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Abstract
Large Language Models (LLMs) are widely employed for
their ability to generate human-like text. However, service
providers may deploy smaller models to reduce costs, poten-
tially deceiving users. Zero-Knowledge Proofs (ZKPs) offer a
solution by allowing providers to prove LLM inference with-
out compromising the privacy of model parameters. Existing
solutions either do not support LLM architectures or suffer
from significant inefficiency and tremendous overhead. To ad-
dress this issue, this paper introduces several new techniques.
We propose new methods to efficiently prove linear and non-
linear layers in LLMs, reducing computation overhead by or-
ders of magnitude. To further enhance efficiency, we propose
constraint fusion to reduce the overhead of proving non-linear
layers and circuit squeeze to improve parallelism. We imple-
ment our efficient protocol, specifically tailored for popular
LLM architectures like GPT-2, and deploy optimizations to
enhance performance. Experiments show that our scheme can
prove GPT-2 inference in less than 25 seconds. Compared
with state-of-the-art systems such as Hao et al. (USENIX Se-
curity’24) and ZKML (Eurosys’24), our work achieves nearly
279× and 185× speedup, respectively.

1 Introduction

Recently, Large Language Models (LLMs) (e.g., GPT-4 [2])
have revolutionized dialogue synthesis, applied in Chat-
Bots [3], web search [33], and assisting programmers [63].
Due to their demanding resource requirements, AI companies
typically deploy LLMs on cloud servers. Users access these
models through APIs. Considering the huge daily serving
costs, service providers are incentivized to cheat by using
smaller models and giving lower-quality results to save costs.
In fact, many users have observed the performance degra-
dation of GPT-4 and ChatGPT [21, 22, 51] and suspect that
OpenAI is using a smaller model. However, the inference
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process is black-boxed to users. The service providers will
not reveal the model for users to validate the service since the
model parameters are trade secrets [10]. Hence, it is difficult
for users to validate the service’s integrity, e.g., the specified
model computes the output.

The zero-knowledge proof (ZKP) [29] is a promising solu-
tion to prove the integrity of machine learning (ML) services.
In ZKP, a prover produces a proof π to convince the verifier
that the result of a public function f on public input x and the
secret input of the prover w is indeed y = f (x,w). The secret
input w is usually referred to as the witness. ZKP guarantees
that the verifier will output rejection with overwhelming prob-
ability if the prover cheats on calculation, while the proof π

does not reveal any additional information about the secret
w. Using f as the function that represents the calculation of
the model, x as user input, and w as model weights within
the ZKP protocol, the service provider can prove the correct-
ness of LLM inference. In real-world applications, regulatory
authorities can frequently and anonymously query the LLM
service and require the service provider to prove the validity
of the generated answers via ZKP. If the provider fails to pro-
vide the valid proof, they may face penalties. This approach
effectively safeguards consumer rights while imposing small
overhead on existing infrastructure.

In recent years, extensive research has been conducted on
ZKP for ML, covering a range of models from classic deci-
sion trees to modern neural networks (NN). However, most
of these works either do not support LLM architectures [9,
18, 19, 35, 37, 40, 61, 68], or support LLMs [10, 31, 41, 55]
but face significant limitations, such as inefficiency and high
communication overhead. For example, concurrent work [10]
requires over an hour to generate a single proof for the infer-
ence of GPT-2 [50]. Such lengthy proof generation times ren-
der these approaches impractical for real-world applications
involving LLMs. The core challenge in developing practical
ZKP schemes for LLMs lies in efficiently proving different
layers involved in LLMs, such as matrix multiplication, atten-
tion [57], GeLU [32], and normalization [5]. This challenge
arises for two main reasons: (1) the linear layers in LLMs are



large in scale and frequently invoked, making their proof gen-
eration time consuming. (2) ZKP primarily operates within
arithmetic fields that only support addition and multiplication
operations, making it difficult to efficiently prove non-linear
layers.

In this paper, we aim to address the challenge of designing
efficient ZKPs for both linear and non-linear layers, with the
goal of generating practical ZKPs for GPT models.
Efficient proof for linear layers. The linear layers in LLMs
encounter weight matrices that are extremely large. This
makes proving matrix multiplications time consuming. There-
fore, we first focus on improving the efficiency of these proofs.
Thaler et al. [56] proposed a dedicated protocol for verifiable
matrix multiplication, which we incorporate into our system.
While the algorithm achieves optimal prover time in theory,
there remains significant room for improving its practical im-
plementation. In particular, the execution time of this protocol
is bottlenecked by the computation of the bookkeeping table
for each matrix. The bookkeeping table stores evaluations of
the multi-linear extension of each matrix column at a given
random point. The classical method [40, 56] for this task uti-
lizes the memory method in [58] to evaluate each column’s
multi-linear extension. This requires approximately 4n ·m
field multiplications per matrix, where n and m represent the
number of rows and columns of the matrix, respectively. The
major drawback of this method is that it does not leverage
certain special properties of matrix elements to reduce com-
putation as we have observed.

We propose a grouping algorithm to address this bottle-
neck efficiently, reducing the number of field multiplications
involved in [56] to approximately half. We further accelerate
our grouping algorithm by leveraging two key properties of
our matrix elements: (1) the presence of many padded zeros
due to sumcheck requirements, and (2) the relatively small
range of values resulting from quantization. By utilizing our
proposed method, the prover’s bottleneck shifts to n ·m field
additions. Since field multiplications are several times more
expensive than field additions, our algorithm achieves nearly
a tenfold acceleration on this theoretically optimal protocol.
Efficient proof for non-linear layers. Proving non-linear
layers also poses challenges in ZKP due to the involvement
of ZKP-unfriendly operations such as division, square root,
and exponentiation. Previous work based on floating-point
circuits [61] or numerical iterations [31] incurs high overhead
when proving these operations. For example, [61] requires
thousands of relations to prove division and exponentiation
operations. The inefficiency of existing methods stems from
simulating non-arithmetic computations using arithmetic op-
erations. To address this issue, we propose to use the compu-
tation result as advice, instead of simulating the computation
in the arithmetic field. We found that, with the use of advice,
division and square root operations can be proved by a single
range relation. For exponentiation operations, we prepare a
lookup table containing all possible evaluations of the expo-
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Figure 1: Workflow of the prover for LLM.

nentiation result. Then, each exponentiation operation can be
verified with a single query to the lookup table. By leveraging
advice, our approach reduces the number of relations required
for proof by several orders of magnitude, significantly low-
ering the prover’s overhead for non-linear layers. To prove
range relations and exponentiation operations, we employ the
recent lookup scheme Lasso [53]. For proving the involved
arithmetic relations, we adopt the GKR protocol [30]. By in-
tegrating the above proposed techniques, we have developed
a proof system capable of efficiently proving different LLM
layers.

Compared with existing ZKP schemes for LLMs [10, 31,
41, 55], our system offers significant advantages in the fol-
lowing aspects: (1) Prover efficiency. Our efficient design
for proving both linear and non-linear layers greatly reduces
the cost of proving LLMs. For example, [55] directly uses
the protocol in [56] to prove matrix multiplication. Under
the same settings, our system is nearly ten times faster than
[55] in proving these layers due to the efficiency of our algo-
rithm. Additionally, our system can prove all normalization
layers in a GPT-2 model in less than 30 seconds, whereas
Hao et al. [31] requires more than 4000 seconds. (2) Non-
interactive and light communication. Our system can be easily
transformed into a non-interactive proof using the Fiat-Shamir
Transformation [20], enabling the proof to be downloaded and
publicly verified offline. In contrast, previous VOLE-based so-
lutions [31, 41] cannot be converted to non-interactive proofs.
Additionally, VOLE-based solutions require gigabytes of data
transfer between the prover and verifier, whereas our method
is communication-efficient, with a proof size of 101 KB.
Performance improvement techniques. Although our sys-
tem demonstrates several advantages, further optimizations
are essential to ensure its applicability in real-world scenarios.
Specifically, we aim to generate proof for GPT-2 inference
within one minute on a CPU server. To achieve this, we per-
form comprehensive optimizations at both the constraint and
circuit levels.



Constraints in ZKPs are essentially equations that define
the computational relationships between variables. In our
system, the constraints correspond to the computation pro-
cess of the LLM. These constraints are then converted into
arithmetic and non-arithmetic relations. Non-arithmetic rela-
tions include range and exponentiation relations. Finally, our
backend proves these relations. The workflow is illustrated in
Figure 1. Our improvements consist of two key components:
constraint fusion and circuit squeeze.

At the constraint level, we propose a generalized optimiza-
tion technique called constraint fusion. This technique aims
to combine the computation of two adjacent rounding con-
straints, thereby reducing the overall number of rounding
constraints. In our system, range relations are introduced for
checking the correctness of rounding constraints; however,
the large number of range relations becomes a bottleneck dur-
ing the proof generation. By reducing the number of rounding
constraints, we can alleviate the associated range relations,
thereby mitigating prover overhead. Importantly, our con-
straint fusion technique preserves the original computational
precision. After applying constraint fusion, we significantly
reduce the proving cost of different LLM layers.

At the circuit level, we propose a technique called circuit
squeeze to accelerate the prover. We observed existing GKR-
based systems [6, 40] cannot effectively utilize multi-thread
parallelism. Profiling reveals that the low utilization stems
from the cost of thread synchronization during the sumcheck
at each layer. Our circuit squeeze significantly enhances par-
allelism by reducing circuit depth and increasing the number
of gates per layer. This optimization is possible due to the
topological independence of subcircuits responsible for ver-
ifying each rounding constraint. This independence arises
from our design choice to store the outputs of rounding com-
putations as advice in the input layer, rather than computing
them directly. For matrix multiplication layers not connected
to standard GKR-style gates, we extend the protocol from [56]
to support proving multiple matrix multiplications simulta-
neously. Our method provides substantial acceleration for
the LLM circuit by eliminating sequential dependencies in
proving computations across different NN layers.

