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ABSTRACT
Rate limiter is required by RDMA NIC (RNIC) to enforce the
rate limits calculated by congestion control. RNIC expects
the rate limiter to be accurate and scalable: to precisely shape
the traffic for numerous flows with minimized resource con-
sumption, thereby mitigating the incasts and congestions
and improving the network performance. Previous works,
however, fail to meet the performance requirements of RNIC
while achieving accuracy and scalability.

In this paper, we present Tassel, an accurate and scalable
rate limiter for RNICs, including the algorithm and archi-
tecture design. Tassel first extends the classical WF2Q+ al-
gorithm to support rate limiting in the context of the RNIC
scenario. Then Tassel designs a high-precision and resource-
friendly rate limiter and integrates it into classical RNIC
architecture. Preliminary simulation results show that Tassel
precisely enforces the rate limits ranging from 100Kbps to
100Gbps among 1K concurrent flows while the resource
consumption is limited.
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1 INTRODUCTION
RDMA is becoming the defacto transport for high-speed net-
works in modern data centers [1, 4, 7, 8, 10, 22, 23]. RDMA
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achieves high throughput, low latency, and low CPU over-
head by means of architecture innovations including trans-
port offload and kernel bypass. Transport features such as
congestion control (CC), packet ordering, and reliability are
fully offloaded to the NIC for optimal performance.

The significance of CC to RDMA continues to grow inmod-
ern data centers with the trends of high link rate, low fabric
latency, and large infrastructure scale [12, 13, 23]. This re-
quires RDMA NICs (RNICs) to leverage an accurate and scal-
able rate limiter to precisely enforce the calculated CC rate
for numerous flows and shapes the traffic accordingly [15].
Consequently, RNIC is capable of transmitting smoother traf-
fic, thereby reducing network queueing and losses, and also
easier to handle the incast [11].
However, designing an accurate and scalable rate limiter

for RNICs is challenging, as RNICs are highly sensitive to
performance and resource consumption [21, 22]. The com-
plexity of this problem manifests in three aspects: First, the
design of the rate limiting algorithm must consider the char-
acteristics of RDMA protocol, which is message-based and
where the size of adjacent packets may vary. Second, when
designing the rate limiter architecture, wemust consider how
to integrate it into the common RNIC architecture while com-
patible with its scheduler module and DMA engine. Finally,
the overall solution must satisfy the performance and re-
source requirements of RNICs. These challenges demand a
comprehensive and thoughtful approach to the design and
implementation of the rate limiter.
Previous works, however, are unsuitable for RDMA, as

they fail to meet the performance requirements of RNICs.
PIEO [17] proposes a general scheduling primitive called
Push-In-Extract-Out and designs a programmable packet
scheduler that supports rate limiting. But the hardware de-
sign of this scheduler is too complicated to achieve the de-
sired high clock frequency of RNICs, resulting in decreased
performance. SENIC [14] develops a hybrid hardware/software
system to improve the packet scheduling efficiency of the
kernel. However, the system’s hardware design uses token
buckets, which causes the traffic burst and hurts the accuracy,
while leaving a critical sorting problem unsolved.

In this paper, we propose Tassel, an accurate and scalable
rate limiter for RNICs, which addresses the aforementioned
challenges via the algorithm (§3.1) and architecture (§3.2)
design. Specifically, Tassel extends the classical time-based
weighted sharing algorithm WF2Q+ to accommodate the
RDMA data flow, such as considering WQE fetching. Tassel
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computes the transmission time for each packet according
to the size and the rate limit, and schedules the packet that is
eligible to send with the smallest finish time of transmission.
This rate limiting algorithm realizes accuracy as it guaran-
tees the bounded scheduling delay for each packet. In terms
of the architecture, Tassel integrates the rate limiter into
the scheduler module. and designs a high-precision, high-
performance, and resource-friendly timeline data structure
to accomplish accuracy and scalability.
Our preliminary simulation results demonstrate Tassel’s

accuracy and scalability. Tassel precisely enforces the rate
limits ranging from 100 Kbps to 100Gbps among 1 K concur-
rent flows, and falls back to weighted sharing when the link
is oversubscribed.

