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ABSTRACT
This paper addresses the problem of monitoring the k near-
est neighbors to a dynamically changing path in road net-
works. Given a destination where a user is going to, this
new query returns the k -NN with respect to the shortest
path connecting the destination and the user’s current loca-
tion, and thus provides a list of nearest candidates for ref-
erence by considering the whole coming journey. We name
this query the k -Path Nearest Neighbor query (k -PNN). As
the user is moving and may not always follow the shortest
path, the query path keeps changing. The challenge of mon-
itoring the k -PNN for an arbitrarily moving user is to dy-
namically determine the update locations and then refresh
the k -PNN efficiently. We propose a three-phase Best-first
Network Expansion (BNE) algorithm for monitoring the k -
PNN and the corresponding shortest path. In the searching
phase, the BNE finds the shortest path to the destination,
during which a candidate set that guarantees to include the
k -PNN is generated at the same time. Then in the verifi-
cation phase, a heuristic algorithm runs for examining can-
didates’ exact distances to the query path, and it achieves
significant reduction in the number of visited nodes. The
monitoring phase deals with computing update locations as
well as refreshing the k -PNN in different user movements.
Since determining the network distance is a costly process,
an expansion tree and the candidate set are carefully main-
tained by the BNE algorithm, which can provide efficient
update on the shortest path and the k -PNN results. Finally,
we conduct extensive experiments on real road networks and
show that our methods achieve satisfactory performance.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Algorithms
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1. INTRODUCTION
Nearest Neighbor query is one of the fundamental issues

in spatial database research area. It is designed to find the
closest object p to a specified query point q, given a set of
objects and a distance metric. This problem is well studied
in the literature, and its variants include k -Nearest Neighbor
search [6, 17], Continuous Nearest Neighbor search [1, 10,
21], Aggregate Nearest Neighbor queries [14, 22], etc.

While all the queries mentioned above concern only the
locally optimized results, in this paper, we investigate the
problem of Path Nearest Neighbor (PNN) query, which re-
trieves the nearest neighbor with respect to the whole query
path. Here, ‘locally optimized results’ means the nearest
neighbors with respect to the current query location. How-
ever, sometimes a user is moving and may want to know the
best choice by considering the whole path to be traveling
on, thus a globally optimal choice for the nearest neighbor
to a given path is required, and that is the motivation of
this work. As exemplified in Figure 1, assume that we are
traveling from s to t along a path P = {s, n2, n3, t} and we
hope to find the nearest gas station for refueling. If we use
conventional Nearest Neighbor query, gas station A is re-
turned at the beginning. However, A is not the best choice
because there is another gas station B not far away which is
much closer to the path we are traveling on. So PNN query
suits the applications where a user wants to consume a ser-
vice when traveling towards a given destination. For such
applications, neither the current nearest neighbor nor the
nearest neighbor at any particular point is the best for the
user; instead, the user wants to know the nearest neighbor
relative to the route he/she will travel (B in this example).

Figure 1: an example

A similar issue called In-Route Nearest Neighbor (IRNN)
query is first proposed by Shekhar et al. in [20] to search a
facility instance (e.g. gas station) with the minimum detour



distance from the query route on the way to the destination.
Still considering Figure 1, the detour distance of A from
P is greater than that of B, so obviously IRNN(P) would
return B to the user. The intuition behind is that users
(e.g. commuters) prefer to follow the route they are familiar
with, thus they would like to choose the gas station with
the smallest deviation from the route. After refueling, they
will return to the previous route and continue the journey.
However a drawback of IRNN is that the user has to input
exactly the whole query path in advance, which is identified
by all intersections along the path, while a user’s driving
path often cannot be precisely pre-decided. Imagine that a
user is driving from Washington to New York, which is a
long journey. It is impractical for a user to input hundreds
of intersections before successfully making a query.

Therefore, we propose the Path Nearest Neighbor query,
requiring users to input only the destination as well as the
current location rather than the whole specified path. For
each PNN query, we construct a shortest path connecting
the destination and the current location and then search for
the nearest facility instance to the shortest path (i.e. the
facility instance with the minimum detour distance). Since a
moving user may not follow the shortest path and the driving
route might change over time in the coming journey, we
provide continuous monitoring of the k -PNN, which always
gives the user the best candidates for consideration. This
raises the issue of how to dynamically query the nearest
neighbors to a changing shortest path efficiently. To provide
efficient monitoring of the k -PNN, we propose in this paper
a Best-first Network Expansion (BNE) method. Specifically,
the BNE consists of three main phases, including searching
phase, verification phase and monitoring phase.

In the searching phase, the BNE algorithm incorporates
a bi-directional search method for establishing the shortest
path, which conducts two independent network expansions
from the starting location and the destination separately,
and when the two expansions meet, the shortest path is de-
termined. The novelty of the searching phase is that, we
can also derive all encountered nodes’ lower bounds and
upper bounds of minimum detour distance during the bi-
directional search, which are further utilized in determining
a candidate set for the k -PNN and examining candidates’
exact detour distances. As the searching for the shortest
path is inevitable for the k -PNN query (if not consider pre-
computation for distance browsing), the BNE algorithm is
designed to retrieve as much information as possible dur-
ing the searching process, and improve the performance of
monitoring by using this information.

With a list of potential candidates that guarantee to in-
clude the k -PNN results returned from the searching phase,
the verification phase processes these candidates in the order
of their lower bounds. Here, a heuristic verification func-
tion for examining candidates’ exact minimum detour dis-
tances to the query path is devised. The heuristic function
searches the minimum detour path from a candidate towards
the query path directionally, instead of simply conducting
a Dijkstra’s network expansion. By doing so, the area of
searching is reduced greatly especially when the candidate
is not close to the query path.

In the monitoring phase, the main task is to figure out
where an update for the k -PNN is needed, which could be
an update of the order, or a re-calculation of the k -PNN. We
discuss these two cases in the situation when the user follows

the shortest path or deviates from the shortest path respec-
tively. To facilitate the k -PNN updates, the BNE carefully
maintains an expansion tree rooted at the destination, which
stores the shortest paths (from destination) to the surround-
ing nodes. This expansion tree is firstly recorded during the
bi-directional search in the searching phase, and it enlarges
or shrinks accordingly while the user’s current location is
changing. Besides, the candidate set and candidates’ lower
bounds/upper bounds acquired previously are also updated
gradually in the monitoring phase, which are utilized to ac-
celerate the update algorithms.

To sum up, we make the following main contributions:

• We define a new type of query for searching the k near-
est neighbors to a changing shortest path. It provides
new features for advanced spatial-temporal informa-
tion systems, and may benefit users by reporting best
candidates from the global view.

• We devise the BNE algorithm which efficiently mon-
itors the k -PNN while the user is moving arbitrarily.
An expansion tree and the candidate set are utilized
with lower and upper bounds on minimum detour dis-
tance for fast k -PNN update.

• We also propose the methods for determining the up-
date locations which invoke potential updates on the
k -PNN results in different user movements, as well as
the algorithms for efficiently updating the k -PNN re-
sults.

• We conduct extensive experiments on real datasets to
study the performance of the proposed approaches.

