎𝑡 The average packet delay.
𝑡ℎ𝑟𝑚𝑎𝑥 The maximum throughput of the flow so far.
𝑙𝑎𝑡𝑚𝑖𝑛 The minimum packet delay of the flow so far.
𝑐𝑤𝑛𝑑 The current congestion control window.
𝑙𝑜𝑠𝑠 The average packet loss rate.
𝑓 𝑙𝑖𝑔ℎ𝑡 The number of packets in flight.
𝑝𝑟𝑎𝑡𝑒 The average pacing rate.

Table 1: The packet statistics used as Spine’s RL agent input.

3.2 RL Agent

In Spine, the RL agent works as follows: in each monitor interval
(e.g. 𝑡-th MI), it perceives the current network condition by gath-
ering packet statistics, which are regarded as the current state 𝑠𝑡
of the agent. That state input is then fed into the model based on
deep neural networks, which will decide whether to update the un-
derlying sub-policy by setting a flag 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 . If 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is 𝑇𝑟𝑢𝑒 , the
model will generate a new parameterized sub-policy by outputting
its parameter setting 𝑎𝑡 and update it to the CC executor by sending
the parameter setting into the kernel. Otherwise, the model output
is ignored and the sub-policy in the CC executor keeps unchanged.
Once a flow is initialized, the RL agent consistently observes the
dynamic network condition and updates sub-policy to maximize
target performance goal.
State The input state of the RL agent contains collected packet
statistics of the flow during the last MI. Here we consider the fea-
tures that are closely related to the characteristic of the current
network condition and flow status, which are shown in Table 1.
The throughput and delay are normalized with maximum observed
throughput and the minimum observed one-way delay respectively.
Beyond that, we also include the currently deployed sub-policy
into the state, so Spine can assess the performance of the current
sub-policy for more intelligent update decision-making.

Some previous DRL CC schemes [1, 19, 27] stack a fixed-length
of history features so that the agent can infer the current network
condition more precisely by extracting information from history
packet statistics. In Spine, however, we adopt the recurrent neural
networks (RNN) as the building block of the hierarchical policy
structure (§3.4). RNN is able to capture patterns and dependencies
from long-term history features without the need of stacking fea-
tures, which is important for the policy generator and the watcher
to memorize their state histories across sparse triggering events.
As a result, we can directly feed the current state feature into the
model without state stacking.
Reward An RL agent needs to define a reward function to quantify
the performance criterion of the task, which guides the agent to
improve the generated sequence of sub-policies in the training
phase. Updated with a new sub-policy from the policy generator, the
CC executor interacts with the network environment by adjusting
the flow sending rate and collecting rewards for eachMI. Inspired by
the Power-based reward in Orca [1], we define the reward function
as follows:

𝑅 =

(
𝑡ℎ𝑟 − 𝜁 × 𝑙𝑜𝑠𝑠

𝑙𝑎𝑡 ′

)
/
(
𝑡ℎ𝑟max
𝑙𝑎𝑡min

)
− 𝛼𝑝𝑠𝑝 × 𝑡𝑟𝑖𝑔𝑔𝑒𝑟, (1)

where

𝑙𝑎𝑡 ′ =

{
𝑙𝑎𝑡𝑚𝑖𝑛 (𝑙𝑎𝑡𝑚𝑖𝑛 ≤ 𝑙𝑎𝑡 ≤ 𝛽 × 𝑙𝑎𝑡𝑚𝑖𝑛)
𝑙𝑎𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

The first term in Equation 1 is based on the well-studied metric
Power 𝑡ℎ𝑟

𝑙𝑎𝑡
[14] and has been used in Orca. Generally, we can regard

it as the ratio of normalized throughput to normalized latency, with
a penalty on lost packets (weighted by 𝜁 ). [22, 23] shows that by
maximizing Power, both the network and individual flows achieve
the optimal point. However, as the Power cannot be fully optimized
in a decentralized way [18], a small queuing delay is allowed to
achieve the maximum bandwidth. As shown in Equation 2, the
parameter 𝛽 controls the tolerance: when the latency is smaller
than 𝛽 ∗ 𝑙𝑎𝑡𝑚𝑖𝑛 , no penalty of latency is incurred.

The second term defines the penalty of triggering the policy gen-
erator to update a new sub-policy, as it will cause further inference
overhead of the policy generator and the cross-space communica-
tion for sub-policy update. We call the penalty term the pit stop
penalty, as changing sub-policies takes overhead, and we want
to avoid it if not necessary, which is similar to that of changing
tyres in motorsports. Without the pit stop penalty, the RL agent
cannot resist the temptation to switch sub-policies for every MI,
even with negligible changes. The indicator 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is equal to 1
when the watcher triggers the policy generator, otherwise 0. The
coefficient 𝛼𝑝𝑠𝑝 defines the significance of the penalty. Empirical
experiments in §7.5.1 show how this penalty controls the behavior
of the watcher and thus the actual working frequency of the policy
generator.

3.3 CC Executor

The CC executor in Spine is implemented as one of the pluggable
congestion control modules, similar to Cubic and BBR, yet executing
sub-policy generated by the policy generator. To meet the design
goal of Spine, we expect our parameterized sub-policy structure to
have the following features:
• Simple. The sub-policy should be simple enough so that the CC
executor can execute it in the kernel with a very low computa-
tional overhead.
• Fine-grained control. The sub-policy should employ a fine-
grained control over the sending rate or 𝑐𝑤𝑛𝑑 to quickly respond
to dynamic bandwidth changes.
• Flexible. The sub-policy is able to approximate various control
mappings from signals to sending rates, enabling the learning of
arbitrary optimal policy.
Based on these feature requirements, we design a simple yet

efficient sub-policy based on the idea of AIMD. It adopts a combi-
nation of the three most commonly used indicators in congestion
control: received ACK, packet delay, and loss. While executing the
sub-policy, the CC executor also performs an extra slow start func-
tion at the beginning in which the sender multiplies its sending rate
by 1.1 for every RTT until packet loss occurs, similar with Orca.
For the sub-policy execution part, when receiving an ACK packet,
the CC executor updates 𝑐𝑤𝑛𝑑 with the following equation:

Δ𝑐𝑤𝑛𝑑 =

{
−𝛼𝑙𝑎𝑡 𝑅𝑇𝑇

𝑅𝑇𝑇𝑚𝑖𝑛
≥ 𝛼𝑡𝑜𝑙 + 1

𝛼𝑡ℎ𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(3)
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where 0 ≤ 𝛼𝑡ℎ𝑟 , 𝛼𝑙𝑎𝑡 ≤ 0.5 and 0 ≤ 𝛼𝑡𝑜𝑙 ≤ 2 are hyperparame-
ters. The behavior of Equation 3 can be described as this: given a new
ACK, the CC executor will inspect the current RTT by calculating
the ratio 𝑅𝑇𝑇

𝑅𝑇𝑇𝑚𝑖𝑛
. If the ratio is lower than 𝛼𝑡𝑜𝑙 + 1, it judges the link

is not congested and increases the 𝑐𝑤𝑛𝑑 by 𝛼𝑡ℎ𝑟 . Otherwise, it de-
creases the 𝑐𝑤𝑛𝑑 by 𝛼𝑙𝑎𝑡 . As a result, the sub-policy defines a target
packet delay point and the sending rate adjustment aggressiveness
towards it in two directions: 𝛼𝑡ℎ𝑟 controls the aggressiveness in
increasing 𝑐𝑤𝑛𝑑 , 𝛼𝑙𝑎𝑡 controls the sensitivity to queuing delay and
𝛼𝑡𝑜𝑙 determines the target delay point that indicates the degree of
tolerance for queueing. We note that in order to reflect the transit
delay changes in fine-grained control for fast response, we estimate
RTT with smoothed round-trip time 𝑠𝑟𝑡𝑡 , which is different from
the average packet delay 𝑙𝑎𝑡 of one MI in the reward function in
§3.2.