2 BACKGROUND AND MOTIVATION
2.1 Need for Rate Limiters in RDMA NICs
RDMA NICs (RNICs) constitute the essential components in
high-speed data center networks, as they offload the RDMA
transport and provide high-throughput, low-latency network
services [4].
Rate limiter is as crucial to RNIC as congestion control

is to the high-speed networks. In modern data centers with
high link rate, low fabric latency, and large infrastructure
scale, the importance of congestion control continues to
grow [11, 12]. This is because high speed enables the flows
to grab available network capacity more aggressively, easily
causing severe congestion and high queueing delay, espe-
cially when the large-scale incast happens. RNIC implements
the CC mechanism by means of the hardware rate limiter,
which enforces the calculated CC rate for each flow (a.k.a.,
connection, or queue pair (QP))1 and shapes the traffic ac-
cordingly. Consequently, RNIC is capable of limiting the
traffic volume and transmitting smoother traffic, thereby
mitigating the incasts as well as congestions and improving
the network performance [3, 23].

RNICs expect the rate limiter to be accurate and scalable:
• Accuracy. Inaccurate rate limiting brings up bursts and ex-
acerbates the network congestion. The rate limiter should
accurately compute and inject the inter-packet gaps to
enforce rate limiting on each flow given the rate value,
which ranges from 100Kbps to 100Gbps2, while as well
allowing for fine-grained adjustments instead of restricted
fixed values. In addition, the rate limiter should support
weighted bandwidth sharing in cases where the aggregate
rate exceeds the link rate [14].

1We use flows and QPs interchangeably in the paper.
2Supporting small rate limit helps CC to handle large-scale incast in fine
granularity. We set the minimum rate limit to 100Kbps referring to the
design of swift [11], and the maximum rate limit equal to the link rate, i.e.
100Gbps.

flow.start_time =  max ( flow.finish_time, system_time )
# if enqueue in empty queue

=  flow.finish_time # if dequeue
flow.finish_time =  flow.start_time + flow.l / flow.r
# eligibility evaluation
amongst all  flow s.t. ( system_time >=  flow.start_time ): 

transmit the packet with smallest  finish_time # rank sorting

Figure 1: WF2Q+ rate limiting algorithm. 𝑙 is the length
of the packet at the head of the flow queue. 𝑟 is the
configured rate for this flow.

• Scalability. In RNIC, the number of active flowsmay reach
tens of thousands scale [7], while the computing and stor-
age resources are restricted and scarce [22]. Thus, RNIC
desires a scalable rate limiter that supports pacing tens of
thousands of concurrent flows accurately while meeting
the hardware resource constraints.

Current commercial RNICs support around 1 K rate limiters
with a deviation of 10% from the target rate limit [2]. The
limited capacity of the RNICs causes multiple flows to share
the rate limiters, thereby decreasing overall performance.

2.2 Rate Limiter Model
2.2.1 Time-based Rate Limiting Algorithm. Time-based

rate limiting algorithms such as Worst-case Fair Weighted
Fair Queueing (WF2Q+ [5]) provide bounded delay of the
packet scheduling and can be used for accurate rate limit-
ing [14–19].
As illustrated in Figure 1, WF2Q+ (non-work conserving

version [14]) computes the start and finish transmission time
for each packet in a flow according to the packet size and
the rate limit while maintaining the system time globally.
To transmit the next packet among flows, WF2Q+ first fil-
ters eligible packets whose start time are less than or equal
to the current system time (eligibility evaluation) and then
schedules the one with the smallest finish time (rank sorting).

We then introduce a rate limiter model to analyze the chal-
lenges of deploying the above algorithm into RDMA scenario
while meeting the performance and resource requirements
of RNIC.

