L05: Functional Dependencies

Dr. Kenneth LEUNG

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Hong Kong SAR, China
Functional Dependencies (FD) – Definition

- Let \(R \) be a relation schema and \(X, Y \) be sets of attributes in \(R \).
- A **functional dependency** from \(X \) to \(Y \) exists if and only if:
 - For every instance \(|R|\) of \(R \), if two tuples in \(|R|\) agree on the values of the attributes in \(X \), then they agree on the values of the attributes in \(Y \).
- We write \(X \rightarrow Y \) and say that \(X \) **determines** \(Y \).

Example on PGStudent (sid, name, supervisor_id, specialization):
- \{supervisor_id\} \rightarrow \{specialization\} means
 - If two student records have the **same** supervisor (e.g., Stavros), then their specialization (e.g., Databases) must be the **same**.
 - On the other hand, if the supervisors of 2 students are **different**, we do not care about their specializations (they may be the **same** or **different**).
- Sometimes, we omit the brackets for simplicity:
 - supervisor_id \rightarrow specialization
Trivial and Non-trivial FDs

- A functional dependency $X \rightarrow Y$ is **trivial** if Y is a subset of X
 - $\{\text{name, supervisor_id}\} \rightarrow \{\text{name}\}$
 - If two records have the same values on both the name and supervisor_id attributes, then they obviously have the same name.
 - Trivial dependencies hold for all relation instances

- A functional dependency $X \rightarrow Y$ is **non-trivial** if $Y \cap X = \emptyset$
 - $\{\text{supervisor_id}\} \rightarrow \{\text{specialization}\}$
 - Non-trivial FDs are given in the form of constraints when designing a database.
 - For instance, the specialization of a student must be the same as that of the supervisor
 - They constrain the set of legal relation instances. For instance, if I try to insert two students under the same supervisor with different specializations, the insertion will be rejected by the DBMS

- Some FDs are neither trivial nor non-trivial
A FD is a generalization of the notion of a key.

For PGStudent (sid, name, supervisor_id, specialization), if we write \{sid\} \rightarrow \{name, supervisor_id, specialization\}
- The sid determines all attributes (i.e., the entire record)
- If two tuples in the relation student have the same sid, then they must have the same values on all attributes
- In other words, they must be the same tuple (since the relational model does not allow duplicate records)
• A set of attributes that determines the entire tuple is a **superkey**
 - \{sid, name\} is a superkey for the PGStudent table.
 - Also \{sid, name, supervisor_id\} etc.

• A **minimal** set of attributes that determines the entire tuple is a **candidate key**
 - \{sid, name\} is not a candidate key because I can remove the name.
 - sid is a candidate key, and so is HKID (provided that it is stored in the table).

• If there are multiple candidate keys, the DB designer designates one as the **primary key**.
Closure of a Set of Functional Dependencies

- Given a set of functional dependencies F, there are certain other functional dependencies that are logically implied by F
- The set of all functional dependencies logically implied by F is the closure of F
- We denote the closure of F by F^+
- We can find all of F^+ by applying Armstrong’s Axioms:
 - if $Y \subseteq X$, then $X \rightarrow Y$ (reflexivity)
 - if $X \rightarrow Y$, then $ZX \rightarrow ZY$ (augmentation)
 - if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ (transitivity)

 these rules are sound and complete.
Examples of Armstrong’s Axioms

• if $Y \subseteq X$, then $X \rightarrow Y$ (*reflexivity* generates trivial FDs)

 $name \rightarrow name$

 $name, \ supervisor_id \rightarrow name$

 $name, \ supervisor_id \rightarrow supervisor_id$

• if $X \rightarrow Y$, then $Z X \rightarrow Z Y$ (*augmentation*)

 $sid \rightarrow name$ (given)

 $supervisor_id, sid \rightarrow supervisor_id, name$

• if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ (*transitivity*)

 $sid \rightarrow supervisor_id$ (given)

