
Computer Networks 80 (2015) 109–123
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Joint VM placement and topology optimization for traffic
scalability in dynamic datacenter networks
http://dx.doi.org/10.1016/j.comnet.2014.12.014
1389-1286/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: wsh_keylab@uestc.edu.cn (S. Wang).
Yangming Zhao a,b, Yifan Huang b, Kai Chen b, Minlan Yu c, Sheng Wang a,⇑, DongSheng Li d

a Key Lab of Optical Fiber Sensing and Communication, Education Ministry of China, University of Electronic Science and Technology of China, Chengdu, PR China
b Hong Kong University of Science and Technology, Hong Kong, China
c Computer Science Department at University of Southern California, LA, CA, USA
d School of Computer, National University of Defense Technology, PR China

a r t i c l e i n f o
Article history:
Received 17 April 2014
Received in revised form 9 October 2014
Accepted 17 December 2014
Available online 4 February 2015

Keywords:
VM placement
Dynamic datacenter networks
Joint optimization
Lagrange’s relaxation decomposition
a b s t r a c t

In dynamic datacenter networks (DDNs), there are two ways to handle growing traffic:
adjusting the network topology according to the traffic and placing virtual machines
(VMs) to change the workload according to the topology. While previous work only
focused on one of these two approaches, in this paper, we jointly optimize both virtual
machine placement and topology design to achieve higher traffic scalability. We formulate
this joint optimization problem to be a mixed integer linear programming (MILP) model
and design an efficient heuristic based on Lagrange’s relaxation decomposition. To handle
traffic dynamics, we introduce an online algorithm that can balance algorithm performance
and overhead. Our extensive simulation with various network settings and traffic patterns
shows that compared with randomly placing VMs in fixed datacenter networks, our algo-
rithm can reduce up to 58.78% of the traffic in the network, and completely avoid traffic
overflow in most cases. Furthermore, our online algorithm greatly reduces network cost
without sacrificing too much network stability.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

As cloud computing becomes a reality and offers an
attractive pay-as-you-go charge model [1,2], users have
been increasingly outsourcing their computing demands
and services to clouds by renting virtual machines (VMs).
This leads to significant traffic growth in cloud datacenters.
Therefore, how to handle such a growing amount of work-
load in a scalable manner and how to optimize networks to
accommodate traffic growth are important research issues
[3–11]. In this paper, we term this traffic scalability prob-
lem. In addition to statically provision a uniformly high
bandwidth with rich network connectivity such as Fattree
[5], VL2 [6], BCube [7], DCell [8], there are two attractive
approaches to track the challenges in such a traffic scal-
ability problem in oversubscribe networks.

One approach is to adapt the datacenter network topol-
ogy to traffic. This is realized by dynamically changing the
network topology to fit the underlying traffic. Along this
line of thought, researchers have exploited wireless com-
munication technologies (e.g., Flyways [12] and 3D beam-
forming [13]) or optical switching technologies (e.g., OSA
[3], Helios [4] and c-Through [14]) to build dynamic
datacenter networks (DDNs). Among all these existing
schemes, OSA is the state-of-the-art work that provides
the most flexibility because it can dynamically adapt its
topology as well as link capacity to the traffic, thus improv-
ing traffic scalability. In this paper, we leverage the OSA-
based DDN model to control the network topology in our
design. OSA-based DDN model is detailedly reviewed in
Section 2.1.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.12.014&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.12.014
mailto:wsh_keylab@uestc.edu.cn
http://dx.doi.org/10.1016/j.comnet.2014.12.014
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

110 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
The other approach is to adapt the traffic to fit the
datacenter network. This is achieved by applying intelli-
gent VM placement algorithms to allocate VMs with high
traffic demands to proximate hosts with high bandwidth
connectivity. Such intelligent VM placement already exists
in practice, e.g., Amazon EC2’s dynamic creation and dele-
tion of VM instances. There are a lot of recent research
efforts [13,9,10,15] on VM placement and shuffling for
diverse goals, and among which the VM placement prob-
lem (VMPP) [10] is a representative that addresses traffic
scalability issues in datacenters. More specifically, it stud-
ies how to map each VM to a host in order to minimize the
network cost, e.g., the total delay or the total traffic in the
network. We review VMPP in detail in Section 2.2.

However, VMPP [10] assumes a fixed topology and
shifts the workload, whereas DDNs focuse on optimizing
network topology given fixed workload. These two
approaches are the twofolds of improving network traffic
scalability. Intuitively, jointly optimizing VM placement
and network topology would yield a better solution as it
provides a much larger optimization space although it
would be quite challenging.

When VM placement and topology are jointly opti-
mized, their interaction can be shown in Fig. 1. The output
of VM placement (i.e., traffic demands between racks) is
the input of topology optimization, while the output of
topology optimization (i.e., interconnections between
racks) is also part of the input of VM placement. According-
ly, we cannot directly adopt algorithms in OSA [3] or VMPP
[10] to solve joint optimization due to the lack of input for
either algorithm.

This paper makes the following main contributions:

� We are among the first to explore the optimization
space of jointly optimization VM placement and topol-
ogy to improve traffic scalability in DDNs, and formu-
late this problem as a mixed integer linear
programming (MILP) model (Section 3).
� Since the MILP model is intractable at scale, we propose

an efficient heuristic to solve this problem based on the
Lagrange’s relaxation decomposition, and we also ana-
lyze the approximation ratio of the proposed heuristic
(Section 4).
� To handle dynamic traffic changes, we further propose

an online optimization algorithm to the problem at run-
time which can balance the algorithm performance and
overhead (Section 5).
Virtual machine
Placement Problem

Topology design in
OSA

Traffic between VMs

Determine the topology
connecting each VM

Determine the traffic
matrix between each rack

Fig. 1. Interaction between VM Placement and topology optimization.
Our simulation results suggest that our algorithm of
joint optimization improves traffic scalability more
significantly than only optimizing either VM placement
or topology, and our online algorithm greatly reduces net-
work cost without frequently reconfiguring topology.

For clarity, we list all the notations that will be used in
this paper in Table 1.
2. Background and motivation

As mentioned, there are two ways to improve traffic
scalability. One is to adapt topology to traffic in DDNs, in
which OSA [3] is a representative. The other is placing
VMs to adapt traffic to network topology, in which VMPP
[10] is a representative. We will review these two
approaches in Section 2.1 and 2.2, respectively. After that,
we will discuss why we need to jointly optimize them in
Section 2.3.

2.1. OSA-based DDNs

OSA-based DDN is such a network model that can
dynamically change its topology and link capacity to fit
traffic.

The architecture of OSA-based DDNs is shown in Fig. 2.
It achieves dynamic topology via exploiting the reconfig-
urability of Micro-Electro-Mechanical Switch (MEMS).
MEMS is a bipartite N � N matrix, in which any input port
can be connected to any one of the output ports. If we
connect each of N

d racks to d ports of MEMS (assume N is
divisible by d), each rack is directly connecting with d
racks. By this connection, the DDN model can form all
the topologies satisfyingX

j

eij 6 d for all i ð1Þ

and

eij ¼ eji for all i; j ð2Þ

where eij indicates whether rack i and rack j are directly
connected via MEMS. (2) is due to the fact that the connec-
tion between each rack pair is mutual.

Another advantage of the OSA-based DDN model is that
it can flexibly modify the capacity of each link by utilizing
Wavelength Selective Switching (WSS). If we are to create
a link with capacity that is k times of a single wavelength
between rack i and rack j, k wavelengths can be assigned
to this link. To this end, it first multiplexes all the wave-
lengths from rack i into a single fiber connecting a WSS
module. Then the WSS module can split the expected k
wavelengths to the appropriate port with circuit connect-
ing to rack j. In this way, operator can easily change the
capacity of each link by choosing different k and the traffic
on each link only needs to satisfy

f uv
6 Cw

X
k

wk
uv for all u; v ð3Þ

where f uv is the traffic rate directly traversing from rack u
to rack v, i.e., on link ði; jÞ, Cw is the capacity per wavelength

Table 1
Notation used in our work.