2.2.2 Rate Limiter Model for RNIC. Figure 2 shows a rate
limiter model for RNIC. RNIC consists of tens of thousands
of queue pairs (QPs). The user posts a work queue element
(WQE) into a QP to issue a request. EachWQE corresponds to
a message which consists of multiple packets, and messages
in the same QP are recognized as a flow. WQEs contain the
message size (64 B ∼ 2GB), and the rate limiter must process
the WQE to get the varying packet size and then compute
the transmission time.
A QP is either active when it contains WQEs or inac-

tive otherwise. Rate limiter filters the active QPs from tens
of thousands of QPs in host memory and computes the
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Figure 2: Rate limiter model for RNIC. RNIC queries
the activity of each QP, evaluates the eligibility, sorts
the eligible packets by their finish time, and transmits
the smallest one.

send/finish time based on their WQE sizes and rate limits.
Rate limiter then evaluates the eligibility of active QPs us-
ing the system time maintained in the timer and transmits
packets with the smallest finish time.
We conclude three challenges of designing an accurate

and scalable rate limiter as follows:
• Challenge #1: In the algorithm aspect, the conditions to
judge whether to send a QP’s packet are too complicated,
as they involve activity, eligibility, and time-consuming
factor, i.e., finding the smallest finish time. Once a QP is
scheduled but fails to satisfy all conditions, the scheduling
does not take effect but wastes time, thereby degrading
the performance. Moreover, identifying the minimal value
is quite challenging because it requires an ordered list and
entails balancing the fundamental trade-off between time
complexity and hardware resource consumption.

• Challenge #2: In the architecture aspect, the PCIe round-
trip latency between RNIC and hostmemory is high (greater
than 1 µs). However, rate limiter needs to read the host
WQE per scheduling iteration to calculate the inter-packet
interval, as the WQE and adjacent packet sizes may vary.
As a result, without careful design, the high latency will
decrease the scheduling frequency and hurt the perfor-
mance. Additionally, common batch operations used to
hide PCIe latency can cause burst and reduce the accuracy
of the rate limiter.

• Challenge #3: In terms of practicality, implementing rate
limiter in RNIC poses challenges both in resource and per-
formance constraints. Due to the large number of QPs to
support but limited computing and storage resources in
RNIC, common methods like allocating buffers to store
WQEs/packets for each QP or using dedicated token bucket
are not feasible, which, however, are widely used in Ether-
net NICs [22]. In addition, RNIC operates at a high clock
frequency (250MHz in FPGA-based RNIC [22]) to achieve
high performance. However, if the hardware design of
the rate limiter is too complicated, it may be impractical,
decrease the clock rate, and hurt the performance of RNIC.

Timer
system time

Time Computation
start/finish time

Timeline (ordered list) 

Start Time
(t, qpn)

Finish Time
(t, qpn)

(1,1) …(2,2)

(10,2) …(20,1)

“t=4, traverse”

“eligible, dequeue”

“insert”

“link idle, dequeue qp2”

“on enqueue”

“on dequeue”

[2] [1]

[3]

Figure 3: Tassel’s rate limiting algorithm, which con-
sists of three functionalities: (1) compute start/finish
time and insert into ordered timeline; (2) update sys-
tem time and traverse the timeline; and (3) transmit
the eligible packet with the smallest finish time.

3 TASSEL DESIGN
We propose Tassel, an accurate and scalable rate limiter for
RNICs, which addresses the aforementioned challenges via
the algorithm and architecture design.

