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ABSTRACT
The rising popularity of online social network services has attracted
a lot of research focusing on mining various user patterns. Among
them, accurate IP geolocation is essential for a plethora of location-
aware applications. However, despite extensive research efforts
and significant advances, the “accurate and reliable” desideratum
is yet to be achieved at a higher quality level. This work presents
a graph neural network (GNN)-based model, called TrustGeo, for
trustworthy street-level IP geolocation. A distinct and important
aspect of TrustGeo is the incorporation of sources of uncertainty in
the learning process. The results of our extensive experimental eval-
uations on three real-world datasets demonstrate the superiority of
our framework in significantly improving the accuracy and trust-
worthiness of street-level IP geolocation. Our code and datasets are
available at https://github.com/ICDM-UESTC/TrustGeo.

CCS CONCEPTS
• Information systems→ Location based services; •Networks
→ Location based services.
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1 INTRODUCTION
Accurately determining the geographic location of Internet hosts
is an essential functionality for many location-aware applications
such as spectrum allocation, smart cities, Geoweb, etc. [11, 12, 31].
The existing popular client-dependent geolocation techniques are
typically relying on location data obtained via sources such as global
positioning systems (GPS), cell towers, and Wi-Fi [29]. However,
these techniques often rely on clients’ voluntary participation (i.e.,
the server obtains geo-location data only if the users explicitly
report it), which, however, may yield privacy concerns [13]. Hence,
they are inapplicable when location-based access is restricted –
aside from the fact that accurate geolocation is still a challenge for
a large number of devices (desktops and laptops) that use wired
access (i.e., without GPS, cellular, or Wi-Fi).

A large body of client-independent approaches has been pro-
posed to improve geolocation accuracy. Some works [25, 26] use
diverse information mined from the Internet and pinpoint IPs by
analyzing clues from the massive collected data; others [10, 31] lo-
cate addresses based on active network delay measurements, using
the multilateration technique with some predefined delay-distance
conversion functions. Recently, neural networks (NNs) have been
used to prevent empirical errors caused by expert-designed hypo-
thetical rules. Some works [14, 36] automatically learn the mapping
from the attribute information of the target host to the geographic
location, while others [7, 34] establish the connections between the
target host and surrounding coordinates by mining the neighbor-
hood information using graph neural networks (GNNs) [35].

One of our previous works, GraphGeo [34], is a state-of-the-art
method for IP geolocation. It establishes neighborhood relation-
ships between IP hosts from topological and semantic perspectives.
Then the knowledge of its neighbors is aggregated via attentive

4862

https://github.com/ICDM-UESTC/TrustGeo
https://doi.org/10.1145/3580305.3599920
https://doi.org/10.1145/3580305.3599920
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599920&domain=pdf&date_stamp=2023-08-04


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxin Tai et al.

graph learning. This approach has been shown to reduce geolo-
cation errors significantly [34]. However, we have identified two
primary challenges that need to be addressed during the deploy-
ment of our geolocation system: (1) The effectiveness of GraphGeo
depends heavily on the quality of the constructed IP graph. If the
graph structure is unreliable (noisy node attributes or inaccurate
edge weights), or sparse (few adjacent landmarks), then the graph
learning algorithm may learn biased knowledge, reducing the trust-
worthiness of the geolocation system [28]. (2) As a service provider,
we hope to find an efficient way to update the algorithm progres-
sively. While GraphGeo only provides an estimated location of the
target IP, it does not offer developers any feedback to improve the
system.

To overcome these challenges, we propose TrustGeo, which in-
corporates uncertainty-aware dynamic graph learning to enhance
both the accuracy and reliability of the geolocation system. Trust-
Geo also generates a confidence score (a.k.a. epistemic uncertainty)
that provides developers with extra signals to monitor the system’s
performance. The core of TrustGeo is to incorporate sources of
uncertainty into the learning process and treat the graph-based IP
geolocation as a multi-view decision fusion task: We first define the
knowledge used for geolocation as being obtained from two aspects
– the information from the target IP itself and the collaborative
information from its neighbors. Then we calculate the uncertainty
for each view and use these uncertainties as criteria to adaptively
fuse information from different views. This approach ensures that
the geolocation system remains effective even under challenging
scenarios, and helps developers make informed decisions when
updating the system.

We further make some improvements to the construction of the
IP graph. Specifically, GraphGeo constructs the graph using only
landmarks and target hosts. It directly uses the difference between
the delays from the landmark and the target host to the router
as an approximation of the delay between the landmark and the
target IP host. However, in most cases, such delay calculation is
inaccurate, resulting in sub-optimal prediction performance [5].
In this work, we propose Star GNN, which can incorporate the
feature information of IP hosts and neighbor relationships in a
more natural way. A star graph consists of a star node and multiple
satellite nodes, where the star node has connections with all satellite
nodes and can pass messages to them. Since a common router can
communicate with the target IP and its surrounding landmarks, we
view the common router as the star node and treat the target IP
and landmarks as satellite nodes.

We conduct extensive experiments on three large-scale, real-
world IP datasets. The results demonstrate that TrustGeo signifi-
cantly improves the accuracy and reliability of street-level IP ge-
olocation and is more efficient than state-of-the-art baselines. We
would like to highlight some specific benefits that customers can
benefit from our proposed trustworthy IP geolocation system. (1)
Our system incorporates uncertainty learning and graph neural
networks to enhance the accuracy of the IP geolocation, resulting in
more precise location estimates compared to the previous version
of our system (GraphGeo). This can have significant implications
for businesses that rely on location-based services, such as targeted
advertising, e-commerce, and logistics. (2) Our system is designed
to be more robust to “various noises”, which is a key challenge in

IP geolocation. By addressing this challenge, our proposed method
offers an increased level of trustworthiness, which can be especially
important for applications related to security, fraud detection, and
law enforcement.

2 RELATEDWORK
We now review the two main categories of related literature and
position our work in that context.
(1) IP Geolocation. There are three main IP geolocation paradigms
in the literature.

–Webmining approaches use diverse informationmined from the
Internet, including web page content [33], WHOIS databases [25],
reverse DNS [26], postal addresses [11], users’ registration records
[21, 26], and social graphs [32]. For example, NetGeo [25] parses
the IP address and analyzes WHOIS records to predict IP locations.
Checkin-Geo [21] leverages the location data that users are will-
ing to share in location-sharing services and logs of user logins
from PCs for geolocation. GeoCAM [33] periodically monitors web-
sites hosting live webcams to extract location information. Web
mining-based approaches are generally limited by unreliable and
incomplete information due to the passive network data collection
that may easily lead to inaccurate geolocation [34].

– Active Network Delay Measurements is at the majority of IP
geolocation research works rely on. The rationale behind these
approaches is the positive correlation between network delay and
geographic distance [31, 37]. The earlier work GeoPing [26] sends
ICMP packets from geographically distributed probing hosts to the
target IP, which is localized by the location of the closest landmark
server. CBG [10] creates circles on the surface of the earth around
each landmark server, and uses multilateration to infer the loca-
tion of the target IP. Complementary to network delay, TBG [16]
combines network delay with topology measurements using tracer-
oute from landmark servers to the target IP for location estimation.
Spotter [19] is a probabilistic density model that derives a common
delay-distance model and utilizes the highest probability density to
localize the target hosts. This line of methods obey several delay-
distance hypothetical rules. However, they relied on the experience
of networking experts, thus limiting the generalization capabilities.