Notation Description

xki Binary variable. It takes 1 if VM k is connected to rack i, and 0 otherwise
eij Binary variable. It takes 1 if rack i and rand j are connected directly by DDNs, and 0 otherwise
f ij Real variable. It denotes the traffic between rack i and rack j

f uv Real variable. It denotes the traffic rate directly traverse from rack u to rack v. If rack u and rack v are not connected directly, there must be
f uv ¼ 0

f uv
ij Real variable. It denotes the bandwidth used by the demand between rack i and rack j on link ðu;vÞ

zij
kl

Binary variable. It takes 1 if the traffic between VM k is under rack i and VM l is under rack j, and 0 otherwise

vkl Real constant. It is the traffic rate between VM k and VM l

wk
uv Binary variable. It takes 1 if wavelength k is used to directly carry traffic from rack u to rack v

Cw Real constant. It is the capacity per wavelength
d Integer constant. It is the maximum nodal degree of each vertex, which is determined by DDNs’ parameter

f ðrÞij
Real variable. The required traffic rate from rack i to rack j which is determined by VM placement

f ðsÞij
Real variable. The traffic rate from rack i to rack j that is served by DDNs

CðOÞij
Real variable. Network cost corresponding to over flow and incurred by traffic from rack i to rack j

CðCÞij
Real variable. Network cost corresponding to network capacity usage and incurred by traffic from rack i to rack j

Cij Real variable. Total network cost incurred by traffic from rack i to rack j, which is equal to the sum of CðOÞij and CðCÞij

T Real constant. It is a large number that is larger than the sum of all the traffic rate between each VMs in the networks
Hi Integer constant. It is the number of host under rack i
R Integer constant. It is the number of racks in the network

Micro-Electro-Mechanical Switch (MEMS)

Optical
Mux/Demux
& Switching
Components

Host11

Host12

Host13

Host1H1

Optical
Mux/Demux
& Switching
Components

HostR1

HostR2

HostR3

HostRHR

Rack1
RackR

MUX DEMUX

WSS Coupler

Cir.

Fig. 2. Architecture of OSA-based DDNs.

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 111
and wk
uv indicates whether wavelength k is used on link

ðu;vÞ.
It also should be noted that a fiber cannot carry more

than one channel over the same wavelength. Accordingly,
each rack port should be assigned special wavelengths
across its rack, i.e., the following constraint should be
satisfied,X

v
wk

uv 6 1 for all u; k ð4Þ
2.2. VM placement problem

In a datacenter, CPU/memory resources are provided by
physical hosts. Operators should assign these resources to
VMs, i.e., determine where each VM to place to serve
requests. Without loss of generality, VMPP [10] assumes
there are n VMs and n hosts in the network and each host
can serve one VM (If one host can support multiple VMs,
we can introduce multiple virtual hosts that can support
only one VM to substitute the physical host, such that
our solution can work after the substitution.). In this case,
the question becomes how to map n VMs to n hosts in
order to reduce the total network cost. In other words, sup-
pose Cij denotes the communication cost from host i to
host j for each unit of traffic, and Dij denotes the traffic rate
from VM i to VM j. The goal of VMPP is to find a mapping
p : ½1; . . . ;n� ! ½1; . . . ;n�, such that the objective

NetworkCost ¼
X

i;j

CpðiÞpðjÞDij ð5Þ

112 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
is minimized. Usually, Cij is defined as the number of hops
on the path from VM i to VM j. By this setting, the network
cost refers to the total used capacity in the network.
Furthermore, given all hosts under the same rack have
identical status in terms of the traffic contribution to the
network, the overall network cost will not be affected by
VM placement within a certain rack. Accordingly, we only
focus on under which rack each VM is placed, i.e., if we
assume that there are Hi hosts under rack i, we only should
find xki, such that

X
k

xki ¼ Hi for all i ð6Þ

to minimize (5), where xki is used to indicate whether VM k
is placed under rack i.
2.3. Why jointly optimizing VM placement and topology

OSA-based DDNs [3] dynamically optimize the topology
and link capacity according to a given traffic distribution,
while VM placement [10] intelligently places VMs in order
to optimize the traffic distribution for given network topol-
ogy. In joint optimization, topology can be configured
according to the traffic distribution, and hence VMs can
be placed in such a way that the resulting traffic distribu-
tion can better feed the topology.

Furthermore, it should be noted that the original design
in VMPP [10] has not considered the link traffic overflow
caused by greedy, unbalanced VM placement (i.e., the
desired bandwidth on a particular link exceeds its capa-
city). We believe this shortcoming can be overcome by
joint optimization as dynamic link capacity can handle this
overflow by assigning more bandwidth to the links carry-
ing more traffic.

In addition, though it is proved in [10] that VMPP for a
fixed topology is the hardest NP-hard problem, i.e., we can-
not even find a r-approximation solution in polynomial
time, it may not be the case whether we can change the
network topology. In joint optimization, topology
constraint in VM placement may get relaxed, and hence
it may be simplified. Therefore, we focus on jointly opti-
mizing VM placement and topology in this paper to seek
additional optimization space.
3. Problem formulation

3.1. Network model

The network model studied in this paper can be
described in Fig. 2. In such network, each rack contains
several hosts and all the racks are connected through
DDNs. With the traffic between each VM pair as input,
two problems should be solved to jointly optimize VM
placement and topology. The first one is the configuration
of MEMS and the wavelength assignment on each link, i.e.,
the topology design. The other one is how to map VMs to
hosts in the network. In this paper, we assume that no traf-
fic blocking will occur under the same rack.
3.2. Cost model

In this paper, network cost consists of two parts. One is
the capacity used in the network (called capacity cost), and
the other part is the penalty incurred by traffic overflow
(called overflow cost). Since there is no traffic overflow
within the same rack, the network cost only counts the
traffic between racks.

Similar to the previous work [10], we define the capa-

city cost, CðCÞij , where the superscript C means capacity,
incurred by the traffic between rack i and rack j to be

CðCÞij ¼ f ðsÞij hij ð7Þ

where f ðsÞij is the served traffic rate between rack i and j,
while hij is the hop number of the path between these
two racks. Overflow cost incurred by the traffic between

rack i and rack j; CðOÞij (the superscript O means overflow),
is defined as

CðOÞij ¼ cðf ðrÞij � f ðsÞij Þ ð8Þ

where c is a large number as a penalty factor and f ðrÞij is the
required traffic rate between rack i and rack j. Obviously,

f ðsÞij 6 f ðrÞij for all i; j ð9Þ

and f ðrÞij is calculated as

f ðrÞij ¼
X

k;l

vklz
ij
kl ð10Þ

where v ij denotes the required traffic rate from VM i to VM

j, and zij
kl indicates whether VM k is connecting to rack i and

VM l is connecting to VM j. In this case, cost incurred by
traffic from rack i to rack j is

Cij ¼ CðCÞij þ CðOÞij ð11Þ

Network cost is the sum of cost incurred by traffic between
all rack pairs, i.e.,

C ¼
X
i;j:i–j

Cij ¼
X
i;j:i–j

½f ijhij þ cðf ðrÞij � f ðsÞij Þ�

¼
X
ðu;vÞ2E

f uv þ
X
i;j:i–j

cðf ðrÞij � f ðsÞij Þ ð12Þ
3.3. MILP formulation

From the definition of zij
kl, it takes 1 if and only if xki ¼ 1

and xlj ¼ 1, i.e., zij
kl satisfies

xki þ xlj � 1
2

6 zij
kl 6

xki þ xlj

2
for all i; j; k; l ð13Þ

In DDNs, if rack u and rack v are not directly connected, no
traffic can be carried by link ðu;vÞ, i.e.

