Exercise #1 – Part A

Employee (Eid, Ename, Salary),
Department (Did, Dname, Eid),
Works (Did, Eid)

Give SQL queries for the following algebra expressions

\[\pi_{Ename}(\sigma_{Eid=5}(Employee)) \]

- select Ename
 - from Employee
 - where Eid=5

\[\pi_{Eid}(Employee) - \pi_{Eid}(Works) \]

- select Eid from Employee
 - except
 - select Eid from Works

\[\pi_{Ename}[\rho(E, Employee) \ JOIN_{Eid} (\pi_{Eid}(Employee) - \pi_{Eid}(Works))] \]

- select Ename from Employee
 - where not exists (select *
 - from Works
 - where Employee.Eid=Works.Eid)
Exercise #1 – Part B

Employee (Eid, Ename, Salary), **Department** (Did, Dname, Eid), **Works** (Did, Eid)

```sql
π_{Employee.Ename, Department.Eid} (Employee JOIN_{Eid} Works JOIN_{Did} Department)
```

```sql
select Employee.Ename, Department.Eid
from Employee, Works, Department
where Employee.Eid=Works.Eid and
    Works.Did=Department.Did
```

```sql
ρ(E1, Employee), ρ(E2, Employee)
```

```sql
π_{Employee.Ename} (Employee JOIN_{Eid} ((π_{E1.Eid} E1) - (π_{E1.Eid} (σ_{E1.Salary<E2.Salary} E1 x E2))))
```

```sql
select E1.name
from Employee as E1
where E1.salary >= all (select E2.salary
from Employee as E2)
```
Revision on Group By

- **Motivation:** Group by permits us to display aggregate results (e.g., max, min, sum) for groups
 - For instance, if we have `group by X`, we will get a result for every different value of X
- **Recall that aggregate queries without group by return just a single number**
- If we put an attribute in `select`, the attribute **must** also appear in `group by`. *The opposite is not true.* there may be attributes in `group by` that do not appear in `select`.
- Any condition that appears in `where`, is applied before the formation of groups – in other words, records that do not pass the `where` condition are eliminated **before** the formation of groups.
- Any condition that appears in `having` refers to the groups and is applied **after** the formation of the groups. The condition must involve aggregate functions, or attributes that appear in the `select` or `group by` lines.
Q1: Find the total number of copies in stock for each poet

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tsetelo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

select poet, sum(copies_in_stock) as sum
from Writer
group by poet
Exercise #2 – Q2

Q2: For each poet, find the max, min, avg and total number of copies in stock

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tstetlo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

```sql
select poet, max(copies_in_stock) as max, min(copies_in_stock) as min, 
avg(copies_in_stock) as avg, sum(copies_in_stock) as sum
from Writer
group by poet
```

<table>
<thead>
<tr>
<th>poet</th>
<th>max</th>
<th>min</th>
<th>avg</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>21</td>
<td>2</td>
<td>11.5</td>
<td>23</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>8</td>
<td>2</td>
<td>4.33</td>
<td>13</td>
</tr>
</tbody>
</table>
Q3: For each poet, find the max, min, avg and total number of copies in stock - take into account only books that have > 5 copies in stock.

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tstetlo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

```sql
select poet, max(copies_in_stock) as max, min(copies_in_stock) as min,
      avg(copies_in_stock) as avg, sum(copies_in_stock) as sum
from Writer
where copies_in_stock > 5
group by poet
```

<table>
<thead>
<tr>
<th>poet</th>
<th>max</th>
<th>min</th>
<th>avg</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Q4: Find the total number of copies in stock for each poet who has a total of more than 20 copies in stock

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tstetlo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

```sql
select poet, sum(copies_in_stock) as sum
from Writer
group by poet
having sum > 20
```

<table>
<thead>
<tr>
<th>poet</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>23</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>13</td>
</tr>
</tbody>
</table>
Q5: Find the total number of copies in stock for each poet who has a total of more than 20 copies in stock - take into account only books that have more than 5 copies in stock.