3.1 Tassel’s Rate Limiting Algorithm
Tassel aims to precisely enforce a wide range of rate limits
for numerous QPs and support fine-grained rate adjustments
while consuming limited resources. In addition, when the
aggregated rate limits exceed the link capacity and oversub-
scribes the link, Tassel should adjust the rate proportionally
following the weighted sharing manner.
As shown in Figure 3, Tassel’s rate limiting algorithm

consists of three parts: (1) computation and insertion; (2)
timing and monitoring; and (3) sorting and transmission.
In brief, Tassel computes the start/finish time of the first
few packets for each QP and inserts them into a time-basis
sorted array, i.e., timeline. Meanwhile, Tassel records the
system time in a global timer and monitors the timeline to
trigger the eligibility evaluation. Then Tassel transmits the
packet which is eligible and has the smallest finish time in
the timeline. Next, we discuss the three parts in detail.

3.1.1 Computation and Insertion. Tassel computes the
packet transmission time and QP rescheduling time for the
QP which is either enqueued or dequeued. An enqueued
QP means that it is newly activated and has new WQEs to
process. And a dequeued QP means that it has just been
scheduled to transmit a packet but still remains active and
should rejoin the scheduling
The packet transmission time is the start and finish time

for a QP’s first few packets (assuming 𝑛 packets) within at
most 𝑛 WQEs. Tassel first fetches 𝑛 WQEs of that QP from
the host to calculate the length of each packet in the 𝑛WQEs,
queries the rate limit configured for that QP, and processes

3



APNET 2023, June 29–30, 2023, Hong Kong, China Z. Wang, et al.

Timeline (start time)
System time

(T )
Activation time

(T + PCIe Latency / 𝛷)

Active Period Dormant Period

0

Scheduling Period

Packet transmission time QP rescheduling time

Figure 4: Timeline of start time consists of two peri-
ods: active period that contains packet transmission
time and dormant period that contains QP reschedul-
ing time.
the time computation following Algorithm 1. Then Tassel
filters the 𝑢𝑟𝑔𝑒𝑛𝑡 packets (assuming𝑚 packets) that can be
transmitted within the scheduling period, which is equal to
the PCIe latency (1 µs). Tassel only stores the timestamps and
WQE info for these 𝑢𝑟𝑔𝑒𝑛𝑡 packets, as the information of the
others can be retrieved in the next iteration after fetching
the WQEs again and thus can be discarded for now to save
memory resources.
The QP rescheduling time is the time to reactivate the

QPs which have finished transmitting their 𝑢𝑟𝑔𝑒𝑛𝑡 packets
and wait to rejoin the scheduling, fetch WQEs, and compute
the packet transmission time for the new round. As Figure 4
shows, the QP rescheduling time is actually the smallest
packet transmission time that falls in the dormant period:

𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑡 =𝑚𝑎𝑥 (𝑝𝑘𝑡_𝑖_𝑠𝑡𝑎𝑟𝑡_𝑡, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑡)
𝑖 =𝑚𝑖𝑛(𝑚 + 1, 𝑛), 𝑛 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙

After the computation, Tassel inserts the packet transmis-
sion time for𝑚 urgent packets and the QP rescheduling into
the timeline of start time, as shown in Figure 3.

3.1.2 Timing and Monitoring. Tassel records the system
time inside a global timer and updates it per cycle, i.e., 4 ns
for 250MHz clock frequency. It realizes strict rate limiting
with a fallback to the weighted sharing by means of adjusting
the timing rate. When there is no oversubscription, Tassel
increases the system time by one granularity (4 ns) each
time. When the link is oversubscribed, Tassel slows down
the system time proportionally. This allows RNIC to transmit
more packets per actual unit time, thus preventing packet
accumulation and queuing caused by oversubscription.
Tassel adjusts the timing rate according to the rate over-

subscription factor Φ, which is defined as the sum of the
active QPs’ rate limits divided by the link capacity. After the
time period 𝛿 , Tassel updates the system time as follows:

𝑇 (𝑡 + 𝛿) = 𝑇 (𝑡) + 𝛿 × max(1,Φ)
Meanwhile, Tassel keeps monitoring the timeline of start

time. Tassel recognizes the eligible packets whose times-
tamps are smaller than the system time 𝑇 in the active pe-
riod. It then sorts the eligible packets, schedules the one
with the smallest finish time, fetches data via PCIe, and

transmits the packets (§3.1.3). Tassel also recognizes the QPs
whose QP rescheduling time is less than the activation time
𝑇 +𝑃𝐶𝐼𝑒_𝐿𝑎𝑡𝑒𝑛𝑐𝑦/Φ in the dormant period, and reschedules
them to fetch WQEs for the next round’s time computation.