Our key contributions are summarized as follows.

1. We are the first to present a practical ZKP design for LLMs
under general settings. Our system overcomes the inefficien-
cies and limitations of existing works, particularly those
related to large communication overhead and hardware re-
quirements. The framework is compatible with LLMs uti-
lizing prevalent architectures such as GPT-2 [50] and is
capable of proving its inference under 25 seconds.

2. We propose efficient proof constructions for linear and
non-linear layers. For linear layers, we propose a new al-
gorithm to accelerate the matrix multiplication protocol
in [56], reducing its concrete computation cost by orders

of magnitude. For non-linear layers, we propose efficient
methods based on advice to prove different ZKP-unfriendly
operations. This reduces the proving cost by orders com-
pared with existing prevalent solutions. To further enhance
our system’s efficiency, we propose constraint fusion, re-
ducing the number of range relations to prove. Addition-
ally, We propose circuit squeeze, which offers substantial
parallelism acceleration by eliminating the sequential de-
pendency in proving different NN layers.

3. We conduct extensive experiments on real-world CPU
servers to validate the efficiency of our system. Results
show that our implementation achieves over 279× speedup
compared to Hao et al. (USENIX Security’24) and 185×
speedup over the state-of-the-art Plonk-based approach [10]
(Eurosys’24). Even compared to the concurrent VOLE-
based scheme [41], our non-interactive system delivers a
5.1× speedup in prover time and reduces the proof size by
23,000×.

2 Background

2.1 LLM and quantization
An LLM primarily consists of L stacked transformer
blocks [57]. Each transformer block comprises various layers,
including matrix multiplication, normalization (LLMs use
layer normalization [5]), attention, and GeLU. The input to
an LLM is an embedding matrix x of dimensions s×d, where
s is the length of text tokens, d denotes the hidden dimension
size of the LLM. After x passes through the initial LLM trans-
former block, the output is a matrix f with dimensions s×d.
This matrix f is then passed to the next transformer block.
The process repeats through all L blocks.

Real number calculations in ML models pose significant
challenges for ZKP. Most ZKP approaches for ML [10,18,19,
35, 40, 41, 55] utilize quantization to convert real numbers to
integers, making computations easier to prove. We adopt the
quantization approach from zkCNN [40], where a real number
x is mapped to an integer q using the formula x = S(q− z). S
denotes a floating-point number representing the quantization
scale, and z is an integer known as the zero-point. All values
of LLM parameters and intermediate results in computation
are expressed as Q-bit integers q. The scale S and zero-point
z are typically shared within a NN layer or tensor.

When two numbers are added and their scales are the same,
we add their integer parts: x1 + x2 = S(qx1 − z1 + qx2 − z2).
However, when multiplying two numbers, we must perform
rescaling to avoid overflow. Specifically, when multiplying
x = Sxqx and y = Syqy to obtain z = Szqz (in this and subse-
quent derivations, we neglect the zero-point for simplicity),
we compute qz = round

(
C1
C2
·qx ·qy

)
, where C1 and C2 are

Q-bit integers that ensure C1
C2
≈ Sx·Sy

Sz
. This approach allows



floating-point addition and multiplication to be approximated
through integer computation.

2.2 GKR for ML-friendly circuit
In our system, the computation steps of the quantized LLM are
converted into constraints. And relations to prove are derived
from constraints. These relations generally fall into two types.
The first type is arithmetic relations, composed of additions
and multiplications. We prove the arithmetic relations by
converting them into an arithmetic circuit and using the GKR
protocol [30]. The second type is non-arithmetic relations,
such as range relations and exponentiation relations. They are
proved by the Lasso protocol [53] introduced in Section 2.3.

The GKR protocol [30] uses the sumcheck protocol [42] as
a building block to prove circuits consisting of addition and
multiplication gates. Each gate takes at most two inputs from
the previous layer and computes the result.

GKR protocol is widely adopted in ZKP due to its effi-
ciency. However, the classical GKR protocol has a significant
limitation under many ML scenarios: The weight matrices of
ML models are committed in the input layer. Since each gate
only receives input from the preceding layer, these weights
must be relayed across the circuit to reach the desired layer.
This process introduces numerous additional gates, leading to
high computational overhead.

Define identity function eq(x,y), which takes two bit-
strings x and y of the same length as input. eq(·, ·) returns 1
when x = y; otherwise returns 0. Suppose ẽq(·, ·) is the multi-
linear extension of eq(·, ·). ẽq(x,y) = ∏

ℓ
i=1((1− xi)(1− yi)+

xiyi).

Definition 1 (Multi-linear Extension [13]). Let V :
{0,1}ℓ→ F be a function. The multi-linear extension of V is
the unique polynomial Ṽ : Fℓ→ F such that Ṽ (x1,x2, ...,xℓ) =
V (x1,x2, ...,xℓ) for all x1,x2, . . . ,xℓ ∈ {0,1}. Ṽ can be ex-
pressed as Ṽ (x1,x2, ...,xℓ) = ∑b∈{0,1}ℓ ẽq(x,b) ·V (b).

To resolve the above limitation of GKR, [40,69] introduced
an elegant circuit construction alongside an extension of the
GKR protocol. They modified the definitions of addition and
multiplication gates to enable them to receive input either
from the preceding layer or from the input layer directly. This
reduces the need to relay values from the input layer. For more
details, please refer to [40]. This particular circuit configu-
ration is referred to as a "machine learning-friendly circuit"
(ML-friendly circuit).

Following the notations in [40], we define a function Vi :
{0,1}si → F that takes a binary string b and returns the output
of gate b in layer i. With this definition, V0 corresponds to
the input layer, and Vd corresponds to the circuit output. We
denote the multi-linear extension of Vi as Ṽi. We also denote
the subset of values in the input layer that connect to the i-th
layer as Vi,in, with its multi-linear extension denoted as Ṽi,in(·).

At the i-th circuit layer, the prover and verifier invoke the
sumcheck protocol to reduce two evaluations of Ṽi to two
evaluations of Ṽi−1(·) and two evaluations of Ṽi,in(·).

When reaching the input layer, the verifier has received two
evaluations of Ṽi,in(·) for the input at each layer. To combine
these evaluations into a single evaluation of the multi-linear
extension of the input Ṽin(·), the prover and verifier invoke
the sumcheck protocol.

2.3 Lookup protocol and range proof support
Lookup protocols are key components in ZKPs to prove non-
arithmetic relations. They allow the prover to convince the
verifier that a secret vector is contained within a public table.
Specifically, for a vector H ∈ Fm, the prover proves that each
element of H exists within T ∈ Fn, where T is a public table
of size n, and m is the number of queries to the table.

In our approach, we utilize lookup protocols to prove ex-
ponentiation relations and range relations. When verifying
the range relation ℓi ≤ xi ≤ ri for i = 0,1, . . . ,m−1, we can
transform it into proving 0≤ xi− ℓi ≤ t and 0≤ ri−xi ≤ t. ℓi
and ri are integers, and t is defined as the maximum value of
ri−ℓi. We then construct a lookup table T containing numbers
0,1, . . . , t. Using the lookup protocol, we check that all xi− ℓi
and ri−xi are in the table T, thus proving the m range relations.
In our scenario, t may be quite large, potentially exceeding
232, resulting in a huge table size. Such large tables are infea-
sible for most existing lookup table approaches [16,23,66,67],
as these approaches either require prover time linear in the
table size n or need preprocessing time of O(n logn).

However, a recent advancement in lookup protocols,
Lasso [53], addresses this problem. When the table is struc-
tured—meaning that the query to the table can be decomposed
into sub-queries to much smaller subtables—the prover’s cost
in Lasso, for any integer parameter c > 1, is dominated by
committing to 3 · c ·m+ c ·n1/c field elements. The table we
use in our scheme to check range relations satisfies the struc-
tured table requirement in Lasso. Moreover, the exponentia-
tion table utilized in our scheme is relatively small. Therefore,
despite the exponentiation table being unstructured, Lasso
achieves an efficient complexity of O(n+m). For technical
details of Lasso, please refer to [53]. For technical details of
integrating Lasso into GKR, please refer to Appendix A.

3 Technical Overview

An LLM consists of many linear and non-linear layers. To
ensure applicability in real-world scenarios, a practical ZKP
system for LLMs should be able to efficiently prove both
types of layers. In this paper, we design efficient proofs for
linear and non-linear layers in LLMs.
Efficient proof for linear layers. Our proof of linear layers
is based on the well-known protocol in [56] to prove ma-
trix multiplication. This protocol is adopted directly in many



existing ZKP for ML systems [6, 40, 55]. It proves the mul-
tiplication of matrix A with shape n×m and matrix B with
shape m×k results in matrix C. This protocol achieves a theo-
retical complexity of O(nm+mk), which is optimal. However,
we identified significant opportunities to improve its practi-
cal implementation by notably reducing the field operations
required by the protocol.

The time cost of [56] is dominated by computing the book-
keeping table for the input matrices A and B. We propose
a grouping algorithm to accelerate the computation of the
bookkeeping table. Grouping performs many dot products be-
tween input matrix elements and precomputed ẽq evaluations,
effectively halving field multiplications.

