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Abstract

Matching is a traditional topic in computer science. Given two sets of objects, we

want to match the objects from one set with those from the other set according to

some appropriate objectives.

Many matching problems have been proposed in the literature. Some exam-

ples are Stable Marriage, Optimal Matching Problem and Generalized Assignment

Problem. Furthermore, many algorithms have been designed for these matching

problems. Nevertheless, most of them are not efficient enough for large datasets.

For instance, the lower bound of the time complexity for Stable Marriage is quadratic

and that for Optimal Matching Problem is even worse, cubic. Fortunately, as some

researchers discovered, some of these performance limitations do not occur any more

when the matching problems are studied in the context of spatial databases.

Recently, considerable research has been conducted on the matching problems

in the community of spatial databases. Because the objects involved in many appli-

cations of matching are actually spatial entities. Some examples include emergence

resource allocation, profile matching and facility location allocation. In this survey,

we first review different variants of traditional matching problems and introduce

some relevant spatial databases techniques. We then study the matching problems

in spatial databases that have been studied recently. Besides, some variants of the

matching problems in spatial databases are introduced. Finally, we conclude this

survey by giving some future research directions related to matching problems in

spatial databases.
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Abbreviations

OMP Optimal Matching Problem

SMP Stable Marriage Problem

SPM SPatial Matching Problem

CCA Capacity Constrained Assignment

OSM Optimal Stable Marriage

GAP Generalized Assignment Problem

LOA Leximin Optimal Assignment

CPR Closest Pair Retrieval

MCF Minimum Cost Flow

SSPA Successive Shortest Path Algorithm

RIA Range Incremental Algorithm

NIA Nearest neighbor Incremental Algorithm

IDA Incremental on-Demand Algorithm

SA Service-provider Approximation

CA Customer Approximation

CSA Continuous Spatial Assignment
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Symbols

P,O Sets of objects

M A matching between P and O

c(p, o) The cost incurred by pair (p, o)

c(M) The cost incurred by matching M

f A flow in a graph

σp(M) The signature of p under matching M

p.w, o.w The capacity of a service-provider p and the demand of a customer o

dist(p, o) The Euclidean distance between p and o

α(n)(β(n)) The cost of an NN query (object deletion) on a dataset of size n

λ min{
∑

p∈P p.w, |O|}

w(v1, v2)(u(v2, v2)) The weight (capacity) of edge (v1, v2)

v.τ The potential of v

φ(E) The minimum cost of the edges in E

θ A parameter of RIA

T The threshold in RIA for a range query

χ The parameter for bounding the diagonal of MBRs (in CCA)

score(p, o) The score of the pair (p, o) for a preference query
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1. Introduction

Matching is a classical problem in computer science [1, 2, 3]. Let P and O be two

sets of objects and M be a subset of Cartesian product P ×O. Each element (p, o)

in M is called a pair (match). M is said to be a matching between P and O if each

p (o) occurs in at most one pair of M .

Given P and O, there exist multiple (exponential) matchings between P and

O. To obtain a desirable matching, we usually impose some matching objectives

(matching strategies) when forming a matching between P and O. Based on dif-

ferent matching objectives, we can form different desirable matchings between P

and O. For example, in the Optimal Matching Problem (OMP) [1], it is assumed

that forming a pair (p, o) would incur a certain cost and the cost of a matching M

between P and O is the aggregated cost of all pairs in M . The matching objective

of OMP is to minimize the cost of the formed matching M and to include in M as

many pairs as possible.

Numerous examples of matching exist in real life. For example, job schedul-

ing matches jobs with machines. Facility location allocation involves a matching

problem between a set of facilities and a set of locations. Other examples includes

matching between students and schools, matching between service-providers (e.g.,

wireless access points) and customers (e.g., WiFi receivers) and so forth.

We first briefly introduce two basic matching problems in computer science

in Section 1.1. Then, we give the motivations for studying the matching problems

in spatial databases in Section 1.2. At the end, we provide the roadmap of the

following chapters in Section 1.3.

1.1 Matching Problems

In this part, we briefly introduce two classical matching problems in computer

science, namely the Optimal Matching Problem (OMP) [1] and the Stable Marriage

1
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Problem (SMP) [2] in Section 1.1.1 and Section 1.1.2, respectively. The review of

other matching problems will be provided in Chapter 2.

1.1.1 Optimal Matching Problem

Let P and O be two sets. For any p ∈ P and o ∈ O, we use c(p, o) to represent

the cost of matching p with o. We say matching M is optimal between P and O if

M contains as many pairs as possible (i.e., |M | = min{|P |, |O|}) and the cost of M

is minimized. Given P and O, OMP is to find the optimal matching M between P

and O.

The matching strategy involved in OMP that optimizes (either maximizes or

minimizes) a global measure is very natural and thus it has been used in many real-

life applications. For instance, Easychair 1 is a popular software that helps Program

Committee (PC) chairs to match referees with papers. Specifically, it asks referees

to provide their interests (weights) on the papers at the bidding stage, and then it

assigns papers to referees based on these weights such that the overall weight (of

the referee-paper pairs) is maximized.