3.1.3 Sorting and Transmission. As shown in the bottom
half of Figure 3, Tassel leverages the ordered timeline to
support eligibility evaluation and rank sorting in order to
transmit the eligible packet with the smallest finish time.

Specifically, Tassel’s timeline consists of two ordered lists
to sort the start time and finish time separately. The eligible
packets recognized by the timer (eligibility evaluation) are
dequeued from the timeline of start time and enqueued into
the timeline of finish time (rank sorting). Whenever the link
is idle, Tassel dequeues and transmits the head packet from
the timeline of finish time.
Note that we only dequeue a packet from the timeline of

finish time when the link is idle. Otherwise, if we dequeue
a packet with the smallest finish time at the time when the
link is busy, this packet will get blocked and wait until the
link becomes idle. During the waiting period, however, the
increasing system time may induce new packets with smaller
finish time to become eligible. These newly eligible packets
should be transmitted first when the link is idle but are
blocked in this case. Therefore, scheduling and dequeuing
prematurely may result in wrong scheduling order and hurt
the accuracy, and hence should be carefully handled. Besides,
Tassel deduces the link state by computing the transmission
time of the last packet 𝑙𝑎𝑠𝑡_𝑝𝑎𝑐𝑘𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ/𝑙𝑖𝑛𝑘_𝑟𝑎𝑡𝑒 .
In summary, Tassel’s time-based rate limiting algorithm

guarantees accuracy. It bounds the scheduling delay for each
packet among QPs [5]. Next, we present Tassel’s hardware
design that realizes this algorithm and discusses the design
complexity, performance, and resource consumption that fit
the strict requirements of RNIC.

3.2 Tassel’s Rate Limiter Architecture
Tassel designs a cache-free architecture, as shown in Fig-
ure 5, that can do fast scheduling and enforce accurate rate
limiting among tens of thousands QPs with limited on-chip
computing and memory requirements.

3.2.1 Architecture Overview. The EventMUX (EMUX ) mod-
ule aggregates all scheduling-related events, including (1)
host doorbell indicating someQP is active and has newWQEs
to process; (2) rates and credits update from the congestion
control module to control QPs’ data transmission; and (3)
dequeue event from timeline to indicate that the QP is ready
to schedule again. These events trigger EMUX to change
the scheduling states stored in QP Context (QPC). QPs that
are active, ready, and have credits can enqueue the schedule
queue to evaluate the eligibility and rank order. EMUX helps
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Figure 5: Rate limiter architecture in RNICs.
process complex events while the schedule queue filters valid
QPs and prevents ineffective scheduling, which effectively
addresses Challenge #1.

FIFO-based schedule queuemaintains a list of QPs ready for
scheduling. Tassel polls schedule queue, dequeues the head
QP, and fetches from that QP a given amount of WQEs via
DMA Engine. TheseWQEs are then processed to compute the
packet transmission and QP rescheduling times. The urgent
packets are then inserted into the global timeline. Meanwhile,
the descriptors (i.e., WQE info) of urgent packets are stored
inDesc Buffer, and at most 𝑘 descriptors for all QPs are stored.
The capacity of Desc Buffer determines the maximal message
rate of RNIC, which will be discussed in §3.2.3.
Meanwhile, Tassel queries the global timer to compare

current system and activation time with the packet trans-
mission and QP rescheduling time recorded in timeline. For
packet transmission, Tassel dequeues the packet, consumes
its descriptor in Desc Buffer, reads the packet data from the
host via DMA engine, then appends the RDMA header in the
Transport module, and transmits it to the network through
Basic NIC. For QP rescheduling, Tassel dequeues the QP and
informs EMUX that the QP can be rescheduled and is ready
to fetch WQEs for the next round.