When packet loss happens, the CC executor performs a mul-
tiplicative decrease of 𝑐𝑤𝑛𝑑 by a factor of 𝛼𝑙𝑜𝑠𝑠 , similar to Cubic:

𝑐𝑤𝑛𝑑𝑛𝑒𝑤 = 𝛼𝑙𝑜𝑠𝑠 × 𝑐𝑤𝑛𝑑 0 ≤ 𝛼𝑙𝑜𝑠𝑠 ≤ 1, (4)
where 𝛼𝑙𝑜𝑠𝑠 indicates the sensitivity to packet loss event. After

the 𝑐𝑤𝑛𝑑 is updated, the CC executor calculates the new pacing
rate as follows:

𝑝𝑟𝑎𝑡𝑒 =
𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
. (5)

With the above sub-policy structure, the parameter setting
(𝛼𝑡ℎ𝑟 , 𝛼𝑙𝑎𝑡 , 𝛼𝑡𝑜𝑙 , 𝛼𝑙𝑜𝑠𝑠 ) determines the behavior of the sub-policy.
We define the above parameter set as the action output of the policy
generator 𝑎𝑡 . When triggered, Spinewill update the sub-policy with
𝑎𝑡 for the underlying CC executor that performs lower-level control.
Through controlling the parameter setting, Spine customizes the
response of sub-policy to different signals to best suit the current
network condition, as illustrated in §7.3.

3.4 Hierarchical Recurrent Architecture

In this section, we introduce the model architecture used in the
RL agent. Inspired by the hierarchical multiscale recurrent neural
network architecture (HM-RNN) proposed in [8], we design a hier-
archical recurrent model, where both the watcher and the policy
generator adopt recurrent neural networks as the basic building
block and are connected with the report and update communica-
tions. We depict the two-layer model in Figure 5. The first layer
represents the watcher, which is fed with input state 𝑠𝑡 and adap-
tively triggers the upper layer. The second layer represents the
policy generator that outputs the sub-policy parameter setting
𝑎𝑡 = (𝛼𝑡ℎ𝑟 , 𝛼𝑙𝑎𝑡 , 𝛼𝑡𝑜𝑙 , 𝛼𝑙𝑜𝑠𝑠 ) mentioned in §3.3. Once triggered, it
will receive the submitted report from the watcher layer and then
i) generate a new parameter set 𝑎𝑡 to update the sub-policy, and
ii) update the watcher. By integrating the policy generator and the
watcher together, we can perform gradient descent to collabora-
tively learn the model weights in both modules. The rest of this
section briefly introduces how our hierarchical policy model works.

We use ℎ𝑡 , 𝑜𝑡 = 𝑓𝑅𝑁𝑁 (ℎ𝑡−1, 𝑥𝑡 ) to denote how an RNN block
receives input and hidden state to update its internal state and
output new hidden state, which, in fact, can be instantiated with
any popular recurrent neural network architectures. At time step
𝑡 , the watcher receives the current state 𝑠𝑡 and the hidden states
from both itself and the upper layer (ℎ𝑤

𝑡−1, ℎ
𝑝

𝑡−1) generated in the

Figure 5: The hierarchical recurrent neural network archi-

tecture with different timescales.

last time step. It then outputs i) 𝑧′𝑡 that decides whether to trigger
the upper layer, and ii) the new hidden state ℎ𝑤𝑡 .

ℎ𝑤𝑡 , 𝑧
′
𝑡 = 𝑓

𝑤
𝑅𝑁𝑁

(
𝑐𝑜𝑛𝑐𝑎𝑡

(
ℎ𝑤𝑡−1, ℎ

𝑝

𝑡−1

)
, 𝑠𝑡

)
. (6)

The binary trigger value 𝑧𝑡 is then obtained by:

𝑧𝑡 =

{
1 𝑧′𝑡 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7)

The policy generator works based on value of the trigger 𝑧𝑡 :

ℎ
𝑝
𝑡 , 𝑎𝑡 =

{
ℎ
𝑝

𝑡−1, 𝑎𝑡−1 𝑧𝑡 = 0
𝑓
𝑝

𝑅𝑁𝑁
(ℎ𝑝

𝑡−1, ℎ
𝑤
𝑡 ) 𝑧𝑡 = 1,

(8)

where𝑎𝑡 is the output sub-policy parameter setting.When triggered
(𝑧𝑡 = 1), the policy generator takes the hidden state of the watcher
as the input report to generate new sub-policy output. Otherwise,
it just reuses the previous hidden state and output results, and the
watcher reuses the old ℎ𝑝

𝑡−1 for Equation 6.
The hierarchical policymodel in Spine is different fromHM-RNN

in several aspects: i) HM-RNN adopts the hierarchical structure to
extract high-level representations for natural language modeling,
where the higher layers model the long-term dependencies (e.g.
sentences or paragraphs). In Spine, we adopt the hierarchical ar-
chitecture as the policy model for reinforcement learning, where
the policy generator layer focuses on outputting long-term poli-
cies; ii) HM-RNN sets complex constraints on the communications
between layers to automatically detect the boundaries between
sentences and paragraphs. In Spine, we simplify it to let the policy
generator obtain all the available history information for policy
decision-making.

4 ANALYSIS

In this section, we perform a theoretical staleness analysis on Spine
with assumptions to show that controlling sub-policies makes the
model less sensitive to control interval. We then present how the
watcher module brings overhead reduction to the control system.
Due to space limitations, the full proofs of the theorems in this
section can be found in Appendix A.
Modeling the trade-off between performance and control

interval. For our CC algorithm working with fixed monitor inter-
val 𝑇 (i.e., the working frequency of the watcher/agent is 1/𝑇 ), it
detects the network condition for each interval and updates a new
sub-policy that fits best. We assume that the sub-policy will become
stale as the network environment changes, which we define as a
policy drift event. After the event, the performance will degrade
due to outdated sub-policy until Spine updates it in the next MI.
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𝑇 (sec) 𝜆 = 1 𝜆 = 1000
𝑘 𝐸𝑇𝑅 𝑘 𝐸𝑇𝑅

0.005 0.005 99.7% 5 19.9%
0.05 0.05 97.5% 50 2%
0.2 0.2 90.6% 200 0.5%
0.5 0.5 78.7% 500 0.2%

Table 2: The effective time ratios (ETR) with different MIs

and policy drift event frequencies.