1.1.2 Stable Marriage Problem

Let P be a set of men and O be a set of women. Each man in P has a

preference list of women in a descending order of how much he likes each woman in

O. Similarly, each woman in O has a preference list of men in a descending order of

how much she likes each man in P . Assume |P | = |O| (this assumption is made for

ease of exposition and can be relaxed easily). We say matching M is stable between

P and O if |M | = |P |(|O|) (i.e., all men (women) are matched in M) and there

exist no unstable pairs (p, o). A pair (p, o) is said to be an usntable pair if p prefers

o to the current woman matched with p in M and o prefers p to the current man

matched with o in M . The SMP is to find a stable matching M between P and O.

The underlying matching strategy of SMP is widely used in real life, since it

employs a fair rule when forming a matching and the requirement of “fairness” is

1http://www.easychair.org
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very desirable to the participants involved in the matching. Here, the notions of

“man” and “woman” are general and can have alternative semantics in different

applications. For example, one well-known application of SMP is the school admis-

sion system which is to match student applicants with their majors, where student

applicants are regarded as men and majors are regarded as women.

1.2 Motivations for Matching in Spatial Databases

The motivations of studying the matching problem in the context of spatial

databases are discussed as follows.

First, a lot of algorithms have been developed for different matching problems

(e.g., OPM and SMP), though they are not efficient or scalable enough from the

view of databases. To illustrate, consider the aforementioned two popular matching

problems, OMP and SMP. For OMP, the best-known solution incurs a cubic time

complexity (in term of |P |+ |O|) [4], thus making it prohibitively expensive on large

datasets of P and O. For SMP, the fastest solution is due to Gale and Shapley [2],

which runs in O(|P | · |O|) time and consumes O(|P | · |O|) memory. Clearly, it would

be quite time-consuming when dealing with voluminous P and O. Furthermore, it is

shown that the complexity bound of O(|P | · |O|) (for both time and space) is indeed

the best we can achieve given any arbitrary preference list of each man/woman.

However, as will be shown later in this survey, when studied in the context of

spatial databases, the matching problems can be solved in a more efficient way due

to some spatial properties. More specifically, some of theoretical bounds (e.g., the

one for SMP) can be improved and some algorithms (e.g., the ones for OMP) can

be speeded up significantly.

Second, we note that many matching problems actually take place in the

spatial environment. For example, in the application of emergency facility allocation,

we match emergency facilities (e.g., hospitals) with users (e.g., populated estates).

In this case, both emergency facilities and users are located in the Euclidean 2D

space. Another example is the profile matching where matching is formed between
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jobs and students. More specifically, each job is represented by several attributes

such as the salary, workload and so on. Each student provides his/her preference for

these attributes. Thus, each job (student) can be represented by a multidimensional

point. In this example, although the elements of P and O seem not to be located

in the spatial environment explicitly, they can actually be regarded as being located

in spatial environment implicitly (multidimensional points). For these matching

problems where the elements in P and O are spatial objects, the cost of pair (p, o)

is usually measured by the Euclidean distance between p and o.

1.3 Organization

The remainder of this survey is as follows. In Chapter 2, we do the litera-

ture review on the classical problems in computer science and propose the general

framework of matching in spatial databases. In Chapter 3, we survey the related

spatial database techniques that have been used in the matching problem in spa-

tial databases. We study two well-studied matchings problems in spatial databases,

SPM and CCA, in Chapter 4 and Chapter 5, respectively. Some variants of the

matching problem in spatial databases are provided in Chapter 6. In Chapter 7, we

conclude our survey by providing some future research directions.



2. Review of Matching Problems

In this chapter, we review some traditional matching problems in Section 2.1. In

Section 2.2, we define the framework of matching problems in spatial databases.

2.1 Traditional Matching Problems

We introduce the Optimal Matching Problem (OMP) [1] and the Stable Mar-

riage Problem (SMP) [2] in Section 2.1.1 and Section 2.1.2, respectively. In Sec-

tion 2.1.3, we briefly review some other classical matching problem in computer

science.

2.1.1 Optimal Matching Problem (OMP)

Let P and O be two sets of objects. We use c(p, o) to represent the cost that

occurs when we match p with o. Let M be a matching between P and O. The

cost of M , denoted by c(M) is defined as the aggregated cost of all pairs in M , i.e.,

c(M) =
∑

(p,o)∈M c(p, o). We say M is an optimal matching if it includes as many

pairs as possible (i.e., |M | = min{|P |, |O|}) and its cost is minimized. We formalize

the Optimal Matching Problem (OMP) as follows.

Definition 1 (Optimal Matching Problem) Let P and O be two sets of objects.

The Optimal Matching Problem is to find a matching M between P and O such

that |M | = min{|P |, |O|} and c(M) is minimized.

The OMP problem can be solved by reduction to the well-known minimum

cost flow (MCF) problem [5]. Specifically, we construct a complete bipartite graph

G between P and O, and augment it by creating two new vertices s and t, |P | edges

(s, p) (p ∈ P ) and |O| edges (o, t) (o ∈ O). Then, for each edge (p, o) (p ∈ P and

o ∈ O), we associate with it a cost equal to c(p, o). For each edge involving s or

t (i.e., edges (s, p) for all p ∈ P and edges (o, t) for all o ∈ O), we associate with

5
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it a cost equal to 0. Besides, we associate each edge in the graph with a capacity

equal to 1. Let f be the minimum cost flow from s to t on the constructed graph.

It is known that the optimal matching M corresponds to the set of such pairs (p, o)

where there exists a flow (unit) along edge (p, o) in the constructed graph.