– Machine Learning & Deep Learning have recently been ex-
ploited by a growing number of researchers for locating IP ad-
dresses. NN-Geo [14] collects RTTs (round trip times) from multiple
observers as features, and uses RBF (radial basis function) neural
network to pinpoint IPs. GNN-Geo [7] reformulates IP geolocation
as an attributed graph node regression problem and designs a GNN-
based framework to exploit surrounding knowledge from the target
IP host. GraphGeo [34] establishes neighborhood relationships be-
tween IP hosts from both topological and semantic perspectives
to form a weighted graph, and aggregates the knowledge of its
neighbors with an uncertainty-aware GNN for IP geolocation.
(2) Uncertainty in Deep Learning. Deep learning tools have
gained tremendous attention in applied machine learning, but the
ones for regression and classification do not capture model un-
certainty. Instead of solely optimizing larger models for increased
performance, uncertainty deep learning [1] focuses on how these
models can be equipped with the ability to estimate their own con-
fidence. According to [6], there are two axes of NN uncertainty
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that can be modeled: (1) uncertainty in the data, called aleatoric
uncertainty, and (2) uncertainty in the prediction, called epistemic
uncertainty. Aleatoric uncertainty captures noise inherent in the
observations. This could be for example network uncertainty and
fluctuations resulting in uncertainty that cannot be reduced even
if more data were to be collected. Epistemic uncertainty accounts
for uncertainty in the model parameters – which can be used to
describe the confidence of what our model learns. While repre-
sentations of aleatoric uncertainty can be learned directly from
data [2], there exist several approaches for estimating epistemic un-
certainty, such as Bayesian NNs, evidential learning, etc. Bayesian
models [30] offer a mathematically grounded framework to reason
about model uncertainty but usually come with a prohibitive com-
putational cost. Some methods for uncertainty estimation leverage
the concept of Bayesian learning, e.g., Monte Carlo Dropout [9] or
Ensembling [20]. These techniques require training a large number
of model instances or fail to produce diverse predictions. Recently,
an alternative class of models based on the concept of Evidential
Deep Learning [2, 23] has emerged, which allows uncertainty es-
timation in a single model and forward pass by parameterizing
distributions over distributions.
Summary of Differences: Our work differs from existing studies
in two aspects.

– Router-level graph learning. TrustGeo is a GNN-based method
that effectively narrows the region by clustering the IPs at the
router level. There exist approaches that also constrain region via
the last-hop router. For example, NCRGeo [4] which calculates
the distance between the router and landmarks, and then uses
multilateration to obtain geolocation of the common router while
directly taking the location of the router as the estimated location of
the target IPs. XLBoost-Geo [32] extracts location indicating clues
from web pages and locates the web servers through recurrent
neural networks. Both NCRGeo and XLBoost-Geo fail to exploit
neighborhood relationships. The most recent work GraphGeo [34]
constructs a graph to exploit topological and semantic information,
whereas only the target host and landmarks are considered. Our
novel star GNN explicitly takes the common router into account,
which prevents inaccurate relative distance estimation.

– Uncertainty estimation. TrustGeo includes a novel uncertainty
learning algorithm that takes the networkmeasurement uncertainty
and dynamic variations of the IP graph into account, making it more
trustworthy in real-world IP geolocation services. The importance
of uncertainty learning for IP geolocation has rarely been discussed
in previous literature. Note that Spotter and GraphGeo (respectively
using probabilistic density function and normalizing flow to model
the uncertainty) only model the aleatoric uncertainty from data but
neglect the epistemic uncertainty from the model, which affects
the reliability and accuracy of geolocation.

3 METHODOLOGY
We now formally define the problem and present the details of
TrustGeo.

3.1 Problem Definition
Considering the universality of the algorithm, we follow previous
settings [7, 10, 16, 34] and define geolocation task under the passive

pattern (i.e., a set of passive landmarks with known locations), to
which measurements can be made, but cannot originate any mea-
surements of their own. In this setting, we have a set of reference
hosts with known locations (i.e., landmarks). Some landmarks are
active and can issue probes (make network measurements to each
other and to the passive landmarks and targets), while some cannot
(i.e., passive). More specifically, when we locate a target, we assume
that the locations of the remaining targets are known, thus we can
use the remaining targets as passive landmarks1.

Definition 3.1 (Active/Passive Landmarks). To bootstrap the sys-
tem, there need reference hosts with known locations that refer
to landmarks [16]. Among them, active landmarks are landmarks
(reference nodes) that can make network measurements to each
other (passive landmarks/targets), while passive landmarks cannot
issue measurements, but can be probed by active landmarks.

We now define the street-level IP geolocation problem, aiming
to infer the geolocation of the target IP addresses with a set of
measurements and available IP hosts knowledge.

Definition 3.2 (Network Measurements). There are mainly two
categories of measurement – the delay measurements and Inter-
net route measurements [16]. Specifically, network measurements
are collected by executing probing commands, such as “ping” and
“traceroute”, on multiple probing hosts (active landmarks) located in
different regions.

Definition 3.3 (Attribute Knowledge). Information collected or
retrieved fromWHOIS2 will be used as the attribute knowledge [34].
In this work, attribute knowledge includes 14 dimensions: IPv4
address, ID of the autonomous system where IP is located country
(resp. state/province/city) of IP location, etc.

Definition 3.4 (IP Geolocation). Given 𝑁 landmarks {l𝑖 }𝑁𝑖=1 with
their knowledge {x𝑖 }𝑁𝑖=1, network measurements {m𝑖 }𝑁𝑖=1 and loca-
tions {y𝑖 }𝑁𝑖=1 marked by longitude and latitude, we seek to pinpoint
a target IP with its own knowledge x𝑇 and the network measure-
ments m𝑇 via a data-driven model:

ŷ𝑇 = TrustGeo({x𝑖 }𝑁𝑖=1, {m𝑖 }𝑁𝑖=1, {y𝑖 }
𝑁
𝑖=1, x𝑇 ,m𝑇 ;𝜽 ), (1)

where ŷ𝑇 =( l̂on𝑇 , l̂at𝑇 ) denotes the predictive geographical loca-
tions of target IP, and 𝜽 denotes all the learnable parameters.

It is important to note that the information on WHOIS might
be inaccurate or outdated sometimes3. Besides, when the network
experiences congestion or fluctuations, measurement data such as
ping and traceroute may also be inaccurate. However, we allow
the existence of such inaccuracy as it reflects the quality of the
collected data and further highlights the significance of uncertainty
learning in this study. In other words, the inaccuracy of attribute
knowledge and measurement data can serve as inherent real-world
noises, and aleatoric uncertainty is introduced to estimate it (see
Section 3.3 for details).