f uv
ij 6 Teuv for all i; j; u; v ð14Þ

where T is a large number which can be set as the sum of
all the traffic existing in the network, and f uv

ij is the traffic

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 113
rate from rack i to j and carried by link ðu;vÞ. Then the
traffic on link ðu;vÞ can be calculated by

f uv ¼
X

i;j

f uv
ij for all u; v ð15Þ

Also, flow conservation constraints should be satisfied,

X
v

f uv
ij �

X
v

f vu
ij ¼

f ðsÞij if u ¼ i

�f ðsÞij if u ¼ j

0 otherwise

8>><
>>: ð16Þ

In addition, all the structure constraints of VM
placement and OSA-based DDNs discussed in Section 2.1
and 2.2 should also be treated as constraints in the model.
In summary, the jointly optimizing VM placement and
topology to minimize network cost can be formulated as

Jointly optimizing VM placement and topology
(JOVT):

minimize: (12)
subject to:
Topology constraints: (1)–(4),
Maximum VM number under each rack: (6),
Interaction between VM placement and topology

design: (9), (10), (13)–(16).
3.4. Why jointly optimizing VM placement and topology is a
challenge

The MILP formulated in previous subsection is an NP-
complete problem [16] and intractable in large-size net-
works, so that an efficient heuristic is required. Though
the heuristics to only design topology or place VM are effi-
cient, they cannot be transplanted to joint optimization
problem. It is not only because that the input of topology
design is the output of VM placement and vice versa, but
also due to the probability that these heuristics may not
be efficient in joint optimization. On the one hand, VM
placement algorithm proposed in [10] leverages the hierar-
chical datacenter topology to cluster VMs, it may not be
applicable in OSA-based DDNs which is a flat architecture.
On the other hand, the topology formed by OSA-based
DDNs [3] is not necessary to be a connected graph since
we can change traffic matrix by placing VMs.

Another challenge in jointly optimizing VM placement
and topology is to handle time-varying traffic in realistic
networks. Topology design can be solved in a short time
scale, but it may incur route oscillation if it is triggered
too frequently. Though doing VM placement will not suffer
from route oscillation, it takes too much time to get a solu-
tion and is not suitable to time-varying traffic scenario.
4. Algorithm design

4.1. Problem analysis

Since JOVT formulated in Section 3.3 is intractable in
large-size networks, efficient heuristic is required. To
design an efficient heuristic, we first analyze the structure
of JOVT and expect to get some valuable insights.
It can be noted that all the variables in (6), (10) and (13)
do not appear in other constraints of JOVT except (9).
Accordingly, if constraint (9) can be relaxed, JOVT can be
decomposed into two subproblems and the problem com-
plexity can be degraded. In other words, Lagrange’s relax-
ation decomposition works in JOVT model. Accordingly,
we first relax constraint (9) in JOVT by introducing
Lagrange multiplexer kij P 0 for all i; j. Then, we obtain,

Lagrange relaxed JOVT (L-JOVT):

minimize :
X
u;v

f uv þ
X

i;j

ðc� kijÞðf ðrÞij � f ðsÞij Þ ð17Þ

subject to : constraints in JOVT except ð9Þ
Then L-JOVT can be decomposed as

SubProblem 1:

minimize : S1ðkijÞ ¼
X

i;j

ðc� kijÞf ðrÞij ð18Þ

subject to : 6; 10; 13

and
SubProblem 2:

minimize : S2ðkijÞ ¼
X

i;j

½f ij � ðc� kijÞf ðsÞij � ð19Þ

subject to : ð1Þ—ð4Þ; ð14Þ—ð16Þ

Now, the lower bound of network cost can be calculated
by

max
kij

S1ðkijÞ þ S2ðkijÞ ð20Þ

Due to the rotation symmetry of i; j in f ðrÞij and f ðsÞij of L-
JOVT, kij ¼ k for all i; j. If c is large enough, i.e. c� k is posi-

tive, SubProblem 1 can be degraded to minimize
P

i;jf
ðrÞ
ij .

Consider a weighted full mesh graph G ¼ hV ;Ei, each
vertex in G denotes one VM in the network and the weight
on each edge is the required traffic rate between the VMs
corresponding to its two end vertexes. In this case, SubProb-
lem 1 is equivalent to find the minimum k cut in G to divide
it into R groups, such that all the nodes in a group corre-
spond to the VMs should be placed under the same rack.
After we determine under which rack each VM should be
placed, the traffic matrix in the DDN is easy to yield. Then,
the remaining question is how to configure topology.

Consider the two items in the objective of SubProblem 2,
the first one is exactly the capacity cost in the network, while
the second is the served traffic rate. Since c� kij is a large
number, we should first guarantee that network can serve
as much traffic as possible, and then minimize the hop num-
ber of each traffic to reduce capacity cost. In the following
two subsections, we will introduce our algorithms to place
VMs and configure DDN topology, respectively.

4.2. Virtual machine clustering

From previous analysis, we can use minimum k cut
algorithm introduced in [17] to divide all the VMs into R
groups with required group size. The algorithm is shown
in Algorithm 1. There is an issue in this algorithm at Line
5, where to check whether G is divided into two parts such

114 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
that one of them contains exactly bi VMs. Since more than
two parts may remain when j cuts are removed from G, the
question can be described as:

Algorithm 1. Minimum k-cut algorithm.

Require: Weighted graph G ¼ hV ;Ei and the size of
each group fb1; b2; . . . ; bkg

Ensure: Group set S ¼ fs1; s2; . . . ; skg, where si is a set
of vertex in V with size bi, such that [si ¼ V and
si \ sj ¼ U
1: Compute the vertex number in each group l ¼ n

k,
where n is the size of G
2: Compute Gomory–Hu tree [17] for G and obtain
n� 1 cuts {gi}
3: Sort {gi} by increasing order
4: for i = 1 to k do
5: Finding minimal j such that fg1; g2; . . . ; gjg
divide G into two parts such that one of them is
with size bi. Suppose the part with size bi is c
6: si c
7: G G=c
8: end for
9: return S

Question 1. Suppose there are j positive integers
a ; a ; . . . ; a , how to pick out some of these integers such
1 2 j

that the sum of them is a given integer s.

Question 1 is NP-hard since it can be reduced to an
Knapsack problem [18]. Say there are j items whose weight
and value are both a1; a2; . . . ; aj, respectively, and the
total weight limit is s. In this case, the answer of Question
1 is corresponding to the solution of this constructed Knap-
sack problem. If the optimal solution of this Knapsack
problem is exactly s, the solution is derived. Otherwise,
Question 1 is infeasible. To quickly separate l vertexes from
G, we first prove following lemma:

Lemma 1. Suppose a1; a2; . . . ; al are l positive integers,
such thatXl

i¼1

ai ¼ n

where l ¼ n
2þ 1 if n is even and l ¼ n

2

� �
if n is odd. For arbitrary

integer s ð0 < s < nÞ, there must be some integers from
a1; a2; . . . ; al such that the sum of them is s.
Proof. Without loss of generality, we assume ai is sorted in
non-increasing order and let A ¼ fa1; a2; . . . ; alg. For arbi-
trary k, once any integer in ½1; ak � 1� can be obtained by
summing up some numbers from fam;m > kg, Lemma 1
is correct. Obviously, if a1 ¼ 2, there must be
a2 ¼ a3 ¼ � � � ¼ an

2�1 ¼ 2; an
2
¼ an

2þ1 ¼ 1 when n is even and
a2 ¼ a3 ¼ � � � ¼ adn2e�1 ¼ 2; adn2e ¼ 1, when n is odd. In gener-
al, if any number larger than 1 increasing by 1, there must
be one more ‘‘1’’ appearing in A. Accordingly, if there is an
integer ak; ðak > 2Þ in A, there must be at least
ðak � 2Þ þ 1 ¼ ak � 1 ‘‘1’’s in A. With these ‘‘1’’s, we can
get all the integers in ½1; ak � 1�. h
Based on Lemma 1, we can design Algorithm 2 to obtain
each group of vertexes for Line 5 in Algorithm 1. The key
idea of this algorithm is to divide graph into n

2

� �
þ 1 blocks

at first, and then pick out some blocks to form a group with
l vertexes. When we pick out blocks to form group, the
larger blocks have priority to be selected than the smaller
ones since traffic rate between VMs in such blocks may
be large and they should be placed under the same rack.