There is rich literature of solutions for the MCF problem. They include adap-

tations of primal simplex method [6], signature [7], relaxation [8, 9], Hungarian

method [10, 1] and Successive Shortest Path Algorithm (SSPA) [11]. Among these

solutions, Hungarian method and SSPA are the two with the best worst-case time

complexities. Besides, for some special cases of MCF (with integral edge costs),

cost scaling algorithms are developed [12, 13] to further improve the worst-case time

complexities.

2.1.2 Stable Marriage Problem (SMP)

Let P be a set of men and O be a set of women. Each man keeps a preference

list of women and each woman has a preference list of men. We define the concept

of stable matching between P and O as follows.

Definition 2 (Stable Matching) A matching M is said to be stable if there does

not exist such a couple (p, o) that p prefers o to the current o′ matched with p and o

prefers p to the current p′ matched with o.

The pair (p, o′) ((p′, o)) currently in a matching would be unstable if p and o

prefer each other to o′ and p′, respectively. This is because p (o) is willing to match

o (p), thus breaking (p, o′) ((p′, o)). The intuition behind a stable matching M is

that it does not allow the occurances of such unstable pairs (p, o).

Given set P of men and set O of women, the Stable Marriable Problem is to

find a stable matching between P and O.

Definition 3 (Stable Marriage Problem (SMP)) Let P and O be two sets of

objects. Each p (o) has a preference list of o in O (p in P ). The Stable Marriage
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Problem is to find a matching M between P and O such that M is stable and

|M | = min{|P |, |O|}.

The fastest algorithm is due to Gale and Shapley [2]. Specifically, they de-

veloped an algorithm for SMP, which runs in O(|P | · |O|) and occupies O(|P | · |O|)

space. The algorithm works iteratively as follows.

At the first iteration, each man invites his favorite women in O. Each woman

that has received invitations then chooses her favorite man among all men that have

invited her as her partner candidate. Note that the partner candidate, say p, of a

woman o would be changed if another man p′ invites o during the following iterations

and o favors p′ more than p.

At the second iteration, each man that were rejected at the last iteration now

has another chance to invite his second favorite woman. Again, each woman that

has been invited at this iteration decides her partner candidate by choosing her

favorite man among all the men that invite her at this iteration and her current

partner candidate (if any).

For the remaining iterations, the algorithm proceeds in the same manner. It

stops when no men are rejected or each woman has decided a partner candidate.

In [2], the authors prove that the matching consisting of all pairs of a woman and

her partner candidate is indeed a stable matching. Since there are at most |O|

iterations (the length of a man’s preference list), and the cost at each iteration is

clearly O(|P |), the overall time complexity of this algorithm is O(|P | · |O|). Besides,

it is easy to verify that the space cost of this algorithm is also O(|P | · |O|) (the cost

for storing the preference list of each man and woman). Furthermore, it is shown

that O(|P | · |O|) is actually the best we can achieve in terms of both time cost and

space cost.

Another property worth mentioning here is that given two sets P and O and

the preference list of each p in P and each o in O, it is shown in [2] that we can

always find a stable matching between P and O. We provide this result in Lemma 1.

Lemma 1 [2] Given sets P and O, there always exists a stable matching between
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P and O.

2.1.3 Other Matching Problems

In this part, we review some other matching problems in computer science.

They include Optimal Stable Marriage [14], Generalized Assignment Problem [3],

Rank-Maximal Matching [15], Pareto Optimal Matching [16] and Leximin Optimal

Assignment [17].

2.1.3.1 Optimal Stable Marriage

The Optimal Stable Marriage (OSM) [14] problem is an enhanced version the

Stable Marriage Problem (SMP).

As mentioned in Section 2.1.2, given set P and set O, there exists at least

one stable matchings between P and O. Thus, an intuitive question is that “Can

we further define some priorities on the stable matchings?”. In [14], the authors

provided such a priority definition as follows.

Let P be a set of men and O be a set of women. For each man p, we use

p.rank(o) to denote the ranking of woman o on the preference list of p. Here, if p

loves o the most, p.rank(o) is defined to be 1. If p loves o the least, it is defined to be

|O|. Similarly, for each woman o, we use o.rank(p) to represent the ranking of man p

on the preference list of o. Let M be a stable matching. If (p, o) is a match in M , we

use partner(p) to refer o and use partner(o) to refer p. Then, we define M ’s priority,

denoted by priority(M), as
∑

p∈P p.rank(partner(p)) +
∑

o∈O o.rank(partner(o)).

Clearly, for a stable matching M , the smaller priority(M) is, the more de-

sirable M is. Thus, the goal of OSM is to find the stable matching with smallest

priority among all stable matchings between P and O. According to [18], the num-

ber of stable matchings grows exponentially with |P | + |O|, thus, the method of

retrieving all stable matchings and comparing their priorities is prohibitively costly.

Instead, in [14], the authors proposed a polynomial time (O(|P |+ |O|)4) algorithm

for OSM.
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2.1.3.2 Generalized Assignment Problem

The Generalized Assignment Problem (GAP) was first introduced in [3]. Let

P be a set of agents and each agent has a budget. Let O be a set of tasks. Each

task can be assigned to any agent. Usually, for a task o, different amounts of profits

(cost) would be incurred if it is assigned to different agents. The goal of GAP is to

assign tasks to agents such that (1) for each agent, the sum of the cost incurred by

the tasks assigned to this agent is at most it budget and (2) the amount of overall

profits is maximized.