To simplify the analysis, we assume the sub-policy works in binary
mode: it either functions "well" or "badly". Thus, all time periods
during which the sub-policy is stale (or fresh) are treated equally
in terms of performance. We refer to the ratio of the effective time
when the sub-policy functions well to the total time as the effec-
tive time ratio (ETR) and use it to measure the effectiveness of CC
algorithms in this section. The following theorem shows how the
effective time ratio relates to the dynamic of the network condition
and the control interval.

Theorem 1. Suppose the time between two policy drift events

complies with an exponential distribution with parameter 𝜆. Then,

the effective time ratio of Spine with fixed MI length 𝑇 is
1
𝑘
(1 − 𝑒−𝑘 ),

where 𝑘 = 𝜆𝑇 is the expected number of policy drift events happening

during one MI.

The distribution parameter 𝜆 defines the policy drift event fre-
quency and how fast a sub-policy will become stale. It is decided
both by the dynamics of the network environment and the sub-
policy structure. A sub-policy that works well for a longer period
should have a lower 𝜆 value. Based on the theorem, we present
how the effective time ratio changes according to the MI length 𝑇
and 𝜆 in Table 2. The result intuitively shows that ETR is much less
sensitive to the control interval when policy drift event frequency
is low, e.g., 𝜆 = 1, which means the sub-policy works well for one
second on average. On the other hand, if we regard adjusting 𝑐𝑤𝑛𝑑
also as a type of sub-policy, it will incur a much larger policy drift
event frequency, as the sending rate needs to be updated quickly to
respond to available dynamic bandwidth. For example, if we need to
update the sending rate for every millisecond to adapt to network
changes, we have 𝜆 = 1000. As a result, the ETR will decrease dras-
tically under larger control intervals (e.g. from 19.9% to 0.2%). How
to deliberately design a parametrized sub-policy with a minimum
𝜆 (i.e., being effective for the longest period) is an interesting topic
that we hope to study in the future.
Watcher analysis. The following theorem shows when to add a
watcher to lower the computation overhead of Spine.

Theorem 2. With the assumption in Theorem 1, the costs of Spine

with or without a watcher are equal if
𝑐𝑜𝑠𝑡𝑤
𝑐𝑜𝑠𝑡𝑝

= 𝑒−𝑘 , where 𝑐𝑜𝑠𝑡𝑤
and 𝑐𝑜𝑠𝑡𝑝 are the costs of the watcher and the policy generator, and

𝑘 = 𝜆𝑇 .

Thus, when 𝑘 is small with our sub-policy strategy, a watcher
model slightly smaller than the policy generator (𝑒−𝑘𝑐𝑜𝑠𝑡𝑝 ) is enough
to gain overhead benefit. For example, when 𝑇 = 200𝑚𝑠 and 𝜆 = 1,
the watcher design will lower the computation overhead of Spine
as long as its model overhead is less than 𝑒−𝑘 ≈ 81.9% of the policy
generator.

5 TRAINING ALGORITHM

To design a DRL-based CC algorithm, we first formulate the CC
problem as a reinforcement learning problem. At each 𝑡-th MI, the
flow/agent sequentially interacts with the network environment in
the following way: it observes packet statistics as the state 𝑠𝑡 ∈ S,
and generates new sub-policy 𝑎𝑡 ∈ A based on the agent policy
𝜋 : S → A. The sub-policy responds to packet-level signals by
adjusting sending rate during the next MI, and the flow will receive
a reward 𝑟𝑡 based on the reward function and newly collected
statistics as the next state 𝑠𝑡+1. Though the formulation assumes
that the agent outputs sub-policy for every MI, it will not conflict
with our adaptively updated strategy because, as shown in §3.4,
we can directly reuse the old sub-policy in the intervals when the
watcher is not triggered. The goal of the agent is to maximize the
expected cumulative reward during the sequence of interactions
J = E(∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 ), where 𝛾 is a discount factor to help the agent

focus more on collected reward in the near future.
We adopt deep deterministic policy gradient (DDPG) [25], a

famous model-free off-policy RL algorithm to learn sub-policies.
During the training, the RL agent updates the model parameters of
our hierarchical recurrent neural networks to adjust the mapping
from packet statistics to sub-policy so as to maximize collected
rewards. The key features of the training algorithm of Spine are as
follows. See Appendix B for the complete training algorithm.
Stored hidden state and burn-in steps. Spine adopts recurrent
model as the policy model, which receives and generates hidden
states to encode history information. However, the traditional RL
training method only stores interaction information and ignores
generated hidden states in the process, which may lead to loss
of history information and unstable training. We adopt the tricks
proposed in [21] to solve the problem. First, we store the recurrent
hidden state in the collected trajectories and use it to initialize the
policy model during the training. Second, when sampling sequences
of interactions for training, we also take an extra portion of the
sequence at the beginning (burn-in steps), which is only used in the
forwarding phase to produce a well hidden state at the beginning
of the sample sequence.
Probabilistic trigger Two problems exist in training the trig-
ger unit of the watcher: i) It is non-differentiable. The deriva-
tives of Equation 7 are zero almost everywhere, so gradient back-
propagation cannot proceed; ii) As exploration plays an important
part in reinforcement learning to collect rich experience, when
untriggered, the deterministic trigger unit prevents the agent from
exploring more diversified sub-policy decisions (e.g., "Can I chal-
lenge the status quo with a better sub-policy?"). Therefore, we inject
noise into the unit by replacing the trigger unit in Equation 7 with
a probabilistic one during training:

𝑧𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑧′𝑡 ) . (9)
It is plain to see that E(𝑧𝑡 ) = 𝑧′𝑡 and

𝑑E(𝑧𝑡 )
𝑑𝑧′𝑡

= 1. Thus for back-
propagation, we let the gradient simply go through the unit without
change as if it is an identity function so that the watcher can learn
to update its triggering strategy. As a result, Spine is able to explore
the possibility of improving the current sub-policy generated by
the policy generator, even if it performs poorly for the time being
and the watcher does not recommend it through a low 𝑧′𝑡 value.
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Figure 6: The performances and overheads of Spine and previous DRL-based algorithms.

Bandwidth One-way delay Buffer size Loss rate
40-200 Mbps 10-100ms 0.5-2 BDP 0-1%
Table 3: Training environment parameters.