 $supervisor_id \rightarrow specialization$ (given)

 $sid \rightarrow specialization$
We can further simplify computation of F^+ by using the following additional rules:

- If $X \rightarrow Y$ holds and $X \rightarrow Z$ holds, then $X \rightarrow YZ$ holds (union)
- If $X \rightarrow YZ$ holds, then $X \rightarrow Y$ holds and $X \rightarrow Z$ holds (decomposition)
- If $X \rightarrow Y$ holds and $ZY \rightarrow W$ holds, then $ZX \rightarrow W$ holds (pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms. (How?)

E.g., pseudotransitivity

- $X \rightarrow Y$, $ZY \rightarrow W$ (given)
- $ZX \rightarrow ZY$ (by augmentation)
- $ZX \rightarrow W$ (by transitivity)
Example of FDs in the closure F^+

- $F = \{ A \rightarrow B, \\
 A \rightarrow C, \\
 CG \rightarrow H, \\
 CG \rightarrow I, \\
 B \rightarrow H \}$

- some members of F^+
 - $A \rightarrow H$ (A→B; B→H)
 - $AG \rightarrow I$ (A→C; AG→CG; CG→I)
 - $CG \rightarrow HI$ (CG→H; CG→I)
The closure of X under F (denoted by X^+) is the set of attributes that are functionally determined by X under F:

\[X \rightarrow Y \text{ is in } F^+ \iff Y \subseteq X^+ \]

- If $\text{sid} \rightarrow \text{name}$ is in F^+
 then name is part of sid^+
 i.e., $\text{sid}^+ = \{\text{sid}, \text{name}, \ldots\}$

 If $\text{sid} \rightarrow \text{supervisor_id}$ is in F^+
 then supervisor_id is part of sid^+
 i.e., $\text{sid}^+ = \{\text{sid}, \text{name}, \text{supervisor_id}, \ldots\}$

 ...
Algorithm for Computing Attribute Closure

• **Input:**
 - \(R: \) a relation schema
 - \(F: \) a set of functional dependencies
 - \(X \subset R: \) the set of attributes for which we want to compute the closure

• **Output:**
 - \(X^+: \) the closure of \(X \) w.r.t. \(F \)

\[
X^{(0)} := X \\
i = 0 \\
\text{repeat} \\
\quad i = i + 1 \\
\quad X^{(i)} := X^{(i-1)} \cup Z, \text{ where } Z \text{ is the set of attributes such that there exists } Y \rightarrow Z \text{ in } F, \text{ and } Y \subset X^{(i)} \\
\text{until } X^{(i)} := X^{(i-1)} \\
\text{return } X^{(i)}
\]
Attribute Closure - Example

- \(R = \{A, B, C, D, E, G\} \)
- \(F = \{ \{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{A, C, D\} \rightarrow \{B\}, \{D\} \rightarrow \{E, G\}, \{B, E\} \rightarrow \{C\}, \{C, G\} \rightarrow \{B, D\}, \{C, E\} \rightarrow \{A, G\}\} \)
- \(X = \{B, D\} \)

- \(X^{(0)} = \{B, D\} \)
 \(\{D\} \rightarrow \{E, G\} \),
- \(X^{(1)} = \{B, D, E, G\} \)
 \(\{B, E\} \rightarrow \{C\} \)
- \(X^{(2)} = \{B, C, D, E, G\} \)
 \(\{C\} \rightarrow \{A\} \)
- \(X^{(3)} = \{A, B, C, D, E, G\} \)
- \(X^{(4)} = X^{(3)} \)
Uses of Attribute Closure

• **Testing for superkey**
 - To test if X is a superkey, we compute X^+, and check if X^+ contains all attributes of R.

• **Testing functional dependencies**
 - To check if a functional dependency $X \rightarrow Y$ holds (or, in other words, $X \rightarrow Y$ is in F^+), just check if $Y \subseteq X^+$.