GAP has close relationships with many other popular problems. For instance,

when the cost and the profit incurred by each task for an agent are the same as those

incurred by the same task for each of the other agents, GAP is similar (identical)

to the Optimal Matching Problem; when all costs and profits incurred by each task-

agent pair, GAP becomes the Multiple Knapsack Problem; when there is only one

agent, it reduces to the popular Knapsack Problem. However, the generic version of

GAP is an NP-hard problem [3].

2.1.3.3 Rank-Maximal Matching

The Rank-Maximal Matching problem was introduced in [15]. Let M be a

matching between P and O. We say M is rank-maximal if the maximum num-

ber of objects are matched to their first-choice objects, and under this condition,

the maximum number of objects are matched to their second-choice objects, and

so forth. It is known [15] that we can find the rank-maximal matching M in

O(min{|P | + |O| + C,C ·
√

|P |+ |O| · |P | · |O|}) time, where C is the largest c

such that some objects are assigned to its cth-choice object in M .

2.1.3.4 Pareto Optimal Matching

A matching M is said to be pareto optimal [16] if there is no other matching

M ′ such that some objects are matched with better objects while no objects are

matched with worse objects in M ′ (compared with M).

We note here that in this problem, it is not necessary that each object keeps
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a complete preference list of objects in the other set. Specifically, when an object o1

is not in the preference list of an object o2 in the other set, it means that o1 is not

acceptable by o2 and thus we cannot match o1 with o2.

The Maximum Pareto Optimal Matching problem is to find the pareto optimal

matching with the maximum cardinality. It is shown [16] that we can solve this

problem with the time complexity of O(|P | · |O|
√

|P |+ |O|).

2.1.3.5 Leximin Optimal Assignment

The Leximin Optimal Assignment (LOA) problem [17] is defined as follows.

Given set P and set O, letM be a matching between P and O (appropriate matching

constraints could be imposed on M). For each p ∈ P , we define its signature (a real

value) under M (based on some appropriate criteria) and we denote it by σp(M).

Let sort(σp1(M), ..., σp|P |
(M)) represent the sorted vector of the signatures of p ∈ P

(non-decreasing). Then, the goal of LOA is to find a matching M such that a given

appropriate evaluation function on sort(σp1(M), ..., σp|P |
(M)) is maximized.

In [17], the authors consider two evaluation functions for sort(σp1(M), ..., σp|P |
(M)),

namely a lexicographic function [17] and a function for the weighted sum (of all signa-

tures in the vector). Besides, it is shown [17] that under different settings (problem

inputs), the hardness (P or NP-hard) of LOA is different. An instance of LOA about

how to assign papers to referees is studied in [17].

2.2 Matching Problems in Spatial Databases

We give an overall study of matching problems in spatial databases in Sec-

tion 2.2.1. In Section 2.2.2, we propose the general framework of matching problems

in spatial databases.

2.2.1 Overview of Matching Problems in Spatial Databases

Recently, considerable concern has been attracted to the matching problems

in spatial databases [19, 4, 20]. Given two sets of spatial objects, P and O, the
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problem is to construct a matching between P and O using some matching objec-

tives (matching strategies) (similar or identical to those for the traditional matching

problems). Usually, in the matching problems in spatial databases, apart from the

matching strategies, appropriate matching constraints are imposed.

In the sequel, for the matching problems in spatial databases, we relax the

definition of matching in Chapter 1 as follows. Given two sets P and O, the Carte-

sian product of P and O (i.e., P ×O) forms a set of all possible matchings between

P and O. Note that in this Cartesian product, each object (e.g., p and o) can occur

multiple times in the pairs of a matching, which is allowed in the matching problems

in spatial databases (e.g., SPatial Matching (SPM) [19] and Capacity Constrained

Assignment (CCA) [4]). In fact, the constraint about how many times an object (p

and o) can occur in the pairs of a matching are regarded as the matching constraint

of the matching problems.

To illustrate, consider the problem called CCA in [4]. In the CCA problem,

each object p in P is called a service-provider and each object o in O is called

a customer. Each service-provider p ∈ P has a capacity (integer), denoted by

p.w, indicating the maximum amount of service p can provide. Each customer

o ∈ O is assumed to have his/her demand of service, denoted by o.w. In CCA,

it is assumed o.w = 1 for all o ∈ O. Besides, the cost of pair (p, o) is assumed

to be the Euclidean distance between p and o, denoted by dist(p, o). The goal of

CCA is to find a matching M between P and O such that (1) no service-provider

provides more service than its capacity, i.e., p occurs at most p.w times in pairs

of M ; (2) no customer receives more service than its demand, i.e., o occurs at

most once in the pairs of M ; (3) M includes as many matches as possible, i.e.,

|M | = min{
∑

p∈P p.w, |O|}; (4) the cost of M is minimized, i.e.,
∑

(p,o)∈M dist(p, o)

is minimized. Conditions (1) and (2) are said to be the capacity constraint of the

CCA problem.

In other words, CCA is a matching problem in spatial databases which has

the goal to minimize the overall cost (matching objective) while satisfying some
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requirements (matching constraints).

Consider the problem called SPM in [19] as another example. Assume |P | ≥

|O|. The goal of SPM is to match each customer o with its nearest service-provider

in P that has not been exhausted by other closer customer. The resulting matching

is called a fair assignment which will be discussed in Section 4.2.