6 IMPLEMENTATION

Model Architecture We use Pytorch [36] to build the hierar-
chical policy model in §3.4, where LSTM is used as the building
block for the recurrent model. The LSTM layers in the watcher and
policy generator consist of 64 and 128-dimensional hidden state
vectors, respectively. In the policy generator, we feed the LSTM
layer hidden state ℎ𝑝𝑡 into an MLP layer and a tanh layer to get the
output action 𝑎𝑡 . The critic model used during the training (see the
training details in Appendix B) also adopts a single LSTM layer
with a 128-dimensional hidden state vector. For the CC executor,
we implement a congestion control module inside the Linux kernel
TCP stack which receives control parameters from the RL agent
and performs ACK-level congestion control. Inspired by CCP [34],
the CC executor and userspace RL model are communicated via
netlink [37].
Training Our training implementation is based on a generalized
RL training framework DI-engine [11], which supports various DRL
algorithms and customized environments and policies. We build
our emulated congestion control training environments based on
Pantheon [44], where Mahimahi [35] is used to emulate various net-
work conditions. The range of settings of the training environments
is shown in Table 3. We also add a random number of Cubic flows
as the background traffic. We use 8 actors to collect the training
experience in parallel. The entire training hyperparameter set is
given in Table 6 in Appendix C. We train and evaluate Spine on a
Linux server with 80 CPU cores, 256GB RAM, and equipped with
NVIDIA GeForce RTX 3090 GPU.

7 EVALUATION

In this section, we evaluate the performance of Spinewith emulated
and real testbed experiments. In §7.1, we show how Spine preserves
high performance with low DRL model inference frequency due to
its insensitivity to monitor interval. In §7.2, we demonstrate that
Spine achieves consistent high performance across a wide range of
network conditions, including dynamically changing ones. For a
better understanding of the control logic of Spine, we inspect how

Spine updates its sub-policy in §7.3. We evaluate the convergence
properties of Spine in §7.4. Finally, we inspect the improvement
brought by the watcher module and explore more possibilities of
Spine in §7.5.
Evaluation setup. In emulated experiments, unless specified oth-
erwise, we establish the network as the dumbbell topology with
one single flow by default. The emulated bottleneck is implemented
with Mahimahi [35]. In the real-world experiments, we turn to
Pantheon [44] framework and deploy the sender and receiver at
two AWS nodes.

7.1 Monitor Interval Insensitivity

To understand how Spine reduces the overhead without undermin-
ing performance by lowering the control interval, we continue the
motivation experiment in §2.2 and evaluate Spine and previous
DRL-based algorithms with different MIs. We use a larger buffer
size (750KB) to allow enough latency inflation to indicate the con-
gestion. We repeat each trial 10 times and report their average
performance (throughput and latency) and the corresponding over-
heads in Figure 63. The performances of Cubic and BBR are also
shown as baselines. With the results of the experiment, we identify
the following key observations:
• With the increase in monitor interval, the performance of previ-
ous DRL-based CC algorithms degrades: Aurora fails to achieve
full bandwidth utilization (Figure 6(a)). The reason is that its send-
ing rate is directly controlled by the RL model, which is unable
to respond to bandwidth changes when the control frequency is
low, and the control action may easily become stale. Orca, on the
other hand, though achieving low latency with high frequency,
has even higher latency than Cubic with larger MIs (Figure 6(b)).
The reason is that, without a fine-grained control granularity,
Orca can hardly restrain the increasing 𝑐𝑤𝑛𝑑 promptly, and thus
keep experiencing high queuing delay.
• The performances of previous DRL-based CC algorithms also
degrade when the MI decreases to less than 30ms. We inspect the
implementations of these algorithms and find that they generally
take more than 10ms for the model inference and cross-space
communication between the user space and the kernel. Thus,
we think the reason for the degradation is that when the MI is

3The variance of the repeated results are within ±5%.



CoNEXT ’22, December 6–9, 2022, Roma, Italy Han Tian, et al.

Spine Aurora Orca Cubic Vivace BBR Copa Vegas

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300 350 400 450 500

Li
nk

 u
til

iz
at

io
n

0.2

0.4

0.6

0.8

1.0

Bandwidth (Mbps)
100 200 300 400

(a) Varying bandwidth.

Li
nk

 u
til

iz
at

io
n

0.6

0.7

0.8

0.9

1.0

One-way base delay (ms)
10 20 30 40 50 60 70

(b) Varying latency.

Li
nk

 u
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1.0

Loss ratio
0 0.005 0.010

(c) Varying random loss.

Li
nk

 u
til

iz
at

io
n

0.6

0.7

0.8

0.9

1.0

BDP
0.5 1.0 1.5 2.0

(d) Varying buffer size.

D
el

ay
 ra

tio

1.0

1.5

2.0

2.5

3.0

Bandwidth (Mbps)
100 200 300 400

(e) Varying bandwidth.

D
el

ay
 ra

tio

1.0

1.5

2.0

2.5

3.0

One-way base delay (ms)
10 20 30 40 50 60 70

(f) Varying latency.
D

el
ay

 ra
tio

1.0

1.5

2.0

2.5

3.0

Loss ratio
0 0.005 0.010

(g) Varying random loss.

D
el

ay
 ra

tio

1

2

3

4

5

BDP
0.5 1.0 1.5 2.0

(h) Varying buffer size.

Figure 7: The performance of Spine and other CC algorithms in terms of link utilization and latency under varying bandwidth,

base delay, loss rate and bottleneck buffer size. The link utilization is defined as the ratio of throughput to the link capacity,

and the delay ratio as the ratio of packet delay to the base one-way delay.

small enough to be similar to the running time for enforcing new
action, the actual time between when the action is enforced and
when the next state is collected is very small. Therefore, there is
not enough time left to collect effective feedback, and the agent
cannot make timely intelligent decisions.
• Spine’s high performance is insensitive to the changing of MI. As
shown in Figure 6(a) and Figure 6(b), Spine yields consistent high
link utilization with small queue in bottleneck across various MIs
from 20ms to 300ms. The reason is that Spine imbues control
response to every ACK with reinforcement learning intelligence,
whose actual control frequency is independent from and much
higher than the MI used. The results illustrate the important role
of the hierarchical policy structure in Spine’s design. Even with
a much lower control frequency (e.g., MI of 300ms), Spine’s sub-
policy in the CC executor can still properly adjust the sending rate
at a packet-level control level and thus can adapt to bandwidth
changes agilely.
• With the increase of monitor interval, the overheads of Spine and
DRL-based CC algorithms decrease due to lower inference fre-
quency, as shown in Figure 6(c). The extent of overhead decrease
also depends on their implementations. For example, the ma-
jor overhead in Aurora may result from its inefficient userspace
implementation.

The insensitivity property to control interval enables the deploy-
ment of Spine with an ultra-low working frequency without un-
dermining model performance, which therefore achieves a much
lower model overhead compared to other DRL-based algorithms.
For example, when using Spine with a monitor interval of 300ms,
it achieves better performance than previous DRL-based solutions
(e.g., Orca) using monitor intervals of 30ms but with a much lower

CPUutilization (from 10.5% to 2.6%), which is comparable to heuristic-
based algorithms such as Cubic (1.1%).

7.2 Consistent High Performance

Here, we evaluate Spine with extensive emulations and real-world
experiments to show its consistent high performance across various
network environments. We repeat each test 10 times and report
the average values. We use Orca and Aurora with MI of 30ms as
it preserves relatively high performance, as shown in §7.1. For
Spine, we use MI of 200ms, which has a much lower overhead
due to its low inference frequency. We also compare Spine with
other heuristic-based CC schemes including Cubic [15], BBR [6],
Copa [3], Vegas [5] and online learning scheme Vivace [10].

