Towards Zero Copy Dataflows

Bairen Yi
HKUST
byi@connect.ust.hk

Li Chen
HKUST
lichenad@connect.ust.hk

ABSTRACT

Remote Direct Memory Access (RDMA) offers ultra-low latency and
CPU bypass networking to application programmers. Existing appli-
cations are often designed around socket based software stack that
manages application buffers separately from networking buffers
and do memory copies between them when sending/receiving data.
With large sized (up to hundreds MB) application buffers, the cost of
such copies adds non trivial overhead to the end-to-end communica-
tion pipeline. In this work, we made an attempt to design a zero copy
transport for distribute dataflow frameworks that unifies applica-
tion and networking buffer management and completely eliminates
unnecessary memory copies. Our prototype on top of TensorFlow
shows 2.43x performance improvement over gRPC based transport
and 1.21x performance improvement over an alternative RDMA
transport with private buffers and memory copies.

CCS CONCEPTS

» Networks — Application layer protocols; - Computer sys-
tems organization — Distributed architectures; « Information
systems — Record and buffer management; Data exchange;

KEYWORDS
Kernel bypass networking, Memory management

ACM Reference Format:

Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. 2017. Towards Zero Copy
Dataflows using RDMA. In Proceedings of SIGCOMM Posters and Demos ’17,
Los Angeles, CA, USA, August 22—24, 2017, 3 pages.
https://doi.org/10.1145/3123878.3131975

1 INTRODUCTION

High speed network fabrics built with commodity Ethernet switches
and network interface cards (NICs) is the key component of data
centers. Recently, RDMA over Converged Ethernet (RoCE) [2] has
received wide attention to achieve high throughput, low latency
inter-connect for servers in 40/100 GbE data center network fabrics.
While application traffic is moved swiftly from/to the NIC and
within the network, real-world applications are often designed

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM Posters and Demos 17, August 22-24, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5057-0/17/08.

https://doi.org/10.1145/3123878.3131975

28

using RDMA

Jiacheng Xia
HKUST
jxiaab@connect.ust.hk

Kai Chen
HKUST
kaichen@cse.ust.hk

bearing the in-kernel TCP/IP stack and the burden of software
infrastructures built on top of the decades-old Berkeley sockets API,
for example, Remote Procedure Call (RPC) or Actor architecture. To
achieve good software compatibility, existing application is often
migrated to RDMA using protocols (e.g. rsocket or SDP) that are
designed to emulate socket APL, bringing back the copy overhead
from kernel space to user space, resulting in unnecessarily high
messaging latency.

Dataflow is a popular architectural pattern among data analytics
frameworks such as Spark, Naiad, and TensorFlow. A dataflow
is a directed acyclic graph such that each node represents a pre-
defined operation that has a number of inputs and outputs. For
distributed dataflow, usually the graph is partitioned among all
the workers such that each edge being split represents a stage
of communication, where the output of last stage is transferred
across the communication channel to feed the input of next stage.
We observed that, typically those output and input are large and
immutable data buffers, and in current application design, they are
usually copied multiple times even in user space, not to mention
the copying overhead in kernel TCP/IP stack. Such data buffers
could consist of tens or even hundreds of megabytes in a single unit.
Copying large data buffers adds non-trivial overhead to the pipeline
of end-to-end cross-node dataflow data transfer, in which context
RDMA zero-copy and kernel bypass are rendered less meaningful.

In this work, we show that the it is possible to achieve end-to-end
zero-copy for transport in dataflow applications using a customized
memory allocator that collects buffer registration information from
the computation graph. We have demonstrated that our integrated
design on top of TensorFlow, which completely eliminates unneces-
sary memory copies. Our implementation achieves 2.43x end-to-end
speedup over its TCP/IP based gRPC transport, and 1.21x speedup
over an alternative RDMA transport that does memory copying.

2 DESIGN

Existing dataflow applications uses either RPC or file block transfers
for their communication pipeline. For example, both open sourced
version of TensorFlow and early version of Apache Spark use RPC
for cross-node data transfer; later version of Spark and Hadoop
MapReduce stores the output to local file system and shuffles the
file blocks to downstream. RPC system is a poor fit for transferring
large blocks of data; the RPC request and response message will go
through not only copying but also encoding and decoding, which
severely congests CPU and hurts the throughput of end-to-end data
transfer pipeline. File blocks are often stored first into an external
file system, and it also requires several rounds of copies even for
memory based file system (ramf's).


https://doi.org/10.1145/3123878.3131975
https://doi.org/10.1145/3123878.3131975

SIGCOMM Posters and Demos *17, August 22-24, 2017, Los Angeles, CA, USA

A key observation is that moving buffers around the memory
space in applications shares the same design rationale of the socket
AP each of the computation and communication subsystems man-
ages its own memory without sharing. This poses a fundamental
difficulty to adapt this design with end-to-end zero copy; no matter
how fine grained buffer management is done in each subsystem,
once the data transfer pipeline goes through both of them, at least
one memory copy is required. For example, the TCP/IP stack in
Linux kernel uses the complicated data structure sk_buff for packet
abstraction, and careful design has been carried out such that mov-
ing sk_buff only requires moving a linked list pointer but not the
payload. However, it always requires at least one copy to move data
from user space to kernel space. Similar design choice has been
made for various RPC and messaging libraries.