1This widely used and overconfident assumption is not always valid in practice. We
challenge this assumption and focus on either quantifying or compensating for network
uncertainty (cf Sec. 3.4).
2https://www.whois.com
3https://www.icann.org/resources/pages/inaccuracy-2013-03-22-en
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Common RouterLandmark Target IP Topology-based Edge Attribute-based Edge

(a) Network Topology (b) Attribute Similarity (c) Star Graph

Figure 1: Illustration of building the star graph. We view the
common router as a star node and treat the target IP and
landmarks as satellite nodes. The proposed star graph takes
a “multi-pronged” approach in which known attributes are
considered, and at the same time looks for structure in the
IP network that can be exploited.

3.2 Geolocation via Graph Neural Network
The majority of prior works realize clustering relying on ping
response latency between landmarks and target IP, using either
topological approach [16] or unsupervised methods (e.g., 𝑘-nearest
neighbors [8]). However, long-distance measurements such as com-
munication latency are influenced by varying network conditions,
yielding inaccurate estimates with large error bound [5, 14, 31].

Following [4, 32, 34] in connecting IP hosts with common last
hop, we use the “traceroute” tool to probe hosts located in differ-
ent cities and look up the last-hop router(s). If there exist multiple
last-hop routers, we select the router with the smallest (i.e., most
negligible) latency, for twofold reasons: (1) The IP hosts with the
common last-hop router usually have close physical distance from
each other due to the regional management strategy on the Inter-
net [31]; (2) We can build the topological relationships between
the target IP and landmarks since we can take the common router
as the bridge to connect them. In practice, if the firewall hides the
last-hop router, we consider the last visible one.

A recent work [34] constructs the graph with landmarks and
target hosts. The difference of the delays from the landmark and the
target host to the router is treated (roughly) as the delay between
the landmark and the target host. However, in most cases, such
delay calculation is inaccurate, resulting in sub-optimal prediction
performance [5]. To address this, we introduce the star graph to
avoid the negative impact of insufficient routing knowledge when
establishing the graph. Specifically, a star graph consists of a star
node and satellite nodes, where the star node has connections with
all satellite nodes and can pass messages to them. Since a common
router can communicate with the target IP and its surrounding
landmarks, we view the common router as the star node. The tar-
get IP and landmarks will be treated as satellite nodes. Figure 1
illustrates the procedure of building the star graph.
Star connections. Considering we have the location of landmarks
and round-trip time (RTT) between hosts (landmarks, target host)
and the common router, we can directly construct topology con-
nections – we naturally construct edge weights that are inversely
proportional to the delay between the common router and hosts:

𝑨𝑅,∗ = exp(−𝛾 · (𝛼 · RTT(∗, 𝑅) + 𝛽)), (2)

where ∗ denotes an arbitrary satellite node, 𝑅 denotes the star node
(router), and 𝛼 , 𝛽 , 𝛾 are trainable parameters.
Satellite connections. Upon obtaining the graph that consists of
a series of landmarks and the target IP, with the common router
as the bridge to connect them, suppose that the geolocation of the
router is ŷ𝑅 . According to the topology between the router and
landmarks, we rely on the constraint of topology measurement
– i.e., the geographic location of the target IP ŷ𝑇 is somewhere
on a circle with a radius of 𝑑 (𝑇, 𝑅) centered on the routing (star)
location ŷ𝑅 . That is, the geolocation of the target IP cannot be
accurately located with measurements only in the last-hop-based
router-centric graph. As noted in [34], geographically close nodes
usually have similar properties. This observation enables analyzing
the precise geolocation with the host’s attribute knowledge and
topological relationships via the graph structure. Hence, we can
establish direct connections between different satellite nodes as we
have attribute knowledge of the target IP and landmarks. Given the
knowledge of the target IP 𝑇 and a landmark 𝑙 , we calculate their
similarity via the dot-product of their feature vectors:

𝑨𝑇,𝑙 = exp(𝒗T𝜎 (𝑾1{x𝑇 ,m𝑇 } +𝑾2{x𝑙 ,m𝑙 } + 𝒃)), (3)

where {, } is the concatenation operation, 𝜎 denotes the sigmoid
function, 𝑾1,𝑾2 ∈ R(𝑑𝑥+𝑑𝑚 )×(𝑑𝑥+𝑑𝑚 ) , and 𝒃 , 𝒗 ∈ R(𝑑𝑥+𝑑𝑚 ) are
trainable matrices and vector, respectively. As a result, Eq. (3) con-
nects the target host with its surrounding landmarks via the seman-
tic similarity 𝑨𝑇,𝑙 .
Learning nodes representations. For an established star graph
G = (V, E), each node 𝑣 ∈ V will be paired with a node repre-
sentation h𝑣 initialized as h0𝑣={x𝑣,m𝑣} ∈ R𝑑𝑥+𝑑𝑚 . However, the
attribute information of the star node is missing. To initialize the
star node, we apply average pooling on representations of satel-
lite nodes. During the 𝑖-th iteration, each h𝑖𝑣 is updated using 𝑣 ’s
neighborhood information as:

h(𝑖 )𝑣 = Update(𝑖 )
(
h(𝑖−1)𝑣 ,Agg(𝑖 )

(
h(𝑖−1)𝑢 ,A𝑢,𝑣

))
, (4)

where 𝑢 ∈ N𝑣 , Agg() is a trainable function that maps the set of
node representations to an aggregated vector, Update() is another
trainable function that maps both 𝑣 ’s current representation and the
aggregated vector to update 𝑣 ’s representation. After 2 iterations
of Eq. (4), the updated node representation of the target IP host
is 𝒛 = Concat({𝒉𝑖𝑣}2𝑖=0), where node 𝑣 is the target IP host. As a
result, we learn the representation of target IP through three per-
spectives: (1) zero-order self-information, (2) first-order aggregated
information from neighbors via attribute similarity, and (3) second-
order aggregated information from neighbors via measurement
information (using the common router as the transition node).

3.3 Network Uncertainty Measurement
So far, we have updated the representation of the target IP node
through graph learning. Normally, we can consider the IP geoloca-
tion task as a deterministic regression problem, which commonly
optimizes the sum of the square errors between the estimation ŷ𝑇
and the ground truth y𝑇 – we can predict the geographic location
of the target IP immediately via multi-layer perceptron (MLP), us-
ing mean squared error (MSE) as the cost function. However, this
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approach does not explicitly model any underlying noise or un-
certainty when making its estimation. In real-world scenarios, the
information on WHOIS may sometimes be inaccurate or outdated.
Additionally, when the network experiences congestion or fluctua-
tions, measurement data such as ping and traceroute may not be
reliable. These two factors weaken the quality of the constructed
IP graph (noisy node representation and inaccurate edge weights),
leading to inaccurate geolocation results. It would be beneficial for
the algorithm to detect such circumstances and alert users that the
model is uncertain about its current prediction result.