Algorithm 2. Algorithm to get a group of vertexes
Require: A Gomory–Hu tree and all the cuts on this
tree fgig (These cuts have already been sorted in
increasing order)

The vertex number in a group l.
Ensure: A group of vertexes s with size l

1: n size of G, s U; N 0; i 1
2: remove the n

2

� �
smallest cuts from G, such that G

is divided into n
2

� �
þ 1 parts fpig

3: Sort fpig in non-increasing order in terms of its
size
4: while N – l do
5: m size of pi

6: if mþ N < l then
7: s s [pi;N mþ N
8: end if
9: i iþ 1
10: end while
11: return s
4.3. Link provisioning

From Algorithm 1, we can divide all VMs into R groups
and place VMs in the same group to the hosts under one
rack according to the group size. Consequently, the traffic
between each pair of racks can be easily obtained. With
such traffic information, a heuristic can be proposed to
design topology. For clarity, we say the traffic between a
rack pair as a ‘‘demand’’ in this subsection. Before we pre-
sent the algorithm to design DDN topology in detail, we
first review a classic inequality.

Lemma 2 (rearrangement inequality [19]). For
a1 < a2 < � � � < an and b1 < b2 < � � � < bn, if s is a one-to-
one mapping from S ¼ f1; . . . ;ng to B ¼ f1; . . . ;ng, the
following inequation must be held

Xn

i¼1

aibnþi�1 6
Xn

i¼1

aibsðiÞ 6
Xn

i¼1

aibi

Motivated by rearrangement inequality shown in Lem-
ma 2, the demand with larger traffic rate should be offered
a shorter route. To this end, we first construct a full-mesh
graph with the purpose to keep all the routes being avail-
able for demands, and then route all the demands on the
constructed graph in the non-increasing order in terms of
their traffic rate. Once an edge without any corresponding
concrete link in physical topology, say edge e, is used by

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 115
any demand, one concrete link, say link l, should be set up
for this edge (Line 6). In this way, when all the demands
are routed in the constructed graph, the network topology
is also determined.
Algorithm 3. Algorithm to design topology
Require: Traffic matrix between each pair of racks f ðrÞij

Ensure: Concrete link set L and Wavelength on each
link W l; l 2 L
1: Initialize G ¼ hV ; Ei as a full-mesh graph and each
vertex denote a rack; f ij in non-increasing order.

Suppose F is the set of f ðrÞij for all i; j

2: for each f ðrÞij in F do

3: Set weight on G
4: Find a shortest path on G from vertex i to vertex j

5: if a path for f ðrÞij is found then

6: Concrete new link, say L0 is the new links
L L [L0,
7: Wavelength wl is the new wavelengths on
link 0;W l W l [wl

8: Update used capacity of links used by

f ðrÞij ; F F � f ðrÞij

9: else
10: if a concrete link can be selected to delete
then
11: Delete the selected link.
12: Suppose the set of all the traffic on this
selected links is T ; F T [F
13: else

14: f ðrÞij is failed to route F F�f ðrÞij

15: end if
16: end if
17: end for
18: return L; W l

The main architecture of the algorithm to design DDN
topology is shown in Algorithm 3. Before each demand
being routed, we should set weight to all edges on the
graph for this demand (Line 3), with the purpose of leading
demand to the route incurring low network cost. The flow-
chart of setting weight to each edge is shown in Fig. 3.
Since the cost of demand is the product of its traffic rate
and the hop number on its route, we set 1 as the weight
to the edges that will not block the on-routing demand
while set infinite to the edges that cannot be used to carry
on-routing demand (e.g. due to the maximum nodal degree
constraint). If the link has not enough capacity to carry on-
routing demand, its weight is set to be

Weight ¼ wavelength capacity� remaining capacity ð21Þ

The key spirit is to use the link with more capacity so as to
reduce the overflow demand quantity. When checking
whether more wavelengths can be assigned to link l, we
should find common wavelengths unused for both racks
connected by link l. As to check whether a concrete link
can be set up, we should not only check whether there
remains at least one common wavelength that can be used
by both end racks, but also see whether the nodal degree
constraint is still satisfied after a new link is added into
the network.

When one demand (say demand d from rack i to rack j)
fails to be routed, link adjusting procedure will be triggered
(Line 10). The only case resulting in demand routing failure
is that the two ends are in two disconnected blocks in the
network and no link can be added to connect these two
blocks. There are two reasons that can prevent link being
added. One is maximum nodal degree constraint that is
violated after adding more links. In this case, we release
one of rack i’s adjacent links carrying minimum traffic
(say link lri), and release one of rack j’s adjacent links that
uses one of the wavelengths used by lri. In this case, a link
can be set up between rack i and rack j to carry demand d.
If this link adjusting procedure is triggered, the demands
carried by the released links should be rerouted at once,
i.e. before all other un-routed demands. The other reason
preventing link being added is no more wavelength
remains. In this case, demand d will fail to be served due
to the shortage of network resource.
4.4. Algorithm analysis

In this subsection, we analyze the convergence and
approximation ratio of algorithms proposed in previous
subsections through some proofs of theorem.

Lemma 3. If there are enough wavelengths in the network,
the link adjusting procedure will be triggered at most

R
dþ1

j k
þ 1 times.
Proof. Assume rack i and rack j are in two blocks, say
block A and block B respectively. If link adjusting is
triggered when a demand between these two blocks is
routed, at least one of these two blocks is d-regular graph,
who contains at least dþ 1 vertexes. Without loss of
generality, we assume B is the d-regular block and C is
the block formed by connecting A and B through link
adjusting. If link adjusting should be triggered again to
connect C and another block D, one of the following
conditions must be satisfied:

1. D is a d-regular graph
2. C becomes a d-regular graph by adding edges and con-

necting different blocks

If condition 1 is the case, at least dþ 1 vertexes are
merged into the new block. If condition 2 is the case, we
can add at most one link in C=B to form a d-regular graph
without introducing a new vertex into C. Therefore, there
are at least 2dþ 2 vertexes in C. It means that at least dþ 1
vertexes are merged by previous edge adjusting. Accord-

ingly, at most R
dþ1

j k
þ 1 link adjustings are required to form

a connected graph. h

Setting weight
to edge e

Does e correspond
to a concrete link?

Is the remaining
capacity enough?

Can a concrete
link be set up?

Can we assign more
wavelength to

corresponding link?

Y N

N

Set weight
to e as 1

Set weight
to e as 1

Set weight to
e as in (21)

Set weight
to e as 1

Set infinite
weight to e

Y N

Y

Y N

Fig. 3. Flowchart to set weight to edge e.

116 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
Lemma 3 guarantees the convergence of Algorithm 3.
Another important issue of our algorithm is the
approximation ratio. It can be answered by following lem-
ma and theorem. Since the minimum k cut algorithm has
no bound unless all the groups have the same size, all
the following analyses are under the assumption that
Hi ¼ H for all i. These results are valuable since it would
be this case once the operator uses the identical access
switch in its datacenter network (DCN) and fully utilizes
all the input ports of each access switch.