7.2.1 Diverse Emulated Networks. We first compare Spine with
other CC algorithms across a wide and diverse range of emulated
networks by demonstrating the link utilization and latency ratio
with varying bandwidth, base delay, random loss rate, and buffer
size. Specifically, we alter one link characteristic of them at a time
while holding the other three constant, and compare Spine with
other baselines. For constant values, we use the bandwidth of
100Mbps, base RTT of 30ms, buffer size of 1 BDP, and no random
loss rate. The average results of 10 trials are shown in Figure 74.

We observe that Spine achieves consistent good performance
across different bandwidths, latencies, random losses, and buffer
sizes compared to other CC baselines. For example, when changing
bandwidth, Spine achieves high throughput similar to Cubic and
BBR, which, however, both incur much larger queuing latency with
a delay ratio from 2 to 3. The performance of previous DRL-based
schemes Aurora and Orca degrades when the bandwidth or the
4The variance of the repeated results are within ±5%.
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Figure 9: Overall normalized throughput vs one-way delay in real-world.

base delay is large. This may be due to their limited generalization
capability as they have not been trained in links with large BDPs.
On the other hand, with our designed sub-policy providing domain
knowledge of congestion control, Spine exhibits promising gen-
eralization ability with a limited range of training environments,
which, we think, can further be improved with extensive training
data from the wild Internet.

When we vary the random loss rate, schemes that use packet
loss (Orca, Vivace, Vegas, Cubic, and Spine) as congestion signals
reduce their bandwidths apparently. Because Spine learns to use
both latency and loss as signals to detect network congestion, non-
congestion loss alone has a limited effect on the decision-making
of Spine. For example, when the random loss rate is 1%, the link
utilization of Cubic drops dramatically (from 0.95 to 0.03), and that
of Spine decreases much slower (from 0.95 to 0.64). For varying
buffer size, Spine achieves small latency inflation and near full
bandwidth utilization with buffer size from 0.2 to 2.2 BDP. We
attribute the low requirement of the buffer size of Spine to its fine-
grained control and thus a stable queue. On the other hand, the link
utilization of Orca reduces to 80% in shallow buffer (0.2 BDP), as the
MI of 30ms for Orca may not be enough to restrain the underlying
Cubic without causing latency inflation and loss.

7.2.2 Reactivity. To evaluate how Spine reacts to dynamically
changing network conditions, we create an emulated link with
a trace from LTE network [43] with dramatically changing capac-
ity. We use base RTT of 30ms, and an adequate buffer to absorb
the traffic. As illustrated in Figure 8, Spine surprisingly achieves
good reactivity with a large MI of 200ms: it achieves the highest
bandwidth (5.08Mbps). Meanwhile, Spine can achieve the lowest
latency (RTT=78.1 ms) among other learning-based CC schemes,
which, however, all use a small MI of 30ms (Vivace defines 𝑅𝑇𝑇𝑚𝑖𝑛

as its MI). We attribute the good reactivity of Spine to its hierarchi-
cal policy structure, where the sub-policy performs a fine-grained
control with a low DRL model inference frequency.

7.2.3 Real-world Experiments. For real-world evaluation of Spine,
we follow the experiment settings in Orca[1] and evaluate Spine
in the inter-continent scenario and intra-continent scenarios. We
deploy the sender at AWS Seoul and locate the receiver at AWS
Singapore and London to vary the experiment environment. We
evaluate each CC scheme by running its one flow for 60 seconds,
repeating each trial 10 times, and summarize the overall average
normalized throughput and one-way delay in Figure 9.

We observe that Spine defines one of the frontiers in terms
of high throughput and low latency: it achieves better link uti-
lization than most CCs, including Cubic. Meanwhile, it delivers
smaller latency than Cubic in both intra-continental (9(a)) and
inter-continental (9(b)) scenarios, respectively. The reason is that
Spine adopts the DRL model to adjust the sending rate at a fine-
grained level and thus can rapidly adapt to Internet bandwidth fluc-
tuation without incurring bufferbloat. On the other hand, though
performing well in the emulated experiments, other learning-based
algorithms such as Orca, Aurora, and Vivace all fail to achieve high
utilization, which has also been observed in emulated experiments
in §7.2.1. The superior performance of Spine among learning-based
schemes validates the advantage of our hierarchical policy structure
to imbue ACK-level control with RL intelligence.

7.3 Under the Hood

In this section, we take a deeper look at the behavior of Spine to
understand how it updates the sub-policy to adapt to various net-
work conditions. One line of criticism of learning-based algorithms
is their poor interpretability, which hinders researchers and engi-
neers from inspecting cases with poor performance and improving
the algorithm. However, Spine provides semantically task-related
sub-policy parameters for lower-level congestion control, which,
as we illustrate in this section, will provide insights into the design
of a better CC algorithm.

To shed light on how Spine "thinks" during the control process,
we run a Spine flow on an emulated link of 100Mbps with 30ms
base RTT and one BDP buffer. We start a Cubic flow during this
process and inspect how Spine responds by updating its sub-policy.
We show its behavior in Figure 10 and mark the updated parameter
for the sub-policy on the figure. We observe that Spine starts with
low 𝛼𝑡ℎ𝑟 (0.06) and 𝛼𝑙𝑎𝑡 (0.08) to enforce a moderate sending rate
adjustment strategy (see §3.3 for meaning of parameters). It also
adopts a low 𝛼𝑡𝑜𝑙 (0.15) to maintain low latency inflation (1.2×
𝑅𝑇𝑇𝑚𝑖𝑛). When the Cubic flow goes in, Spine detects sudden in-
flation at packet delay. Thus, it updates the sub-policy with more
aggressive parameters (𝛼𝑡ℎ𝑟 = 0.18, 𝛼𝑙𝑎𝑡 = 0.18) to quickly adjust
its 𝑐𝑤𝑛𝑑 responding to ACK and delay inflation signals. Meanwhile,
it adopts a higher 𝛼𝑡𝑜𝑙 (0.75) and a lower 𝛼𝑙𝑜𝑠𝑠 to enable tolerance
on higher latency inflation and possible packet loss. When the Cu-
bic flow exits, Spine then restores its conservative sub-policy. One
interesting observation is that Spine maps its packet statistics, pri-
marily the link rate and the maximum throughput, to a target delay
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Figure 13: The actual average inference interval of the policy generator

changes with different pit stop penalty values.
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Figure 14: Spine-Cubic improves Cubic by adap-

tively tuning its hyperparameters.

point. When the Spine flow detects that its throughput decreases
and latency increases under a conservative sub-policy, it judges that
other aggressive flows come and thus resets its delay equilibrium
point to a larger value until a new consensus on the queuing delay
is achieved. Therefore, though working as a delay-based scheme,
Spine is able to grab bandwidth from Cubic with its flexible delay
target.