Further optimization opportunities arise from leveraging
the properties of matrix elements in our scenario. Due to the
requirement of sumcheck, the matrix dimensions are padded
to powers of 2 with zero. During each dot product compu-
tation, we skip these zero elements, saving numerous field
operations. Additionally, due to quantization, all matrix field
elements have relatively small values. Thus we accelerate
computation by precomputing field multiplication results.

As a result of these optimizations, our final implementa-
tion of bookkeeping table computation for matrix A is bot-
tlenecked by n ·m field additions. In contrast, the classical
implementation in [40, 56] consumes 2⌈logn⌉+⌈logm⌉+1 field
multiplications and 2⌈logn⌉+⌈logm⌉ field additions. In many
cases, this amounts to approximately 4n ·m field multiplica-
tions. Given that field multiplications are several times more
expensive than field additions [27, 44], our optimization is
estimated to reduce the overhead of [56]’s protocol by nearly
an order of magnitude.
Efficient proof for non-linear layers. Non-linear functions
in LLMs are composed of division, square root, and expo-
nentiation operations, which are not ZKP-friendly. Previous
work [31, 61] proved these operations with hundreds or even
thousands of relations, thus incurring high overhead. To re-
solve this inefficiency, inspired by the idea of checking advice
correctness in [26, 28], we propose to check division, square
root, and exponentiation in one non-arithmetic relation.

Take division as an example. The division of quantized
x,y is z = round(C1

C2
· qx

qy
), where C1,C2 are integers such that

C1
C2
≈ Sx

Sy·Sz
. We derive C2qy(2qz−1)≤ 2C1 ·qx <C2qy(2qz +

1). Similarly, square root can be transformed into one range
relation. For exponentiation operations, we prepare a lookup
table containing all possible evaluations of the exponentiation
result. Then, each exponentiation operation can be verified
through a single query to the lookup table. The range relations
and lookup queries above are proved with the state-of-the-
art Lasso [53] lookup protocol. For arithmetic relations, we
compose them into an arithmetic circuit and prove them with
the ML-friendly GKR protocol introduced in Section 2.2.

Now we are ready to prove each LLM layer using the
previously designed building blocks. To further maximize the

prover efficiency, we introduce optimization methods at both
the constraint and circuit levels.
Constraint fusion. Our first optimization idea is to merge
adjacent rounding constraints to reduce the number of range
relations to be proved. We discovered that proving range re-
lations is the bottleneck in our system, as it is more costly
than proving arithmetic relations. To address this issue, we
combine computations across adjacent rounding constraints
before rounding. Under appropriate conditions, merging these
constraints reduces proving overhead by saving range rela-
tions to prove introduced by rounding. We developed rules
to automatically determine the optimal merging strategies for
different LLM layers.

For example, during the computation of the normalization
layer, given an input vector x with length n, its mean µ= ∑

n
i=1 xi
n

and variance σ =

√
(∑n

i=1(xi−µ)2)
n . Assume we want to prove

σ is correct. [31, 41] proves the following constraints: (1)

qµ = round(
∑

n
i=1 qxi

n ) (2) qt = round(
(∑n

i=1(qxi−qµ)
2)

n ) (3) qσ =
round(

√
qt). Based on these constraints, their systems can

prove qσ in three range relations.
However, leveraging the idea of merging adjacent rounding

constraints, we can reduce the range relations that need to
be proven to one. Specifically, we merge the constraints on
qµ and qt , and substitute them into the last constraint on qσ.

We first turn qµ and qt into the analytic form: qµ =
∑

n
i=1 qxi

n

and qt =
(∑n

i=1(qxi−qµ)
2)

n . By substituting them into qσ, we

have qσ = round(

√
(∑n

i=1(qxi−
∑

n
i=1 qxi

n )2)

n ). We eventually de-
rive the following range relation: n(2qσ−1)2 ≤ ∑

n
i=1(nqxi −

∑
n
i=1 qxi)

2 < n(2qσ +1)2.
Circuit squeeze. We observe that our circuit, like existing
GKR-based ZKP systems for ML [6,38,40], cannot effectively
utilize multi-thread parallelism. This inefficiency comes from
two main factors: (1) the small size of each circuit layer
and (2) the Fiat-Shamir Transformation [20], which restricts
parallelization to be conducted within each layer. As a result,
significant time is wasted on synchronization due to the small
sizes handled by each sumcheck.

Our optimization design stems from the fact that the com-
putation order of the GKR protocol follows the circuit archi-
tecture. Thus, we have to reorganize the circuit architecture to
improve parallelism opportunity. Our key observation is that
due to our advice design, the subcircuits checking different
constraints have no topological dependence. We can squeeze
different subcircuits into the same set of layers leveraging this
topological independence.

The remaining challenge is how to squeeze multiple ma-
trix multiplication layers. This challenge arises because ma-
trix multiplications are proven through the protocol in [56]
rather than GKR-style sumcheck. To address this, we design
a new protocol that simultaneously checks the correctness of
multiple matrix multiplications based on sumcheck. Circuit



squeezing substantially enhances the performance of the LLM
circuit by boosting the utilization of multi-thread parallelism.

4 Efficient Proof for LLM

4.1 Constraints for LLM layers
Utilizing the quantization scheme introduced in Section 2.1,
we derive the constraints for different LLM layers.
Matrix multiplication. For matrix a and weight W , the matrix
multiplication layer is computed as b = a ·W . The result
matrix b needs to be rescaled to avoid overflow. The constraint
is qb = round( Sa·SW

Sb
a ·W ).

Attention. The attention layer takes h matrix triples
(Qi,Ki,Vi) from each head as input and computes:
P = Concat

i=1,··· ,h
(So f tmax(Qi·Ki√

d
)Vi). The computation of

each head is data-independent before concatenation; for
simplicity, we only write the constraints for a single head,
and neglect the subscript for each head. Our constraints are
listed as follows:

qC = round(
SQ ·SK

SC
qQ ·qK)

qE = round(
SC

SE
√

d
·qC)

qEmax,i = maxqEi j , for i = 1, · · ·s
qei j = exp(qEmax,i −qEi j), for i = 1, · · ·s, j = 1, · · · , i

qsi j = round(
qei j

Ss ∑
i
j=1 qei j

), for i = 1, · · ·s, j = 1, · · · , i

qP = round(
Ss ·SV

SP
qs ·qV )

(1)

where SQ,SK ,SV ,SC,SE ,Ss,SP are the scales of qQ, qK , qV ,
qC, qE , qs and qP, respectively.
GeLU. GeLU is computed as G = g · Φ(g). Directly
proving it in ZKP is very challenging. Multiple ap-
proximations have been proposed but are not enough
ZKP-friendly. We design a better approximation as
G = g+|g|

2 − 1|g|>=th · g · (a · |g|2 + b · |g|+ c). For design
details and comparisons, please see Appendix C. The
constraints corresponding to our approximation are listed as
follows:

s = 1|qg|≥qth

qp = round(
aS2

gq2
g +bSg|qg|+ c

Sp
)

qD = round(Sp ·qg ·qp)

qG =
qg +Qg

2
− s ·qD

(2)

where Qg = |qg| , qth,qG share scale Sg with qg, qth =
round(th/Sg).
Normalization. For matrix x, the normalization layer is
computed as yi j = γ j ·

xi j−µi
σi

+ β j, where µi,σi is the mean
and variance of row i of x, γ,β are vectors parameterizing the
affine transform. The constraints are listed as follows:

qµi = round(
d

∑
j=1

qxi j/d)

qti = round(
d

∑
j=1

(qxi j −qµi)
2/d)

qσi = round(
√

qti)

qsi = round(
qxi j −qµi

Ss ·qσi

)

qyi j = round(
SsSγ

Sy
·qγ j ·qsi +

Sγ

Sy
·qβ j)

(3)

where µ,σ share scale Sx with qx, β share scale Sγ with γ.
Due to the similarity in computational workflows, the con-

straints proposed in the concurrent work by Lu et al. [41]
share some similarities with ours. The key distinction lies in
our novel zk-friendly approximation for GeLU, referred to as
z-GeLU, detailed in Appendix C. In contrast, Lu et al. [41]
adopt the approximation from I-BERT [36] directly.

4.2 Efficient proof for linear layers
After deriving the LLM constraints, we now consider how to
efficiently prove them. We first consider linear layers since
they account for the majority of computation in plain-text
LLM inference. We integrate the dedicated protocol for matrix
multiplication in [56] into the ML-friendly GKR framework
in a manner identical to that of [40]. Although the protocol
achieves optimal prover time in theory, we identify significant
opportunities to improve its concrete efficiency.

4.2.1 Analysis of classical implementation of [56]

The protocol of [56] is as follows: Denote the two input
matrices as A,B, and the output matrix as C. Assume A,B,C
have original shapes n×m,m× k,n× k, respectively. Due to
requirements of sumcheck, these matrices are all padded to
powers of 2 in both width and height. [56]’s protocol uses the
sumcheck protocol to reduce the claim on C̃(z) to claims on
Ã(·), B̃(·). z is a random point chosen by the verifier. Denote
a||b as the concatenation of vectors a and b. Let z = r||r′,
where r ∈ F⌈logn⌉,r′ ∈ F⌈logk⌉. By the property of matrix mul-
tiplication, we have C̃(r||r′) = ∑c∈{0,1}⌈logm⌉ Ã(r||c)B̃(c||r′).