Lemma 4. If wavelength is enough and no link adjusting
occurs, the upper bound of approximation ratio of our
algorithm is

HðR� 1Þ
XM

i¼1

Xd

j¼1

i
ðM � 1Þdþ j

þ
XRðR�1Þ=2

i¼Mdþ1

M þ 1
i

" #
ð22Þ

where H is the number of VMs under each rack, d is the max-
imal nodal degree of each rack, R is the number of racks in the

network and M ¼ RðR�1Þ
2d

j k
Proof. Without loss of generality, we assume
f 1 > f 2 > � � � > f RðR�1Þ

2
is the traffic rate of each demand. In

this case, it is obvious that

f i <
f
i

for all i ¼ 1 � � �RðR� 1Þ
2

where

f ¼
XRðR�1Þ

2

i¼1

f i

When the first d demands are routed, it is clear that direct
link can be constructed for them and these demands are
routed on a path with only 1 hop. Therefore, the network
cost incurred by these d demands is

Xd

i¼1

f i < f
Xd

i¼1

1
i

When the second d demands are routed, they can construct
a direct link (and be routed with 1 hop path) or be relayed
by the links for the first d demands (in this case, the
demand has 2-hops path). Accordingly, the network upper
bound associating with these d demands is

X2d

i¼dþ1

f i < 2f
X2d

i¼dþ1

1
i

so on and so forth, the network cost upper bound incurred
by the Mth d demands is

Mf
XMd

i¼ðM�1Þdþ1

1
i

while the network cost that can be brought by the remain-
ing demands is at most

ðM þ 1Þf
XRðR�1Þ=2

i¼Mdþ1

1
i

Accordingly, the upper bound of networks cost is

f
XM

i¼1

Xd

j¼1

i
ðM � 1Þdþ j

þ
XRðR�1Þ=2

i¼Mdþ1

M þ 1
i

 !
:

On the other hand, in the minimum k-cut algorithm, the
approximation rate is HðR� 1Þ. The minimum traffic quan-
tity in the network should be at least f

HðR�1Þ, and it is also the

lower bound of network cost (i.e. all the traffic is routed on
a path with only 1 hop). Accordingly, the upper bound of
approximation ratio of our algorithm is

f
PM

i¼1

Pd
j¼1

i
ðM�1Þdþjþ

PRðR�1Þ=2
i¼Mdþ1

Mþ1
i

� �
f

HðR�1Þ

¼ HðR� 1Þ
XM

i¼1

Xd

j¼1

i
ðM � 1Þdþ j

þ
XRðR�1Þ=2

i¼Mdþ1

M þ 1
i

" #
�

From Lemma 4, we can get following theorem:

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 117
Theorem 1. If the wavelengths in the network are enough
and nodal degree of each rack is large than 2, i.e. d > 2, the
upper bound of approximation ratio of our algorithm is
HRðR� 1Þ
d2

XM

i¼1

Xd

j¼1

i
ðM � 1Þdþ j

þ
XRðR�1Þ=2

i¼Mdþ1

M þ 1
i

" #
ð23Þ
Proof. For rack i,the minimum traffic rate on its adjacent
links (say the link carried least demand is link ði; jÞ) should
be less than f

d, where f is the traffic rate carried by the block
that contains rack i. When link ði; jÞ is deleted and all the
traffic on link ði; jÞ is rerouted, the maximum networks cost
incurred by such traffic should be less than R

d
f
d and induce

at most a factor R
d2 to the approximation ratio in Lemma

4. h

It is worth noting that the factor incurred by edge
adjusting approaches the bound when there are only two
blocks merging into one. In addition, one of these two
blocks is large enough and carrying almost all the traffic
in the network while the other one is very small and carry-
ing merely traffic. This condition is almost impossible since
we route all the demands in a non-increasing order in
terms of their traffic rate. The demands with larger traffic
rate will get relatively shorter route and hence have large
probability to be routed in the smaller size block. Further-
more, our algorithm pursues that all the demands are dis-
tributed in the network evenly. Accordingly, there is little
probability to form such a unbalanced traffic distribution
that the bound of approximation ratio is achieved.

4.5. Discussion

In previous subsections, we propose an algorithm to
increase the network scalability by jointly optimizing VM
placement and DDN topology based on concrete analysis.
However, there remains one more issue in this algorithm.
We do not consider the VM migration and topology adjust-
ing cost (such as more energy consumption, more traffic in
the network, and loss of delay sensitive flows) when we
design the algorithm. Since we focus on how to improve
the network traffic scalability in this paper, i.e. to adapt
to more traffic in the network, which should be dealt in a
long term perspective, while the VM migration and topol-
ogy adjusting cost can only bring a short term cost to the
network, we ignore such cost. Even if this cost cannot be
ignored when it is amortized to the duration of adjacent
network adjustings (either VM migration or topology
adjusting), we can check whether the benefit brought by
the network adjusting is cost efficient. If not, the adjusting
will not be executed.

On the other hand, we can adopt some engineering
methods to mitigate the cost brought by VM migration
and topology adjusting. For example, we can use the sec-
ond highest priority to delivery the flows for VM migration
and reduce the migration duration (The highest priority is
left for the delay sensitive flows.). We can also leverage the
intermediate topology [20] to guarantee the transmission
of delay sensitive flows.
5. Online algorithm

In previous sections, we formulated an MILP model
for jointly optimizing VM placement and network topol-
ogy. Due to the complexity of the MILP model, a heuris-
tic is proposed for this problem based on Lagrange’s
relaxation decomposition. However, in realistic system,
the traffic matrix is time-varying and we cannot execute
Algorithm 1 and 3 and adjust the topology too frequent-
ly. One reason is that the complexity of minimum k cut
algorithm is too high to be executed frequently (several
minutes are required in a network with hundreds of
hosts), while the other reason is that adjusting the topol-
ogy too frequently may incur route oscillation problem.
In this case, the correlation of sequential traffic matrices
can be used to avoid route oscillation and reduce compu-
tation complexity.

5.1. Analysis for online algorithm design

To design an efficient online algorithm, we first briefly
analyze the traffic characteristic in DCNs. Fig. 4 shows
the incoming traffic rate and outgoing traffic rate of two
typical VMs collected from a data warehouse hosted by
IBM Global Services. It is shown that the traffic at each
VM is relatively stable and occasionally a burst occurs.

Considering that an insignificant traffic change is to
slightly modify the feasible range of JOVT, new optimal
solution may be close to current solution. Accordingly,
we can just do a local search to improve the network cost.
On the other hand, it is not reasonable to adjust topology
frequently since it may suffer from route oscillation prob-
lem. In our work, we constantly try to swap VMs (see
definition in Section 5.2) to improve network cost. When
there is a traffic burst in the network, some links may be
congested. In this case, we trigger static joint optimization
process.

5.2. Online optimization for VM placement

To clearly present our online optimization algorithm,
we first briefly introduce some terms used in our
algorithm.

Home rack: If VM k is directly connecting to rack i (i.e.
VM k is under rack i), we say rack i is VM k’s home rack,
which is denoted by i ¼ RðkÞ and k 2 VðiÞ.

Expected traffic to rack i: For VM k, its expected traffic
to rack i is defined as

Tðk; iÞ ¼
X
l2VðiÞ

vkl

Served traffic to rack i: For VM k, its served traffic to
rack i is

TðsÞðk; iÞ ¼
X
l2VðiÞ

v ðsÞkl

where v ðsÞkl is the real traffic rate from VM k to VM l.
VM k’s traffic cost: It is the network cost caused by VM

k’s traffic. When the topology and demand route are fixed,
VM k’s traffic cost can be calculated by

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3
x 10

5

Time (per 900sec)

T
ra

ffi
c

R
at

e
(K

B
/s

ec
)

Incoming traffic rate
Outgoing traffic rate

(a)

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time(per 900sec)

T
ra

ffi
c

R
at

e
(K

B
/s

ec
)

Incoming traffic rate
Outgoing traffic rate

(b)

Fig. 4. Typical traffic rate for VMs in DCNs.

118 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
CTðk; iÞ ¼
X

j:¼RðkÞ
hijT

ðsÞðk; jÞ þ c½Tðk; jÞ � T ðsÞðk; jÞ�

where c is the large number in (8) and (12), hij is the hop
number from rack i to rack j.

Swap VM k and VM l: It means swapping the location of
these two VMs, i.e. placing VM k at VM l’s host and vice
versa.