7.4 Fairness and Friendliness

In this section, we seek to understand how Spine performs when
competing with other Spine flows and with Cubic flows. First, we
setup a 100Mbps link with 30ms RTT and 1 BDP buffer, and we
start three flows with a running time of 120s, for whom we set the
inter-arrival time to be 40 seconds. We repeat each experiment 10
times and calculate the average Jain Index of each CC algorithm in
Figure 11.

We observe that by adopting a Power-based reward that is maxi-
mized at the fair operating point, Spine achieves better fairness than
the clean-slate DRL-based CC Aurora but is still not good enough
compared to other classic schemes and Orca, which incorporates
Cubic to provide fairness property. The reason is that the current
DRL-based algorithms have not learned toward a fair scheme and
have no provably guarantee of fair convergence. While we focus on
reducing overhead and improving the performance of DRL-based
scheme in this paper, we believe the fairness issue of DRL-based
scheme will soon be solved in the near future, as several works have
been devoted to learning fairness for deep reinforcement learning
recently [20, 38, 48].

We also study the TCP friendliness of Spine by competing it
with one Cubic flow under different base RTTs. We use the same
link setting as we use in the fairness part and tune the buffer size
correspondingly with respect to varying RTT. Figure 12 plots the
ratio of throughput of evaluated CC to the throughput of the Cubic
flow. We observe that Spine achieves good friendliness to Cubic.
The reason is that we have added Cubic as the background traffic
during the training, so that Spine learns to become more aggressive
when competing with Cubic flows, as illustrated in §7.3.

7.5 Deep Dive

7.5.1 The watcher and pit stop penalty. We next demonstrate how
the watcher affects the working frequency of the policy genera-
tor as well as the overall overhead. As mentioned in §3.2, the pit
stop penalty 𝛼𝑝𝑠𝑝 controls the trade-off between overhead and the
triggering frequency of the policy generator. Therefore, we retrain
Spine with different 𝛼𝑝𝑠𝑝 , and evaluate both their overheads and
the actual average inference intervals of the policy generator. These
models are evaluated on the two traces used in themotivation exper-
iment (§2.2), where the first trace has a more dynamic link capacity
(square wave) than the second one (static). To set a baseline, we also
train and evaluate Spine without a watcher module, which means
the policy generator directly receives the input state and outputs
sub-policy for every MI. We fix the MI of all models as 200ms.

Figure 13 shows the results. We observe that adding a watcher
will consistently and significantly reduce the working frequency
of the policy generator. For example, when 𝛼𝑝𝑠𝑝 is set to be 0.03
(that is used in previous evaluation sections), we can decrease the
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Figure 15: The average link utilization and

latency with concurrent flows.

Flows Spine Cubic
Thr. (Mbps) Delay ratio Thr. (Mbps) Delay ratio

Overall 184.2 1.79 194.7 2.39
Per Long flow 10.5 1.79 6.2 2.39
Per Short flow 10.8 1.87 11.8 2.41

Table 4: The throughput and delay of flows in long-short experiment. The delay

ratio is defined as the ratio of average one-way packet delay to the base one-way

delay.

Flows Spine Cubic
Thr. (Mbps) Delay ratio Thr. (Mbps) Delay ratio

Overall 193.2 / 197.3 /
Per small-RTT flow 6.6 2.17 13.8 2.61
Per large-RTT flow 15.1 1.40 8.3 1.49

Table 5: The throughput and delay of flows in heterogeneous RTT experiment.

actual inference interval from 200ms to 1.2 seconds and 1.5 seconds
in both traces. As a result, the CPU utilization is further reduced by
almost 40% compared to the baseline with no watcher. Furthermore,
with a larger penalty value, the trained model tends to trigger the
policy generator less frequently, which would further lower the
CPU overhead. It is because the watcher will learn not to trigger
the policy generator unless it can obtain adequate performance
gain over the pit stop penalty. Therefore, the penalty allows for
small performance variation of the current sub-policy. However,
we do not observe obvious performance degradations until using
a very large penalty value (𝛼𝑝𝑠𝑝 = 0.3). Finally, we find that the
interval reduction is larger on the second trace. For example, when
𝛼𝑝𝑠𝑝 = 0.03, the inference interval for the second trace is 1.54
seconds, 30% larger than that in the first one (1.17 seconds). The
result validates our assumption that the watcher tends to update
sub-policy less frequently under stable network conditions.

7.5.2 Spine-X. Though in the paper, we mainly evaluate Spine
using a sub-policy based on AIMD, Spine can also adopt other cus-
tomized sub-policies and even classic CC schemes by tuning the
knobs of the fine-grained control process. Thus, we can general-
ize our framework to Spine-X, where X can be any parameterized
sub-policy. To further explore the potential of our hierarchical pol-
icy structure with existing CC schemes, we adopt a parameterized
Cubic algorithm as the sub-policy in our framework, where the RL
model updates the multiplicative factor 𝛽 and the cubic function
coefficient𝐶 of Cubic. We call it Spine-Cubic, and evaluate it under
the motivation trace in §7.1. The average throughput and one-way
delay are shown in Figure 14. As expected, with the help of our hier-
archical policy structure, the parameterized Cubic scheme is able to
achieve lower delaywhile preserving full bandwidth utilization. The
reason is that Spine-Cubic adaptively controls the aggressiveness
of the underlying Cubic through 𝛽 and 𝐶 over changing network
environment. Thus, Spine-Cubic is more flexible than the original
algorithm with fixed hyperparameters. This improvement provides

a great opportunity to adopt Spine-X as an auxiliary tool to au-
tomatically tune current CC schemes regarding various network
conditions.

In addition, we observe that Spine-Cubic also inherits the lim-
itation of Cubic. Because Spine-Cubic only responds to packet
loss to cut the congestion window, it will still be hard to mitigate
bufferbloat and distinguish non-congestion loss from congestion
loss. Therefore, though classical heuristic-based CC algorithms can
be improved by Spine framework, Spine-X may still hold the draw-
backs of the underlying sub-policy. It remains an open problem
how to design a flexible and simple sub-policy with the minimum
assumptions of the network environment.

7.5.3 Scalability. In this section, we further explore the benefits
brought by Spine’s hierarchical design through the scalability exper-
iments. We start N concurrent flows simultaneously (N = 5,10,15,20)
on an emulated link of 200Mbps bandwidth, 30ms base RTT and
1 BDP buffer. 4 CPU cores are dedicated exclusively to this set of
experiments to evaluate the scalability. Aurora and Cubic are also
tested as baselines.We record the overall link utilization and latency,
as shown in Figure 15. We observe that with the increased number
of concurrent flows, the aggregated throughput of Aurora, the naïve
DRL-based CC scheme, decreases. The reason is that due to the
high inference overhead of multiple Aurora flows, the remaining
CPU resource is insufficient to support the pipelined transmissions
in the datapath. On the other hand, Spine achieves consistently
high performance with up to 20 concurrent flows, similar to Cubic.

