L01: Entity Relationship (ER) Model

Dr. Kenneth LEUNG

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong SAR, China
Entity

• ER is a model for the **logical level**
 - it describes the structure of the database at a high abstraction level

• A database can be modeled as
 - a collection of **entities**
 - a **relationship** among entities

An **entity** is an object that exists independently and is distinguishable from other objects

- **Examples:**
 • an employee, a company, a car, a student, a class etc.
 • color, age, etc. are not entities
An entity set is a set of entities of the same type

- Examples
 - a set of employees, a set of departments
- also called entity types

Entity Type: Employee

Entity Set:

e_1, e_2, e_3, ..., \ldots
An attribute is a property of an entity or a relationship

- **Examples:**
 - name, address, weight, height are properties of a *Person* entity
 - date of marriage is a property of a relationship *Marriage*

- **Attribute types:**
 - Simple
 - Composite
 - Multivalued
 - Derived
 - Key
Types of Attributes

- **Simple attribute:** contains a single value

Diagram:

```
Employee
   ^
  /|
EmpNo---Name---Address
```

```plaintext
Employee
   ^
  /|
EmpNo---Name---Address
```
Types of Attributes

- **Composite attribute:** consists of several components (e.g., address)
Types of Attributes

- Multivalued attribute: contains more than one value
• **Derived attribute:** computed from other attributes (e.g., age can be computed from the date of birth and the current date)
- **Key attribute**: uniquely identifies an entity

ER Model

![ER Model Diagram]

Relational Model

<table>
<thead>
<tr>
<th>EmpNo</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456</td>
<td>John Wong</td>
</tr>
<tr>
<td>456789</td>
<td>Mary Cheung</td>
</tr>
<tr>
<td>146777</td>
<td>John Wong</td>
</tr>
</tbody>
</table>
• An entity may have more than one key
 - A minimal set of attributes that uniquely identifies an entity is called a candidate key
 • Question: which are possible candidate keys for HKUST students?
 - Only one candidate key is selected to be the primary key
 • Question: which is the primary key for HKUST students?

• Sometimes artificial keys maybe created
 - Example: assume that we want to store information about the current offering of CSIT5300. We can select a unique number (e.g., 1235) to serve as the key.
 - Question: which are possible alternatives for this example, without introducing additional attributes?

• Composite Key: contains two or more attributes
E-R diagram for entity customer
A relationship is an association among several entities

- The **degree** refers to the number of entity sets that participate in the relationship set
 - Relationship sets that involve **two** entity sets are called **binary** (or of degree two)
 - Relationship sets among **more than two** entity sets are called **ternary**
• **borrower** is a relationship between *customer* and *loan*
 - it means that a customer can be associated with one or more loans and vice versa
• **depositor** is a relationship between **customer** and **accounts**
• **access-date** is an attribute of **depositor**
We express **cardinality constraints** by drawing either a directed line (→), signifying “one”, or an undirected line (—), signifying “many”, between the relationship set and the entity set.

One-to-one relationship
- A customer is associated with at most one loan via the relationship *borrower*
- A loan is associated with at most one customer via *borrower*
• One-to-many relationship
 - a loan is associated with at most one customer via borrower
 - a customer is associated with several (including 0) loans via borrower
Cardinality Constraints

• Many-to-one relationship
 - a loan is associated with several (including 0) customers via borrower
 - a customer is associated with at most one loan via borrower
Many-to-many relationship

- A customer is associated with several (possibly 0) loans via borrower
- A loan is associated with several (possibly 0) customers via borrower
Participation of an Entity Set in a Relationship Set

- **Total participation** (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., participation of *loan* in *borrower* is total
 every loan must have at least a customer associated to it via *borrower*

- **Partial participation**: some entities may not participate in any relationship in the relationship set
 - E.g., participation of *customer* in *borrower* is partial
 some customers may not have any loans
Cardinality Limits

- The edge between loan and borrower has a cardinality limit of 1..1
 - the minimum and the maximum cardinality are both 1
 - each loan must have exactly one associated customer
- The limit 0..* on the edge from customer to borrower indicates that a customer can have zero or more loans.

