Cost-effective Outbreak Detection in Networks

Jure Leskovec

Joint work with Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance

Diffusion in Social Networks

- One of the networks is a spread of a disease,
 the other one is product recommendations
- Which is which? ©

Diffusion in Social Networks

- A fundamental process in social networks:
 Behaviors that cascade from node to node like an epidemic
 - News, opinions, rumors, fads, urban legends, ...
 - Word-of-mouth effects in marketing: rise of new websites, free web based services
 - Virus, disease propagation
 - Change in social priorities: smoking, recycling
 - Saturation news coverage: topic diffusion among bloggers
 - Internet-energized political campaigns
 - Cascading failures in financial markets
 - Localized effects: riots, people walking out of a lecture

Empirical Studies of Diffusion

- Experimental studies of diffusion have long history:
 - Spread of new agricultural practices [Ryan-Gross 1943]
 - Adoption of a new hybrid-corn between the 259 farmers in Iowa
 - Classical study of diffusion
 - Interpersonal network plays important role in adoption
 - → Diffusion is a social process
 - Spread of new medical practices [Coleman et al 1966]
 - Studied the adoption of a new drug between doctors in Illinois
 - Clinical studies and scientific evaluations were not sufficient to convince the doctors
 - It was the social power of peers that led to adoption

Diffusion in Networks

- Initially some nodes are active
- Active nodes spread their influence on the other nodes, and so on ...

Scenario 1: Water Network

Scenario 2: Online media

Which news websites should one read to **detect new stories** as **quickly** as possible?

Cascade Detection: General Problem

 Given a dynamic process spreading over the network

- We want to select a set of nodes to detect the process <u>effectively</u>
- Many other applications:
 - Epidemics
 - Network security

Two Parts to the Problem

- Reward, e.g.:
 - 1) Minimize time to detection
 - 2) Maximize number of detected propagations
 - 3) Minimize number of infected people
- Cost (location dependent):
 - Reading big blogs is more time consuming
 - Placing a sensor in a remote location is expensive

Problem Setting

- Given a graph G(V,E)
- and a budget B for sensors
- and data on how contaminations spread over the network:
 - for each contamination i we know the time T(i, u) when it contaminated node u
- Select a subset of nodes A that maximize the expected reward

$$\max_{\mathcal{A}\subseteq\mathcal{V}} R(\mathcal{A}) \equiv \sum_{i} P(i) R_i(T(i,\mathcal{A}))$$

subject to cost(A) < B

Reward for detecting contamination *i*

Structure of the Problem

- Solving the problem exactly is NP-hard
 - Set cover (or vertex cover)
- Observation: Diminishing returns

Analysis

- Analysis: diminishing returns at individual nodes implies diminishing returns at a "global" level
 - Covered area grows slower and slower with placement size

An Approximation Result

 Diminishing returns: Covered area grows slower and slower with placement size

R is submodular: if
$$A \subseteq B$$
 then $R(A \cup \{x\}) - R(A) \ge R(B \cup \{x\}) - R(B)$

Theorem [Nehmhauser et al. '78]:

If f is a function that is monotone and submodular, then k-step hill-climbing produces set S for which f(S) is within (1-1/e) of optimal.

Reward functions: Submodularity

• We must show that R is submodular:

$$R(\mathcal{A} \cup \{s\}) - R(\mathcal{A}) \ge R(\mathcal{B} \cup \{s\}) - R(\mathcal{B})$$

Benefit of adding a sensor to a small placement

Benefit of adding a sensor to a large placement

- What do we know about submodular functions?
 - -1) If R_1 , R_2 , ..., R_k are submodular, and a_1 , a_2 , ... $a_k > 0$ then $\sum a_i R_i$ is also submodular
 - 2) Natural example:
 - Sets *A*₁, *A*₂, ..., *A*_n:
 - $R(S) = size of union of A_i$

Reward Functions are Submodular

- Objective functions from Battle of Water Sensor Networks competition [Ostfeld et al]:
 - 1) Time to detection (DT)
 - How long does it take to detect a contamination?
 - 2) Detection likelihood (DL)
 - How many contaminations do we detect?
 - 3) Population affected (PA)
 - How many people drank contaminated water?

are all submodular

Background: Submodular functions

Hill-climbing

Add sensor with highest marginal gain

What do we know about optimizing submodular functions?