The remainder of the paper is organized as follows. In
Section 2 we discuss the related work. In Section 3, a formal
definition of the problem is given. The searching phase and
the verification phase of the BNE algorithm are presented in
Section 4, and the monitoring phase is introduced in Section
5. Finally we show our experiment results in Section 6 and
draw a conclusion in Section 7.

2. RELATED WORK
Spatial queries in advanced traveler information system

continue to proliferate in recent years. Nearest Neighbor
(NN) query is considered as an important issue in such
kind of applications. This query aims to retrieve the clos-
est neighbor to a query point from a set of given objects.
In [17] and [6] a depth-first and a best-first tree traversal
approaches are proposed respectively for NN query in Eu-
clidean space and they employ a branch-and-bound strategy.

The Nearest Neighbor query is also extended to a road
network scenario by using network distance as the distance
metric. Papadias et al. present in [15] the Incremental Eu-
clidean Restriction (IER) and Incremental Network Expan-
sion (INE) algorithms for retrieving k -NN according to net-
work distance. IER uses the Euclidean distance as a lower
bound for pruning during the search, and INE performs a
network expansion similar to the Dijkstra’s algorithm [3].
Jensen et al. also propose in [7] a general spatial-temporal
framework for NN queries in a road network which is repre-
sented by a graph. In [19], a graph embedding technique is
proposed to transform a road network to a high-dimensional
Euclidean space and then the approximate k -NN can be



found. Pre-computation based methods for k -NN queries
are also studied in [8] and [18], in which Voronoi diagrams
and Shortest Path Quadtrees are utilized separately.

Many variants of Nearest Neighbor search are studied as
well, like Aggregate k -NN monitoring [16], Trip Planning
Queries [9] and Continuous Nearest Neighbor queries (CNN)
[1, 10, 13, 21]. CNN queries report the k -NN results con-
tinuously while the user is moving along a path. The main
challenge of this type of queries is to find the split points on
the query path where an update of the k -NN is required, and
thus to avoid unnecessary k -NN re-calculations. However,
a limitation of CNN queries is that the query path has to
be given in advance and it can not change during the user’s
movement. Therefore, in [11], Mouratidis et al. investigate
the Continuous Nearest Neighbor monitoring problem in a
road network, in which the query point moves freely and
the data objects’ positions are also changing dynamically.
The basic idea of [11] is to carefully maintain a spanning
tree originated from the query point and to grow or discard
branches of the spanning tree according to the data objects
and query point’s movements. To some extent, the motiva-
tion of our k -PNN monitoring problem is similar to that of
the CNN monitoring. However, we aim to provide monitor-
ing of the k -NN to a dynamically changing path rather than
a moving query point, and we assume all data objects (e.g.
restaurants, gas stations) keep stationary.

In-Route Nearest Neighbor Queries (IRNN) in [20] is de-
signed for users that drive along a fixed path routinely.
As this kind of drivers would like to follow their preferred
routes, IRNN queries are proposed for finding nearest neigh-
bor with the minimum detour distance from the fixed route,
because they make the assumption that a commuter will
return to the route after going to the nearest facility (e.g.
gas station) and will continue the journey along the previ-
ous route. Our problem is an extension of the IRNN query,
by monitoring the k nearest neighbors to a continuously
changing shortest path, and the user only needs to input
the destination rather than exactly the whole query path.

3. PROBLEM DEFINITION
In this paper, a road network is modeled as a weighted

undirected graph G(V, E), in which V consists of all vertices
(nodes) of the network, and E is the set of all edges. We
assume that all facility instances (data objects) lie on the
road. If a data object is not located at a road intersection,
we treat the data object as a node and further divide the
edge it lies on into two edges. So V is a node set comprised
of all intersections and data objects and E contains all the
edges between them. Each edge is associated with a non-
negative weight representing the time cost of traveling or
simply the road distance between the two neighboring nodes.

We define the network distance Dn(n1, n2) between two
nodes n1 and n2 as the length of the shortest path SP (n1, n2)
connecting n1 and n2. A path P from node s to destination
t is represented by a series of nodes P = {n1, n2, · · · , nr},
in which n1 = s, nr = t and the length |P | is the sum of
the weight of all edges on P . The minimum detour distance
Dd(o, P ) of a data object o from a path P is defined as:

Dd(o, P ) = min
ni∈P
{Dn(o, ni)}

We may also denote Dd(o, P ) by Dd(o) alternatively when
in a clear context.

Table 1: A list of notations
Notation Description

V The set of all nodes
E The set of all edges
weight(n1, n2) The weight of edge (n1, n2)
P, |P | A path in a road network, and its length
(n1, n2) The edge between n1 and n2, or the path

from n1 to n2 if in a clear context
SP (n1, n2) The shortest path between n1 and n2

Dn(n1, n2) The network distance between n1 and
n2

Dd(o, P ) The minimum detour distance of data
object o from path P

De(n1, n2) The Euclidean distance between n1, n2

LB(o, P ), UB(o, P ) The lower bound and upper bound of
minimum detour distance of o from P

Lf (), Lr(), Lv() The distance labels in forward, reverse
and verification searches

Distp(ni, s, t) The perpendicular distance from ni to
line (s,t)

Definition 1. (k-Path Nearest Neighbor query)
Given a starting node s, a destination node t, a road net-

work G(V, E) and a set of data objects O (O ⊆ V ), the
k-Path Nearest Neighbor (k-PNN) query is to find the k data

objects: O
′
= {o1, o2, · · · , ok} (O

′ ⊆ O), such that

Dd(oi, SP (s, t)) ≤ Dd(oj , SP (s, t)),∀oi ∈ O
′
, oj ∈ O −O

′

Here SP (s, t) is the shortest path from s to t. We aim to
monitor the k -PNN relative to SP (s, t) while s is moving in
a road network. In our application scenarios, SP (s, t) keeps
changing and the k -PNN needs to be reported dynamically.
Table 1 shows a list of notations used in this paper.

4. K–PATH NEAREST NEIGHBOR QUERY
Intuitively the k -PNN query can be solved by issuing at

each node of the current shortest path a traditional k -NN
search and thereafter combining all the results together.
However the cost of this method is high especially in a mon-
itoring scenario. Therefore, in this section, we propose the
Best-first Network Expansion (BNE) algorithm for efficient
monitoring of the k -PNN. The BNE is composed of three
phases: the searching phase for finding the shortest path and
potential candidates at the beginning; the verification phase
for determining the exact k -PNN results; and the monitoring
phase for updating the k -PNN efficiently. In the verification
phase, the BNE always selects the data object which is most
likely to be the closest one from the candidate set for verifi-
cation, and that is why we call it best-first. As determining
distance in a road network is a costly network expansion
process, the BNE takes advantage of previous expansion re-
sults by maintaining an expansion tree and a candidate set
of data objects that must contain the k -PNN results. In
our approach, we estimate the minimum detour distance of
a data object by a lower bound derived from the triangu-
lar inequality of shortest path, and that is the basis of our
searching and verification algorithms. In a road network,
the triangular inequality holds for shortest path such that

|SP (n1, n2)|+ |SP (n2, n3)| ≥ |SP (n1, n3)|

|SP (n1, n2)| − |SP (n2, n3)| ≤ |SP (n1, n3)|
SP (n1, n2) indicates the shortest path between nodes n1