To this end, we consider the geolocation problem where the
observed locations, y𝑇 = (lon𝑇 , lat𝑇 ), are drawn i.i.d from a Gauss-
ian distribution, with unknown mean and variance ({𝜇𝑜 , 𝜇𝑎}, 𝜎2),
which we seek to probabilisticaly estimate. We model this by plac-
ing a prior distribution on ({𝜇𝑜 , 𝜇𝑎}, 𝜎2). For simplicity, we use 𝜇
to denote {𝜇𝑜 , 𝜇𝑎}, where 𝜇𝑜 denotes the mean estimation of the
lontitude, and 𝜇𝑎 denotes the mean estimation of the latitude. As
suggested in [2], we place a Gaussian prior4 on unknown means 𝜇
and an Inverse-Gamma prior on the unknown variance 𝜎2. Suppose
we have target sample y𝑇 need to be estimated, we have:

y𝑇 ∼ N(𝜇, 𝜎2) (5)

𝜇 ∼ N(𝛾, 𝜎2𝑣−1) 𝜎2 ∼ Γ−1 (𝛼, 𝛽), (6)

where Γ(·) is a Gamma function, and 𝛾 ∈ R2, 𝑣 > 0, 𝛼 > 1, 𝛽 > 0.
Our goal is to estimate a posterior distribution 𝑞(𝜇, 𝜎2 |y𝑇 ). Accord-
ing to [2], to obtain an approximation for the posterior, the esti-
mated distribution can be factorized such that 𝑞(𝜇, 𝜎2) = 𝑞(𝜇)𝑞(𝜎2).
Thus, our approximation takes the form of the Gaussian conjugate
prior, the Normal Inverse-Gamma (NIG) distribution:

𝑝 ({𝜇, 𝜎2} | Ω) = 𝛽𝛼
√
𝑣

Γ(𝛼)
√
2𝜋𝜎2

(
1
𝜎2

)𝛼+1
exp

{
−2𝛽 + 𝑣 (𝛾 − 𝜇)2

2𝜎2

}
,

(7)

where Ω = {𝛾, 𝑣, 𝛼, 𝛽}. The aleatoric uncertainty, also known as
statistical or data uncertainty, captures noise inherent in the obser-
vations and is representative of unknowns towards experimental
environments. The epistemic (or model) uncertainty, describes the
estimated confidence of the model prediction. Given a NIG distri-
bution, we can compute the prediction, aleatoric, and epistemic
uncertainty as:

E[𝜇] = 𝛾︸    ︷︷    ︸
prediction

, E
[
𝜎2

]
=

𝛽

𝛼 − 1︸             ︷︷             ︸
aleatoric

, Var[𝜇] = 𝛽

𝑣 (𝛼 − 1)︸                  ︷︷                  ︸
epistemic

. (8)

Having established the use of an evidential distribution to account
for both aleatoric and epistemic uncertainty, we next outline the
method for training a model to produce the hyperparameters of
this distribution. To make it clear, we have divided the training
process into two separate stages: (1) increasing model evidence to
support our observations, and (2) reducing evidence (increasing
uncertainty) when predictions are incorrect. In general terms, we
4As per Bayesian Inference, it is common to model a regression problem using a
normal likelihood for uncertainty estimation, yielding > 1 potential choice for a prior
distribution. Prior studies have used the Normal-Inverse Gamma distribution, induced
a scaled inverse-X2 posterior or a Normal-Wishart prior. Our own experiments suggest
that a normal prior for the mean and an inverse Gamma prior for the variance can
provide effective uncertainty estimation.

can view (1) as a way of adapting our data to the evidential model
while (2) enforces a prior to eliminate inaccurate evidence and
increase uncertainty.
(1) Maximizing the model fit. According to Bayesian probability
theory, the “model evidence”, or marginal likelihood, is defined as
the likelihood of an observation y𝑇 , given the evidential distribution
parameters Ω and is computed by marginalizing over the likelihood
parameters (𝜇, 𝜎2):

𝑝 (y𝑇 | Ω) =
∫ ∞

𝜎2=0

∫ ∞

𝜇=−∞
𝑝

(
y𝑇 | 𝜇, 𝜎2

)
𝑝

(
𝜇, 𝜎2 | Ω

)
d𝜇d𝜎2 . (9)

Evaluating model evidence can be challenging as it requires in-
tegrating the dependence on latent model parameters. However,
when a NIG evidential prior is applied to the Gaussian likelihood
function, there does exist an analytical solution [2]:

𝑝 (y𝑇 | Ω) = St
(
y𝑇 ;𝛾,

𝛽 (1 + 𝑣)
𝑣𝛼

, 2𝛼
)
, (10)

where St
(
y𝑇 ; 𝜇St, 𝜎2St, 𝑣𝑆𝑡

)
is a Student-t distribution evaluated at

y𝑇 with location 𝜇St, scale 𝜎2St, and 𝑣𝑆𝑡 degrees of freedom. We use
the negative logarithm of model evidence as the training objective
LNLL:

LNLL (𝜽 ) = 1
2
log

(𝜋
𝑣

)
− 𝛼 log(𝜔) + log

©«
Γ(𝛼)

Γ
(
𝛼 + 1

2

) ª®®¬
+
(
𝛼 + 1

2

)
log

(
(y𝑇 − 𝛾)2 𝑣 + 𝜔

)
, (11)

where 𝜔 = 2𝛽 (1 + 𝑣). This loss guides NN to output parameters of
a NIG distribution to fit the observations by maximizing the model
evidence.
(2) Minimizing evidence on errors. We now explain how to
regularize training by applying an incorrect evidence penalty (i.e.,
high uncertainty prior) to reduce evidence on incorrect predictions.
It is important to note that regularization terms should reduce the
weight of evidence where the geolocation prediction is inaccurate
while having little or no impact on evidence prediction where the
prediction is close to the ground truth. To achieve this, we formulate
an evidence regularizer [2],LR, scaled on the error of the prediction:

LR (𝜽 ) = |y𝑇 − E [𝜇] | · 𝜙 = |y𝑇 − 𝛾 | · (2𝑣 + 𝛼) . (12)

This loss imposes a penalty whenever there is an error in the predic-
tion and scales with the total evidence of the inferred posterior [2].
Conversely, even if the amount of predicted evidence is large, it
will not be penalized (or little influenced) as long as the prediction
is close to the ground truth.
Training. The total loss, L(𝜽 ), consists of the two loss terms for
maximizing and regularizing evidence, scaled by a regularization
coefficient 𝜆, is defined as follows:

L(𝜽 ) = LNLL (𝜽 ) + 𝜆LR (𝜽 ), (13)

where 𝜆 trades off uncertainty inflation with model fitting. Setting
𝜆 = 0 yields an over-confident estimate while setting 𝜆 too high
results in over-inflation (cf. Sec 4.5). In practice, NNwith parameters
𝜽 is trained to output Ω for each target sample. We use the mean
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value 𝛾 to pinpoint the target IP and use variance value 𝛽

𝑣 (𝛼−1) to
illustrate the model’s uncertainty. By taking uncertainty estimation
into consideration, our method can make corresponding responses
to network variations and outdated knowledge sources. Detailed
experiments can be found in Sec 4.1.