- A hill-climbing (*i.e.*, greedy) is near optimal (1-1/e) (~63%) of optimal)
- But
 - 1) this only works for unit cost case (each sensor/location costs the same)
 - 2) Hill-climbing algorithm is slow
 - At each iteration we need to re-evaluate marginal gains
 - It scales as O(|V|B)

Towards a New Algorithm

- Possible algorithm: hill-climbing ignoring the cost
 - Repeatedly select sensor with highest marginal gain
 - Ignore sensor cost
- It always prefers more expensive sensor with reward r to a cheaper sensor with reward r- ε
 - → For variable cost it can fail arbitrarily badly
- Idea
 - What if we optimize benefit-cost ratio?

$$s_k = \underset{s \in \mathcal{V} \setminus \mathcal{A}_{k-1}}{\operatorname{argmax}} \frac{R(\mathcal{A}_{k-1} \cup \{s\}) - R(\mathcal{A}_{k-1})}{c(s)}$$

Benefit-Cost: More Problems

- Bad news: Optimizing benefit-cost ratio can fail arbitrarily badly
- <u>Example</u>: Given a budget *B*, consider:
 - 2 locations s₁ and s₂:
 What if we take best
 Th of both solutions?
 bc(s₁)=2 and bc(s₂)=1
 - So, we first select s_1 and then can not afford s_2
 - \rightarrow We get reward 2ε instead of BNow send ε to O and we get arbitrarily bad

Solution: CELF Algorithm

- CELF (cost-effective lazy forward-selection):
 - A two pass greedy algorithm:
 - Set (solution) A: use benefit-cost greedy
 - Set (solution) B: use unit cost greedy
 - Final solution: argmax(R(A), R(B))
- How far is CELF from (unknown) optimal solution?
- Theorem: CELF is near optimal
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation
- CELF is much faster than standard hill-climbing

How good is the solution?

- Traditional bound (1-1/e) tells us:
 How far from optimal are we even before seeing the data and running the algorithm
- Can we do better? Yes!
- We develop a new tighter bound. Intuition:
 - Marginal gains are decreasing with the solution size
 - We use this to get tighter bound on the solution

Scaling up CELF algorithm

Observation:

Submodularity guarantees that marginal benefits decrease with the solution size

Idea: exploit submodularity, doing lazy evaluations!

(considered by Robertazzi et al. for unit cost case)

Scaling up CELF

- CELF algorithm hill-climbing:
 - Keep an ordered list of marginal benefits b_i from previous iteration
 - Re-evaluate b_i only for top sensor
 - Re-sort and prune

Scaling up CELF

- CELF algorithm hill-climbing:
 - Keep an ordered list of marginal benefits b_i from previous iteration
 - Re-evaluate b_i only for top sensor
 - Re-sort and prune

Scaling up CELF

- CELF algorithm hill-climbing:
 - Keep an ordered list of marginal benefits b_i from previous iteration
 - Re-evaluate b_i only for top sensor
 - Re-sort and prune

Experiments: 2 Case Studies

- We have real propagation data
 - Blog network:
 - We crawled blogs for 1 year
 - We identified cascades temporal propagation of information
 - Water distribution network:
 - Real city water distribution networks
 - Realistic simulator of water consumption provided by US Environmental Protection Agency

Case study 1: Cascades in Blogs

Diffusion in Blogs

Data – Blogs:

- We crawled 45,000 blogs for 1 year
- 10 million posts and 350,000 cascades

Q1: Blogs: Solution Quality

- Our bound is much tighter
 - 13% instead of 37%

Q2: Blogs: Cost of a Blog

- Unit cost:
 - algorithm picks large popular blogs: instapundit.com,

instapundit.com,
michellemalkin.com

- Variable cost:
 - proportional to the number of posts
- We can do much better when considering costs

Q2: Blogs: Cost of a Blog

- But then algorithm picks lots of small blogs that participate in few cascades
- We pick best solution that interpolates between the costs
- We can get good solutions with few blogs and few posts

Each curve represents solutions with same final reward

Q4: Blogs: Heuristic Selection

- Heuristics perform much worse
- One really needs to perform optimization

Blogs: Generalization to Future

- We want to generalize well to future (unknown) cascades
- Limiting selection to bigger blogs improves generalization

Q5: Blogs: Scalability

CELF runs 700
 times faster than
 simple hill-climbing
 algorithm

Case study 2: Water Network

- Real metropolitan area water network
 - V = 21,000 nodes
 - E = 25,000 pipes

- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (152 GB of epidemic data)
- By exploiting sparsity we fit it into main memory (16GB)

Water: Solution Quality

 The new bound gives much better estimate of solution quality

Water: Heuristic Placement

- Heuristics placements perform much worse
- One really needs to consider the spread of epidemics

Water: Placement Visualization

 Different reward functions give different sensor placements

Population affected

Detection likelihood

Water: Algorithm Scalability

 CELF is an order of magnitude faster than hill-climbing

Results of BWSN competition

- Battle of Water Sensor Networks competition
- [Ostfeld et al]: count number of non-dominated solutions

Author	#non- dominated (out of 30)
CELF	26
Berry et. al.	21
Dorini et. al.	20
Wu and Walski	19
Ostfeld et al	14
Propato et. al.	12
Eliades et. al.	11
Huang et. al.	7
Guan et. al.	4
Ghimire et. al.	3
Trachtman	2
Gueli	2
Preis and Ostfeld	1

Other results

- Many more details:
 - Fractional selection of the blogs
 - Generalization to future unseen cascades
 - Multi-criterion optimization
 - We show that triggering model of Kempe et al is a special case of out setting

Conclusion

- General methodology for selecting nodes to detect outbreaks
- Results:
 - Submodularity observation
 - Variable-cost algorithm with optimality guarantee
 - Tighter bound
 - Significant speed-up (700 times)
- Evaluation on large real datasets (150GB)
 - CELF won consistently

Conclusion and Connections

- Diffusion of Topics
 - How news cascade through on-line networks
 - Do we need new notions of rank?
- Incentives and Diffusion
 - Using diffusion in the design of on-line systems
 - Connections to game theory
- When will one product overtake the other?

Further Connections

- Diffusion of topics [Gruhl et al '04, Adar et al '04]:
 - News stories cascade through networks of bloggers
 - How do we track stories and rank news sources?
- Recommendation incentive networks [Leskovec-Adamic-Huberman '07]:
 - How much reward is needed to make the product "workof-mouth" success?
- Query incentive networks [Kleinberg-Raghavan '05]:
 - Pose a request to neighbors; offer reward for answer
 - Neighbors can pass on request by offering (smaller) reward
 - How much reward is needed to produce an answer?

Topic Diffusion: what blogs to read?

- News and discussion spreads via diffusion:
 - Political cascades are different than technological cascades
- Suggests new ranking measures for blogs

References

- D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread of Influence through a Social Network. ACM KDD, 2003.
- Jure Leskovec, Lada Adamic, Bernardo Huberman. The Dynamics of Viral Marketing. ACM TWEB, 2007.
- Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, Matthew Hurst. Cascading Behavior in Large Blog Graphs. SIAM Data Mining, 2007.
- Jure Leskovec, Ajit Singh, Jon Kleinberg. Patterns of Influence in a Recommendation Network. PAKDD, 2006.
- Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, Natalie Glance. Cost-effective Outbreak Detection in Networks. ACM KDD, 2007.