Obviously, if CTðk; iÞ þ CTðl; jÞ > CTðk; jÞ þ CTðl; iÞ, plac-
ing VM k under rack j and VM l under rack i is better than
placing VM k under rack i and VM l under rack j in terms of
reducing the network cost. Based on this fact, we design a
simple random algorithm to online optimize VM place-
ment, which is shown in Algorithm 4. In this algorithm,
solver only needs to continuously check whether there
are VM pairs that can be swapped to reduce the network
cost. If so, swap them, otherwise continue searching.
Accordingly, this algorithm can be always executed in the
backstage to keep optimizing the network traffic scalabil-
ity. As in the static joint optimization, if the VM swapping
cost is not negligible, we can take this cost into account at
Line 3 in Algorithm 4.

Algorithm 4. Online optimization for VM placement
Require: Hop number between each rack H ¼ fhijg.
Current VM placement solution RðkÞ for all VM k
and VðiÞ for all rack i.
1: while (1) do
2: Randomly find a pair of VMs, say VM k and VM
l, such that i ¼ RðkÞ– RðlÞ ¼ j
3: if CTðk; iÞ þ CTðl; jÞ > CTðk; jÞ þ CTðl; iÞ then
4: Swap VM k and VM l
5: end if
6: end while

It is clear that there will be no oscillation (if the traffic
matrix is fixed) in this algorithm as every swap will reduce
the network cost. Another advantage of this algorithm is
the low computation complexity. Only four VMs’ traffic
costs need to be calculated in each iteration.
5.3. Trigger static joint optimization process

In realistic system, topology reconfiguration may incur
route oscillation and a great amount of data loss. Therefore,
the routes should be kept as stable as possible. According-
ly, there are only two cases that will trigger static joint
optimization process and lead to topology reconfiguration
in our algorithm.

The first case is that an overflow occurs in the networks.
In this case, it is difficult to say which demands result in
the overflow and find out how to relieve the overflow by
swapping VMs. Therefore, static joint optimization should
be triggered to deal with the overflow.

The other case is that a bad local optimal state being
derived by online optimization method. In an online sys-
tem, static algorithm proposed in Section 4 is also executed
at the backstage of the system. When the difference
between the realistic cost and the solution of static opti-
mization algorithm excesses a predefined threshold, DDNs
should be reconfigured according to the solution of static
joint optimization algorithm.

5.4. Tenant enters and exits

In a realistic DCN, there may be new tenants entering
into the network and some tenants may exit from the net-
work. When a new tenant enters into a DCN, the operator
can check whether there are empty hosts. If so, the new
tenant can be assigned to an empty host which bring least
network cost increment. Otherwise, the new tenant should
be prohibited from entering due to the network capacity
limitation.

When a tenant exits, we can easily set the correspond-
ing host as an empty host and enable it to be occupied by
other/new tenant. It should be noted that the local
optimization iteration procedure discussed in previous
subsections should be maintained when the tenants enter
or exit the networks.

6. Evaluation

In this section, we first evaluate the performance of
joint optimization, and compare it with the scheme that

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 119
only optimizes VM placement or topology. As the bench-
mark, we also show the performance in a random regular
graph with random VM placement.

We do this evaluation from two perspectives. The first
one is the static algorithm performance in the networks
with different maximum nodal degree, and the other one
is the performance in networks with different size. The
reason is that nodal degree and network size are the two
most important parameters for the algorithm. When we
study the algorithm performance in the network with dif-
ferent maximum nodal degree, the network scale is fixed
and follows OSA [3] which has 80 racks and 2560 hosts.
Under each rack, there are 32 hosts. We study the cases
that the maximum nodal degree of each rack is 3, 4 and
8 respectively. When the algorithm performance in differ-
ent network scale is investigated, we fix the maximum
nodal degree of each rack to be 4 (the same as OSA proto-
type in [3]) and the total hosts number to be 2560, while
the network size changes as 40, 80, 160. All the hosts are
evenly distributed under each rack.

In addition, we also evaluate the online algorithm per-
formance. In Algorithm 4, the iteration should be executed
all the time, which is difficult to realize in the simulator.
Therefore, we first study the trade-off between the interac-
tion times and the algorithm performance. After that, the
online algorithm performance is evaluated by optimizing
a serial of traffic matrices.

Our traffic was collected from a productive datacenter
hosted by IBM Global Services. However, this dataset only
provides the traffic incoming rate and outgoing rate of each
VM, whereas we require traffic matrix for our algorithm.
To this end, we applied the Gravity model [21] to estimate
the traffic matrix. In the Gravity model, the traffic rate

from VM i to VM j is determined by Dij ¼
Dout

i Din
jP

k
Din

k
, where

Dout
i is the total outgoing rate at VM i, and Din

j is the total
incoming rate at VM j.
6.1. Static algorithm in networks with different maximum
nodal degree

6.1.1. Performance on network cost
We first study the performance of our joint optimiza-

tion in terms of network cost. For this experiment, we
assume there is enough wavelength at each rack and no
(a) Each rack is of Nodal degree 3 (b) Each rack is of N

Fig. 5. Performance of reducing networ
traffic overflow could happen. Fig. 5 shows the results for
joint optimization, single VM placement or topology opti-
mization, as well as no optimization. From this figure, we
make the following observations.

First, in all the three cases, the joint optimization has
remarkable performance improvement compared with
the single optimization on either VM placement or topol-
ogy. For example, while VM placement optimization
decreases the network cost by 5.69–39.48% and topology
optimization reduces the network cost by 1.95–48.72%,
the joint optimization leads to 16.59–58.78% network cost
reduction.

Second, when the nodal degree of each rack is relatively
small (e.g., 3 and 4), topology optimization will outperform
VM placement optimization. On the other hand, optimizing
VM placement will achieve better performance than opti-
mizing topology when the nodal degree of each rack is
relatively large (e.g., 8). This is because the smaller nodal
degree would lead to larger optimization space for chang-
ing the topology. When the nodal degree becomes large,
this optimization space is decreased and thus the benefit
becomes smaller.

Third, the performance improvement brought by both
VM placement and topology optimization will decrease
when the nodal degree increases. This is again due to the
reason that the optimization space is reduced when there
are more links in the network. For example, in case the
nodal degree of each rack is R� 1, there would be no per-
formance improvement with respect to topology
optimization.

6.1.2. Performance on avoiding traffic overflow
To evaluate the performance of joint optimization on

relieving traffic overflow, we repeat the above experiments
but assume that there are only 80 wavelengths can be used
by each rack and the capacity of each wavelength is 10G.
We show the simulation results in Fig. 6.

From this figure, we find that while both VM placement
and topology optimization can relieve overflow in the net-
work, joint optimization can reduce overflow more effec-
tively, and it can completely avoid overflow in most of
the cases.

We further find that in certain cases VM placement
optimization may even result in a worse performance than
random scheme (e.g. Scenario 2 in Fig. 6(b)). The reason is
that it leverages the traffic aggregation to reduce the traffic
odal degree 4 (c) Each rack is of Nodal degree 8

k cost vs. maximal nodal degree.

(a) Each rack is of no dal degree 3 (b) Each rack is of no dal degree 4 (c) Each rack is of no dal degree 8

Fig. 6. Performance of avoiding overflow vs. maximal nodal degree.

120 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
quantity delivered into the networks, thus making some
links overused. Fortunately, the flexible link capacity
introduced by topology optimization can balance the traf-
fic aggregation problem incurred by VM placement. There-
fore, joint optimization can yield a much better
performance than only optimizing either VM placement
or topology.

6.2. Static algorithm in networks with different size

To study how the algorithm performance is in networks
with different size, we repeat the simulation in Section 6.1,
but configure the networks with different size.

6.2.1. Performance on network cost
The algorithm performance of optimizing network cost

with different network size is shown in Fig. 7. From this
figure, we can see that joint optimization always obtains
the minimum network cost regardless of the network size.

However, some observations different from those in
Section 6.1.1 can be made. One observation is that with
the same traffic matrix among different VMs, the network
cost is increasing with the network size. This is because
that with the same maximum nodal degree, the average
hop number between each rack pair is increasing with
the network size. Accordingly, it results in larger network
cost.