3.4 Quantifying Dynamic Graph Uncertainty
In addition to the network variations and outdated knowledge
sources, limited neighbors will also affect the performance of graph
learning – the model might learn biased knowledge from the sparse
graph. In fact, the graph sparsity problem occurs frequently in
practice. For instance, when the system experiences a cold start or is
used in rural areas, there may be few neighbor landmarks available
related to the target IP. This can result in poor stability for GNN-
based geolocation algorithms. To our knowledge, most previous
IP geolocation methods [7, 10, 16, 34] assume the availability of
landmarks with known locations. While it could be more reasonable
to use few hosts, these methods consider that ALL hosts in their
dataset (except the target one) act as landmarks to facilitate the
GNN-based geolocation approaches. In this work, we challenge this
assumption and propose a dynamic graph uncertainty awareness
method to improve the accuracy and stability of the geolocation
algorithm when the quality of the constructed IP graph is unstable.

As the graph learning algorithm in Sec. 3.2 has two views (self-
information view h0𝑣 and graph learning view {𝒉𝑘𝑣 }2𝑘=1)), traditional
graph learning algorithms usually integrate the original data or
preprocessed features by simple deterministic fusion – which ig-
nores the view-specific uncertainty and is unaware of the quality
variation of different views for different samples. To this end, we
develop a novel information-fusion algorithm that can capture
the view-specific uncertainty and use these uncertainties as cri-
teria to adaptively fuse information from different views. Specifi-
cally, we separately apply evidential uncertainty learning (Sec 3.3)
for the self-information view and graph learning view. Accord-
ingly, we can obtain two NIG distributions: 𝑁𝐼𝐺 (𝛾1, 𝑣1, 𝛼1, 𝛽1), and
𝑁𝐼𝐺 (𝛾2, 𝑣2, 𝛼2, 𝛽2). After that, we need to study how to fuse these
distributions into a new distribution. Particularly, the fusion strat-
egy needs to obey the following rules: (1) The new distribution
should also be a NIG distribution – so that we can estimate the
overall uncertainty of our geolocation system. (2) The fusion strat-
egy should take uncertainty into consideration, that is, the higher
the uncertainty of the view, the lower the coefficient of the view
when fused. (3) The fusion strategy should satisfy the Commuta-
tivity – so that we can guarantee that the fusion strategy has no
correlation with the order of views. Inspired by recent work in
multi-modal learning [22], we introduce the NIG summation oper-
ation proposed in [27] to approximately solve this problem. Given
two NIG distributions from different views, the definition of the
summation of these two NIG distributions is:

𝑁𝐼𝐺 (𝛾, 𝑣, 𝛼, 𝛽) := 𝑁𝐼𝐺 (𝛾1, 𝑣1, 𝛼1, 𝛽1) ⊕ 𝑁𝐼𝐺 (𝛾2, 𝑣2, 𝛼2, 𝛽2) (14)

where : 𝛾 = (𝑣1 + 𝑣2)−1 (𝑣1𝛾1 + 𝑣2𝛾2), 𝑣 = 𝑣1 + 𝑣2 (15)

𝛼 = 𝛼1 + 𝛼2 +
1
2
; 𝛽 = 𝛽1 + 𝛽2 +

1
2
𝑣1 (𝛾1 − 𝛾)2 +

1
2
𝑣2 (𝛾2 − 𝛾)2 (16)

The NIG summation can effectively incorporate views of varying
quality. Specifically, the parameter 𝑣 can be interpreted as virtual

landmark
target

router

Deep Evidential Network

Uncertainty

𝔼 𝜎2 =
𝛽

𝛼 − 1

aleatoric
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…
…

V𝑎𝑟 𝑢 =
𝛽

𝑣(𝛼−1)

epistemic

Figure 2: Illustration of the proposed TrustGeo.

evidence that indicates the confidence of an NIG distribution for
the mean 𝛾 . As demonstrated in Eq. (15), if one view has greater
confidence in its prediction, it will have a larger contribution to
the final prediction. 𝛽 directly reflects both aleatoric and epistemic
uncertainty (Eq. (16)) and consists of two components: the sum
of 𝛽1 and 𝛽2 from multiple views, and the variance between the
final prediction and that of each individual view. Intuitively, the
final uncertainty is jointly determined by the uncertainty specific to
each view and the deviation in predictions among different views.
We define the final loss function L𝑎𝑙𝑙 (𝜽 ) as the sum of losses of
two views {L1 (𝜽 ),L2 (𝜽 )} and the fused distribution L𝑓 (𝜽 ). The
workflow of TrustGeo is shown in Figure 2: Firstly, the evidential
uncertainties of the self-information view and graph learning view
are learned separately. Then, two NIG distributions from different
views are dynamically summed, to capture the view-specific un-
certainty and generate a new NIG distribution for quantifying the
holistic graph uncertainty. The proposed multi-task learning loss is
backpropagated for model optimization.

4 EXPERIMENTS
We now present the setup of our extensive experiments, followed
by the details of the results of different evaluations of TrustGeo.
Datasets. We use three large-scale real-world street-level IP geolo-
cation datasets [34] collected from threemetropolises, i.e., New York
City, Los Angeles, and Shanghai, which consist of 91,808, 92,804,
and 126,258 IP addresses, respectively. For the data processing, we
randomly select 80% IPs for training and the remaining 20% for test-
ing. In the training process, we take 70% IP as landmarks and 30%
as target IPs following [34]. During testing, we treat the training set
as landmarks and others as target IPs to report the results. 5-fold
cross-validation procedure is utilized to mitigate the bias caused by
the random data selection.
Baselines.We compared TrustGeo with the following state-of-the-
art baselines, including delay-based measurement methods [4, 16,
26, 32], attribute learning methods [3, 14, 17, 36], and graph learning
models [7, 34]: (1) GeoPing [26] is a network delay-based method
that assigns the target IP the location of the closest landmark server
in terms of the “nearest” neighbor in latency space. (2) CBG [10]
establishes a continuous space and infers the geographic locations
of Internet hosts using multilateration positioning with distance
constraints. (3) TBG [16] is a topology-based geolocation approach
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Table 1: Performance comparisons on street-level IP geolocation. The best performance is in bold font and the second-best
results are underlined. All results are measured in kilometers (km).