Figure 2: Lower bound Figure 3: (a,b)

and n2, and |SP (n1, n2)| is the length of the path. Consid-
ering the illustration in Figure 2, there is a shortest path
SP (s, t) connecting the two nodes s and t with |SP (s, t)| =
l, while o is a data object in the road network with |SP (o, s)| =
c1 and |SP (o, t)| = c2. ni is a node on the shortest path
SP (s, t). Obviously, o has an upper bound of minimum
detour distance UB determined by

UB(o, SP (s, t)) = min{c1, c2} (1)

This upper bound can be further tightened during the search-
ing phase as discussed later in this section. Now we expect
to estimate the lower bound LB of the minimum detour dis-
tance for the data object o. Assume that the distance from
s to ni is x, and the distance from o to ni is y. According
to the triangular inequality theory stated above, we have:j

c1 − x ≤ y
c2 − (l − x) ≤ y

Therefore, the distance (y) from data object o to the short-
est path SP (s, t) is no shorter than LB :

LB = min
x∈[0,l]

{max{c1 − x, c2 − (l − x)}} (2)

Consequently the lower bound LB(o, SP (s, t)) of the mini-
mum detour distance of o from SP (s, t) is determined by
figuring out the intersection point (a, b) of the two lines
y = c1 − x and y = c2 − (l − x), as shown in Figure 3.
We get:

a =
l + c1 − c2

2
, b =

c1 + c2 − l

2

So the lower bound is estimated by

LB(o, SP (s, t)) =
c1 + c2 − l

2
(3)

With l fixed, we can infer from Equation 3 that a smaller
lower bound also implies a smaller value of (c1 + c2), which
means that (c1 + c2) declines to l. This happens when the
data object is closer to the shortest path connecting s and t.
Therefore, a data object with smaller lower bound has higher
opportunity in having a shorter minimum detour distance.
Based on this observation, the BNE algorithm chooses data
objects for verification in the order of their lower bounds
until the current selected data object’s minimum detour dis-
tance is smaller than the next object’s lower bound.

Firstly, in the searching phase of our algorithm, the BNE
finds the shortest path between s and t. Here, we adopt
a bidirectional algorithm [12] by running the forward and
reverse versions of the Dijkstra’s algorithm [3] from s and t
separately. The novel point is that we can also obtain the
scanned nodes’ lower bounds and upper bounds of the min-
imum detour distance during the searching for the shortest

path. The forward version of the Dijkstra’s algorithm ex-
pands from s and the reverse version expands from t in the
road network, while each of them maintains its own set of
distance labels. Once the two searches meet (a node scanned
by the forward search has also been scanned by the reverse
search, or vice versa), a shortest path from s to t is detected.
During the search for the shortest path SP (s, t), some data
objects around s and t are scanned and their distances to s
or t are determined as well. We can utilize these recorded
distances for the verificaton of the k nearest neighbors in
the following verification phase.

Another task during the bidirectional search is to get a
candidate set of data objects that guarantees to include the
k -PNN results. To achieve that, the bidirectional expansion
may need to continue even after the shortest path is found,
until we find a data object o, satisfying that the lower bound
LB(o, SP (s, t)) is not less than at least k found data objects’
upper bounds. We denote by Lf (ni) the distance label of
a node ni maintained by the forward search, and by Lr(ni)
the distance label of a node ni maintained by the reverse
search, and by l the length of the shortest path SP (s, t).
We formalize the process as following: assume that dur-

ing the bidirectional search, so far there is a set of k
′

data

objects (O
′
) get scanned (expanded) by either the forward

search or the reverse search or both of them. Among O
′
,

each oi ∈ O
′
is assigned an upper bound UB(oi, SP (s, t)) =

min{Lf (oi), Lr(oi)} according to Equation 1, or Lf (oi) if
only scanned by the forward search, or Lr(oi) if only scanned
by the reverse search, while those scanned by both searches

also have a lower bound LB(oi, SP (s, t)) =
Lf (oi)+Lr(oi)−l

2
according to Equation 3.

Theorem 1. During the bidirectional search, if there ex-

ists a data object o ∈ O
′
, and we can find at least k data

objects O = {o1, o2, · · · , ok} from O
′
, such that

LB(o, SP (s, t)) ≥ max
oi∈O
{UB(oi, SP (s, t))}

Then, the k-PNN must be included in O
′
.

Proof. For any data object oj that is not in O
′
, which

means it has not been scanned yet, if we continue the bidi-
rectional search till oj gets both distance labels from the
forward and the reverse searches, we have

Lf (oj) ≥ Lf (oi),∀oi ∈ O
′

Lr(oj) ≥ Lr(oi),∀oi ∈ O
′

because the search process based on the Dijkstra’s algorithm
always chooses the node with the smallest distance label
value for expansion. o ∈ O′, then

Lf (oj) + Lr(oj)− l

2
≥ Lf (o) + Lr(o)− l

2

⇒ LB(oj , SP (s, t)) ≥ LB(o, SP (s, t))

⇒ LB(oj , SP (s, t)) ≥ UB(oi, SP (s, t),∀oi ∈ O

Therefore, any oj must not have a minimum detour distance
less than that of the k data objects in O found so far.

Notice that the k data objects {o1, o2, · · · , ok} are not
necessarily to be the k -PNN results. We can only guarantee



that the k -PNN is within the set of data objects (O
′
). The

searching phase of the BNE is shown in Algorithm 1.

Algorithm 1: BNE - searching phase

input : Node s, t; G(V ,E)
output: SP (s, t); Candidate Set CS
S, T, Qs, Qt ← null; l ←∞;1

∀p ∈ V , Lf (p), Lr(p)←∞;Lf (s), Lr(t)← 0;2

Qs ← Qs ∪ s; Qt ← Qt ∪ t;3

Heap Lowerbounds, Upperbounds;4

while Qs, Qt �= null do5

// Forward search

u← ExtractMin(Qs);6

S ← S ∪ u;7

if u ∈ T and l =∞ then8

l ← Lf (u) + Lr(u);9

record SP (s, t);10

for each node v ∈ u.adjacentNodes do11

if Lf (v) > Lf (u) + weight(u, v) then12

Lf (v)← Lf (u) + weight(u, v);13

Qs ← Qs ∪ v;14

πf (v)← u;15

if u is a data object then16

Upperbounds.add(Lf (u));17

if Lr(u) �=∞ then18

u.lowerbound← Lf (u)+Lr(u)−l

2
;19

Lowerbounds.add(u.lowerbound);20

k-minimal values ← Upperbounds.minK();21

if Lowerbounds.min ≥ max{the k-minimal22

values} then
CS ← all data objects in S ∪ T ;23

return SP (s, t) & CS;24

// Reverse search

The same process as the forward search, with (S,25

Qs, Lf (), πf ()) replaced by (T , Qt, Lr(), πr());

In Algorithm 1 the forward and reverse searches run al-
ternately. During the initialization step, the sets of scanned
nodes S and T are initialized to be null, and all nodes’ dis-
tance labels except Lf (s) and Lr(t) are set to be ∞. The
Heaps are for recording all data objects’ lower bounds and
upper bounds found so far (non-data object nodes’ lower
bounds/upper bounds are also recorded in another heaps).
The search process is similar to the Dijkstra’s algorithm,
which always chooses the node with the minimal distance
label for expansion (line 6). When a node scanned by both
searches is found, the shortest path SP (s, t) is recorded (line
9-10). A data object’s upper bound of minimum detour
distance is stored as the min{Lf (u), Lr(u)} (line 17), and
once the object gets scanned by both forward and reverse
searches, it is assigned a lower bound of the minimum de-
tour distance (line 19). This part of the algorithm stops
when Theorem 1 meets (line 22-24) and a candidate set is
then returned.