Before running the sumcheck protocol on this equa-
tion, the prover first computes the bookkeeping tables:
Ã(r||c) and B̃(c||r′) for all c ∈ {0,1}⌈logm⌉. Existing
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Figure 2: Intuition of grouping algorithm for computing the
bookkeeping table.

methods [40, 56] leverage the following equation to itera-
tively compute Ã(r||c): Ã(r1, · · · ,ri,bi+1, · · · ,b⌈logn⌉||c)
= (1 − ri) Ã(r1, · · · ,ri−1,0,bi+1, · · · ,b⌈logn⌉||c) +ri

Ã(r1, · · · ,ri−1,1,bi+1, · · · ,b⌈logn⌉||c). This is identical
to the "memorization" method in [58] to evaluate multi-
linear extension. The method’s computation cost for each c
is 2 · (2⌈logn⌉−1 + · · ·+ 1) ≈ 2⌈logn⌉+1 field multiplications
and 2⌈logn⌉ field additions. Therefore, the total cost for
computing Ã(r||·) is 2⌈logn⌉+⌈logm⌉+1 field multiplications
and 2⌈logn⌉+⌈logm⌉ field additions.

4.2.2 Optimizations based on grouping and matrix ele-
ment properties

Next, we will introduce our efficient algorithm for computing
the bookkeeping table.
Efficient computation by grouping. By the defini-
tion of multi-linear extension, we have Ã(r||c) =

∑b∈{0,1}⌈logn⌉ ẽq(r,b)Ã(b||c). Without loss of general-
ity, assume ⌈logn⌉ is even. Let r = x||y,b = L||R,

where x,y,L,R ∈ F
⌈logn⌉

2 . We observe that ẽq(·):
ẽq(r,b) = ẽq(x,L) · ẽq(y,R). Leveraging this property,
we have:

Ã(r||c) = ∑

L∈{0,1}
⌈logn⌉

2

ẽq(x,L) · ( ∑

R∈{0,1}
⌈logn⌉

2

ẽq(y,R) · Ã(L||R||c))

(4)

Computing using the above equation is more efficient. The
procedure is as follows: All ẽq(x, ·) and ẽq(y, ·) are precom-

puted once in O(2
⌈logn⌉

2 ) field operations. Imagine there are

2
⌈logn⌉

2 groups represented by different L. Computing Equa-
tion 4 could be viewed as conducting a dot product between
ẽq(y, ·) and Ã(L, ·, ||c) in each group; then the result of the
dot product in each group forms a vector; at last this vector
performs a dot product with ẽq(x, ·) to obtain Ã(r||c). An
intuitive example can be found in Figure 2.
Skipping computation by leveraging sparsity. The benefit
of leveraging grouping is that we can efficiently exploit the

properties of matrix A, since the elements of A are directly
used in each inner dot product. Specifically, during the com-
putation of each inner dot product, we can skip over elements
in A that are zeros, thereby reducing the number of field opera-
tions required by our method. This opportunity arises because
matrix A is padded with many zero elements to satisfy the
requirement of sumcheck.
Saving field multiplication by precomputing. We also ob-
serve another important property of matrix A is that elements
in A are all quantized numbers. This means that all of their
value satisfy ∈ [0,2Q], where 2Q << |F|. Thus, the multiplica-
tion between each ẽq(y, ·) and different Ã(b||c) only obtains
at most 2Q +1 different results. Furthermore, these possible
results are {0,1, · · · ,2Q} times of ẽq(y,b ⌈logn⌉

2 +1
· · ·b⌈logn⌉).

We can efficiently derive all these results by only performing
simple field additions on ẽq(y,b ⌈logn⌉

2 +1
· · ·b⌈logn⌉).

Cost analysis. The full algorithm for computing the book-
keeping table for matrix A is shown in Algorithm 1. The
two bottlenecks in our computation is precomputing the field
multiplication results in line 10 and performing the inner
dot product based on precomputed results in line 18. These
two parts each correspond to 2⌈

logn
2 ⌉+Q field additions and

n ·m field additions. Our optimizations can significantly mit-
igate computation overhead compared with existing imple-
mentation [56]. Take computing the bookkeeping table of
the matrix of shape 3072× 768 in the GPT-2 feedforward
layer as an example. Based on previous analysis, the classical
method costs 8.4× 106 field multiplications and 4.2× 106

field additions. Substituting Q = 16, Our optimized method

costs n ·m+ 2
⌈logn⌉

2 +Q ≈ 4.5× 106 field additions. Assume
one field multiplication is 5 times cost of one field addition.
Our method is 10.2×more efficient than the classical method.
The optimization techniques presented in our work could also
be used to accelerate the evaluation of multi-linear extensions
under other scenarios in ZKP.

4.3 Efficient proof for non-linear layers
Proving non-linear layers in the LLM also poses a significant
challenge. The challenge comes from these layers invoking
ZKP-unfriendly operations such as division, square root, and
exponentiation. Existing approaches either simulate these
operations in the circuit—using binary decomposition and
floating-point emulation [40, 61] or proving numerical itera-
tions [17, 31]. These approaches all incur a large number of
relations to prove and significant overhead. For example, [61]
requires thousands of relations to prove division and exponen-
tiation operations.

Recent advances in ZKP systems [4, 26] leverage advice to
efficiently prove non-arithmetic operations. [4] proves ZKP-
unfriendly bitwise operations like XOR by taking the result
as advice and querying it in the lookup table. This is much
cheaper than simulating XOR in a binary circuit. Inspired



by these works, we propose using the computation result of
division, square root, and exponentiation as advice and check
the correctness of the computation. This is much cheaper than
simulating the computation in arithmetic relations.

For the division operation z = x
y , the actual constraint

is qz = round(C1
C2
· qx

qy
). We approximate Sx

Sy·Sz
using C1

C2
, C1

and C2 are integers. C1,C2 are obtained by searching in
an interval [1,2Q] and finding the nearest fraction to Sx

Sy·Sz
.

By the property of rounding, we have qz − 1
2 ≤

C1
C2
· qx

qy
<

qz +
1
2 . Thus, C2qy(2qz− 1) ≤ 2C1 · qx ≤ C2qy(2qz + 1)− 1.

Similarly, we can convert proving square root operation
qy = round(

√
qx) into a range relation: (2qy− 1)2 ≤ 4qx ≤

(2qy + 1)2− 1. Therefore, for division and square root op-
erations, we can transform checking their correctness into
a single range relation. For proving exponentiation opera-
tions, we construct a lookup table containing pairs of in-
put and output (qt , round(

eSt ·qt
Sz

)). Exponentiation operation

qz = round( eSt ·qt
Sz

) can be proved by querying (qt ,qz) in this
table, checking whether the pair belongs to the table. By lever-
aging the Lasso lookup protocol, we can efficiently prove
these non-arithmetic relations. Experiment results show that
our designs save the time cost of proving non-linear layers by
several orders.

Proving non-linear layers in the LLM also involves proving
some arithmetic relations. We assemble these relations into
an arithmetic circuit and then prove the circuit using the ML-
friendly GKR protocol.

4.4 Putting everything together
With the building blocks presented in the previous sections,
we construct a ZKP protocol for LLM. The values in the
LLM circuit’s input layer consist of public input and secret
witnesses. Following previous works [41, 55], our LLM cir-
cuit takes the input embedding matrix as public input. The
witness includes model weight, intermediate results obtained
by rounding, and queries to every lookup table. The prover
commits to all witness values. The commitment to weight is
done once in preprocessing and reused across all users. The
intermediate results and lookup query values depend on user
input. Thus, their commitment are computed for each user sep-
arately. The verifier runs the Lasso protocol with the prover to
check whether the non-arithmetic relations are satisfied. Then,
the prover and verifier run the GKR protocol on the arith-
metic circuit, checking all the arithmetic relations between
the variables. For the specified matrix multiplication layer, it
is proven by the dedicated protocol in [56] leveraging our
optimized algorithm in Section 4.2. After the GKR protocol,
the prover and verifier reduce the claim to the correctness of
a claim at the input layer. They open the commitment to the
input layer values to determine whether the protocol passes.
The compliance of all the relations ensures the correctness of

the whole LLM computation. The entire protocol is detailed
in Protocol 1 in Appendix A. The proofs of soundness and
completeness for the zkGPT protocol are provided in Ap-
pendix B. The zero-knowledge property can be incorporated
into the protocol by using masking polynomials in a manner
similar to that described in [69].

5 Constraint level optimization

In the previous sections we have built a non-interactive ZKP
system for LLM. To ensure better applicability in real-world
scenarios, we illustrate how we optimize our system at the
constraint level in this section.

Previous works most related to our research [35, 40] in-
troduced a technique to fuse the rescaling division after con-
volution with the subsequent ReLU constraint, reducing the
number of relations to prove. However, they did not analyze
constraint fusion opportunities in general cases, limiting the
method’s applicability to other NNs.

5.1 Constraint level optimization opportunity
In Section 4.1, we derive the constraints for each LLM layer.
Rounding is incorporated in these constraints to ensure that
intermediate results remain within the integer domain. How-
ever, the mapping of LLM layers to constraint sets is not
unique; different approximations can lead to multiple sets of
constraints, each with varying proving costs. These costs are
largely influenced by the number of roundings, as rounding
introduces range relations to prove, which are more computa-
tionally expensive than proving arithmetic relations.

Constraint fusion draws inspiration from operator fu-
sion [11, 46], a well-known method for accelerating NN exe-
cutions. The core idea of constraint fusion is to consolidate
various constraints into a more concise structure. In particular,
the approach involves merging computations within two adja-
cent rounding operations, resulting in one merged rounding
constraint, thereby decreasing the overhead of proving range
relations.