- Observe that
 - the relationship borrower is one to many from customer to loan
 - the participation of loan in borrower is total

- Hence, cardinality limits can express cardinality and participation constraints
• Entity sets of a relationship need not be distinct
• The labels “manager” and “worker” are called roles; they specify how employee entities interact via the works-for relationship set
• Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles
• Role labels are optional, and are used to clarify semantics of the relationship
The combination of primary keys of the participating entity sets forms a super key of a relationship set:

- $(\text{customer-id, account-number})$ is the super key of depositor.
- This means that a pair of entities can have at most one relationship in a particular relationship set.
 - Problem: if we wish to track all access dates to each account by each customer, we cannot assume a relationship for each access.
 - Solution: use a multivalued attribute for access dates.

Must consider the mapping cardinality of the relationship set when deciding the candidate keys.
Ternary Relationship Sets

- Example:
 - Suppose that employees of a bank have jobs (responsibilities) at multiple branches, with different jobs at different branches
 - Then there is a ternary relationship set between entity sets employee, job and branch
Some relationships that appear to be ternary may be better represented using binary relationships

- **Example:** A ternary relationship *parents*, relating a child to his/her father and mother, is best replaced by two binary relationships, *father* and *mother*

 - Using two binary relationships allows partial information (e.g. only mother being known)

- But there are some relationships that are naturally ternary

 - **Example:** *works-on*
In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set.

Procedure (degree 3)
- Replace \(R \) between entity sets \(A, B \) and \(C \) by an entity set \(E \), and three relationship sets: \(R_A \) relating \(E \) and \(A \), \(R_B \) relating \(E \) and \(B \) and \(R_C \) relating \(E \) and \(C \).
- Create a special identifying attribute for \(E \).
- Add any attributes of \(R \) to \(E \).
- For each relationship \((a_i, b_i, c_i)\) in \(R \), (i) create a new entity \(e_i \) in the entity set \(E \), (ii) add \((e_i, a_i)\) to \(R_A \), (iii) add \((e_i, b_i)\) to \(R_B \), (iv) add \((e_i, c_i)\) to \(R_C \).
Example

Converting Ternary Relationships to Binary Form

Table:

<table>
<thead>
<tr>
<th></th>
<th>R_a</th>
<th>R_b</th>
<th>R_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td>e_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>c_1</td>
<td>e_2</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>c_2</td>
<td>e_3</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>c_2</td>
<td>e_4</td>
</tr>
</tbody>
</table>
Weak Entity Sets

- An entity set that **does not have a primary key** is referred to as a **weak entity set**
- The existence of a weak entity set depends on the existence of an **identifying entity set**
 - it must relate to the identifying entity set via a **total, one-to-many relationship set** from the identifying to the weak entity set
 - this relationship is called **identifying relationship**
- The **discriminator** (or **partial key**) of a weak entity set is the set of attributes that distinguishes the entities in the weak entity set that depend on a particular strong entity set
- The **primary key** of a weak entity set is formed by
 - the primary key of the (strong) identifying entity set
 - the weak entity set’s discriminator
Weak Entity Sets

- A weak entity set is depicted by a **double rectangle**
- An identifying relationship is depicted by a **double diamond**
- We underline the discriminator of a weak entity set with a **dashed line**
- **Example:**
 - discriminator of *payment*: *payment-number*
 - Primary key for *payment*: *(loan-number, payment-number)*
• Another example:
 - A child may not be old enough to have a HKID number
 - Even if he/she has a HKID number, the company may not be interested in keeping it in the database.
ISA (‘is a’) Hierarchies

- If we declare $A \text{ ISA } B$, every A entity is also considered to be a B entity
- As in C++ (and other program languages), attributes are inherited

- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass
 - To identify entities that participate in a relationship
ISA (‘is a’) Hierarchies

- **Overlap constraints:**
 - Can Joe be both an Hourly_Emps and a Contract_Emps entity?

- **Covering constraints:**
 - Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity?
Summary of Symbols

- **Many to Many Relationship**
- **Many to One Relationship**
- **One to One Relationship**
- **Cardinality Limits**
- **Role Name**
- **Role Indicator**
- **Total Generalization**
- **Disjoint Generalization**
- **ISA (Specialization or Generalization)**
Example
- For each employee we want to store the office number, location of the office (e.g., Building A, Floor 6), and telephone.
- Several employees share the same office

Office as attribute

Office as entity

ER Design Decisions – Entity vs. Attribute
Example
- Can you see some differences?
- E.g., can you have accounts without a customer?

A possible guideline
- A relationship set describes an action that occurs between entities

Account as an entity

Account as relationship
Example:
- We want to record the period that an employ works for some department
- Differences below?
• **Example:**
 - an account must be associated with exactly one branch
 - two different branches are allowed to have accounts with the same number