3.2.2 Hardware Design of Timeline. The essence of time-
line in Tassel is the ordered list. However, it is challenging to
implement this data structure in hardware as it presents the
tradeoff between time complexity and resource consumption.

In the context of high-performance RNIC, the ordered list
is expected to support enqueuing and dequeuing in O(1) time.
If this is not achieved, the high operation latency between
scheduling iterations will significantly degrade the perfor-
mance. Meanwhile, the design of ordered list is desired to
be scalable and practical. To this end, we combine the high-
precision timing wheel [20] and the scalable pipelined heap
(P-heap [6]) to achieve accuracy and scalability simultane-
ously while meeting the performance requirements with the
support of constant operation time, as shown in Figure 6.

10

30 40

6050

1

2 3

4 5 6 7

Timeline (start time)
System time T T + PCIe RTT / Φ

Timing Wheel P-heap

80

1
3

56
7

8

Figure 6: The data structure of timeline in Tassel.

Tassel manages the active period and dormant period using
Timing wheel and P-heap, respectively, in order to match
each of their needs.

Timing Wheel. Timing wheel is a circular array of slots.
It uses time as the basis and each slot represents a time
interval. Packets can be inserted into the corresponding slots
according to their timestamps in O(1) time, which fits the
RNIC performance requirement.

Tassel adopts timing wheel only for performance-sensitive
urgent packets which desire high precision and extremely
high enqueue/dequeue speed (every 4 clocks to transmit a
packet) to balance the tradeoff between accuracy and mem-
ory consumption. Fine-grained time granularity and large
time range contribute to high accuracy of timing wheel, but
result in enormous time slots and thus unacceptable memory
consumption. Here we leverage the limited time span char-
acteristic of active period for designing our timing wheel.
Specifically, Tassel set the time granularity to 4 ns, i.e., 1 clock
with 250MHz frequency, and the time range to 1 µs, i.e., the
PCIe latency. In this way, the timing wheel only occupies 250
slots, which is resource-friendly and preserves the highest
accuracy for the rate limiting.
In terms of collision [15], thanks to the small number of

slots in timing wheel, Tassel can leverage registers to find a
suitable location for the conflicting timestamps rapidly.
Pipelined heap (P-heap). We leverage P-heap [6] to

manage the QP rescheduling time, which is less performance-
sensitive but higher resource-sensitive. P-heap maintains a
min heap and enables the pipelining of the enqueue and
dequeue operations, thereby allowing these operations to
execute in essentially constant time.
P-heap stores and sorts the QP rescheduling time. It can

be viewed as a complete binary tree (see Appendix A). P-
heap supports pipelined operations of enqueue, dequeue, and
enqueue-dequeue. Each operation consumes height cycles,
while P-heap can start a new operation every two cycles.
Each operation only accesses two adjacent layers of the tree
and thus operations with a gap are independent and can be
pipelined.

In summary, P-heap’s constant operation time fits Tassel’s
performance demand. Tassel can dequeue the rescheduled
QP immediately and enqueue QPs in a non-blocking manner,
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making the scheduling efficient. In terms of resource require-
ments, P-heap is scalable as it only stores several bytes of
metadata per QP.