However, assessing the benefits of merging constraints is
challenging. Some merges can reduce the number of round-
ings at free cost. Some may even significantly increase over-
head. Additionally, some merges might not immediately re-
duce roundings but could pave the way for more effective
merges later. The diverse and varying forms of constraints
across computations further complicate manual analysis.

5.2 Constraint merging rules
Constraint classification. To better analyze the benefit of
merging constraints inside the constraint, we classify the ex-
isting constraints with rounding into several types:

• Type-I: constraints that only contain arithmetic compu-
tation (Add: qy = qx1 +qx2 , Mul: qy = qx1 ∗qx2 ).



Table 1: Merging different types of constraints. Whether merg-
ing constraint i with constraint j is profitable (denoted as P),
potentially beneficial (denoted as PB), or unprofitable (de-
noted as UP).

First const.
Second const.

I II III IV

I PB PB PB UP
II PB P P UP
III PB P P UP
IV UP UP UP UP

• Type-II: constraints that contain division mixed with
arithmetic computation. A typical representation is qy =

round(
Sx1 Sx2

Sy
qx1qx2) (we omit the addition for simplic-

ity).

• Type-III: constraints that contain square root mixed with
division and arithmetic computation. The simplified rep-
resentation is y = round(

√
t), where t is Type-I or Type-

II constraint.

• Type-IV: constraints that contain exponentiations.

Type-I and Type-II constraints are used in all LLM layers.
Type-III constraint is used in Normalization. Type-IV is em-
ployed by softmax function in attention layer.

Table 1 presents all potential constraint merging combi-
nations. A profitable merge results in performance gains by
reducing the number of rounding constraints while introduc-
ing minimal or no overhead on the arithmetic circuit side.
A potentially beneficial merging offers opportunities for im-
provement, though it may not directly reduce rounding or
increase proving costs. An unprofitable merge harms perfor-
mance as the introduced overhead outweighs the savings from
reducing the number of rounding constraints. We perform con-
straint merging only for profitable or potentially beneficial
cases, leaving unprofitable ones untouched. The constraint
type may change with fusion, but it remains one of the four
fundamental types. In the following, we elaborate on profit
analysis of representative combinations in Table 1.

Merging Type-II with itself is profitable. Merging Type-
II constraints reduces the number of range relations to prove,
and does not introduce extra overhead on the arithmetic circuit
side.

Merging Type-II with Type-III is profitable. For instance,
assume the first constraint is qy = round

(
Cx1x2

Cy
qx1qx2

)
, where

Cx1x2 and Cy are integers. And the second constraint is qz =
round(√qy) . After merging, the rounding constraint derives
one range relations forming (2qz− 1)2Cy ≤ 4Cx1x2qx1qx2 ≤
(2qz +1)2Cy. Although merging introduces small overhead
due to the arithmetic circuit (square), it is minimal compared
to the rounding saved.

Merging Type-III with Type-II or Type-III is profitable.
Consider the first constraint qy = round(

√
qx) and the sec-

ond constraint qz = round
(

Cyy′
Czqy

qy′
)

, where Cyy′ and Cz are

integers and Cyy′
Cz
≈ SySy′

Sz
. The rounding constraint derives to

(2qz−1)2C2
z qx ≤ 4C2

yy′q
2
y′ ≤ (2qz +1)2C2

z qx. Although extra
square computation introduce arithmetic overhead, it is still
minimal compared to the rounding saved. Similar with merg-
ing Type-III with Type-II, merging Type-III with Type-III is
profitable too.

Merging Type-I with others (except Type-IV) or merg-
ing others (except Type-IV) with Type-I is potentially ben-
eficial. It is easy to see that merging Type-I with other con-
straints does not introduce extra gate or change the round-
ing constraints since Type-I constraint only contain arith-
metic computation. While merging does not directly eliminate
rounding, it creates opportunities for further merging with ad-
jacent constraints, potentially reducing overall complexity
and overhead.

Merging with Type-IV or Merging Type-IV with others
is unprofitable. For the first case, since the query for the
lookup table must be an integer, rounding can not be elimi-
nated for this case. For the second case, it prevents reusing
the same exponentiation table across different LLM layers,
leading to a high commitment cost for multiple extra tables
and diluting the final performance.

Sequential merging strategy. Given a group of constraints,
we sequentially merge adjacent constraints when the merging
is either profitable (P) or potentially beneficial (PB). This
merging process is repeated until no further profitable merges
are possible. The final set of constraints remains consistent
regardless of the merging order.

Error analysis. Assume we have constraint qy =
round(F(qx)), qz = round(G(qy)), F,G are arbitrary real
number functions. Denote the merged constraint as qz′ =
round(G(F(qx))). Denote p = G(F(qx)). We find that |qz′ −
p| ≤ |qz− p|. This is because of, qz′ equals round(p). Thus it
is the integer that minimizes |qz′− p|. Since qz is also belongs
to the integer domain, |qz′ − p| ≤ |qz− p| must hold. This
means that constraint fusion never increases the numerical
error of quantization. In contrast, it often reduces this error.

5.3 Optimized constraint after merging
After conducting sequential merging for each LLM layer, we
can get appropriate constraint groups.
Attention. After merging qC with qE and qsi j with qPi j , we are
able to effectively reduce the number of rounding constraints
of attention from 3

2 hs(s+ 1)+ sd to 1
2 hs(s+ 1)+ sd. This

reduction results in a nearly 30% decrease in the total number
of rounding constraints required compared to the original
attention.



qE = round(
SQ ·SK

SE
√

d
·qQ ·qK)

qEmax,i = maxqEi j , for i = 1, · · ·s
qei j = exp(qEmax,i −qEi j), for i = 1, · · ·s, j = 1, · · · , i

qPi j = round(
SV (qe ·qV )i j

SP ∑
i
k=1 qeik

)

(5)

GELU After merging qD with qG, we are able to effectively
reduce the number of GeLU rounding constraints from 2sd
to sd. This reduction results in a nearly 50% decrease in the
total number of rounding constraints required compared to
the original GeLU.

s = 1|qx|≥qth

qg = round(
qx +Qx

2
− s · (Qx(a ·S2

xq2
x +b ·SxQx + c)))

(6)

Normalization. The merging process for Normalization
differs slightly from the usual strategy; After merging qµi with
qti and qsi , we did not merge qσi with qyi j to prevent increasing
the arithmetic and commitment overhead by a factor of N. As
a result, we reduce the number of rounding constraints for
normalization from 3s+ 2sd to s+ sd. This leads to nearly
a 50% decrease in the total number of rounding constraints
compared to the original normalization.

qσi = round(

√
∑

d
j=1(qxi j ·d−∑

d
j=1 qxi j)

2

d2 )

qyi j = round(
Sγ

Sy
·qγ j ·

qxi j ·d−∑
d
j=1 qxi j

qσi ·d
+

Sγ

Sy
·qβ j)

(7)

For a detailed explanation of the rounding savings effect
from constraint fusion, readers are referred to Table 7 in the
Appendix.

6 Circuit Optimization

A persistent challenge in ZKP is maximizing the utilization
of computational resources during proof generation. ZKP par-
allelization [39, 62, 65] offers a promising solution. However,
existing ZKP systems for ML [6, 38, 40, 41, 61] fail to fully
exploit parallelism. We address this limitation by leveraging
the insight that the LLM execution trace is already known
during proving. Consequently, proving LLM execution does
not need to follow the sequential order of LLM computation.

6.1 Circuit level optimization opportunity
We discover that existing ZKP for ML approaches [6, 31, 38,
40, 41] achieve poor speedup under multi-thread parallelism.

For sVOLE-based systems [31,41], high communication over-
head undermines the parallelism opportunity. As profiled in
emp-zk [12], doubling computational resources yields less
than 10% speedup under limited network bandwidth.

Although GKR-based systems [6, 38, 40] do not require
network communication, they still suffer from low parallelism
utilization. In the GKR protocol, parallelization is conducted
within the sumcheck protocol of each layer. Different en-
tries of the bookkeeping table are computed using multi-
threaded parallelism by leveraging the "distributed sumcheck"
paradigm proposed in [65]. The parallelization is limited
within the sumcheck of each layer due to the Fiat-Shamir
Transformation. Note that NNs typically consist of many lay-
ers, each with several constraints. Thus, for proving an NN
circuit, the computation required for sumcheck in each layer
is relatively small. Consequently, the synchronization process
occupies a large proportion of computation time, leading to
poor speedup.

Based on previous observations, our optimization is to
squeeze the circuit into a wider and shallower shape. However,
circuit squeezing faces the challenge that GKR circuits natu-
rally impose layer-wise dependency. If variable b is computed
based on variable a, then b has to be placed in subsequent
layers of a. This makes it seem impossible to squeeze the
circuit without making large changes to the circuit first.

6.2 Acceleration by circuit squeeze
The core idea of circuit squeeze is to break the layer-wise
dependency based on commitment. Then, multiple subcircuits
are topologically independent and could be squeezed into the
same set of layers. Circuit squeezing helps reduce the circuit
depth and increase the number of gates per layer, offering
much better opportunities for parallelism.
Zero overhead circuit squeeze. Inspired by the construction
of the Plonk [24] proof system, which has no sequential de-
pendency in proving different constraints, we discover that
committing intermediate results in the input layer can elimi-
nate the topological dependency in the GKR circuit.