Note that after the candidate set CS and the shortest path
SP (s, t) are returned, there could still be some data objects
in CS that have not been scanned by both the forward and
reverse searches and thus their lower bounds are unknown
yet. Therefore, before going to the candidate verification
phase, we further continue the network expansion of the
bidirectional search until all data objects in CS have their

lower bounds be determined. This part of the searching
phase is intuitive and we omit it in Algorithm 1 for the
simplicity of presentation.

During the searching phase presented above, we can also
get two expansion trees Tf and Tr originated from s and t
respectively (by recording parent node as πf (v),πr(v) at line
15), which can be re-used as ‘pre-computed’ knowledge in
our monitoring phase. As illustrated in Figure 4 (we only
show the expansion tree originated from t with thicker lines),

if the user moves from s to another node s
′
that has already

been included in Tr, then the shortest path from s
′

to t is

figured out to be SP (s
′
, t) = {s′

, n4, t} by using the expan-
sion tree easily without extra search. Besides, during the
network expansion after SP (s, t) is found in the searching
phase, we can also tighten the upper bounds of some
found data objects if their ancestor nodes in the expansion
tree are on SP (s, t). For example, the data object o in
Figure 4 has an ancestor node n3 (not necessarily the par-
ent node) on SP (s, t) = {s, n2, n3, t}, then the upper bound
UB(o, SP (s, t)) is tightened to be |Dn(o, n3)| and Algorithm
1 may return results faster since smaller upper bounds make
Theorem 1 easier to be satisfied.

Figure 4: Expansion tree originated from t

On acquiring the candidate set CS together with lower
bounds of candidates, as well as the shortest path SP (s, t),
the verification phase executes to verify the k -PNN candi-
dates in CS in the sequence of their lower bounds as shown
in Algorithm 2.

Algorithm 2: BNE - verification phase

input : Lowerbounds, SP (s, t)
output: k-PNN
count← 0; Heap kpnn; kpnn.max←∞;1

while Lowerbounds �= null do2

o← Lowerbounds.popMin();3

if kpnn.max > o.lowerbound then4

Dd(o, SP (s, t)) ← verify(o, SP (s, t));5

if Dd(o, SP (s, t)) < kpnn.max then6

if count < k then7

kpnn.add(o);8

count + +;9

else10

kpnn.deleteMax();11

kpnn.add(o);12

else13

return kpnn;14

The verification phase examines the exact minimum de-
tour distance of each candidate from CS in the order of lower
bound (the node with the minimal lower bound is pop out



at line 3), until a candidate’s lower bound is not less than
the kpnn’s max value (line 4-12, kpnn stores the k minimal
detour distances found so far). The verify() function per-
forms a network expansion from the candidate o to get its
exact minimum detour distance. As this function is invoked
every time an update occurs, the expansion method can af-
fect the efficiency of monitoring significantly. Normally, the
Dijkstra’s expansion method can be used. Here, we propose
a heuristic expansion approach that improves the efficiency
greatly. The basic idea is to select the next node n with
the minimum (Dn(n, o)+n.detourEstimate) for expansion.
n.detourEstimate is the estimate of n’s minimum detour
distance, and it is determined by either LB(n, SP (s, t)), or
Distp(n, s, t) which is the perpendicular distance from n to
the line (s, t). Distp(n, s, t) uses Euclidean distance to ap-
proximate the minimum detour distance and it can be eas-
ily figured out by using the Cosine Theorem as follows. Let
c1 = De(n, s), c2 = De(n, t) and l = De(s, t) (De() is Eu-
clidean distance), then we have:

Distp(n, s, t) = |c1 × sin(arccos(
c2
1 + l2 − c2

2

2c1l
))|

However, the Euclidean detour estimate may not be appli-
cable when the weight of an edge is not measured by real geo-
graphic distance (e.g. time cost). In contrast LB(n, SP (s, t))
gives a more tightened estimate and holds for any type of
edge weight. One potential drawback is that some nodes
encountered during the expansion may have not been previ-
ously scanned yet and have no lower bound determined. In
this case we need further expansion of Tf and Tr to get the
node’s lower bound. However, in our experiments on real
datasets, this situation is rare and very limited number of
encountered nodes haven’t been scanned as most of them
are covered by the expansion trees.

Basically, the search area of the verify() function using
the Dijkstra’s expansion is a circle, while the search area is
normally in a triangle shape towards SP (s, t) if using the
detour estimate as a heuristic. Algorithm 3 describes the
details.

Algorithm 3: verify(o, SP (s, t))

Sv, Qv ← null;detourDist←∞;1

∀p ∈ V , Lv(p)←∞;Lv(o)← 0; Qv ← Qv ∪ o;2

while Qv �= null do3

n← ExtractMin(Qv), such that4

Lv(n) + n.detourEstimate is minimized ;
if Lv(n) + n.detourEstimate ≥ detourDist then5

return detourDist;6

if n ∈ SP (s, t) and detourDist > Lv(n) then7

detourDist ← Lv(n);8

Sv ← Sv ∪ n;9

for each node v ∈ n.adjacentNodes do10

if Lv(v) > Lv(n) + weight(n, v) then11

Lv(v)← Lv(n) + weight(n, v);12

Qv ← Qv ∪ v;13

In Algorithm 3, the node with the minimum (Dn(n, o) +
n.detourEstimate) gets explored first (line 4). Once a node
∈ SP (s, t) gets scanned (line 7-8), a detour path from o to
SP (s, t) is found and we update the current minimum detour
distance detourDist if a shorter one is found. Here, Lv() is
the distance label indicating how far a node is from o. Notice

that the verify() function may continue the search even af-
ter it reaches the shortest path SP (s, t) since it is not neces-
sarily that a node with smaller distance label Lv(n) gets ex-
plored first, until the current detourDist is not greater than
the current (Lv(n) + n.detourEstimate) which is a lower
bound of all unscanned nodes’ minimum detour distances
(line 5-6). The correctness of Algorithm 3 is guaranteed as
stated in the following:

Lemma 1. For every node n scanned by the verify() func-
tion, Lv(n) is equal to the length of the shortest path SP (o, n),
where o is the data object for verification.