For dataflow applications deployed in high speed DC fabric, there
are two conditions that make copying memory the bottleneck: (1)
application buffers are too large to fit it L1/L2/L3 cache; (2) a single
application is unlikely to congest the network. Note that moving
buffers around is not necessarily the bottleneck of end-to-end data
transfer pipeline if either condition fails to hold. For the first con-
dition, the distinction of copying a large buffer and copying many
small buffers is that the latter usually reside in cache after being
dynamically computed, while the former will cause cache-misses
and eventually fetched from memory. In some RDMA aware ap-
plications like FaSST [3], small buffers are often copied from or to
page-locked memory that is managed solely by the communication
subsystem, to avoid the overhead of dynamic pinning of virtual
memory pages to physical memory. For the second condition, la-
tency sensitive applications such as KV store usually do not fully
utilize network bandwidth, i.e. they are bound by number of concur-
rent request, while most keys and values are of small sizes (tens of
bytes to several kilobytes). The throughput for copying small sized
buffers could be 10 times (20-30 GB/ with buffer sizes around 4KB)
more than copying large buffers of tens to hundreds megabytes
(2-4 GB/s with buffer sizes larger than 4MB) that cannot fit into
the cache. It is thus essential to break the wall of memory sharing
between computation and communication subsystem, and incor-
porate an integrated zero-copy design such that the computation
tasks read/write to communication buffers directly.

Our solution to this problem is a unified memory allocator that
manage computation and communication buffers in the same sys-
tem. The allocator has two parts: (1) implementations of different
memory allocation specification, e.g. whether the allocated buffer
should be pinned for RDMA or device DMA; (2) information collec-
tor that parse the dataflow graphs and determine the specification
of buffer management for each step, based on the source and sink
of an edge in dataflow graph. The buffer allocated with RDMA or
device DMA specification will be shared between computation and
communication subsystems, and the buffer is freed when it is no
longer being used by both of two subsystems.

3 IMPLEMENTATION

We have implemented! zero copy dataflow on top of TensorFlow [1],
as it allows drop-in replacement of its memory allocation policy

!Special thanks to Paul Tucker in Google for helping us to merge this patch into the Ten-
sorFlow official repository; see https://github.com/tensorflow/tensorflow/pull/11392

29

B. Yi et al.

using a customized memory allocator. In our memory allocator, we
collect information from TensorFlow’s computational graph and
distributed graph partition, so only tensors that is either source or
sink of a cross-node send/receive operation will be registered as
RDMA capable buffer. We intercept memory registration and de-
registration logic, right after memory allocation and before memory
free. In its open sourced version, TensorFlow uses HTTP/2 based
gRPC for its tensor transport, and we have modified it to bypass
the RPC system and transfer tensors using out-of-band RDMA
transport instead. To support transfers with GPU as either source
or target, we manage to use GPU direct RDMA whenever the PCI-e
topology permits, i.e. NIC could access GPU memory using the
same PCI-e host bridge. We have observed bad performance when
GPU direct RDMA occurs on path that traverses a CPU-socket level
link, i.e. different NUMA nodes, so those tensors are transferred
to the main memory before they are sent to NIC or GPU. RDMA
capable tensor buffers are also allocated in the same NUMA node
as of NIC. To simplify our implementation, we only uses one-way
RDMA read with invalidate, as for minimal sized buffers it only
requires single round-trip to complete the tensor transfer.

4 EVALUATION

We evaluate our implementation on an testbed consists 4 servers
that connect to a Mellanox MSN2100-BB2F 40GbE RoCE Switch.
Each server is installed with a Mellanox MT27500 40GbE NIC, dual
6-core Intel Xeon E5-2603v4 CPU, 4 NVidia Tesla K40m GPUs, and
256 GB DDR4-2400MHz memory. The switch is configured with
priority-base flow control (PFC) for a lossless fabric.

We trained a distributed version of the VGG16 [4] convolutional
neural network model, provided in Google’s benchmark suite. The
total size of the model parameters is 528 MB. The model is trained
in synchronous mode as opposed to asynchronous mode, so each
worker will compute the exact same number of iterations to avoid
random fluctuations. We use the same number of parameter servers
as of workers, i.e. one per node. Workers use both GPU and CPU
for computation, while parameter servers only use CPU with the
host memory to aggregate model parameters.

The result shows that our implementation of RDMA based zero
copy dataflow could achieve overall 2.43x performance improve-
ment in job completion time (measured by training throughput
in number of images) over the original gRPC (TensorFlow v1.2.1)
based tensor transport, and 1.21x performance improvement over
Yahoo’s RDMA implementation [5] using communication-private
buffers with memory copying. With respect to computation scaling,
it scales to 16 GPUs in total with 13.8x scale factor compared to
single GPU. As to our RDMA capable memory allocator, the frac-
tion of memory registration overhead in the whole tensor transfer
pipeline on average is only 2.7%, and 82.6% of RDMA transfers do
not incur extra memory registration overhead. No memory copies
within host memory are performed in the pipeline.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A system for large-scale machine learning. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA.


https://github.com/tensorflow/tensorflow/pull/11392

Towards Zero Copy Dataflows using RDMA SIGCOMM Posters and Demos 17, August 22-24, 2017, Los Angeles, CA, USA

[2] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM,
202-215.

[3] AnujKalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs..
In OSDI. 185-201.

[4] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[5] Lee Yang, Jun Shi, Bobbie Chern, and Andy Feng. 2017. TensorFlow on Spark.
https://github.com/yahoo/TensorFlowOnSpark. (2017).

30


https://github.com/yahoo/TensorFlowOnSpark

	Abstract
	1 Introduction
	2 Design
	3 Implementation
	4 Evaluation
	References