Since each subcircuit checks constraints using advice to
reduce overhead, no additional commitment effort is required
to squeeze these subcircuits. Moreover, as each subcircuit
directly takes input from the input layer, they are topologi-
cally independent. Leveraging this independence, multiple
subcircuits can be combined into a single set of layers, thereby
restructuring the circuit into a wider and shallower form.

In general, we can apply circuit squeezing as follows: for
each circuit layer that checks the correctness of a rounding
constraint, starting from the i-th layer (i > 1), we move each
gate originally in layer j to the ( j− i+ 1)-th layer, while
maintaining the connections between these gates. For our
LLM circuit, since intermediate results are already committed
as advice, squeezing incurs zero overhead.
Circuit squeeze for matrix multiplication. However, the



above mentioned technique to merge layers comprised of
normal GKR gates is not applicable to matrix multiplication
layers. Because these layers are proved using the dedicated
protocol [56]. And the protocol in [56] only supports proving
one matrix multiplication in each invocation.

To solve this problem, we design a new protocol general-
izing [56] to support proving multiple matrix multiplication.
Assume the circuit layer we consider is layer 1, and the num-
ber of matrix multiplications is M. After execution of GKR
on previous layers, we have claims Ṽ1(r1) and Ṽ1(r2).

Inspired by the method in [6] proving multi-channel con-
volution in sumcheck, we can check multiple matrix multi-
plications by concatenating the matrices and checking the
"batched" matrix multiplication relation using sumcheck. De-
note the two matrices involving in the i-th matrix multiplica-
tion as Ai,Bi, the output of the i−th matrix multiplication as
Ci. Assume all Ai are padded to the same shape, with each
dimension to the power of 2. Bi is padded in the same man-
ner. Denote Ai has shape n×m, Bi has shape m× k, Ci has
shape n× k. Assume the number of matrix multiplications
M is also padded to the power of 2. Denote the concatena-
tion of Ai as A ∈ FM×n×m, B ∈ FM×m×k is defined similarly.
V1 ∈ FM×n×k is the flattened form of the concatenation of
Ci. For ∀i∈ {0,1}logM, j ∈ {0,1}logn, p∈ {0,1}logk, we have
V1(i|| j||p) = ∑c∈{0,1}logm A(i|| j||c) ·B(i||c||p).

The above equation is well-suited for proving within
the sumcheck protocol. Let r1 = r′||r′x||r′y,r2 = r′′||r′′x ||r′′y ,
where r′,r′′ ∈ FlogM,r′x,r

′′
x ∈ Flogn,r′y,r

′′
y ∈ Flogk. We have

the following:

α ·Ṽ1(r1)+β ·Ṽ1(r2)

= ∑
c∈{0,1}logm

αÃ(r′||r′x||c) · B̃(r′||c||r′y)+βÃ(r′′||r′′x ||c) · B̃(r′′||c||r′′y )

(8)

Running sumcheck on the above equation, we can reduce
claims on Ṽ1(r1) and Ṽ1(r2) to Ã(·) and B̃(·). The remain-
ing challenge is whether we can generalize the efficient
method to run the protocol in [56] in Section 4.2 to our
new protocol. Essentially, we need to efficiently compute
Ã(r′||r′x||c), B̃(r′||c||r′y), Ã(r′′||r′′x ||c), B̃(r′′||c||r′′y ) for each c∈
{0,1}logm. By symmetry, we only need to consider
how to efficiently compute Ã(r′||r′x||c). By the prop-
erty of multi-linear extension, we have Ã(r′||r′x||c) =

∑b′∈{0,1}logM+logn ẽq(r′||r′x,b′) · Ã(b′||c).
The equation above is similar in form to the bookkeep-

ing table used in the matrix multiplication protocol of [56].
Leveraging techniques similar to Algorithm 1 described in
Section 4.2, we can compute the above equation efficiently.
Due to space constraints, we omit the details.

Table 2: Acceleration of matrix optimizations.

(32×768)· (768×3072) Optimized GPT-2 matrices Optimized
Time 0.25s 0.037s 9.8s 1.5s

7 Experiment

In this section, we present a comprehensive evaluation of our
ZKP framework for LLM.

7.1 Implementations
Software. Our work is mainly implemented in C++. Our
implementations of sum-check and ML-friendly GKR are
based on the open source implementation of zkCNN [40].
We use Hyrax [59] as our polynomial commitment scheme
because of its efficient prover time, reasonable proof size, and
transparency. The prover time is O(N) and the proof size and
the verifier time are O(

√
N) for a polynomial of size N. We

utilize the mcl library* to implement operations on finite field
and BN254 elliptic curve adopted in [7,39]. BN254 provides
around 100 bits of security.
Hardware. Our evaluations are performed on a server
equipped with an Intel Xeon 6126 2.60GHz 16-Core CPU
and 200GB of memory. We leverage 32 thread parallelization
by default.
Implementation acceleration. We accelerate the prover’s
commitment of the circuit’s input values using multi-thread
parallelism and Pippenger algorithm [49]. Each sumcheck
involved in the GKR protocol is accelerated by multi-thread
parallelism.
Quantization details. In our experiments, we use quantiza-
tion level Q = 16. This means that all quantized values q
belongs to range [0,65536]. For ensuring value bound, the
prover proves that the committed quantized weight lies within
the range [0,2Q], while the quantized input embedding is pub-
lic and easy to verify. Rescaling with appropriate scaling
factor is performed at each layer to ensure the computation
results always fall the range [0,2Q].
Baselines. In this paper, we compare the performance of our
system with existing ZKP systems for LLM [10, 31, 41, 55].
[10] and [41] natively supports multi-thread parallelism thus
we directly use their implementation for comparison. The
proof system of [55] is purely based on GPU parallelism
implemented by CUDA. Thus, we run it on a server with
NVIDIA A100 GPU. For the VOLE-based schemes [31, 41],
we evaluate performance under a standard network environ-
ment with 500 Mbps bandwidth.



7.2 Performance of zkGPT
7.2.1 Performance of linear layers

We first benchmark the performance of our efficient algorithm
for accelerating proof of matrix multiplications under single
thread. The results can be found in Table 2.

We can see that our algorithm does achieve very significant
optimization effect compared with the original algorithm in
[56]. For the case of proving matrix multiplication happening
in the GPT-2 feed-forward network, our method achieves an
acceleration ratio of 6.8×.

For a single transformer block in GPT-2, it contains 4 ma-
trix multiplications, each weight matrix has shape 768×
2304,768× 768,768× 3024,3024× 768, respectively. We
also profile the overhead of proving all of these matrix multi-
plications happening in GPT-2 inference in Table 2. We can
see that, proving these multiplications utilizing the classical
method in [56] requires about 10 seconds, which is quite con-
siderable compared with our goal of squeezing our prover time
of GPT-2 inference into one minute. Leveraging our optimiza-
tions, the time cost of proving all multiplications in GPT-2
can be reduced by 6.5×. This highlights the significance of
our efficient method for proving matrix multiplications.

7.2.2 Overall performance

Next, we compare our system with existing ZKP systems for
LLM. We also measure the LLM functionality loss caused
by quantization. From Table 3, we can see that even un-
der single thread setting and without our optimizations, our
system achieves quite impressive performance compared to
existing work. Compared with one of the state-of-the-art
non-interactive proof schemes ZKML [10] which requires
more than 1 hour to generate a proof for GPT-2, our system
is 13× more efficient, consuming approximately 5 minutes.
The major reason is that our system is based on GKR and
avoids the expensive FFT operations in Plonk-based systems.
Comparing with state-of-the-art VOLE based scheme [41],
though our system’s prover time is a few times longer with-
out multi-thread parallelism and optimizations, our scheme is
non-interactive and the proof size is smaller by two orders of
magnitude. This reduces the need of heavy communication
burden for the verifier, also enabling the proof to be verified
by the public.

After applying our proposed optimizations and multi-thread
parallelism, the advantage of our system is amplified. Table 3
shows that our fully optimized system is 185× more efficient
than the state-of-the-art non-interactive scheme ZKML, and
5.1× more efficient than the state-of-the-art VOLE-based
scheme Lu et al [41], while our communication is 23000×
more efficient. Note that in MLaaS settings, the verifier nor-
mally owns much less computation power.

*https://github.com/herumi/mcl

Table 3: Time comparison of different proof systems for GPT-
2 model.

Scheme Prover time Verifier Time Proof size
Hao et al [31]† 6096s 6.85 GB

ZKML [10] (32 thread) 4026s 12.1s 7.8 K
Lu et al [41]‡ (32 thread) 112.3s 31.4s 2.24 GB

zkLLM [55] ( 6912 CUDA cores) 15.8s 0.54s 126K
Ours (Single thread) wo all opt 319.6s 0.46s 154K

Ours (32 thread) wo all opt 52.3s 0.46s 154K
Ours (32 thread) w all opt 21.8s 0.35s 101K

Table 4: Generate text quality of GPT-2 and our quantization
on various datasets.

Dataset WikiText2 PTB LAMBADA
FP32 29.3 41.3 48.4

Our quantization 29.5 41.7 48.7

When comparing with zkLLM [55], though our concrete
prover performance is 30% slower, we mainly attribute it to
different hardware configurations. CPUs generally have infe-
rior parallel computing power compared with GPUs. For the
16 core CPU we use in our experiments, it has 10.2 TFLOPS
computing power in total. While for A100 GPU, its comput-
ing power is 312 TFLOPS when fully utilized [47], which
is 30× stronger. This indicates that our system utilizes com-
putation power in a much more effective way. This roots in
multiple reasons (1) zkLLM proves each transformer block
sequentially; Due to our circuit squeezing technique, our sys-
tem has better parallelization opportunity than zkLLM. (2)
zkLLM directly adopts the matrix multiplication protocol in
[56], while our optimized method consumes much less field
operations. (3) zkLLM did not propose techniques to reduce
the number of non-arithmetic relations to prove from the con-
straint level. Thus our system is very likely to outperform
them under the same hardware.