Again, SPM can be regarded as another matching problem on the objects in

spatial databases, which has the goal to find a fair assignment (matching objective)

while satisfying the condition that each customer must be assigned with a service-

provider (matching constraint).

2.2.2 Framework of Matching Problems in Spatial Databases

In view of the above discussion, we propose the general framework of matching

problems in spatial databases as follows.

Problem 1 (Framework of Matching Problems in Spatial Databases) Let P

and O be two sets of objects located in the spatial databases (Euclidean space). A

matching problem in spatial databases is to find a matching M between P and O

such that a specific matching objective is achieved and a certain set of constraints

is satisfied.

The framework above is very general. It can also be applied to each existing

matching problem in spatial databases. For example, in an existing problem CCA,

the specific matching objective corresponds to the minimization of c(M) while the

constraint used corresponds to the capacity constraint.

Within the framework defined in Problem 1, one actually can define arbitrary

matching problems in spatial databases by using whatever meaningful matching

objectives and/or matching constraints. In the literature of spatial databases, to

the best of our knowledge, only two matching objectives have been studied for

matching problems. One is to minimize the overall cost (e.g., CCA) and the other

is to find a fair assignment (e.g., SPM).



3. Related Spatial Techniques

In this chapter, we study some spatial databases techniques that are related to the

matching problems in spatial databases. Specifically, we introduce Nearest Neigh-

bor Query, Reverse Nearest Neighbor Query, Mutual Nearest Neighbor Query and

Closest Pair Retrieval sequentially in the following sections.

3.1 Nearest Neighbor Query

Nearest Neighbor (NN) query is an old problem in computational geometry [21,

22, 23, 24, 25, 26]. Given a set P of points in 2-dimensional space and a query point

q in the same space, the NN query is to retrieve the point in P that has the smallest

distance from q. With an index of the points in P that consumes O(n) space, any

NN query can be solved in O(logn) [21] time, where n is the size of P . Several such

indexes have been proposed that can fulfill this purpose, e.g., a trapezoidal map over

the Voronoi diagram of P in [21].

Many efforts have also been devoted to performing NN queries on the dynamic

datasets. For instance, in [22], a randomized technique is proposed such that each

update can be handled in O(logn) time and each NN query can be answered in

O((logn)2) time where n is the number of points in P when the update/query

happens. Recently, Chan [23] provided another tradeoff by showing that one can

answer the NN query in O(logn) time at the cost of O((logn)6) for updating.

In the community of spatial databases [27, 24, 25, 26], many heuristic-oriented

algorithms were proposed for NN queries. These algorithms, though with high

asymptotic complexities, perform quite efficiently in practice due to their effective

pruning methods. Another nice feature of these algorithms is that it is easy to

extend them to high-dimensional datasets and to apply them to some access methods

(e.g., R-tree [27]) which are widely deployed in commercial databases. Among these

algorithms, branch-and-bound ([24]) and best-first ([25]) run the fastest on low-

13
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dimensional datasets while iDistance ([26]) is more suitable for high-dimensional

datasets.

3.2 Reverse Nearest Neighbor Query

The Reverse Nearest Neighbor (RNN) query was first introduced in [28]. Given

a set P of points and a query point q, the RNN query is to retrieve all the points

in P that take q as their NNs (compared to the other points in the same dataset

as q). There are two versions of the RNN query, namely the Monochromatic RNN

(MRNN) query and the Bichromatic RNN (BRNN) query. Specifically, in MRNN,

the query point q comes from the same point set P , while in BRNN, the query point

q is from another dataset, says Q.

In the following, we focus on BRNN only since MRNN involves a single

dataset which is significantly different from the matching problems which involve

two datasets.

The fastest BRNN algorithm is due to [29], which, however, does not support

dynamic updates on the datasets. To handle this problem on dynamic datasets,

Kang et al. [30] developed a method for maintaining the BRNN results assuming

that the updates occur rapidly in form of stream. Xia et al. [31] proposed a problem

whose goal is to find the point with the largest BRNN set. [32] studied the RNN

query in arbitrary metric spaces. We refer readers to [32] and the references therein

for a further detailed study of RNN.

3.3 Mutual Nearest Neighbor Query

There are two types of Mutual Nearest Neighbor queries [33, 19]. One is

termed with the monochromatic mutual NN query and the other is denoted by the

bichromatic mutual NN query.

The monochromatic mutual NN query was first introduced in [33]. Given a

set P of objects, two objects p ∈ P and p′ ∈ P are said to be monochromatic

mutual NNs to each other if p is the NN of p′ in P − {p′} and p′ is the NN of p
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in P − {p}. Several solutions have been proposed to find monochromatic mutual

NNs [34, 35, 36, 33, 37].

The bichromatic mutual NN query is a variant of the monochromatic mutual

NN query. Instead of considering a single dataset as the monochromatic mutual NN

query, the bichromatic mutual NN query [19] involves two datasets. Specifically,

given two sets P and O, two objects p ∈ P and o ∈ O are said to be bichromatic

mutual NNs to each other if p is the NN of o in P and o is the NN of p in O. In [19],

the authors proposed an efficient method for retrieving bichromatic mutual NNs.

3.4 Closest Pair Retrieval

Given two sets P and O of objects, Closest Pair Retrieval (CPR) is to find

the object pair (p, o) whose distance is the smallest among all object pairs in P ×O.

