CSI T5300: Advanced Database Systems

E05: Functional Dependencies - Exercises

Dr. Kenneth LEUNG

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong SAR, China
Assume the table on the right contains the only set of tuples that may appear in a table R. Which of the following FDs hold in R?

<table>
<thead>
<tr>
<th>tuple</th>
<th>X</th>
<th>Y</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x₁</td>
<td>y₁</td>
<td>v₁</td>
<td>w₁</td>
</tr>
<tr>
<td>2</td>
<td>x₁</td>
<td>y₁</td>
<td>v₂</td>
<td>w₂</td>
</tr>
<tr>
<td>3</td>
<td>x₂</td>
<td>y₁</td>
<td>v₁</td>
<td>w₃</td>
</tr>
<tr>
<td>4</td>
<td>x₂</td>
<td>y₁</td>
<td>v₃</td>
<td>w₄</td>
</tr>
</tbody>
</table>

- **{X} → {X}**
 Yes – trivial (holds in any table)

- **{X} → {Y}**
 Yes – all values of Y are identical

- **{X} → {V}**
 No – see first two rows

- **{X} → {W}**
 No – same as before

- **{Y} → {X}**
 No (same for {Y} → {V,W})

- **{W} → {X}**
 Yes – all W values are different

- **{X,V} → {Y}**
 Yes – X alone determines Y

- **{Y,V} → {X}**
 No – see rows 1 and 3

Exercise #1

kwtleung@cse.ust.hk
CSIT5300 2
In the previous example, we assumed that we know all possible records in a table, which is not usually true.

In general by looking at an instance of a relation, we can only tell FDs that are **NOT** satisfied.

List 5 FDs that are not satisfied in the table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₁</td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>c₂</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>c₁</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>c₃</td>
</tr>
</tbody>
</table>

Solution

- \{B\}→\{A\}
- \{B\}→\{C\}
- \{C\}→\{A\}
- \{A\}→\{C\}
- \{A,B\}→\{C\}
In reality, FDs are given **implicitly** in the form of **constraints** when designing a database.

Let a relation \(R(\text{title}, \text{theater}, \text{city}) \) where \(\text{title} \) is the name of a movie, \(\text{theater} \) is the name of a theater playing the movie and \(\text{city} \) is the city where the theater is located.

We are given the following constraints:
- Two different cities cannot have theaters with the same name.
- Two different theaters in the same city cannot play the same movie.
- A theater can play many movies (e.g., cineplex).

Write the set of functional dependencies implied by the above assumptions:

\[
\{\text{Theater}\} \rightarrow \{\text{City}\} \quad \text{(if we know the theater, we know the city where it is located – the opposite is not true as a city can have many theaters)}
\]

\[
\{\text{City}, \text{Title}\} \rightarrow \{\text{Theater}\}
\]

Can you identify the candidate key(s)?

City, Title and Theater, Title
We want to create the database for a bank that contains accounts, branches, and customers. We are given the following constraints:

- An account cannot be shared by multiple customers.
- Two different branches do not have the same account.
- Each customer can have at most one account in a branch (but different accounts in different branches).

Write the functional dependencies implied by the above constraints

Solution

\{\text{Account}\} \rightarrow \{\text{Customer}\}
\{\text{Account}\} \rightarrow \{\text{Branch}\}
\{\text{Customer, Branch}\} \rightarrow \{\text{Account}\}

Write the candidate key(s):

Customer, Branch and Account
Let \(R(A,B,C) \). Assume that we do not know the keys of the table.

How would you test if \(A \) is a candidate key of \(R \) with a SQL query?

Solution

```sql
select A
from R
group by A
having count(*) > 1
```

- If this query gives a non-empty result, then \(A \) is not a key.
- If the result is empty, **we cannot be sure!**

What about testing if the dependency \(\{A\} \rightarrow \{B\} \) holds in \(R \)?

Solution

- Same as before, but replace the last line with
  ```sql
  having count(distinct B) > 1
  ```
Let the rule: if $X \rightarrow Z$ and $Y \rightarrow Z$, then $X \rightarrow Y$. Show that this rule is not sound (correct) with a counter-example.

Solution

- Let’s use $R(X, Y, Z)$
- We want to find an instance of R where the rule is violated
- Let’s say that R contains just two tuples:
 - (x_1, y_1, z_1)
 - (x_1, y_2, z_1)
- $\{X\} \rightarrow \{Z\}$ and $\{Y\} \rightarrow \{Z\}$ hold, but $\{X\} \rightarrow \{Y\}$ is not true
Consider a relation $R(X,Y,U,V,W)$ with the following set of dependencies:

- $\{X\} \rightarrow \{Y\}, \{U,V\} \rightarrow \{W\}, \{V\} \rightarrow \{X\}$

Find the closure of each attribute.

Solution

$X^+ = \{X, Y\}$
$Y^+ = \{Y\}$
$U^+ = \{U\}$
$V^+ = \{V, X, Y\}$
$W^+ = \{W\}$

What is the primary key of R?

UV
R = (A, B, C, G, H, I)
F = \{A \to B, A \to C, CG \to H, CG \to I, B \to H\}

Is AG a (super)key of R given F?

Compute AG+ and check if AG+ contains the entire R:
1. Result = AG
2. Result = ABCG (A \to C; A \to B and A \subseteq AG)
3. Result = ABCGH (CG \to H and CG \subseteq AGBC)
4. Result = ABCGHI (CG \to I and CG \subseteq AGBCH)

AG+ is a superkey of R given F

Is AG a candidate key?

1. AG \to R
2. Does A+ \to R?
3. Does G+ \to R? If both are NO, then AG is a candidate key
Let the relation schema \(R(\text{A,B,C,D,E}) \) and the set of functional dependencies: \(F = \{ \{A\} \rightarrow \{B\}, \{A,B\} \rightarrow \{C\}, \{D\} \rightarrow \{A,C\} \} \):

Find the canonical cover of \(F \)

\[
\{ A \rightarrow B, AB \rightarrow C, D \rightarrow AC \} \\
\{ A \rightarrow B, A \rightarrow C, D \rightarrow AC \} \\
\{ A \rightarrow BC, D \rightarrow A \}
\]

Compute the attribute closures

\[
A^+ = \{A,B,C\} \\
B^+ = \{B\}, C^+ = \{C\} \\
D^+ = \{D,A,B,C\} \\
E^+ = \{E\}
\]

What is the primary key of \(R \)?

\(DE \)