Proof. Denote detourEstimate by e. The verify() func-
tion’s expansion method is equal to the Dijkstra’s algorithm
if we replace the distance label Lv(n) by Lv(n) + n.e. Thus
we can define a new weight of an edge as:

weight
′
(n1, n2) = Lv(n2) + n2.e− (Lv(n1) + n1.e)

= weight(n1, n2)− n1.e + n2.e

weight(n1, n2) is the original weight defined in G(V, E).
Straightforwardly, weight(n1, n2)− n1.e + n2.e ≥ 0 because
of the triangular inequality (proof by replacing e with Equa-
tion 3). Suppose we replace the weight of each edge in

G(V, E) by the non-negative weight
′
. Then for any two

nodes nx, ny , the length of any path from nx to ny changes
by the same amount: ny .e − nx.e. Therefore, a path is the
shortest path from nx to ny with respect to weight, if and
only if it is also the shortest path from nx to ny with respect

to weight
′
.

The rationale of the expansion method in Algorithm 3 is
similar to that of the A� algorithm [5], although a different
heuristic is designed, and the detour estimate is essentially
a feasible potential function in [4]. As Lv(n) is guaranteed
to be the length of the shortest path from o by Lemma 1,
once the minimal detourDist is confirmed, it must be the
minimum detour distance from o to SP (s, t).

5. MONITORING K–PNN
In this section, we present the monitoring phase of the

BNE algorithm and show how to update the k -PNN results
when the user is moving arbitrarily. As described before,
the user may deviate from the shortest path and then the
current shortest path which is actually the query path may
be changed from time to time, and thus an update of the
k -PNN results is caused by the change of the query path.
Even though the user always follows the shortest path, the
path is also becoming shorter while the user is going towards
the destination. Therefore, we need to deal with the shortest
path update and consequently the k -PNN update.

In this part, the candidate set CS of data objects, the
expansion tree Tr and Tf rooted at t and s respectively, as
well as lower bounds and upper bounds of scanned nodes
that acquired previously are all further utilized and care-
fully maintained in the monitoring phase as they provide
’pre-computed’ knowledge to accelerate our update algo-
rithm. Obviously, Tr is static because the destination does
not change, by which we can figure out a node’s shortest
path to the destination quickly. As the user is probably
moving closer gradually towards the destination, the can-
didate set CS probably covers the new k -PNN results. All



these information are also updated gradually in the monitor-
ing phase, based on which we design the update algorithms.

There are basically two types of updates for the k -PNN:
(1) update of the order; and (2) update of the members. In
the first category, the k -PNN results are still the same but
the order with respect to minimum detour distance changes,
while in the second category some data objects of the k -PNN
become invalid and new data objects are inserted into the
k -PNN results. Now the problem is to determine where an
update of the k -PNN will be needed (i.e. update location),
and then only refresh the k -PNN results when necessary. In
the following, we present our update algorithms for the cases
when the user follows the shortest path, and deviates from
the shortest path.

5.1 Following the Shortest Path
Firstly, we discuss the case that so far the user follows the

shortest path found previously. Figure 5 illustrates such a
4 -PNN = {o2, o5, o4, o3} example, in which we assume the
user follows SP (s, t) and his/her current position is denoted

by s
′
. The shortest path from a data object oi to SP (s, t) in-

tersects SP (s, t) at ni, and we call SP (oi, ni) the minimum
detour path of oi, and ni the entrance point of oi’s mini-
mum detour path. For instance SP (o2, n2) is the minimum
detour path of o2, and n2 is o2’s entrance point.

Figure 5: Update locations

It is not hard to see that before s′ reaches the first entrance
point of the current k -PNN (n2 in this example), neither the
order nor the members of the k -PNN needs to be updated,

because when s
′
is on SP (s, t), we have SP (s

′
, t) ⊆ SP (s, t),

which means SP (s
′
, t) is the same as the part of SP (s, t)

from s
′
to t, and hence the minimum detour path of any oi

does not change, and there can not be any other data object

closer to SP (s
′
, t), otherwise the closer data object must be

included in the k -PNN of SP (s, t).

Once s
′

overtakes the entrance point of a data object oi,
the minimum detour distance of oi will increase and thus it
may affect the order of the k -PNN. For instance, when s

′

overtakes n2 and keeps going forwards, the minimum detour
distance of o2 becomes larger and the order of o2 (the 1st

PNN) and o5 (the 2nd PNN) may change when o2’s mini-
mum detour distance rises to a certain value. If oi is just
the kth PNN, it may also become invalid and the (k + 1)th

PNN will replace it to be the kth PNN. To detect the change
of the kth PNN, we actually maintain the (k + 1)-PNN re-
sults in the algorithm, and we calculate the update locations
for the k -PNN to indicate where a change of the order could
happen. Normally, an update location for a data object oi is

computed every time when s
′

arrives at oi’s entrance point
by:

d(oi) = |SP (oj , nj)| − |SP (oi, ni)| (4)

where d(oi) is the distance from oi’s entrance point ni to the
update location. Let oi be the λth PNN (λ ≤ k), then we
choose oj = (λ+1)th PNN for calculating d(oi) in Equation
4. The idea is that an upper bound of the minimum detour

distance of oi from SP (s
′
, t) is |SP (oi, ni)| + |SP (ni, s

′
)|,

and as long as this upper bound is smaller than the (λ+1)th

PNN’s minimum detour distance |SP (oj , nj)|, the order of
the k -PNN keeps the same.

For example in Figure 5, the 4 -PNN = {o2, o5, o4, o3},
when s

′
arrives at n2, it generates an update location for

o2 determined by d(o2), which is equal to |SP (o5, n5)| −
|SP (o2, n2)|. While the user is traveling within the range
of d(o2) from n2, it is expected that no change of the order
between o2 and o5 is required. However, if the (λ + 1)th

PNN’s entrance point is met before s
′

arrives at the λth

PNN’s update location, for example s
′

meets o5’s entrance
point n5 and it generates an update location for o5 with
d(o5) as shown in Figure 5, in this case o5’s update loca-
tion is reset to be the same as o2’s update location which

is closer to s
′
, because we need to re-compute both o2 and

o5’s minimum detour distances at o2’s update location to de-
termine whether the order changes, and to figure out their
next update locations. However, if o5’s update location

is closer to s
′
, we do not need to reset o5’s update loca-

tion. Similarly, if the (λ − 1)th PNN’s entrance point is

met before s
′
arrives at the λth PNN’s update location, like

that n4 is encountered before s
′

reaches o3’s update loca-
tion as illustrated in Figure 5, since o3’s update location

is closer to s
′
, there is no need to adjust o3’s update lo-

cation. Algorithm 4 shows how to determine the update
location when encountering a data object’s entrance point.

Algorithm 4: Encountering oi’s entrance point

/* oi = the λth PNN */

/* oj = the (λ + 1)th PNN */

/* ok = the (λ− 1)th PNN */

oi.updateLoc← pos(ni) + d(oi);1

if ok.updateLoc �= null and2

ok.updateLoc < oi.updateLoc then
oi.updateLoc← ok.updateLoc;3

if oj .updateLoc �= null and4

oi.updateLoc < oj .updateLoc then
oj .updateLoc← oi.updateLoc;5

Here, pos(oi) is the position of oi, and d(oi) is computed by
Equation 4. The criteria is to reset a lower ranking PNN’s
update location (denoted by updateLoc) to the higher rank-
ing one’s update location if the higher one’s update location

is closer to s
′

(with a smaller value).
On arriving at oi’s update location, the minimum detour

distance of oi is re-examined by running Algorithm 3 and the
k -PNN is refreshed accordingly. Recall Algorithm 3, note
that the lower bound LB(oi, SP (s, t)) determined previ-
ously at s can still be used as the detour estimate in the ver-
ification process even the current query path has changed to

be SP (s
′
, t), because LB(oi, SP (s, t)) ≤ LB(oi, SP (s

′
, t)).