Most methods for closest pair retrieval are heuristic-based and do not have

good worst-case time complexities [38, 39, 40, 41]. Specifically, none of these meth-

ods run in the time with their complexities lower than O(|P | · |O|). We note here

that the problem is much easier when P and O are the same dataset and in that

case, a method that runs in O(|O| · log |O|) time has been developed [42].

In [39], the authors consider the problem which incrementally retrieves the

closest pairs. In particular, the problem reports all possible object-pairs in form

of (p, o) in an ascending order of their Euclidean distances. Thus, P and O keep

unchanged when the closest pairs are retrieved one by one. This type of closest pair

retrieval is called Inclusive Closest Pair Retrieval (ICPR).

Recently, Exclusive Closest Pair Retrieval (ECPR) was proposed in [43]. Dif-

ferent from the process of ICPR, in ECPR, when a closest pair (p, o) is retrieved,

p (o) is removed from P (O) before the next closest pair retrieval is performed.

Besides, a dynamic version of ECPR was studied in [43].



4. Spatial Matching Problem

In this chapter, we study one matching problem in spatial databases called Spatial

Matching Problem (SPM) [19]. Specifically, we explain the motivation of the SPM

problem in Section 4.1 and define the SPM problem in Section 4.2. In Section 4.3,

we review the solutions of the SPM problem.

4.1 Motivation

As mentioned in Section 3.2, given two sets P and O, the BRNN query on

p ∈ P is to retrieve all o ∈ O whose nearest neighbor in P is p. BRNN is usually

used to decide the “best service”. Let P contain a set of service-providers and O

correspond to a set of customers. The problem is to, for each p in P , decide the

set of customers that p should provide its service to. A natural way is to make p

responsible for its BRNN set on O. In this way, each customer o in O would be

served by its nearest service-provider.

However, BRNN fails to consider the capacity information of each service-

provider. Specifically, some service-providers p might have such a large BRNN set

on O that p is not able to serve all the customers in its BRNN set. In this case, we

cannot simply assign p to the customers in its BRNN set.

Motivated by this, Wong et al. [19] proposed the Spatial Matching Problem

which takes into account the capacities of service-providers and assigns to each

customer the “best” service-provider it can achieve under the requirement that the

resulting assignment is fair.

4.2 Problem Definition

Let P be a set of service-providers and O be set of customers in spatial

databases. We use dist(p, o) to represent the Euclidean distance between p in P and

o in O. Each service-provider p has an integral capacity denoted by p.w and each

16



17

customer o has an integral demand denoted by o.w. Assume that all service demands

of customers can be satisfied by the service-providers, i.e.,
∑

p∈P p.w ≥
∑

o∈O o.w.

In [19], two versions of SPM are studied, namely the un-weighted SPM and the

weighted SPM. For ease of exposition, we first review the un-weighted one, where

p.w = 1 for each p ∈ P and o.w = 1 for each o ∈ O. After that, we will introduce

the weighted one, where p.w and o.w can be arbitrary integral numbers. In the

sequel, for simplicity, we mean “un-weighted SPM” by “SPM” on default.

Before giving the definition of the un-weighted SPM problem, we first define

the concept of assignment as follows.

Definition 4 (Assignment) Let A be a subset of the Cartesian Product P×O. A

is said to be an assignment if each customer occurs in exactly one pair of M (e.g.,

|M | = |O|), and each service-provider occurs in at most one pair of M . p and o are

said to be partners to each other if (p, o) is a pair in M .

As has been mentioned, the goal of SPM is to find a fair assignment given P

and O. In [19], the unfairness is captured by the concept called dangling-pair which

is defined as follows.

Definition 5 (Dangling Pair) Given an assignment A, a couple of objects (p, o) ∈

P ×O is a dangling pair if the following two conditions are satisfied.

• dist(p, o) < dist(p′, o) where p′ is the partner of o;

• dist(p, o) < dist(p, o′) where o′ is the partner of p (this condition is trivially

true if p has no partners)

Let A be an assignment and (p, o) be a dangling pair of A. Intuitively, it is

un-fair to p and o in the sense that both p and o prefer each other to their current

partners. Motivated by this, a fair assignment is defined to avoid the occurances of
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p1

p2

p3

o1

o2
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dist o1 o2 o3
p1 5 10 11
p2 3 7 6
p3 9 4 2

(a) Spatial layout (b) Pairwise distances

Figure 4.1: A running example for SPM

dangling pairs (“unfairness”) in [19]. Specifically, A is said to be fair if no dangling

pair exists; otherwise, A is unfair.

To illustrate, consider the example in Figure 4.1. In Figure 4.1(a), P contains

three hospitals p1, p2 and p3 while O includes the same number of residential estates

o1, o2 and o3. Figure 4.1(b) shows the information about all pairwise distances

between P and O. For the sake of illustration, suppose that the service-capacity

of each hospital p in P is 1, which means that the greatest amount of the service

given by p is 1, while the service-demand of each residential estate o in O is 1, which

means that the amount of the service requested by o is 1. In this case, each hospital

can serve at most one residential estate.