Type Method Time New York Los Angeles Shanghai

RMSE MAE Median RMSE MAE Median RMSE MAE Median

Delay Measurement
Methods

GeoPing 2001 14.25 11.66 10.24 18.19 13.40 9.450 29.23 24.84 22.23
CBG 2006 18.74 14.89 11.97 21.05 17.77 13.93 34.60 28.77 24.28
TBG 2006 16.20 13.15 10.57 17.98 15.60 12.32 27.24 22.53 19.97

NCRGeo 2018 3.252 2.518 2.110 7.006 5.684 5.012 9.839 6.746 5.240
XLBoost-Geo 2020 3.005 2.179 1.572 6.820 4.577 4.129 9.990 6.850 5.242

Attribute Learning
Methods

NN-Geo 2016 7.740 6.369 5.654 11.19 9.322 8.672 10.25 7.178 5.148
LightGBM 2017 3.356 2.963 2.827 6.968 5.878 5.119 9.924 6.431 4.898
MLP-Geo 2020 7.127 5.858 5.077 10.54 8.651 7.567 10.03 7.017 5.107
TabNet 2021 3.985 3.272 3.198 7.252 6.262 5.189 9.986 6.722 5.012

Graph Learning
Methods

GNN-Geo 2021 3.014 2.135 1.618 6.807 4.655 4.039 9.645 6.026 4.482
GraphGeo 2022 2.681 1.614 1.118 6.621 3.778 2.269 9.051 5.981 3.982

Ours TrustGeo - 2.283 1.316 0.888 5.025 2.793 1.786 8.389 5.457 3.619

that converts topology and communication delay into a set of con-
straints to geolocate routers and Internet hosts simultaneously. (4)
NCRGeo [4] calculates the distance between the router and land-
marks, and then uses multilateration to estimate geolocations. (5)
XLBoost-Geo [32] extracts clues from web pages and associates the
coordinate of the closest landmark from the common router sur-
roundings with the location of the target IP. (6) LightGBM [17] is an
advanced gradient-boosting framework that uses tree-based learn-
ing algorithms for geolocalization. (7) TabNet [3] is an automatic
feature interaction learning model for tabular data, which exploits
a self-attentive neural network for feature engineering and IP ge-
olocation. (8) NN-Geo [14] collects RTTs from multiple observers
as features, and uses a two-tier neural network that determines a
rough region first and then narrows the scope of the target IP for
street-level IP geolocation. (9) MLP-Geo [36] has a similar architec-
ture with NN-Geo, but it uses router IDs between probing hosts and
the targets as extra information. (10) GNN-Geo [7] is a framework
that connects all landmarks to exploit surrounding knowledge for
the target IP host. (11) GraphGeo [34] establishes neighborhood
relationships between IP hosts from both topological and semantic
perspectives. It also models network uncertainty via continuous
normalizing flow.
Implementation Details. In the star GNN, both Agg() and Up-
date() in Eq.(4) are implemented by a fully connected layer. The
dimension 𝑑𝑥 + 𝑑𝑚 of the node feature is set to 30 (14-dim for the
attribute feature and 16-dim for the measurement feature). We split
into training and validating sets (4:1) to optimize parameters. We
tune all hyper-parameters systematically, using grid search for op-
timization within 2,000 epochs. For New York, Los Angeles and
Shanghai datasets, the optimal learning rate is set to 0.005, 0.003,
0.0015, respectively. And the coefficient 𝜆 is set to 0.007, 0.007, 0.001,
respectively. The learning rate is halved if there are no improve-
ments after 5 epochs. The training process will halt when parameter
updates no longer yield improvements for 50 epochs. We train with
Adam optimizer [18] and report the average results of 20-time runs.

We note that the results are statistically significant at the level of
𝑝 < 0.005 using a paired t-test, and the experiments are conducted
on Intel i5-11400F 4.40GHz, one NVIDIA GeForce GTX 1080
Ti, with 64GB CPU memory.

4.1 Performance and Robustness
The geolocation performance of TrustGeo and baselines is summa-
rized in Table 1, from which we have the following observations:
(O1): Pure delay-based algorithms such as GeoPing and CBG, typi-
cally work poorly and generally cannot meet the requirement of the
street-level IP geolocation task. Their performance is determined
by the distance to the nearest landmarks and is thus poor due to the
circuitousness problem and irregularity of Internet paths. To en-
sure performance, they require many landmarks that are carefully
chosen to cover the target hosts. However, it is difficult to acquire
landmarks uniformly distributed, resulting in an inferior estimation
of the targets without landmarks coverage. In contrast, NCRGeo
and XLBoost-Geo which combine the route information and/or
other topology measurements often yield better performance.
(O2): Exploring rich attribute information can significantly improve
the geolocation accuracy. Among attribute learning methods, NN-
Geo and MLP-Geo perform worst as they only use RTTs and router
IDs as features. LightGBM and TabNet explore more information
(autonomous systems (AS) and WHOIS data), thus considerably
reducing geolocation errors. These results suggest that external at-
tribute information can help measurement-based models overcome
insufficient structural constraints in the router-level graph.
(O3): Graph learning-based methods including our TrustGeo gen-
erally achieve the best geolocation performance. For example, the
best attribute learning method LightGBM has around 3 km errors
in New York City, but the worst graph learning method GNN-Geo
can reduce the distance errors to ∼2 km. This phenomenon can be
explained by the principle of information entropy: exploiting neigh-
bors’ relationships has the opportunity to enrich the information
regarding target hosts, and thus reduce the forecast uncertainty
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Figure 3: Evidential robustness under measurement noise.

while improving the geolocation accuracy. Notably, our star GNN-
based approach can reduce the Median error to 0.888 km in the
New York dataset, which is an encouraging result verifying our
motivation in building star graphs.

To substantiate our claims that TrustGeo can respond to network
environment variations, we visualize the distribution of uncertainty
under simulated measurement noise in Figure 3. We consider the
general case of measurement noise caused by network loss, latency,
and congestion. We generate the simulated data to our test set using
Gaussian noise perturbation since previous works [15, 24] have
shown that measurement error on a network path approximately
follows a normal distribution. 𝑘 is set to control the intensity of ran-
dom noise, i.e., 𝜖 ∼ 𝑘N(0, 𝜎2𝑚), where 𝜎2𝑚 equals to the magnitude
of measurement values. Note that the purpose of this experiment
is not to propose a defense for potential fluctuations, but rather
to demonstrate that evidential models can accurately capture in-
creased predictive uncertainty under unstable network scenarios.
Figure 3 shows that even without adding additional simulated noise,
the uncertainty score is smoothly distributed over the entire in-
terval. Besides, the holistic uncertainty on three datasets follows:
New York < Los Angeles < Shanghai, which is consistent with
the prediction error in Table 1. The above phenomenon verifies
that, despite the inherent measurement noise in our real-world
dataset, evidential uncertainty learning is capable of capturing such
statistics from the environment. Furthermore, as the noise level
increases, the uncertainty of noisy samples also increases, which
confirms that the proposed method can detect the intensity of noise
in network, and make corresponding feedback in time through
epistemic uncertainty.

4.2 Effectiveness of Evidential Fusion
We conduct an extra experiment to verify our motivation that the
number of neighbors has a significant effect on graph learning per-
formance, as well as verify the superiority of the evidential fusion
strategy in TrustGeo. To this end, we control the number of neigh-
bors by masking a proportion of nodes. We compare TrustGeo with
other two common fusion strategies: (1) the simple fusion strat-
egy, which simply uses the sum of decisions from all the views as
the final decision; (2) the attention fusion strategy, which leverages
the attention mechanism to fuse all the views together. We also
compare TrustGeo with every single view. Note that we omit the
self-information view in the above figures, since it will not change
as neighbor numbers vary.

As shown in Figure 4, distance errors of all variants drop quickly
when the number of neighbors increases from 0 to 30. It suggests
that few neighbors are not sufficient for establishing the star GNNs
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Figure 4: Influence of the number of neighbors (controlled
bymasking a proportion of positions in the adjacent matrix).