Let Dn(oi, s) = c1, Dn(oi, t) = c2, Dn(oi, s
′
) = c3, we have:

LB(oi, SP (s, t))− LB(oi, SP (s
′
, t))

=
c1 + c2 − |SP (s, t)|

2
− c2 + c3 − |SP (s

′
, t)|

2



=
(c1 − c3)− (|SP (s, t)| − |SP (s

′
, t)|)

2

=
(c1 − c3)− |SP (s, s

′
)|

2
≤ 0

The update algorithm is invoked when encountering an up-
date location Loc as described in Algorithm 5. Firstly it
verifies all corresponding data objects’ minimum detour dis-
tances, and then refreshes the order of the (k + 1)-PNN. If
the previous kth PNN is not valid any longer (line 5), a re-
computation of the whole (k+1)-PNN is executed by calling
the updateKPNN() function in Algorithm 6.

Algorithm 5: Encountering an update location Loc

for each object oi that oi.updateLoc = Loc do1

Dd(oi)← verify(oi, SP (Loc, t));2

remove oi.updateLoc;3

refresh the order of the (k + 1)-PNN ;4

if the kth PNN is changed then5

updateKPNN(Loc, t);6

for each object o
′
i that o

′
i.entrancePoint = Loc do7

calculate o
′
i.updateLoc by Algorithm 4;8

In some cases, oi’s minimum detour path may have a new

entrance point even ahead of s
′
after verification, such as n

′
5

in Figure 5. After the update of k -PNN, a data object is
assigned a new update location if its new entrance point is

right at s
′

(line 7-8).

Algorithm 6: updateKPNN(n, t)

S, Qs ← null; ∀p ∈ V , Lf (p)←∞;1

Lf (n)← 0; Qs ← Qs ∪ n;2

Heap Lowerbounds, Upperbounds;3

while Qs �= null do4

u← ExtractMin(Qs);5

S ← S ∪ u;6

if u ∈ Tr and SP(n,t) is not determined then7

record SP (n, t);8

for each node v ∈ u.adjacentNodes do9

if Lf (v) > Lf (u) + weight(u, v) then10

Lf (v)← Lf (u) + weight(u, v);11

Qs ← Qs ∪ v; πf (v)← u;12

if u is a data object then13

Upperbounds.add(Lf (u));14

if u /∈ Tr then15

further expand Tr until Lr(u) �=∞;16

u.lowerbound← Lf (u)+Lr(u)−|SP (n,t)|
2

;17

Lowerbounds.add(u.lowerbound);18

k-minimal values ← Upperbounds.minK();19

if Lowerbounds.min ≥ max{the k-minimal20

values} then
Tr ← Tr−{ni : Lr(ni) > Lr(u)};21

CS ← all data objects in S ∪ Tr;22

break;23

continue the expansion until for each ni ∈ CS we have24

ni.lowerbound �= null;
run Algorithm 2 for verifying k-PNN;25

In Algorithm 6, a Dijkstra’s expansion from the current

position n is conducted to update the candidate set CS, and
all candidates’ lower bounds and upper bounds of the mini-
mum detour distance. This process is similar to the search-
ing phase in Algorithm 1. Since the expansion tree Tr rooted
at t and the distance label Lr(u) are invariable, we just need
a forward expansion from n to get Lf (u) and subsequently
the lower bound of n. All Lr(u) (u ∈ Tr) are added to
the Upperbounds in the initialization step. If a data object
scanned by the forward expansion is not included in Tr (line
15), which happens when the user deviates from the short-
est path too much, Tr needs a further expansion to catch
up with the forward expansion, and during the expansion
of Tr the shortest path SP (n, t) may also be recorded if it
has not been determined yet (line 16). In fact, with the user
approaching the destination, a smaller search area from n
is required, and the candidate set CS and the expansion
tree Tr are also updated to smaller ones (line 21-22). At
the same time, all scanned nodes’ lower bounds and upper
bounds of minimum detour distance are also updated. Note
that at line 14, we choose the min{Lf (u), Lr(u)} as u’s up-
per bound. Finally, the verification function runs to acquire
the exact (k + 1)-PNN results. As the k -PNN is already
known, we just need a verification for the (k + 1)th PNN.

5.2 Deviating from the Shortest Path
In the case that the user does not follow the shortest path,

as exemplified in Figure 6, and leaves the current shortest
path SP (s, t) = {s, n2, n3, t} for destination t through n5,
st and n4, firstly we need to update the current shortest
path to the destination. There will be a split point f on the
coming edge such that the shortest path from the current

position s
′

to t is {s′
, s, n2, n3, t} through node s when s

′

is on the path (s, f), and the shortest path changes to be

{s′
, st, n4, t} through node st after the user passes f .

Figure 6: Split point & Object types

To find the split point f, first of all we search along the
coming edges until encountering the first node with out de-
gree ≥ 3 (st in this example), and it is easy to see that

the shortest path from s
′

to t must go through SP (s, t) or

SP (st, t) when s
′
is on the path (s, st). So the next step is to

find the shortest path SP (st, t). If st is already contained in
the expansion tree Tr, SP (st, t) can be constructed by trac-
ing upwards from st along parent node (recorded by πr())
until it reaches the root t. Otherwise, again a Dijkstra’s
network expansion from st is conducted, trying to touch the
expansion tree Tr. As stated before, Tr covers the surround-
ing area of t, therefore, as long as the user does not deviate
too much, st is close to Tr and the expansion from st will
meet Tr very soon, after which the shortest path from st to t
is determined just like that in the bidirectional search of the
searching phase. In addition, the expansion tree Tf rooted



at s probably also includes st, so the branch of Tf starts
from st can be re-used for the expansion. This is similar to
the query update in [11], and other branches of Tf are then
discarded. Once the shortest path SP (st, t) is determined,
the split point f is figured out by:

|(s, f)| = |SP (s, t)|+ |SP (st, t)|+ |(s, st)|
2

− |SP (s, t)|

=
|SP (st, t)| − |SP (s, t)|+ |(s, st)|

2

where |(s, f)| is the length of the path (s, f), and |(s, st)|
is the length of (s, st) (the path along which the user goes
from s to st). Occasionally if SP (st, t) is through s, we set

the split point at node st, and SP (s
′
, t) is always through s

when the user moves on (s, st).
In the following, we elaborate how to update the k -PNN

when the user is moving on (s, f) only, since after the user
passes the split point f , we can monitor the k -PNN as if the
user follows the shortest path SP (f, t) and the algorithm
for that is already introduced in Subsection 5.1. During
the user’s movement on (s, f), however, the computation of
update locations is different from the previous method in

Algorithm 4. Assume the user is currently at s
′ ∈ (s, f),

we observe that the k -PNN of SP (s
′
, t) must be from the

k -PNN results of SP (s, t), or those data objects become

closer enough to SP (s
′
, t) because of the movement on (s, f).