Let us first consider the assignment between P and O as shown in Fig-

ure 4.2(a). In this figure, p1, p2 and p3 serve o1, o3 and o2, respectively. If p serves

o, we draw a line between p and o in the figure. The number next to the line cor-

responds to the pairwise distance between p and o. Consider the pair (p3, o3). We

know dist(p3, o3) < dist(p3, o2) and dist(p3, o3) < dist(p2, o3). As a result, (p3, o3)

is a dangling pair. Similarly, we know (p2, o1) is also a dangling pair. Thus, this

assignment is unfair. In contrast, the assignment shown in Figure 4.2(b) is fair.

This is because we cannot find any dangling pairs in this assignment.

The un-weighted SPM problem is defined as follows.
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Figure 4.2: An example for SPM

Problem 2 (Un-weighted SPM) Given set P and set O, un-weighted SPM is

to find a fair assignment between P and O.

4.3 Solutions

In this part, we introduce the solutions proposed in [19] for the SPM problem.

Specifically, SPM is shown to be a special case of the stable marriage problem (SMP)

in Section 4.3.1. In Section 4.3.2 and Section 4.3.3, we show that SPM can actually

be solved using the techniques of closest pair retrieval and bichromatic mutual NN,

respectively. In Section 4.3.4, we introduce the method proposed in [19] which solves

SPM with a liner number of NN queries.

4.3.1 Reduction to Stable Marriage Problem

We transform the SPM problem to the SMP in the following way. For each

p ∈ P , we create a preference list of all o ∈ O in the ascending order of their

distances from p. That is, p prefers o to o′ if dist(p, o) < dist(p, o′). Symmetrically,

for each o ∈ O, we create a preference list of all p ∈ P in the ascending order of their

distances from o. That is, o prefers p to p′ if dist(p, o) < dist(p′, o). As a result, a

stable matching M between P and O that includes |O| pairs corresponds to a fair

assignment A between P and O [19].

However, as mentioned previously, the best-time complexity of the algorithm
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for the SMP is O(|P | · |O|), which is not efficient enough from the point view of

databases.

4.3.2 Reduction to Closest Pair Retrieval

As discussed in Section 3.4, given two sets P and O, a closest pair query

is to find the couple (p, o) such that dist(p, o) is the smallest among all possible

couples in the Cartesian product P × O. In [19], the authors show that we can

find a fair assignment by repeatedly finding the closest pair (p, o) between P and

O and removing p (o) from P (O) until O becomes empty (since |O| ≤ |P |). We

form assignment A with all closest pairs we have found. It is shown in [19] that the

formed assignment A is fair.

Although this method solves the SPM problem correctly, its time cost incurred

is expensive. It is easy to note that the above method issues |O| closest pair queries,

whereas the closest pair retrieval is a costly process in general. More specifically, the

best-known time complexity of finding the closest pair is O(|P | · |O|). As a result,

the overall time cost of this method is O(|P | · |O|2), which is very costly for large

datasets.

4.3.3 Reduction to Bichromatic Mutual NN Search

The method of solving SPM via bichromatic mutual NN search relies on the

following two lemmas. For simplicity, in the following, we use “mutual NN” to refer

“bichromatic mutual NN” on default.

Lemma 2 (Mutual NN) [19] As long as P and O are not empty, there always

exists at least one pair of mutual NNs.

Lemma 3 (Reduction to Mutual NN) [19] Let (p, o) be any pair of mutual

pair between P and O. Suppose that we remove p from P and denote the remaining

set by P ′ (i.e., P ′ = P − {p}). Similarly, we remove o from O and denote the

resulting set by O′ (i.e., O′ = O−{o}). Let A′ be a fair assignment between P ′ and

O′. Then A = A′ ∪ {(p, o)} is a fair assignment between P and O.
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Based on the above two lemmas, the authors designed an algorithm for SPM

as follows. It iteratively retrieves the mutual NNs (p, o) between P and O and then

removes p (o) from P (O) until O becomes empty. All mutual NNs found form an

assignment which is shown to be fair in [19].

Clearly, the speed of the above algorithm depends on the efficiency of the mu-

tual NNs search. Existing methods of the mutual NNs search are mainly designed

for monochromatic scenarios, thus being inapplicable in the above algorithm. An

obvious solution for the mutual NNs search is to leverage the method of closest

pair retrieval since a closest pair is obviously a pair of mutual NNs. This solution,

however, would incur the same expensive time cost as the one introduced in Sec-

tion 4.3.2 (O(|P | · |O|2)). In fact, as will be shown in Section 4.3.4, finding a pair

of mutual NNs is much easier than retrieving a closest pair. Besides, there usually

exist multiple pairs of mutual NNs between P and O and searching any one of them

is enough in the above algorithm. Motivated by the above discussion, the authors

of [19] proposed the Chain algorithm which will be introduced in Section 4.3.4.

4.3.4 The Chain Algorithm

The Chain algorithm is also based on the method of reducing SPM to perform-

ing mutual NNs searches as discussed in Section 4.3.3 but with an efficient method

of finding pairs of mutual NNs between P and O. We describe the Chain algorithm

as follows.

Chain maintains a list C which is used to keep objects in P and O and a set

A which is used to store the output (i.e., a fair assignment). Initially, C and A are

set to empty. Then, it randomly picks an object o ∈ O and inserts it into C. After

that, Chain executes some operations on the list C (which will be discussed in detail

next). During the process of the algorithm, whenever C is empty, it checks whether

O is empty. If O is empty, it stops; otherwise, it randomly picks an object from O

and inserts it into C.

Chain executes operations on the list C by repeatedly checking the last object,
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denoted by obj, in C. There are two cases for obj.