We also assess the functional degradation resulting from
quantization. Following previous works in quantization [15,
64], we leverage the perplexity (PPL) [34] metric computed
on multiple datasets. This metric measures the quality of
LLM generated text, lower PPL indicated higher quality. We
employ WikiText-2 [45], PTB corpus [43], and LAMBADA
dataset [48], which are all commonly used benchmarks in
LLM quantization [14, 36, 64]. On the three datasets, we
can see that, the increase on PPL are all less than 0.5. This
indicates that the LLM functionality loss introduced by our
quantization is very small.

† [31] is not open-sourced. We sum and report the numbers provided in
their paper.

‡For VOLE based systems we include the communication time into the
prover time for fair comparison.



Table 5: Acceleration ratio of constraint fusion and circuit
squeeze.

Prover Time
(wo Cons-Opt)

Prover Time
(wo Circ-Opt)

Prover Time
(all Opt)

Commit advice 1.5s 0.8s 0.8s

GKR Layer SC 6.0s 20.3s 5.7s
Combine SC 3.3s 3.1s 3.2s

Lookup 22.4s 12.3s 12.1s
Total 33.2s 36.5s 21.8s

7.3 Effect of optimization at different levels
We also study the effect of our proposed two optimizations,
constraint fusion, circuit compression, respectively.

From Table 5 we can see the comparison between our fully
optimized system and our optimized system only disabling
constraint and circuit optimization, respectively. The over-
all acceleration ratio of constraint optimization is 1.5×, its
mainly composed of reducing the lookup procedure runtime
by 1.8× and reducing the commitment time on auxiliary in-
puts by 1.9×. The lookup runtime is reduced due to constraint
optimization reduces the number of range relations the system
has to check. The commitment time is reduced mainly be-
cause the number of committed intermediate rounding results
is reduced. For circuit optimization, we can see that for the
per-layer sumcheck procedure in GKR protocol, by adopting
circuit optimization, we can achieve an acceleration ratio of
1.7× compared with not adopting circuit optimization. Be-
fore adopting circuit optimization, the layer-wise sumcheck
in GKR protocol is actually quite time consuming. After opti-
mizing this part, the time ratio of GKR layer-wise sumcheck
is reduced to 26%.

From Table 3 we can see that, compared with our system
without optimization implemented in single thread, further
jointly adopting constraint optimization and circuit optimiza-
tion accelerates the end-to-end performance by 14.7×, un-
locking great optimization opportunities aside from trivially
accelerating everything by multi-thread parallelism.

8 Related Work

Zero-Knowledge Proof for machine learning. There has
been significant research on developing ZKPs for ML. Pi-
oneering work [68] introduced methods to prove decision
trees. Subsequent efforts focused on verifying the correctness
of CNN executions, as seen in [18], [37], [61] and [35]. To
address inefficiencies in previous approaches, zkCNN [40]
developed a specialized protocol to prove convolutions. [6]
further optimized zkCNN [40].

Recently, there has been a surge in research on building
ZKPs for LLMs. ZKML [10] generated proofs for GPT-2 [50]
inference, requiring over an hour to generate a proof for GPT-
2. Concurrently, Hao et al. [31] employed digit decompo-
sition to prove non-linear layers in neural networks. How-

ever, their approach does not support end-to-end proof gener-
ation for LLMs. Lu et al. [41] proposed optimizations to [31],
achieving significantly better performance. Another concur-
rent work, zkLLM [55], focused on proving the attention
layer using digit decomposition. Their system is implemented
purely with GPU parallelism. However, it is incompatible
with provers lacking advanced GPUs.

Compared to proving inference, proving training processes
is far more challenging. Several studies [1, 25, 54, 60] have
explored the ZKP of training various ML models. Current
approaches still involve significant overhead.
Proof aggregation. Our constraint merging technique is
very different from proof-aggregation techniques like Bul-
letproofs [8]. They focus on reducing proof size, but cannot
reduce the prover’s computation. Our constraint merging tech-
nique decreases the prover time.

9 Discussion

9.1 Analysis of different merging levels
We also explore the impact of different constraint merging
levels. (A) No merging, which is the slowest case. (B) Our
proposed method. (C) Fastest merging, which is conducting
all beneficial mergings to the constraints. (D) Full merging,
which is conducting all possible mergings to the constraints.
The constraints for level (A) are introduced in Section 4.1,
and the constraints for level (B) are introduced in Section 5.3.
Our proposed method (B) theoretically achieves nearly ideal
performance.

Next, we analyze the possible mergings that could be con-
ducted on top of level (B).
Attention. In Equation 5, merging the computations of
qei j and qPi j is not feasible.This is because ensuring the
correctness of qPi j requires lookup queries that must be fully
computable within the GKR circuit. Thus, all variables used
that cannot be directly arithmetically computed (qei j ) has to
be checked with additional lookup constraints that cannot
be merged. However, merging qEmax,i and qei, j together is
possible. The merged constraint is as follows:

qei j = exp(max
j

qEi j −qEi j), for i = 1, · · ·s, j = 1, · · · , i (9)

Level (D) adopts this merging. However, it introduces an
infeasible computational cost. Specifically, checking the com-
putation of qei, j using a lookup table can be modeled as a
non-linear function with qEi as its input. Based on our quan-
tization, qEi is a vector with length 32 each element is 16
bit. Consequently, the total number of possible inputs to this
lookup table is 216×32 = 2512, resulting in a prohibitively
computational cost. Both level (B) and level (C) avoid this
merging since such aggressive merging significantly harms
performance.



Gelu. GeLU cannot be further merged, this is due to checking
Equation 6 requires checking the range relation 2qg− 1 ≤
qx + |qx| −1|qx|≥qth · |qx|

(
a ·S2

xq2
x +b ·Sx|qx|+ c

)
< 2qg + 1.

In the relation, 1|qx|≥qth cannot be arithmetically computed.
Thus, s has to be provided in the input layer as witness. And an
additional lookup query is required to ensure the correctness
of s. In conclusion, GeLU is already fully merged in level (B)
and cannot be further merged.
Normalization. The layer normalization constraint for level
(B) is depicted in Equation 5. Level (C) and (D) further merges
qσi with qyi j . However, it only reduces the number of rounding
constraints from sd + s to sd and is marginally beneficial.

9.2 Generalizability of our optimizations for
matrix multiplication proof

Our efficient construction for proving matrix multiplication
in Section 4.2 consists of three techniques. The first tech-
nique grouping reduces costs in general scenarios. Because
grouping imposes no assumptions on the density of matri-
ces. The second technique skipping computations based on
sparsity is effective only if the padded (power of 2) matrix
is sparse. However this is often the case in real-world matrix
multiplications, since the width or height of the matrix often
does not equal the power of 2. The third technique saving
field multiplication by precomputing requires the properties
of quantization to the input matrices. Thus it is mainly gener-
alizable to most cases of zero-knowledge machine learning.

9.3 Limitations of zkGPT
The primary limitation of zkGPT’s design lies in its reliance
on quantization, rendering it unsuitable for directly proving
the floating-point inference of neural networks. However, as
previously noted, most existing ZKP systems for machine
learning [10, 18, 37, 40, 41, 55] share this limitation due to
their dependence on quantization. Future work that could
be done includes (1) Exploring the proof generation under
floating-point computation. (2) Exploring proof generation
for LLM training. (3) Exploring domain-specific distributed
proof generation system tailored for LLM inference/training.

10 Conclusion

In this paper, we introduce a highly efficient ZKP framework
for large language models (LLMs). Our efficient methods
for proving both linear and non-linear layers in LLMs offer
huge performance improvements by orders of magnitude.
Additionally, we propose optimization techniques at both
the constraint and circuit levels. Finally, we implement our
scheme on GPT-2, and the evaluation results demonstrate a
significant speedup compared to existing methods.
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A zkGPT protocol

The core part of the zkGPT protocol is integrating Lasso
lookup protocol in the GKR protocol. The details are as
follows: Assume our system invokes t lookup tables. For
table j, we have to check the consistency of lookup vec-
tor A j (A j is part of the circuit’s witness and committed
together with the input). We can leverage random com-
bination to check the claim Ã j(r j) as ∑

t
j=1 r′′j Ã j(r j) =

∑z∈{0,1}sin Ṽin(z)∑
t
j=1 r′′j C̃

′
j(r j,z), where r′′j are random points

send by the verifier. C′j(·) returns 1 if the x-th value in A j
is the z-th value in Vin, otherwise returns 0. The sumcheck
protocol reduces claims to Ã j to a single claim on Ṽin(·).

After invoking the Lasso protocol, we can check the con-
sistency of lookup vectors leveraging the above method. For

https://pub.aimind.so/openai-keeps-dumbing-down-chatgpt-6a6e4a173237
https://pub.aimind.so/openai-keeps-dumbing-down-chatgpt-6a6e4a173237


Protocol 1 (zkGPT Protocol). Let C be a circuit with m layers computing an LLM with model parameters W. Let X1 = X
be the input embedding, Xm = y be the model’s output embedding C(W,X) , and Xi be the output of the i-th layer of C.
• zkGPT.KeyGen(1λ): Run pp← zkPC.KeyGen(1λ) and outputs pp.
• zkGPT.Commit(W,pp,r): Define the multi-linear extension of W as W̃ . P commits to W̃ by running comW ←
zkGPT.Commit

(
W̃ ,pp,rW

)
and sends V comW .