Based on this observation, we develop the following lemma:

Lemma 2. Let kpnn be the k-PNN of SP (s, t), knn be
the k nearest neighbors of st and Os,st be the set of all data

objects located on path (s, st). When s
′
is on the path (s, f)

between s and the split point f , the k-PNN of SP (s
′
, t) must

be included in {kpnn ∪ knn ∪ Os,st}.
Proof. Suppose on the contrary there exists a data ob-

ject o such that o belongs to the k -PNN of SP (s
′
, t), and o is

not in {kpnn∪knn∪Os,st}. As stated previously, SP (s
′
, t)

equals to SP (s, t) plus (s, s
′
) when s

′
is on (s, f). If o’s

entrance point is on SP (s, t), straightforwardly o must be
included in kpnn. Except that, the only way o connects to

SP (s
′
, t) is through node st, or o is right located on the

path (s, st). In the former case o can not have the minimum
detour distance shorter than that of the k -NN of st, while
in the later case o is a data object lies on (s, st). Therefore,
o must be included in {kpnn ∪ knn ∪Os,st}.

From Lemma 2, we confirm that the k -PNN must be from
{kpnn ∪ knn ∪ Os,st} when the user is moving on (s, f),
and hence only data objects belong to this set may have
an update location. Furthermore, for data objects belong
to this set, there are only two types of data objects (type1
and type2) as exemplified in Figure 6 that can trigger an
update on the k -PNN. Data objects of type1 are all those
objects on path (s, st), and data objects of type2 are the
k -NN of st except those belong to type1. For a data object
contained in the k -PNN of SP (s, t) excluding those in type1
and type2, it’s minimum detour distance does not change
during the user’s movement on (s,f), and thus it does not
have an update location. For type1 and type2 data objects,
their minimum detour distances may decrease as the user
moves towards the split point, and we calculate the update
locations for them when a deviation occurs.

(1) For a data object oi of type1, it may become closer

to the current shortest path SP (s
′
, t) since SP (s

′
, t) extends

with s
′

moving towards oi. If oi is already the λth PNN
(λ ≤ k), its update location is then determined by:

oi.updateLoc = pos(s
′
) + |(s′

, oi)| −Dd((λ− 1)thPNN)

Here pos(s
′
) is the user’s current position which is initially

equal to pos(s), and |(s′
, oi)| is the distance from s

′
to oi

along path (s, f). oi.updateLoc stands for the position where

the distance from s
′

to oi drops to Dd((λ− 1)thPNN) and
oi may become the (λ− 1)th PNN.

Otherwise, if oi is not included in the current k-PNN and

then we compare |(s′
, oi)| with the kth PNN’s minimum de-

tour distance and decide where oi may become the kth PNN:

oi.updateLoc = pos(s
′
) + |(s′

, oi)| −Dd(k
thPNN)

(2) For a data object oi of type2, similarly, if oi is the
λth PNN (λ ≤ k), then we have oi.updateLoc =

pos(s
′
) + |(s′

, st)|+ Dn(oi, st)−Dd((λ− 1)thPNN)

In this equation, |(s′
, st)| + Dn(oi, st) is the distance from

the user’s current position s
′
to oi through path (s, st). Oth-

erwise if oi does not belong to the k -PNN, we have:

oi.updateLoc = pos(s
′
)+|(s′

, st)|+Dn(oi, st)−Dd(k
thPNN)

In both cases, we assign Dd(0thPNN) = Dd(1stPNN). If
λthPNN.updateLoc < (λ − 1)thPNN.updateLoc, then the
(λ−1)th PNN’s update location is reset to be the same as the
λth PNN’s update location, as we need to get both the λth

and (λ− 1)th PNNs’ exact minimum detour distances when
refreshing the order of k-PNN. If oi.updateLoc > |(s, f)|,
the update location for oi is not a valid one because the
current shortest path will change after the user crosses f. On
encountering an update location during the deviation from s
towards the split point f , Algorithm 5 is called for updating
the k -PNN results. The steps for processing updates when
a deviation happens are summarized in Algorithm 7.

Algorithm 7: Dealing with deviation

search ahead for the next node st with out degree ≥ 3;1

get SP (st, t) and the k -NN of st;2

calculate the split point f , and update locations;3

update the current k -PNN by using Algorithm 5;4

Notice that, at line 2, the k -NN of st can be acquired by
recording the k first found data objects during the search for
SP (st, t). If |(f, st)| ≥ Dd(kthPNN), then all data objects
of type 2 do not have an update location. Once the user
passes the split point, the whole k-PNN is updated by calling
the updateKPNN(f, t) defined in Algorithm 6.

6. EXPERIMENTS
In this section, we conduct experiments on datasets of

California Road Network and City of Oldenburg Road Net-
work1(stored as adjacency lists), which contain 21, 048 nodes
and 6, 105 nodes respectively (see Figure 7 & Figure 8). All
algorithms are implemented in Java and tested on a win-
dows platform with Intel Core2 CPU (2.13GHz) and 2GB
memory. The main metric we adopt is the CPU time that

1http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm



reflects how much time the monitoring process of our algo-
rithm costs during the user’s movement from the start to
the end. Data objects for monitoring are generated on the
networks uniformly with different density from 1% to 10%
which is equal to ( the number of data objects

the number of nodes in the network
). In both

Figure 7 and Figure 8, a 5% density of distribution is illus-
trated. We also generate query paths with different devia-
tion from 0% (no deviation, i.e. shortest path) to 40%. The
deviation is defined as the percentage of how many times
a user deviates from the shortest path to how many inter-
sections totally on the user’s route to the destination (i.e.
the number of deviations
the number of intersetions

). The setting of our experiments is
summarized in Table 2.

Table 2: Experiment setting
Name Value

Density of data object 1% to 10%. Default: 5%
Deviation of query path 10% to 40%. Default: 10%
Length of query path 100 to 500 in California Road

Network, and 30 to 100
in Oldenburg Road Network.
Default: 200 and 80

Number of k 1 to 15. Default:10

By default, we set the density of data object distribution
to be 5%, as according to our analysis of the California Road
Network and Points of Interest, 71.4% categories of data
objects have a distribution density less than 5%, and the
deviation is set to be 10% which means the possibility that
a user does not follow the shortest path at an intersection
is 1/10, and the length of query path is configured as 200
when using the California Road Network, and 80 when using
the Oldenburg Road Network (200 and 80 are close to the
diameters of the networks).

For the purpose of comparison, an algorithm based on the
In-Route Nearest Neighbor query [20] is also implemented,
and we mention it as Monitoring based on IRNN (MIRNN).
In this algorithm, the way to figure out update locations and
split points is still the same as that in the BNE algorithm,
but we replace the parts of searching and updating k-PNN
with the SDJ algorithm in [20], which implements IRNN
query for a given path (pseudo code can be found in [23]).
The SDJ algorithm utilizes closest pair query (distance join)
[2] for determining the order of k -PNN verification and an
R-tree index of data objects is adopted. In MIRNN, every
time an update of the whole k -PNN is needed, the SDJ
algorithm is invoked, and the current shortest path is also
established by a bi-directional Dijkstra’s search.