Another observation is that with the increasing of the
network size, the topology optimization has better
performance than it in smaller networks, while the VM
placement has worse performance. The reason is that there
(a) 40 rack sin the network (b) 80 racks in

Fig. 7. Performance of reducing ne
are less VMs under each rack in larger networks due to the
fixed rack number. Hereby, there is less optimization space
for the VM placement. On the other hand, more racks in the
network provide more connection options to the topology
optimization. Therefore, topology optimization performs
better in the larger networks. In the extreme case that
there is only one host under each rack, there is no opti-
mization space for the VM placement.

6.2.2. Performance on avoiding traffic overflow
Fig. 8 shows the algorithm performance to avoid traffic

overflow in different scale of networks. When the network
size is relatively small, less network resources are required
to serve the traffic between VMs (which is discussed in last
subsection), joint optimization can avoid the traffic over-
flow in all the scenarios. With the increasing of network
size, more network resources are required to serve all the
traffic. When there 80 racks in our experiment, overflow
may occur in some scenarios. Furthermore, when the rack
number increases to be 160, overflow occurs in all the sce-
narios. However, joint optimization can avoid overflow or
minimize the overflow regardless of the experiment
settings.

6.3. Online algorithm evaluation

6.3.1. Iteration times/performance trade-off
Fig. 9 shows how the network cost changes with the

interaction times in Algorithm 4. In this figure, the initial
network configuration (includes network topology, VM
placement and traffic routing) is obtained by the static
the network (c) 160 racks in the network

twork cost vs. network size.

(a) 40 racks in the network (b) 80 racks in the network (c) 160 racks in the network

Fig. 8. Performance of avoiding overflow vs. network size.

0 2 4 6 8 10 12 14 16 18 20
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

7

Time slot

N
et

w
or

k
co

st

Online iteration
Static algorithm
Without iteration

Trigger topology design
Trigger topology design

Trigger topology design

In time slot 9, both online iteration and static
joint optimization suffer from traffic overflow

Fig. 10. Performance for online iteration algorithm.

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 121
algorithm with traffic matrix in previous time slot as input.
After that, we route all the traffic in current time slot with
the initial network configuration and trigger the Algorithm
4. It can be observed that online iteration can greatly
reduce the network cost even though we do not trigger
the static algorithm. On the other hand, we can also
observe that it is hard to greatly reduce the network cost
further after more than 900 iterations are executed.

6.3.2. Performance of online algorithm
To evaluate the performance of our online algorithm,

we run it on 20 traffic snapshots in consecutive time slots
(each slot lasts 900 s) extracted from our data source. The
algorithm begins with a static joint optimization process to
work out an initial topology and VM placement solution.
After that we trigger the Algorithm 4. In each slot, we
repeat the iteration process 1000 times if no traffic over-
flow happens on the topology used in the previous slot.
Otherwise, we trigger the static joint optimization algo-
rithm discussed in Section 4 once overflow occurs. As a
benchmark, we not only test the network cost without
VM swapping iteration and we only trigger joint optimiza-
tion when overflow occurs, but also run the static joint
optimization algorithm.

The simulation result is shown in Fig. 10. From the
figure, we can see that the online iteration process can
effectively reduce the network cost compared with we
0 200 400 600 800 1000
2.5

3

3.5

4

4.5

5
x 10

7

Iteration times

N
et

w
or

k
co

st

Case 1
Case 2
Case 3
Case 4

Fig. 9. Iteration times vs. algorithm performance.
only trigger joint optimization when overflow occurs. Also,
our online algorithm only triggers topology reconfigura-
tion a few times, so that it greatly reduces the overhead
compared with running static joint optimization in every
time slot. Furthermore, online algorithm can get a solution
very close to the static joint optimization algorithm. This is
because that the input/output traffic is relatively stable for
a rack, and burst occurs in very small fraction of the racks.
Therefore, migrating these VMs together can greatly
reduce the network cost without changing the network
topology.
7. Related Work

We briefly review the related works of our study in
three aspects: dynamic topology, VM placement problem
and joint optimization.

To deal with the unbalanced traffic in datacenter
networks, many works leveraged the dynamic topology,
though OSA [3] provides the most flexible topology. c-
Through [14] proposes a hybrid packet and circuit switch
architecture which uses optical circuit switching to fix
the high bandwidth requirement in part of the network if
it is required. Helios [4] also designed a hybrid packet
and circuit switch architecture in the DCNs to manage
the unbalanced traffic, but its objective is to find the opti-

122 Y. Zhao et al. / Computer Networks 80 (2015) 109–123
mal trade-off between the number of switching elements,
cabling, cost, and power consumption.

The main objective of VM placement is to save resource
in DCNs, such as CPU, RAM and network. In addition to the
foundation of our work [10,13] is also working on enhanc-
ing the network traffic scalability. Different from [10,13] is
a network-aware algorithm which takes the local physical
resources, such as CPU and memory into account. On the
other hand, [22] focused on improving the datacenter effi-
ciency by sharing the resources of physical servers. Since
VM placement problem is usually a NP-hard problem, all
these works solved their problems by designing an effi-
cient heuristic.

On the joint optimization to enhance the DCN traffic
scalability, [9] is a representative. Different from our work,
it jointly optimizes the VM placement and traffic routing in
the DCNs under the assumption that the demands can be
served through multipath routing. In addition, Ref. [9]
focuses on the case that the network topology is fixed. Usu-
ally, multipath routing is not allowed in DCNs since it may
result in TCP disordering problem and degrade the traffic
throughput. On the other hand, when the topology is
dynamic, the Markov approximation method is difficult
to deploy since the solution space is much larger than that
when the topology is fixed. Even when there are only 20
racks in the network, the solution space should be over
12 billion times larger than that with fixed topology.

8. Conclusion

In this paper, we have jointly optimized VM placement
and topology to improve traffic scalability in dynamic
datacenter networks. We formulated this problem as an
MILP and leveraged Lagrange’s relaxation to analyze it.
Based on the analysis, we proposed an efficient heuristic
algorithm and derived a theoretical bound of the proposed
solution. Furthermore, we designed an iteration-based
online algorithm for time-vary traffic scenario. Simulation
results show that our algorithm yields a much lower
network cost (i.e., higher traffic scalability), and our online
algorithm greatly improves traffic scalability without
frequently reconfiguring topology and traffic route.

Acknowledgements

This work was supported in part by National Basic
Research Program of China (973) under Grants
2013CB329103, 2011CB302601, 2014CB340303, HKRGC-
ECS 26200014, Huawei Noah’s Ark Lab, NSFC Fund
(61271165, 61271171, 61201129, 61301153 and
91438117), PCSIRT Fund, 111 Project B14039, and the Fun-
damental Research Funds for the Central Universities.

References

[1] Q. Duan, Y. Yan, A. Vasilakos, A survey on service-oriented network
virtualization toward convergence of networking and cloud
computing, IEEE Trans. Network Service Manage. 9 (4) (2012) 373–
392, http://dx.doi.org/10.1109/TNSM.2012.113012.120310.

[2] Cisco Cloud Computing – Data Center Strategy, Architecture, and
Solutions. <http://www.cisco.com/web/strategy/docs/gov/CiscoCloud
Computing_WP.pdf>.
[3] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen,
Y. Chen, OSA: an optical switching architecture for data center
networks with unprecedented flexibility, in: NSDI 2012, 2012.

[4] N. Farrington, G. Porter, S. Radhakrishnan, H.H. Bazzaz, V.
Subramanya, Y. Fainman, G. Papen, A. Vahdat, Helios: a hybrid
electrical/optical switch architecture for modular data centers, in:
SIGCOMM 2010, 2010.

[5] C. Leiserson, Fat-trees: universal networks for hardware-efficient
supercomputing, IEEE Trans. Comput. C-34 (10) (1985) 892–901,
http://dx.doi.org/10.1109/TC.1985.6312192.