• ⟨zkGPT.Prove(W,rW ) ,zkGPT.Verify (comW )⟩(X,pp) :
(1) Upon receiving X from V ,P evaluates the LLM to compute the prediction y = Xm, the values in each layer Xi,
the intermediate values aux, the lookup queries L. L is composed of L1∥L2, where L1 is the lookup values for the
range check table, L2 is the lookup values for the exponentiation table. P commits to aux,L by running comaux ←
zkPC.Commit( ˜aux, pp,raux),comL ← zkPC.Commit(L̃, pp,rL) and sends V comaux,comL and y = Xm. Without loss of
generality, we pad X,W, aux, L to the maximum length of the four, denoted as N. We arrange the input of the circuit as
X∥W∥aux∥L of size 4N.
(2) For the range check table and exponentiation table, P sends the Lasso-commitment to matrix M1 ∈ {0,1}m1×N1 ,M2 ∈
{0,1}m2×N2 , each consisting of c different log(m) )-variate multi-linear polynomials dim1, . . . ,dimc, respectively. V picks
random r1 ∈ Flogm1 ,r2 ∈ Flogm2 and sends r1,r2 to P . P claims to V on L̃1(r1), L̃2(r2).
(3) P and V apply Lasso Protocol on range check table and exponentiation table respectively. P proves that
∑y∈{0,1}logN1 M̃1(r1,y)T1[y] = L̃1(r1) and ∑y∈{0,1}logN2 M̃2(r2,y)T2[y] = L̃2(r2).

(4) V sends random r(m). Both parties compute X̃m

(
r(m)

)
.

(5) For i = m,m−1, . . . ,2, with X̃i

(
r(i)

)
,

If layer i is a matrix multiplication layer, P and V run a sumcheck protocol on X̃i(x,y) = ∑z X̃i−1(x,z) ·W̃i−1(z,y) using the

sumcheck algorithm for matrix multiplication proposed in [56]. At the end of the sumcheck, V receives X̃i−1

(
r(i−1)

)
and

W̃i−1

(
r(i−1)

)
.

If layer i belongs to other constraint layers, P and V run the GKR protocol. At the end of the sumcheck, V receives
X̃i−1

(
r(i−1)

)
and aũx xi−1

(
r(i−1)

)
.

(6) At the input layer, V has received X̃1

(
r(1)

)
, W̃i−1

(
r(i−1)

)
, ãuxi−1

(
r(i−1)

)
for i = m, . . . ,1, and L̃1(r1), L̃2(r2). P and

V run a sumcheck protocol to combine them into a single evaluation. At the end of the sumcheck, V receives ĩn(r).
(7) V validates in (rin) by opening the polynomial commitments. In particular, as the size of the input is 4N, let
r =

(
r1, . . . ,rlogN+2

)
and r− =

(
r1, . . . ,rlogN

)
,P and V run ⟨zkPC.Open(W̃ ,rW ),zkPC.Verify(comW )⟩(r−,pp) and

⟨zkPC.Open(aux,raux),zkPC.Verify(comaux)⟩(r−,pp). V receives W̃ (r−) and ˜aux(r−), and evaluates X̃1 (r−) locally. V
checks that ĩn(r)= X̃1 (r−) ·

(
1− rlogN+1

)(
1− rlogN+2

)
+W̃ (r−) ·

(
1− rlogN+1

)
rlogN+2+ ˜aux(r−) ·rlogN+1

(
1− rlogN+2

)
+

L̃(r−) · (1− rlogN+1)
(
1− rlogN+2

)
. If all the checks pass, V outputs 1; otherwise, V outputs 0.

the details of the entire zkGPT protocol combining Lasso and
GKR protocol, please refer to Protocol 1. For the security
analysis of the zkGPT protocol, please refer to Section B.

B Security Analysis of zkGPT protocol

Proof. Completeness. The completeness is straightforward
by the completeness of the GKR protocol and Lasso protocol.
Soundness. For the analysis of soundness, our protocol could
be viewed as the combination of GKR protocol and Lasso
protocol. Suppose the prediction sent by P is not correctly
computed, i.e., y ̸= pred(W,X), but still passes the verifica-
tion. This event can be divided into four cases:

• Case 1: all the values in aux,L are computed correctly.
By the Schwartz-Zippel lemma [52], in Step (4) of Proto-

col 1, X̃∗m
(

r(m)
)
̸= X̃m

(
r(m)

)
with all but probability 1

|F| .

Since with high probability X̃∗m
(

r(m)
)

is incorrect, and
in is correct, due to the soundness of GKR, the checks
in Step (5) and Step (7) of Protocol 1 can only pass with
negligible probability.

• Case 2: some values in aux is incorrect, L is fully com-
puted using this aux. In this case, due to the equiva-
lence between our defined constraints and corresponding
lookup relations, there must be some values in L incon-
sistent with the relations in two lookup tables. Due to
the soundness of Lasso protocol, the checks in Lasso

can only pass with probability at most O(
m1+N

1
c

1 +m2+N2
|F| )

which is negligible.

• Case 3: some values in aux is correct, L is inconsistent



z-GeLU xσ(1.702x) h-GeLU i-GeLU
L2 dist 0.0054 0.012 0.031 0.0082
L∞ dist 0.012 0.020 0.068 0.018

Table 6: Comparison of different approximation methods for
GELU. As metrics for approximation error, we report L2 and
L∞ distance from GELU across the range of [−4,4].

with this aux. Then some arithmetic relations checking L
and aux are not satisfied. Due to the soundness of GKR,
the checks in Step (5) and Step (7) of Protocol 1 can
only pass with negligible probability.

• Case 4: some values in aux is incorrect, L is inconsistent
with this aux. Similarly, some arithmetic relations check-
ing L and aux are not satisfied. Due to the soundness of
GKR, the checks in Step (5) and Step (7) of Protocol 1
can only pass with negligible probability.

By the union bound, the probability of V outputting 1 when
y ̸= pred(W,X) is negligible.

C GeLU approximations

There have been various studies in quantization lit-
erature for approximating GeLU function. For ex-
ample, [32] suggests using Sigmoid function to ap-
proximate erf: GeLU(x) ≈ xσ(1.702x), where σ(·)
is the Sigmoid function. [36] proposed another
approximation function for GeLU: i-GeLU(x) =
x
2

[
1+ sgn( x√

2
)
[
a(clip(| x√

2
|,max =−b)+b)2 +1

]]
,

where sgn denotes the sign function. Their method preserves
decent accuracy and has been adopted in ZKP systems like
Lu et al [41]. However, directly integrating i-GeLU into our
circuit will introduce large overhead due to invoking a large
number of non-arithmetic operations. This motivates the need
of deriving a more ZK-friendly approximation for GeLU.

We observe that y = GeLU(x) converges to y = x for
x → +∞, and converges to y = 0 for x → −∞. A natural
idea occurs: we could directly use ReLU to replace GeLU
when the input absolute value is large, and use a low or-
der polynomial to handle the case when the input abso-
lute value is small. We observe that the difference func-
tion D(x) = ReLU(x)−GeLU(x) is an even function. When
designing a simple function D′(x) to approximate D(x) on
[0,+∞), we can set D′(x) = 0 for x≥ t, when x < t, D′(x) =
x(a · x2 +b · x+ c). Then we solve min

a,b,c,t
max

x∈[0,t)
|D′(x)−D(x)|

to obtain z−GeLU .
We compare z-GELU along with existing approximations

in Tab 6, where z-GELU has an average error of 5.4×10−3.
This is 1.7× more accurate than current state-of-the-art i-
GELU whose average is 8.2×10−2.

Table 7: Comparison of before and after fusion.

Rounding Numbers Normalization Attention GeLU

Before Fusion 3s+2sd 3
2 hs(s+1)+ sd 2Ds

49224 43584 196608

After Fusion s+ sd 1
2 hs(s+1)+ sd Ds

24608 30912 98304

D Efficient matrix multiplication protocol

Algorithm 1 Efficient algorithm for bookkeeping table Ã(r||·)
1: Input: Matrix A, number of rows before padding n, num-

ber of rows before padding m, random evaluation point r,
quantization bits Q (quantization range: [0,2Q]).

2: Output: array BK[2⌈logm⌉], BK[c] = Ã(r||c)
3: Initialize array BK as zeros
4: Partition r = x||y
5: Compute ẽq(x, ·), ẽq(y, ·) using the memorization method

in [58], stored in table EQx[2
⌈ logn

2 ⌉],EQy[2
⌈ logn

2 ⌉]

6: Initialize array FM[2⌈
logn

2 ⌉][2Q +1] with zeros
7: Compute FM[R][t] = ẽq(y,R) · t:
8: for R ∈ {0,1}⌈

logn
2 ⌉ do

9: for t ∈ {1, · · · ,2Q} do
10: FM[R][t] = FM[R][t−1]+EQy[R]
11: end for
12: end for
13: for c ∈ [0,m−1] do
14: Initialize array AC[2⌈

logn
2 ⌉] with zeros

15: Compute the inner dot product:
16: for b ∈ [0,n−1] do
17: Partition bin(b) = bL||bR
18: AC[bL]+ = FM[bR][A[b][c]]
19: end for
20: for L ∈ {0,1}⌈

logn
2 ⌉ do

21: BK[c]+ = EQx[L] ·AC[L]
22: end for
23: end for
24: return BK
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