Figure 5: Evidential fusion. 𝜇1, 𝜇2, 𝜇 denote the mean value of
self-information view, graph view, and evidential fusion.

to yield satisfying geolocation performance. Also, it verifies our for-
mer assumption that limited neighbor information in the dynamic
IP graph causes the bottleneck and instability of graph learning. Fur-
thermore, when comparing three information fusion strategies, the
proposed evidential fusion learning outperforms the others, espe-
cially when there are only a few neighbors. Traditional information
fusion strategies do not consider view-specific uncertainty and are
thus unable to accommodate the variances of different views to
different samples. In contrast, the evidential fusion strategy lever-
ages the NIG summation operation to realize uncertainty-aware
information fusion, adjusting the importance between inherent
self-information and graph-learned information adaptively. Beyond
trustworthy decisions, our approach automatically alleviates the im-
pact of heavily noisy or corrupted views. In other words, compared
with the deterministic fusion strategies, our method can effectively
distinguish which view is noisy or corrupted for different samples,
and accordingly can take the view-specific uncertainty into account
for robust integration.

4.3 Case Study: Uncertainty Analysis
Evidential fusion strategy can improve the performance of the IP
geolocation task and, to provide more insight, we visualize the inter-
mediate fusion process to better understand the working principles.
Concretely, we learn two distinct evidential parameter estimation
models for the self-information view and graph view separately.
These learned parameters are integrated to synthesize a new dis-
tribution, which is finally used to predict the target as well as
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Table 2: Efficiency comparisons.

Method MACs #Para. Training time (minute)

(106) (103) New York Los Angeles Shanghai

GNN-Geo 91.37 17.62 72.61 79.95 90.88
GraphGeo 12.76 255.2 51.55 58.82 67.52

TrustGeo 0.544 5.632 17.61 17.97 27.48

uncertainty from an input sample. Figure 5 illustrates that the ev-
idential fusion strategy can alleviate the impact of heavily noisy
or corrupted views. Compared to the simple fusion which uses
the average mean value from two specific views, the prediction of
evidential fusion is much closer to the ground truth.

4.4 Model Efficiency
We evaluate the model efficiency by comparing TrustGeo with: (1)
graph learning methods (GNN-Geo, GraphGeo), and (2) uncertainty
estimation methods (Dropout [9], Ensemble [20]).
The efficiency of the router-level graph. Table 2 summarizes
the efficiency comparisons among three graph-based models in
terms of multiply-accumulate operations per second (MACs), the
number of parameters (#Para.), and training time. Due to the Mem-
ory Access Cost and data scale, the lower the MACs, the better
the model’s efficiency.Remarkably, TrustGeo runs ∼3 and ∼4 times
faster than GraphGeo and GNN-Geo, respectively. Besides, Trust-
Geo only has 5.632𝐾 parameters – significantly fewer than Graph-
Geo and GNN-Geo. GNN-Geo establishes a complete geographic
graph that contains all hosts and routers, which is hundreds to
thousands of times bigger than the router-level graph and therefore
requires significantly more computation time and memory. Graph-
Geo employs the continuous normalizing flow to approximate the
network latency and congestion, which requires a sequence of
invertible transformations that are computationally intensive. In
comparison, TrustGeo only builds small-scale star graphs and does
not need to do complex probabilistic transformations.
The efficiency of evidential uncertainty learning. Due to the
intractability of the posterior in Bayesian probabilistic learning,
existing works use sampling techniques to approximate it. Two
classical and preeminent uncertainty estimation methods dubbed
Dropout and Ensemble are used for comparison. Despite the sig-
nificant performance on uncertainty estimation, they have a few
notable downsides/limitations: – both Dropout and Ensemble are
very slow since they require running the model multiple times. For
Ensemble, it is even worse because it needs to initialize and train
multiple independent models, which is extremely computationally
costly. – Additionally, both algorithms impose a memory constraint
since we need to keep all these models in parallel, which is a sig-
nificant limitation for applications where uncertainty estimation is
necessary to be made in real-time on edge devices, e.g., on mobile
devices. Alternatively, evidential uncertainty learning is much more
efficient since models can estimate uncertainty with only one pass.

4.5 Parameter Sensitivity
Parameter sensitivity of regularization coefficients. Figure 6
shows the importance of augmenting the training objective with

Figure 6: Regularization strength and epistemic uncertainty.
We use the New York dataset as a study case.

the evidential regularizer L𝑅 , via quantitative results on epistemic
uncertainty estimation after training with different realizations of
the regularization coefficients 𝜆. The ability to calibrate uncertainty
on noisy data is heavily related to the intensity of the regularizer: –
uncertainty decays to zero as the regularizer weight decreases; –
stronger regularization inflates uncertainty. In sum, a careful task-
specific choice of the hyper-parameter 𝜆 is needed.

5 CONCLUDING REMARKS
We presented TrustGeo, a novel framework for street-level IP ge-
olocation. We proposed a novel router-level star GNN that exploits
abundant information from adjacent neighbors to prevent themodel
from inaccurate relative distance estimation. Highlighting the im-
portance of trustworthiness for establishing a geolocation system,
we utilized evidential uncertainty learning to enable uncertainty
estimation. Considering the dynamic property of the constructed
router-level graph, we further introduced NIG summation opera-
tion for adaptive information fusion. Comprehensive experimental
analysis on three real-world datasets verified the effectiveness and
efficiency of TrustGeo.
Remarks. IP geolocation has several potential impacts on society:
(1) Privacy: it can track individuals’ online activities and locations.
(2) Targeted advertising: it helps deliver personalized ads based on
location. (3) Geo-restrictions: it enforces geographical restrictions
on content. (4) Cybersecurity: it identifies and blocks malicious
IP addresses. In a nutshell, it’s important to use IP geolocation
responsibly.

Uncertainty estimation for GNNs has a significant industrial im-
pact. Although we considered a specificWeb measurement scenario
(IP geolocation), the proposed method can be extended to a range of
web applications since network noise is prevalent and modeling un-
certainty is important in both Web measurements and downstream
applications. Cold-start is also common in many Web applications
(e.g., recommendation and user modeling) involving automated
data modeling. Our uncertainty-aware information fusion strategy
adaptively evaluates the dynamic graph’s quality while adjusting
the coefficient weight to keep the holistic stability of the Web sys-
tem. In our future work, we plan to incorporate the concept of
adversarial training and causal inference into TrustGeo, towards
building a more reliable and stable geolocation system.

ACKNOWLEDGEMENT
This work is supported by the National Natural Science Foundation
of China (Grant No. 62176043 and 62072077), Natural Science Foun-
dation of Sichuan Province (Grant No. 2022NSFSC0505), National
Science Foundation SWIFT (Grant No. 2030249), and Hong Kong
RGC TRS T41-603/20-R.

4870



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenxin Tai et al.

REFERENCES
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-

hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, et al. 2021. A review of uncertainty quantification in deep learning:
Techniques, applications and challenges. Information Fusion 76 (2021), 243–297.

[2] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. 2020.
Deep evidential regression. Advances in Neural Information Processing Systems
33 (2020), 14927–14937.