6.1 Effect of Data Object Density
First of all, we study the effect of data object density on

the performance of 10 -PNN, with the deviation of query
path fixed at 10%, and path length fixed at 200 and 80 in
the California and Oldenburg Road Networks respectively.
Intuitively, the denser the data object distribution is, the
smaller search area is required and thus the results are re-
sponded more quickly. As we can see in Figure 9(a) and
Figure 10(a), the CPU time decreases for both the BNE
and MIRNN while the density rises. However, the density
has very limited influence on the BNE whose performance
is quite stable with CPU time always lower than 5 seconds
while the MIRNN generates very heavy load when data ob-

Figure 7: California Road Network

Figure 8: City of Oldenburg Road Network

jects are not densely distributed. In fact, with a sparse
distribution, the k -PNN results do not change frequently if
the actual query path does not deviate from the shortest
path too much. While the BNE can always re-use the pre-
vious expansion tree and candidate set for monitoring, the
MIRNN has to perform distance join operations for each k -
PNN update. When the distribution is dense enough, the
performance of both algorithms tend to be similar.

Actually, when data objects are densely distributed, it
is likely that the k -PNN results all lie on the path with
minimum detour distance equals to 0, therefore once the
shortest path to the destination is found, the k data objects
on the path are also discovered. So we mainly design the
Path Nearest Neighbor query for data objects that are not
very densely distributed (e.g. gas station), although our
algorithm can also cope with high density efficiently.

6.2 Effect of Path Length
The query path is the route on which the user travels

to the destination. It is expected that the monitoring cost
is in linear to the length of the path since a longer path
causes more updates of the k -PNN. In this experiment, we
test the performance of 10 -PNN with the query path length
varies from 100 to 500, and 30 to 100, in the California and
Oldenburg Road Networks respectively. The density is set
to be 5% and deviation is set to be 10%. In the Califor-
nia Road Network, as shown in Figure 9(b), when the path
length is between 100 and 300, the cost of the BNE algo-
rithm increases gradually from less than 1 second to nearly
5 seconds, while the cost of the MIRNN rises dramatically
to nearly 17 seconds. After that, the query path becomes



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  3  4  5  6  7  8  9  10

C
P

U
 T

im
e 

(s
ec

)

Density (%)

BNE
MIRNN

(a)

 0

 5

 10

 15

 20

 100  150  200  250  300  350  400  450  500

C
P

U
 T

im
e 

(s
ec

)

length

BNE
MIRNN

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35  40

C
P

U
 T

im
e 

(s
ec

)

deviation (%)

BNE
MIRNN

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2  4  6  8  10  12  14

C
P

U
 T

im
e 

(s
ec

)

k

BNE
MIRNN

(d)

Figure 9: Performance in California Road Network

 0

 5

 10

 15

 20

 25

 30

 1  2  3  4  5  6  7  8  9  10

C
P

U
 T

im
e 

(s
ec

)

Density (%)

BNE
MIRNN

(a)

 0

 1

 2

 3

 4

 5

 30  40  50  60  70  80  90  100

C
P

U
 T

im
e 

(s
ec

)

length

BNE
MIRNN

(b)

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35  40
C

P
U

 T
im

e 
(s

ec
)

deviation (%)

BNE
MIRNN

(c)

 0

 1

 2

 3

 4

 5

 2  4  6  8  10  12  14

C
P

U
 T

im
e 

(s
ec

)

k

BNE
MIRNN

(d)

Figure 10: Performance in City of Oldenburg Road Network

more and more ‘zigzag’ as the path grows longer in a fixed-
size network, and the performance of both methods tend
to be stable as the search space does not increase in pro-
portional to the length. In the Oldenburg Road Network,
the size of which is a smaller, the curves are similar, while
the BNE always outperforms the MIRNN method (Figure
10(b)).

6.3 Effect of Deviation
The deviation of a query path reflects how ‘zigzag’ the

path is. A query path with deviation equals to 0% is actually
the shortest path connecting the start and end nodes. High
deviation implies that the user usually does not choose the
shortest path and an update of the whole k -PNN is required
each time the user deviates. Straightforwardly, higher de-
viation causes more updates and thus higher cost. How-
ever, interestingly, the cost of the BNE algorithm in both
datasets drops increasingly with the deviation goes from 0%
to 40%, as shown in Figure 9(c) and Figure 10(c) (with de-
fault settings for other paramters). The reason is that for
a fixed length query path, a smaller search area can cover
the whole path, compared with the search area for a not so
’zigzag’ query path. Therefore, a smaller expansion tree is
maintained by the BNE algorithm to cover all the data ob-
ject candidates. As a consequence, the performance of the
BNE is improved.

In contrast, for the MIRNN method, as illustrated in Fig-
ure 9(c) and Figure 10(c), the performance is improved as
the deviation increases from 0% to 10% at the beginning,
after which the cost rises or fluctuates because the MIRNN
highly depends on the efficiency of the closest pair query
which may involve expensive self-join.
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Figure 11: Performance of verification



6.4 Effect of k
The number of k is another critical parameter affecting

the performance. Nevertheless, as we can see in Figure 9(d)
and Figure 10(d), the cost of the BNE rises slowly with k
goes up from 0 to 15, which implies that the search cost of
determining the candidate set as well as the (k+1)-PNN only
differs slightly for different k ≤ 15. In comparison with the
BNE, the performance of the MIRNN degrades drastically
with k increases because of a dramatic rise in the number of
join operations. Note that when k is small (e.g. ≤ 3), the
performance of the MIRNN is close to that of the BNE or
even better slightly. So we may say the BNE is much more
efficient in handling large number of k.

6.5 The Verification Function
As stated in section 4, the verifiy function of the BNE

algorithm determines how efficiently the minimum detour
distance of a data object candidate can be figured out. We
compare the performance of the verify function that using
the lower bound as detour estimate, with that of simple
Dijkstra’s expansion, by how many nodes totally they visit
during the monitoring process. Under the default settings,
the detour estimate based approach reduces the number of
visited nodes by approximately 66% in the California Road
Network (Figure 11(a)), and by about 50% in the Oldenburg
Road Network (Figure 11(b)) compared with the Dijkstra’s
expansion method.

7. CONCLUSION
In this paper we propose a new query for monitoring k -

PNN which retrieves nearest neighbors by considering the
whole coming journey of the user, and we present a three-
phase BNE algorithm for efficient searching and monitoring
of the k -PNN while the user is moving arbitrarily. The BNE
utilizes a bi-directional search scheme to acquire the current
shortest path to the destination and data object candidates
as well, and a heuristic verification function is designed for
examining each candidate’s exact minimum detour distance
efficiently. The monitoring part mainly involves the calcu-
lation of update locations of the k -PNN. In all these phases,
information from previous searching are well maintained to
minimize the new computation effort. Finally, the BNE al-
gorithm is tested using real datasets with different settings.
As we can see, the BNE provides efficient monitoring under
different data object density, and performs well when the
length/deviation of query path increases.
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