Furthermore, we also extend the scalability experiment on het-
erogeneous flows, with respect to flow running times and per-flow
RTTs. First, we inspect the performance of short flows of Spine co-
existing with several long-running flows, which is the common case
in the Internet. Starting with the previous scalability experiment
setup, we vary the running time of flows so that the concurrent
flows consist of 80% short flows and 20% long flows. Specifically,
we initialize 4 long flows running throughout the trial and a lot of
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short flows that arrive and depart in a very frequent manner5, so
that there are almost 16 short flows co-existing with 4 long flows
for a long period (100 seconds). We repeat the experiment 20 times
and report the average throughput and latency for both types of
flows, and the overall throughput of all flows in Table 4. We can
see with the slow-start phase, short flows of Spine can grab the
bandwidth quickly and achieves similar throughput to that of long
flows. Second, we conduct experiments to investigate the perfor-
mance of multiple Spine flows with heterogeneous RTTs. With the
same experiment setup, we start 10 large RTT flows (90ms) and 10
small RTT flows (30ms) running simultaneously for 100 seconds.
We repeat the experiment 20 times and record their throughputs
and delay ratios in Table 5. We observe that Spine flows with small
RTT share lower bandwidth than those of large RTT. In addition
to the aforementioned fairness issue, another reason for this result
is that Spine flows with large base RTT, according to Equation 3,
tend to have a target delay point tolerating larger queuing delay
under the same sub-policy. Differentiating the behaviors of flows
with heterogeneous RTTs and improving RTT fairness may be a
future direction of DRL-based CC schemes.

8 RELATEDWORK

The congestion control task has been an enduring hotspot in the net-
working research field for more than three decades with a plethora
of CC algorithms. The classic schemes [3, 5, 12, 15, 17, 26, 41] are
generally designed based on heuristics about how should we re-
spond to specific congestion signals in specific cases and thus are
often categorized as heuristic-based schemes. For example, loss-
based schemes such as Cubic [15], TCP Tahoe, and TCP Reno [17]
respond to packet loss events by cutting the congestion window.
On the other hand, delay-based schemes such as TCP Vegas [5]
and Copa [3] respond to delay changes to keep the queuing delay
low. Heuristic-based algorithms require careful hand-crafting of the
signal-action mapping and can backfire under network conditions
where the heuristics are violated.

Recent years have seen a plethora of learning-based CC algo-
rithms due to the rising of machine learning [1, 2, 9, 10, 19, 31, 42,
44, 45]. For example, PCC Allegro [9] and Vivace [10] utilize an on-
line learning paradigm. Different from machine learning solutions,
they adaptively optimize pre-defined utility functions by exploring
various sending rates and observing feedback from the network.
However, the online exploration phase of them takes several RTTs
to collect empirical performance evidence, preventing them from
reacting quickly to signals timely, especially when the RTT is large
and the network changes rapidly. DeepCC [2] also adopts two-level
logic with DRL agent and Cubic, where the agent learns to enforce
the maximum congestion window allowed by the underlying Cu-
bic (𝑐𝑤𝑛𝑑𝑚𝑎𝑥 ), which can be regarded as an instance of Spine-X
mentioned in §7.5.2 without a hierarchical policy structure.

9 DISCUSSION

In this section, we give a detailed discussion about the comparison
of deep reinforcement learning and other related methods including
multi-armed bandit and layering as optimization decomposition.

5Short flows come following the exponential distribution of 𝜆 = 4 and their running
times are drawn from the Gaussian distribution N(4, 12 ) .

Multi-armed bandit vs RL Another possible RL-based approach
to solve CC is multi-armed bandit [4], where the agent learns to
choose the action that maximizes the instantaneous reward in one
step. Multi-armed bandit is one of the simplest reinforcement learn-
ing algorithms and has been applied in fuzzing [46], wireless net-
work spectrum scheduling [24] and small cell activation in 5G
networks [28]. However, as congestion control is a sequential deci-
sion making process where the actions (sending rate adjustments)
enforced by the end-host have long-term effect on both the involved
network elements and other competing flows’ behaviors, we adopt
RL rather than bandit to optimize the cumulative collected reward
in the future of the flow’s lifetime in this work.
Layering as optimization decomposition Many layered net-
work architectures have been modeled as a generalized network
utility maximization (NUM) problem in an integrated framework
named "layering as optimization decomposition" [7], where the orig-
inal optimization problem is decomposed into subproblems handled
by both distributed computation elements and functional modules
in different layers. We can formulate Spine as a hybrid decompo-
sition case of optimization decomposition: the NUM problem is
decomposed not only horizontally across distributed end-hosts, but
also vertically across the policy generator, the watcher and the CC
executor. As the policy generator learns to control the hyperparam-
eters of the CC executor (sub-policy) in a data-driven manner, Spine
can be regarded as an algorithm that adaptively optimizes various
parameterized NUM subproblems implicated by the behavior of the
CC executor to approximately optimize the RL objective function.
An interesting future direction is to demonstrate how the parame-
terized subproblem of the underlying sub-policy affects/limits the
approximation of the objective function theoretically.

10 CONCLUSION

In conclusion, we present Spine, a DRL-based CC algorithm. With
the help of the hierarchical policy structure, Spine achieves ultra-
high control frequency with ultra-low model inference frequency.
Therefore, it achieves consistent high performance across various
network conditions with low overhead comparable to classic CC
scheme Cubic.

Spine is far from being the end of the story, and there are still
many open questions about learning-based congestion control.
However, we believe Spine has made a significant step forward
towards a practical fully learning-based congestion control algo-
rithm by providing a new DRL architecture and training paradigm.
Also, the hierarchical policy architecture proposed in Spine will
shed light on the adoption of reinforcement learning in various
networking and system applications requiring fine-grained control
in the future.
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APPENDIX

A ANALYSIS PROOF

Here we give the proofs of Theorem 1 and 2.

A.1 Proof of Theorem 1

Proof. Due to the memoryless property of exponential distribu-
tion, we consider the policy effective time in one MTP with length T
without loss of generality. We observe that the sub-policy updated
at the beginning (𝑡 = 0) of the MTP becomes stale just after the
first policy drift event happens, and stays outdated until the end of
the interval (𝑡 = 𝑇 ). Thus, if the first event happens at time 𝑡 <= 𝑇 ,
the policy effective time will be 𝑡 . If the the event happens after the
end of the interval (𝑡 > 𝑇 ), the policy stays fresh in the whole MTP
and the effective time is 𝑇 . Thus we can get the expected effective
time in one MTP as follows:∫ 𝑇

0
𝑡 · 𝑝 (𝑡)𝑑𝑡 + 𝑃 (𝑡 > 𝑇 ) ·𝑇 (10)

where p(t) is the exponential distribution 𝑝 (𝑡) = 𝜆𝑒−𝜆𝑡 . Then we
write

∫ 𝑇

0 𝑡 · 𝑝 (𝑡)𝑑𝑡 as∫ 𝑇

0
𝑡 · 𝑝 (𝑡)𝑑𝑡 =

∫ 𝑇

0
𝑡 · 𝜆𝑒−𝜆𝑡𝑑𝑡

= 𝜆

∫ 𝑇

0
𝑡 · − 1

𝜆
𝑑𝑒−𝜆𝑡

= −
∫ 𝑇

0
𝑡𝑑𝑒−𝜆𝑡

= −
[
𝑡𝑒−𝜆𝑡

���𝑇
0
−
∫ 𝑇

0
𝑒−𝜆𝑡𝑑𝑡

]
=

[
− 1
𝜆
𝑒−𝜆𝑡

] ����𝑇
0
−𝑇𝑒−𝜆𝑇

=
1
𝜆
− 1
𝜆
𝑒−𝜆𝑇 −𝑇𝑒−𝜆𝑇 .