[3] Sercan Ö. Arik and Tomas Pfister. 2021. TabNet: Attentive Interpretable Tabular
Learning. In AAAI. 6679–6687.

[4] Jing-ning Chen, Fen-lin Liu, Ya-feng Shi, and Xiangyang Luo. 2018. Towards
IP location estimation using the nearest common router. Journal of Internet
Technology 19, 7 (2018), 2097–2110.

[5] Ovidiu Dan, Vaibhav Parikh, and Brian D Davison. 2021. IP Geolocation Using
Traceroute Location Propagation and IP Range Location Interpolation. In WWW.
332–338.

[6] Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or epistemic? Does it
matter? Structural safety 31, 2 (2009), 105–112.

[7] Shichang Ding, Fan Zhang, Xiangyang Luo, and Fenlin Liu. 2022. GNN-Geo: A
Graph Neural Network-based Fine-grained IP Geolocation Framework. arXiv
preprint arXiv:2112.10767 (2022).

[8] Ziqian Dong, Rohan DW Perera, Rajarathnam Chandramouli, and KP Subbal-
akshmi. 2012. Network measurement based modeling and optimization for IP
geolocation. Computer Networks 56, 1 (2012), 85–98.

[9] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050–1059.

[10] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. 2006. Constraint-
based geolocation of internet hosts. IEEE/ACM Transactions On Networking 14, 6
(2006), 1219–1232.

[11] Chuanxiong Guo, Yunxin Liu, Wenchao Shen, Helen J Wang, Qing Yu, and
Yongguang Zhang. 2009. Mining the web and the internet for accurate ip address
geolocations. In INFOCOM. 2841–2845.

[12] Haosheng Huang, Georg Gartner, Jukka Matthias Krisp, Martin Raubal, and
Nico Van de Weghe. 2018. Location based services: ongoing evolution and
research agenda. J. Locat. Based Serv. 12, 2 (2018), 63–93.

[13] Hongbo Jiang, Jie Li, Ping Zhao, Fanzi Zeng, Zhu Xiao, and Arun Iyengar. 2021.
Location Privacy-preserving Mechanisms in Location-based Services: A Compre-
hensive Survey. ACM Comput. Surv. 54, 1 (2021).

[14] Hao Jiang, Yaoqing Liu, and Jeanna N Matthews. 2009. IP geolocation estimation
using neural networks with stable landmarks. In INFOCOMWorkshops. 170–175.

[15] Mansour J Karam and Fouad A Tobagi. 2002. Analysis of delay and delay jitter of
voice traffic in the Internet. Computer Networks 40, 6 (2002), 711–726.

[16] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David Wetherall,
Thomas Anderson, and Yatin Chawathe. 2006. Towards IP geolocation using
delay and topology measurements. In SIGCOMM. 71–84.

[17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. In NeurIPS. 3146–3154.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[19] Sándor Laki, Péter Mátray, Péter Hága, Tamás Sebők, István Csabai, and Gá-
bor Vattay. 2011. Spotter: A model based active geolocation service. In IEEE

INFOCOM.
[20] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple

and scalable predictive uncertainty estimation using deep ensembles. Advances
in neural information processing systems 30 (2017).

[21] Hao Liu, Yaoxue Zhang, Yuezhi Zhou, Di Zhang, Xiaoming Fu, and KK Ramakrish-
nan. 2014. Mining checkins from location-sharing services for client-independent
ip geolocation. In INFOCOM. 619–627.

[22] Huan Ma, Zongbo Han, Changqing Zhang, Huazhu Fu, Joey Tianyi Zhou, and
Qinghua Hu. 2021. Trustworthy Multimodal Regression with Mixture of Normal-
inverse Gamma Distributions. Advances in Neural Information Processing Systems
34 (2021), 6881–6893.

[23] Andrey Malinin and Mark Gales. 2018. Predictive uncertainty estimation via
prior networks. Advances in neural information processing systems 31 (2018).

[24] Sue B Moon, Jim Kurose, and Don Towsley. 1998. Packet audio playout delay
adjustment: performance bounds and algorithms. Multimedia systems 6, 1 (1998),
17–28.

[25] David Moore, Ram Periakaruppan, Jim Donohoe, and Kimberly Claffy. 2000.
Where in the world is netgeo.caida.org?. In INET.

[26] Venkata N Padmanabhan and Lakshminarayanan Subramanian. 2001. An in-
vestigation of geographic mapping techniques for Internet hosts. In SIGOMM.
173–185.

[27] Hang Qian. 2018. Big data Bayesian linear regression and variable selection by
normal-inverse-gamma summation. Bayesian Analysis 13, 4 (2018), 1011–1035.

[28] Jiaqian Ren, Lei Jiang, Hao Peng, Zhiwei Liu, Jia Wu, and S Yu Philip. 2022.
Evidential Temporal-aware Graph-based Social Event Detection via Dempster-
Shafer Theory. In 2022 IEEE International Conference on Web Services (ICWS).
IEEE, 331–336.

[29] P. Sapiezynski, A. Stopczynski, R. Gatej, and S. Lehmann. 2015. Tracking Human
Mobility Using WiFi Signals. PLoS ONE 10, 7 (2015).

[30] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. 2016.
Bayesian optimization with robust Bayesian neural networks. Advances in neural
information processing systems 29 (2016).

[31] Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar Kuzmanovic, and Cheng
Huang. 2011. Towards street-Level client-Independent IP geolocation. In NSDI.

[32] Yucheng Wang, Hongsong Zhu, Jinfa Wang, Jie Liu, Yong Wang, and Limin Sun.
2020. XLBoost-Geo: An IP Geolocation System Based on Extreme Landmark
Boosting. arXiv preprint arXiv:2010.13396 (2020).

[33] ZhihaoWang, Qiang Li, Jinke Song, HainingWang, and Limin Sun. 2020. Towards
IP-based geolocation via fine-grained and stable webcam landmarks. InWWW.
1422–1432.

[34] ZhiyuanWang, Fan Zhou,Wenxuan Zeng, Goce Trajcevski, Xiao Chunjing,Wang
Yong, and Chen Kai. 2022. Connecting the Hosts: Street-Level IP Geolocation
with Graph Neural Networks. In SIGKDD.

[35] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[36] Fan Zhang, Fenlin Liu, and Xiangyang Luo. 2020. Geolocation of covert commu-
nication entity on the Internet for post-steganalysis. EURASIP Journal on Image
and Video Processing 2020, 1 (2020), 1–10.

[37] Artur Ziviani, Serge Fdida, José F De Rezende, and Otto Carlos MB Duarte. 2005.
Improving the accuracy of measurement-based geographic location of Internet
hosts. Computer Networks 47, 4 (2005), 503–523.

4871


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Definition
	3.2 Geolocation via Graph Neural Network
	3.3 Network Uncertainty Measurement
	3.4 Quantifying Dynamic Graph Uncertainty

	4 Experiments
	4.1 Performance and Robustness
	4.2 Effectiveness of Evidential Fusion
	4.3 Case Study: Uncertainty Analysis
	4.4 Model Efficiency
	4.5 Parameter Sensitivity

	5 Concluding Remarks
	References