[6] A. Greenberg, J.R. Hamilton, S.K.N. Jain, P.L.C. Kim, D.A. Maltz, P.
Patel, S. Sengupta, Vl2: a scalable and flexible data center network,
in: SIGCOMM 09, 2009.

[7] C. Guo, G. Lu, D. Li, X.Z.H. Wu, Y. Shi, C. Tian, Y. Zhang, S. Lu, Bcube: a
high performance, server-centric network architecture for modular
data centers, in: SIGCOMM 09, 2009.

[8] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, Dcell: a scalable and
fault-tolerant network structure for data centers, in: SIGCOMM 08,
2008.

[9] J.W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, Joint VM placement and
routing for data center traffic engineering, in: Proc. 31th IEEE Conf.
on Computer Communication (INFOCOM), 2012.

[10] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center
networks with traffic-aware virtual machine placement, in:
INFOCOM 2010, 2010.

[11] N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, A. Vahdat, PortLand: a scalable
fault-tolerant layer 2 data center network fabric, in: SIGCOMM 09,
2009.

[12] J.P. Srikanth Kandula, P. Bahl, Flyways to de-congest data center
networks, in: 8th ACM Workshop on Hot Topics in Networks, 2009.

[13] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, E. Silvera, A
stable network-aware VM placement for cloud systems, in: 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2012, 2012, pp. 498–506 (http://dx.doi.org/10.
1109/CCGrid.2012.119).

[14] G. Wang, D.G. Andersen, M. Kaminsky, K. Papagiannaki, T.S.E. Ng, M.
Kozuch, M. Ryan, c-Through: part-time optics in data centers, in:
SIGCOMM 2010, 2010.

[15] M.G. Rabbani, R.P. Esteves, M. Podlesny, G. Simon, L.Z. Granville, R.
Boutaba, On tackling virtual data center embedding problem, in:
IFIP/IEEE IM 2013, 2013.

[16] K. Aardal, Lattice Basis Reduction and Integer Programming, Tech.
rep., UU-CS-1999-37, Universiteit Utrecht, 1999. <http://www.cs.uu.
nl/research/techreps/repo/CS-1999/1999-37.pdf>.

[17] K. Obraczka, P. Danzig, Finding Low-Diameter, Low Edge-Cost,
Networks.

[18] Knapsack Problem. <http://en.wikipedia.org/wiki/Knapsack_
problem>.

[19] G.H. Hardy, J. Littlewood, G. Plya, Inequalities, Cambridge University
Press, 1952.

[20] Y. Zhao, S. Wang, S. Luo, H. Yu, S. Xu, X. Zhang, Dynamic topology
management in optical datacenter networks, in: IEEE Globecom
2014, 2014.

[21] Y. Zhang, M. Roughan, N. Duffield, A. Greeberg, Fast accurate
computation of large-scale ip traffic matrices from link loads.

[22] H. Jin, D. Pan, J. Xu, N. Pissinou, Efficient vm placement with multiple
deterministic and stochastic resources in data centers, in: 2012 IEEE
Global Communications Conference (GLOBECOM), 2012, pp. 2505–
2510 (http://dx.doi.org/10.1109/GLOCOM.2012.6503493).

Yangming Zhao is a Ph.D. candidate in
University of Electronic Science and Tech-
nology of China (UESTC). He received his B.S.
degree in Communication Engineering from
UESTC in July 2008. His research interests
include network optimization and data center
networks.

http://dx.doi.org/10.1109/TNSM.2012.113012.120310
http://www.cisco.com/web/strategy/docs/gov/CiscoCloudComputing_WP.pdf
http://www.cisco.com/web/strategy/docs/gov/CiscoCloudComputing_WP.pdf
http://dx.doi.org/10.1109/TC.1985.6312192
http://dx.doi.org/10.1109/CCGrid.2012.119
http://dx.doi.org/10.1109/CCGrid.2012.119
http://www.cs.uu.nl/research/techreps/repo/CS-1999/1999-37.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1999/1999-37.pdf
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Knapsack_problem
http://refhub.elsevier.com/S1389-1286(14)00468-X/h0095
http://refhub.elsevier.com/S1389-1286(14)00468-X/h0095
http://refhub.elsevier.com/S1389-1286(14)00468-X/h0095
http://dx.doi.org/10.1109/GLOCOM.2012.6503493

Y. Zhao et al. / Computer Networks 80 (2015) 109–123 123
Yifan Huang is a Ph.D. candidate in Depart-
ment of Electronic and Computer Engineering
at the Hong Kong University of Science and
Technology. She received her B.S. degree in
Communication Engineering from University
of Electronic Science and Technology of
China (UESTC) in July 2013. Her research
interests include oblivious routing and net-
work on chip.
Kai Chen is an Assistant Professor with
Department of Computer Science and Engi-
neering at the Hong Kong University of Sci-
ence and Technology. He received a Ph.D.
degree in Computer Science from the North-
western University in June 2012. He received
B.S. and M.S. degrees in Computer Science
both from the University of Science and
Technology of China in 2004 and 2007
respectively.
Minlan Yu is an assistant professor in the
Computer Science Department at University of
Southern California. She co-lead the Net-
worked Systems Lab with Ramesh Govindan
and Ethan Katz-Bassett. She is interested in
data networking, distributed systems, enter-
prise and data center networks, network vir-
tualization, and software-defined networking.
She received Ph.D. from Princeton University in
August 2011, advised by Jennifer Rexford. After
that, she was a postdoctoral scholar working
with Ion Stoica at UC Berkeley for one year.
Sheng Wang is served as a professor in
University of Electronic Science and Tech-
nology of China (UESTC). He is a Senior
Member of Communication Society of China, a
member of IEEE, a member of ACM and a
member of CCF (China Computer Federation).
He received his B.S. degree in Electronic
Engineering from UESTC in July 1992. He
received his M.S. degree and Ph.D. degree in
Communication Engineering from UESTC in
1995 and 2000, respectively. His research
interests include planning and optimization of

wire and wireless networks, next generation of Internet and next gen-
eration optical networks.
Dongsheng Li is an associate professor in
School of Computer, National University of
Defense Technology (NUDT), China. He
received his B.S. degree in Computer Science
from NUDT in 1999, followed by his Ph.D. in
2005. His graduate work was supervised by
Prof. Xicheng Lu, a famous computer scientist
in China and an academician of Chinese
Academy of Engineering. He was a visiting
student at Department of Computing, Hon-
gKong Polytechnique University from March
2005 to March 2006, under supervision of Dr.

Jiannong Cao. After his Ph.D. work, he joined National Laboratory for
Parallel and Distributed Processing (PDL) in NUDT as an assistant pro-
fessor, and was promoted as associate professor in December 2007.

	Joint VM placement and topology optimization for traffic scalability in dynamic datacenter networks
	1 Introduction
	2 Background and motivation
	2.1 OSA-based DDNs
	2.2 VM placement problem
	2.3 Why jointly optimizing VM placement and topology

	3 Problem formulation
	3.1 Network model
	3.2 Cost model
	3.3 MILP formulation
	3.4 Why jointly optimizing VM placement and topology is a challenge

	4 Algorithm design
	4.1 Problem analysis
	4.2 Virtual machine clustering
	4.3 Link provisioning
	4.4 Algorithm analysis
	4.5 Discussion

	5 Online algorithm
	5.1 Analysis for online algorithm design
	5.2 Online optimization for VM placement
	5.3 Trigger static joint optimization process
	5.4 Tenant enters and exits

	6 Evaluation
	6.1 Static algorithm in networks with different maximum nodal degree
	6.1.1 Performance on network cost
	6.1.2 Performance on avoiding traffic overflow

	6.2 Static algorithm in networks with different size
	6.2.1 Performance on network cost
	6.2.2 Performance on avoiding traffic overflow

	6.3 Online algorithm evaluation
	6.3.1 Iteration times/performance trade-off
	6.3.2 Performance of online algorithm

	7 Related Work
	8 Conclusion
	Acknowledgements
	References

