CSI T5300: Advanced Database Systems

L05: Extraneous Attributes (Supplementary Slides)

Dr. Kenneth LEUNG

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong SAR, China
Extraneous Attributes

• There may be extraneous/redundant attributes on the LHS of a dependency
 - Let $\alpha \rightarrow \beta$ be a functional dependency in F. Attribute A is extraneous in α if F logically implies $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha - A \rightarrow \beta\}$

 - To test if attribute A is extraneous in α is extraneous in:
 1. compute ($\{\alpha\} - A)^+$ using the dependencies in F
 2. check that ($\{\alpha\} - A)^+$ contains A; if it does, A is extraneous

 - Example:
 \[
 F = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A,C\} \rightarrow \{D\}\} \quad \text{can be simplified to} \quad F' = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{D\}\}
 \]
 \[
 \text{Because: Compute } (\{A,C\} - C)^+ = A^+ \text{ using the dependencies in } F
 \]
 \[
 A^+ = \{A,B,C,D\} \text{ contains } C
 \]
 \[
 \text{Thus, } C \text{ in } \{A,C\} \rightarrow \{D\} \text{ is extraneous, and } F \text{ can be simplified to } F'
 \]
Extraneous Attributes

• There may be extraneous/redundant attributes on the RHS of a dependency
 - Let \(\alpha \rightarrow \beta \) be a functional dependency in F. Attribute A is extraneous in \(\beta \) if
 \[
 F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}
 \]
 logically implies F

 - To test if attribute A is extraneous in \(\beta \)
 1. compute \(\alpha^+ \) using only the dependencies in \(F' \)
 2. check that \(\alpha^+ \) contains A; if it does, A is extraneous

 - Example:
 \[
 F = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{C,D\}\}
 \]
 can be simplified to
 \[
 F' = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{D\}\}
 \]
 Because: Compute \(\alpha^+ \) using \(F' \)
 \[
 \alpha^+ = \{A,B,C,D\}
 \]
 contains C
 Thus, C in \(\{A\} \rightarrow \{C,D\} \) is extraneous, and F can be simplified to \(F' \)