• **Computing the closure of F, i.e., F^+**
 - For each subset $X \subseteq R$, we find the closure X^+, and for each $Y \subseteq X^+$, we output a functional dependency $X \rightarrow Y$.

• **Computing if two sets of functional dependencies F and G are equivalent, i.e., $F^+ = G^+$**
 - For each functional dependency $Y \rightarrow Z$ in F
 • Compute Y^+ with respect to G
 • If $Z \subseteq Y^+$ then $Y \rightarrow Z$ is in G^+
 - And vice versa
Sets of functional dependencies may have redundant dependencies that can be inferred from the others

- Example:
 \(\{A\} \rightarrow \{C\} \) is redundant in: \(\{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{C\}\} \)

 Because: \(\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\} \): \(\{A\} \rightarrow \{C\} \) (transitivity)

There may be extraneous/redundant attributes on the LHS of a dependency

- Let \(\alpha \rightarrow \beta \) be a functional dependency in \(F \). Attribute \(A \) is extraneous in \(\alpha \) if \(F \) logically implies \((F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\} \)

- Example:

 \(F = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A, C\} \rightarrow \{D\}\} \) can be simplified to

 \(\{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{D\}\} \)

 Because: \(\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\} \): \(\{A\} \rightarrow \{C\} \) (transitivity)

 \(\{A\} \rightarrow \{C\} \): \(\{A\} \rightarrow \{A, C\} \) (augmentation)

 \(\{A\} \rightarrow \{A, C\}, \{A, C\} \rightarrow \{D\} \): \(\{A\} \rightarrow \{D\} \) (transitivity)
Redundancy of FDs (cont.)

- There may be extraneous/redundant attributes on the RHS of a dependency
 - Let $\alpha \rightarrow \beta$ be a functional dependency in F. Attribute A is extraneous in β if $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F

 - Example:
 $F = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{C, D\}\}$ can be simplified to
 $\{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{D\}\}$
 Because: $\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}: \{A\} \rightarrow \{C\}$ (transitivity)
 $\{A\} \rightarrow \{C\}, \{A\} \rightarrow \{D\}: \{A\} \rightarrow \{C, D\}$ (union)
A canonical cover for F is a set of dependencies F_c such that:
- F and F_c are equivalent
- F_c contains no redundancy
- Each left side of functional dependency in F_c is unique
 For instance, if we have two FD, $X \rightarrow Y$ and $X \rightarrow Z$, we convert them to $X \rightarrow YZ$.

Algorithm for canonical cover of F:

```
repeat
  Use the union rule to replace any dependencies in $F$
  $X \rightarrow Y_1$ and $X \rightarrow Y_2$ with $X \rightarrow Y_1 Y_2$
  Find a functional dependency $X \rightarrow Y$ with an
  extraneous attribute either in $X$ or in $Y$
  If an extraneous attribute is found, delete it from $X \rightarrow Y$
until $F$ does not change
return $F$
```

Note: The union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied.
Example for Computing the Canonical Cover

\[R = (A, B, C) \]
\[F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \} \]

- Combine \(A \rightarrow BC \) and \(A \rightarrow B \) into \(A \rightarrow BC \)
 - Set is now \(F = \{ A \rightarrow BC, B \rightarrow C, AB \rightarrow C \} \)
- \(A \) is extraneous in \(AB \rightarrow C \),
 because: \(B \rightarrow C \) is already in \(F \)
 - Set is now \(\{ A \rightarrow BC, B \rightarrow C \} \)
- \(C \) is extraneous in \(A \rightarrow BC \),
 because:
 - \(A \rightarrow B, B \rightarrow C: A \rightarrow C \) (transitivity)
 - \(A \rightarrow B, A \rightarrow C: A \rightarrow BC \) (union)

- The canonical cover is:
 \[F_c = \{ A \rightarrow B, B \rightarrow C \} \]