3.2.3 Cache-free Scheduler. Tassel adopts a cache-free
scheduler via the fetch-and-drop policy. When a QP is sched-
uled, the DMA engine fetches up to𝑛WQEs from that QP and
filters𝑚 urgent packets. Tassel then stores the timestamps
and the descriptors (WQE info) of urgent packets in the Desc
Buffer with capacity 𝑘 . Other unused WQEs are dropped
instead of being cached in RNIC, and will be fetched again
next time. This fetch-and-drop policy allows a cache-free
architecture and improves resource efficiency.
There are two critical parameters 𝑛 and 𝑘 : 𝑛 is the max-

imum number of WQEs, and 𝑘 is the capacity of the desc
buffer. A larger𝑛 can better hide the PCIe latency and achieve
a higher message rate at the cost of more PCIe bandwidth
waste, while a smaller 𝑛 performs inversely. Tassel set 𝑛 to
8 to balance the tradeoff. With this setting, the maximum
message rate of a single QP is 8Mrps considering 1 µs PCIe
latency. 𝑘 implies the number of packets that can send within
this scheduling iteration and corresponds to the maximal ag-
gregate message rate of multiple QPs that RNIC can achieve.
Tassel sets 𝑘 to 60 to achieve the performance of the state-of-
the-art RNIC while minimizing the memory consumption.

3.2.4 Scalability Analysis. Tassel is a scalable design as it
limits the memory and computing resource consumption as
much as possible.
Tassel’s memory consumption is negligible compared to

10Mb total memory size or 375 B QPC [9], making it a scal-
able design for RNICs. Figure 5 enumerates all memory-
consuming modules surrounded by dotted lines. Specifically,
Tassel occupies 17 bytes for each QP, i.e., 5 B for the sched-
uling states, 2 B in the schedule queue, and 10 B in the time-
line module. Besides, Tassel consumes 480 bytes to store the
packet descriptors, which is a constant value unrelated to the
QP number. When supporting 10K QPs, Tassel consumes
166.5 KB on-chip SRAM in total theoretically. In terms of
computing resources, Tassel uses shared instead of dedicated
processing logic for QPs. Thus, the consumption of comput-
ing resources is limited and unrelated to the QP number.

4 EVALUATION
In this section, we present the preliminary simulation results
of Tassel. Our results reveal that:

• Tassel achieves high accuracy: it precisely enforces the
rate limits ranging from 100 Kbps to 100Gbps, and shares
bandwidth proportionally when the link is oversubscribed.

• Tassel achieves high scalability: it supports accurate rate
limiting for thousands of concurrent QPs while consuming
limited on-chip resources.

We evaluate Tassel using a Python-based simulator that mod-
els the behavior of the RNIC at a link rate of 100Gbps. We
measure the accuracy by timestamping every packet with a
clock resolution of 4ns and retrieving the inter-packet times-
tamp difference for packets within each QP.

Accuracy.We measure Tassel’s accuracy by configuring
a QP’s rate limit from 100Kbps to 100Gbps. As shown in
Figure 7, Tassel enforces any given rate limit accurately, in-
cluding the small rate demanding the timeline to support
a large time range and the high rate demanding the time-
line to support high precision. Our results demonstrate the
efficiency of Tassel’s timeline design which combines the
timing wheel and P-heap.

Scalability.We initiate 1 K concurrent QPs with different
rate limits to evaluate Tassel’s scalability. The assigned rate
limits range from 100Kbps to 100Gbps, similar to Figure 7.
When the number of high-rate QP we set is small, and the
link is not oversubscribed, as shown in Figure 8a, Tassel
preserves high accuracy for different rate limits. When we
increase the number of high-rate QPs, making the link over-
subscribed (the rate oversubscription factor Φ = 2), Tassel
can proportionally adjust the rate limits among QPs accord-
ing to the original rate limit and Φ, as shown in Figure 8b.
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APPENDIX A P-HEAP
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Figure 9: An example of pipelined enqueue operation
in P-heap [6].

Figure 9 illustrates an example of pipelined enqueue op-
erations of a 4-level P-heap. The size of P-heap is fixed and
equals to the QP number (e.g., 10 K). This is different from
the conventional binary heap whose size may vary as long as
it stays an almost complete binary tree. The height of P-heap
is the logarithm of its size.
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