(11)

Put it back into Equation 10, we have

(9) = 1
𝜆
− 1
𝜆
𝑒−𝜆𝑇 −𝑇𝑒−𝜆𝑇 +𝑇 · 𝑒−𝜆𝑇

=
1
𝜆

(
1 − 𝑒−𝜆𝑇

)
.

(12)

We divide it by the MTP length 𝑇 to get the effective time ratio
1
𝜆𝑇

(
1 − 𝑒−𝜆𝑇

)
. (13)

□

A.2 Proof of Theorem 2

Proof. Here we try to verify the benefits of adding a watcher in
our hierarchical architecture, and find out on what condition will

it benefits and how much. With the assumptions in Theorem 1, it
is straight to get the cost of the computation overhead of Spine
without a watcher per second, denoted by 𝑐𝑜𝑠𝑡𝑠𝑝𝑖𝑛𝑒_𝑤 :

𝑐𝑜𝑠𝑡𝑠𝑝𝑖𝑛𝑒_𝑤 =
1
𝑇
𝑐𝑜𝑠𝑡𝑝 , (14)

where 𝑐𝑜𝑠𝑡𝑝 is the computation cost of the policy generator
model. With a watcher model, the policy generator will only be
triggered when a policy drift event happens before the next MTP
(𝑡 ≤ 𝑇 ). Thus, we get the cost of Spine with a watcher per second
as

𝑐𝑜𝑠𝑡𝑠𝑝𝑖𝑛𝑒_𝑤𝑜 =
1
𝑇
𝑐𝑜𝑠𝑡𝑤 +

1
𝑇
𝑐𝑜𝑠𝑡𝑝 · 𝑃 (𝑡 ≤ 𝑇 )

=
1
𝑇
𝑐𝑜𝑠𝑡𝑤 +

1
𝑇
𝑐𝑜𝑠𝑡𝑝 · (1 − 𝑒−𝜆𝑇 ),

(15)

where 𝑐𝑜𝑠𝑡𝑤 is the computation cost of the watcher. Then it
is plain that 𝑐𝑜𝑠𝑡𝑠𝑝𝑖𝑛𝑒_𝑤𝑜 ≤ 𝑐𝑜𝑠𝑡𝑠𝑝𝑖𝑛𝑒_𝑤 if and only if 𝑐𝑜𝑠𝑡𝑤 ≤
𝑐𝑜𝑠𝑡𝑝 · 𝑒−𝜆𝑇

□

B THE TRAINING ALGORITHM

Spine adopts the actor-critic training paradigm to learn the agent
policy, because directly training on empirical rewards often suffers
from large variance due to bandwidth changes. The key idea is to
introduce a criticmodel to estimate the expected cumulative reward,
which guides the actor to learn its sequence of sub-policies, as
shown in Figure 16. Specifically, the critic model approximates the
action-value function 𝑄𝜋𝜃 (𝑠, 𝑎) = E[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 |𝑎, 𝑠], the expected

cumulative reward that an agent will collect when it executes action
𝑎 at the state 𝑠 , and follows the policy 𝜋𝜃 afterwards. With a well-
learned critic, the actor is trained to select the best sub-policy so as
to maximize the action-value function.

Figure 16: The actor-critic training algorithm in Spine.

The complete training procedure is as follows: firstly, the ac-
tor interacts with the network environment and collects a lot of
trajectories consisting of tuples (𝑠, 𝑎, 𝑟, ℎ), where ℎ is the hidden
state generated by recurrent blocks in the model. While the train-
ing is performed in batches, here we simplify the case by con-
sidering one single sample. For every training step, we sample
a long trajectory with burn-in prefix from collected training data
((𝑠0, 𝑎0, 𝑟0, ℎ0)...(𝑠𝑁−1, 𝑎𝑁−1, 𝑟𝑁−1, ℎ𝑁−1), (𝑠𝑁 , 𝑎𝑁 , 𝑟𝑁 , ℎ𝑁 )), and ini-
tialize our recurrent model with the first hidden state ℎ0 at the head
of the trajectory. Then, we unroll the recurrent network model on
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the trajectory until the end to get the model outputs of 𝑠𝑁−1 and 𝑠𝑁 ,
which is the target state we will train on for this sample. For con-
venience, we let (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′) denotes (𝑠𝑁−1, 𝑎𝑁−1, 𝑟𝑁−1, 𝑠𝑁 , 𝑎𝑁 )
in the following objective functions.

Spine updates the actor’s policy 𝜋𝜃 by minimizing the following
objective function:

J (𝜃 ) = E [𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠))] , (16)
where𝑄𝜔 (𝑠, 𝑎) is the output of the critic that estimates the action-

value function𝑄𝜋𝜃 (𝑠, 𝑎) under the current policy. The policy gradi-
ent theorem [pgt] is adopted to optimize the distribution 𝜋𝜃 based
on Equation 16. In order to estimate the action-value function accu-
rately, the critic is also trained to minimize the objective function
based on temporal difference learning [40]:

L (𝜔) = E𝑠,𝑎,𝑟,𝑠′
[(
𝑄𝜔 (𝑠, 𝑎) − 𝑟 + 𝛾𝑄𝜔 (𝑠′, 𝑎′)

��
𝑎′=𝝅𝜽 (𝑠′ )

)2]
. (17)

We adopt gradient-based learning algorithm for optimization.
With the probabilistic trigger unit, the gradient can flow back to
the watcher and previous time steps. The back-propagation stops
before the burn-in steps, as they are only used as a warm start in
the forwarding phase. After calculating the gradients, Spine update
the actor and critic models with learning rates 𝛼 and 𝜂:

𝜃 ← 𝜃 + 𝛼∇𝜃J (𝜃 ) , 𝜔 ← 𝜔 − 𝜂∇𝜔L (𝜔) . (18)
We also adopt several RL-related training tricks used in TD3. The

clipped double Q-learning, delayed policy updates and target policy
smoothing regularization techniques introduced in TD3 are all used
in Spine’s training to reduce the variance of the critic model. We
refer the readers to [13] for the details of these techniques.

C TRAINING HYPERPARAMETERS

Here we give the training hyperparameters of Spine in Table 6.

Name Value
learning rate (𝛼) 0.005

gamma (𝛾 ) 0.98
batch size 64

model update interval (second) 5
model update step 20

action control coefficient (𝛼) 0.05
monitoring time inverval (ms) 30

pit stop penalty (𝛼𝑝𝑠𝑝 ) 0.03
Table 6: Training hyperparameters in Spine.
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