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tstetlo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

```sql
SELECT poet, SUM(copies_in_stock) AS sum
FROM Writer
WHERE copies_in_stock > 5
GROUP BY poet
HAVING sum > 20
```
Exercise #2 – Q6

Q6: Find the total number of copies in stock for each poet whose name starts with any letter after “E”

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tstetlo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

Solution #1

```sql
select poet, sum(copies_in_stock) as sum
from Writer
where poet > "E"
group by poet
```

Solution #2

```sql
select poet, sum(copies_in_stock) as sum
from Writer
group by poet
having poet > "E"
```
Q7: Find the total number of copies in stock for each poet who has more than 2 books

<table>
<thead>
<tr>
<th>poet</th>
<th>book</th>
<th>copies_in_stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Livingstone</td>
<td>The Skull</td>
<td>21</td>
</tr>
<tr>
<td>Douglas Livingstone</td>
<td>A Littoral Zone</td>
<td>2</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Tstetlo</td>
<td>3</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>Must Weep</td>
<td>8</td>
</tr>
<tr>
<td>Mongane Wally</td>
<td>A Tough Tale</td>
<td>2</td>
</tr>
</tbody>
</table>

select poet, sum(copies_in_stock) as sum
from Writer
group by poet
having count(*)>2

What will be the result of this query?
select poet
from Writer
group by poet
having count(*)>2

<table>
<thead>
<tr>
<th>poet</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mongane Wally</td>
<td>13</td>
</tr>
</tbody>
</table>
Exercise #3 – Part A

Sailors (sid, sname, rating, age),
Reserves (sid, bid, date),
Boats (bid, bname, color)

Find the number of sailor records

```
select count(*)
from Sailors
```

Find the average age of sailors with rating 10

```
select avg(S.age)
from Sailors as S
where S.rating=10
```

Find how many different ratings exist for sailors who are called Bob

```
select count(distinct S.rating)
from Sailors as S
where S.sname='Bob'
```
Find name and age of the oldest sailor(s)

select S.sname, max(S.age)
from Sailors as S

Illegal! If there is no group by, we can only have aggregates (without attributes).

Correct solution

select S.sname, S.age
from Sailors as S
where S.age =
 (select max(S2.age)
 from Sailors as S2)
Exercise #3 – Part C

For each red boat, display the bid and the number of reservations for this boat

```sql
select B.bid, count(*) as scount
from Boats as B, Reserves as R
where R.bid=B.bid and B.color='red'
group by B.bid
```

For each red boat, display the name and the number of reservations for this boat

```sql
select B.bname, count(*) as scount
from Boats as B, Reserves as R
where R.bid=B.bid and B.color='red'
group by B.bid, B.bname
```
Select the rating and the minimum age of the youngest sailor with age > 18, for each rating with at least 2 such sailors.

```sql
SELECT S.rating, MIN(S.age)
FROM Sailors AS S
WHERE S.age > 18
GROUP BY S.rating
HAVING COUNT(*) > 1
```

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>71</td>
<td>zorba</td>
<td>10</td>
<td>16.0</td>
</tr>
<tr>
<td>64</td>
<td>horatio</td>
<td>7</td>
<td>35.0</td>
</tr>
<tr>
<td>29</td>
<td>brutus</td>
<td>1</td>
<td>33.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Answer relation

<table>
<thead>
<tr>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Exercise #3 – Part E

Find the age of the youngest sailor with age > 18, for each rating with at least 2 sailors (of any age)

```
select S.rating, min(S.age)
from Sailors as S
where S.age > 18
group by S.rating
having 1 < (select count(*)
            from Sailors as S2
            where S.rating=S2.rating)
```
Exercise #3 – Part F

Find those ratings for which the average age is the minimum over all ratings

```
select Temp.rating, Temp.avgage
from (select S.rating, avg(S.age) as avgage
      from Sailors as S
      group by S.rating) as Temp
where Temp.avgage = (select min(Temp.avgage) from Temp)
```