Case 1: obj is a customer o. In this case, it searches o’s NN in P , denoted by

p. There are two cases for p. Case 1(a): p is the object just before o in C. In this

case, a pair of mutual NNs (p, o) on the current P and O has been found. It then

inserts (p, o) into A and removes p and o from the end of C. Besides, it removes

p (o) from P (O). Case 1(b): p is not the object just before o in C or there is no

object before o in C. In this case, it inserts p into C.

Case 2: obj is a service-provider p. This case is handled in a symmetric way

of Case 1. Specifically, it searches p’s NN in O, denoted by o. Again, there are two

cases for o. Case 2(a): o is the object just before p in C. In this case, a pair of

mutual NNs (p, o) on the current P and O has been found. It then inserts (p, o)

into A and removes o and p from the end of C. Also, it remove p (o) from P (O).

Case 2(b): o is not the object just before p in C. In this case, it inserts o into C.

To illustrate, consider the matching problem shown in Figure 4.1. Assume

Chain picks o2 and inserts it into C at the beginning. After that, it searches o2’s

(the last object in C) NN in P and finds p3. Since there is no object before o2 in C

(Case 1(b)), it inserts p3 into C. Now the last object in C becomes p3. So, Chain

continues to search p3’s NN in O and finds o3. Since o3 is not the object just before

p3 in C (i.e., o2), it inserts o3 into C and the last object in C becomes o3. Then, it

searches o3’s NN in P and finds p3, which is exactly the object just before o3 in C.

That is, it has found a pair of mutual NN (p3, o3), and hence it inserts (p3, o3) into

A. Finally, it would find the fair assignment as shown in Figure 4.2(b).

The Chain algorithm is shown to have several nice features [19]. First, Chain

mainly performs two types of operations, namely NN queries and object deletions.

Thus, we can leverage the rich literature of NN queries and object deletions to

improve the performance of Chain. Second, as proven in [19], the number of above

two operations are bounded, which is presented in the following Lemma 4.

Lemma 4 (Number of Operations of Chain) [19] Chain performs at most

3|O| NN queries, and exactly 2|O| object deletions.
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According to Lemma 4, the number of each type of operations is linear to the

size of O. Without loss of generality, let α(n) (β(n)) represent the cost of an NN

query (an object deletion) on a dataset with the size of n. Then, the time complexity

of Chain is O(|O| · (α(|P |) + β(|P |))).

4.4 Extension to Weighted SPM

The un-weighted SPM can only handle the situation where p.w = 1 for all

p ∈ P and o.w = 1 for all o ∈ O. In this part, we study the techniques related to

the weighted SPM problem which will be defined later.

As a counterpart of assignment for the un-weighted SPM, the weighted assign-

ment is defined for the weighted SPM as follows.

Definition 6 (Weighted Assignment) [19] Let A be a set of triplets in form of

(p, o, w) where p is a service-provider in P , o is a customer in O and w, an integer,

is referred to as the weight of triplet (p, o, w). A is said to be a weighted assignment

if

• for each o ∈ O, the sum of the weights of all triplets in A containing o is

exactly equal to o.w, i.e.,
∑

(p,o,w)∈Aw = o.w;

• for each p ∈ P , the sum of the weights of all triplets in A containing p is at

most p.w, i.e.,
∑

(p,o,w)∈Aw ≤ p.w.

Let A be a weighted assignment and (p, o, w) be a triplet in A. We say p and

o are partners to each other.

Again, to capture the “unfairness”, we define the concept of dangling pair for

the weighted SPM as follows.

Definition 7 (Dangling Pair) [19] Let A be a weighted assignment. We say

(p, o) ∈ P ×O is a dangling pair if the following two conditions are satisfied.
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• dist(p, o) < dist(p′, o) where p′ is one of the partners of o.

• dist(p, o) < dist(p, o′) where o′ is one of the partners of p (this condition is

trivially true if p has not been exhausted according to A).

Similarly, a weighted assignment A is said to be fair, if no dangling pair exists;

otherwise, A is said to be unfair.

The weighted SPM problem is defined as follows.

Problem 3 (Weighted SPM) Given set P and set O, the weighted SPM is to

find a fair weighted assignment between P and O.

Straightforwardly, we can solve the weighted SPM problem by transforming

it into an instance of the un-weighted SPM problem as follows. First, we construct

two new sets, P ′ and O′. Specifically, for each p ∈ P , we create p.w copies of p in

P ′ and for each such copy denoted by p′, we set p′.w to 1. Similarly, for each o ∈ O,

we create o.w copies of o in O′ and for each such copy denoted by o′, we set o′.w

to 1. Thus, we have |P ′| =
∑

p∈P p.w and |O′| =
∑

o∈O o.w. Second, we solve the

un-weighted SPM problem on P ′ and O′, and hence we can obtain a fair assignment

denoted by A′. Third, we construct the fair weighted assignment A based on A′ by

combining all those pairs (p′, o′) into a triplet (p, o, w) in A if p′ (o′) is one copy of

p (o) and there are w such pairs.

Though, the above adaption of the solutions for the un-weighted SPM can

solve the weighted SPM correctly, it incurs an expensive cost due to a large amount

of redundant computations. In [19], the authors extended the Chain algorithm in

a more concise way to handle the weighted SPM. The extended Chain algorithm is

called Weighted Chain.

Similar to Chain, Weighted Chain proceeds by repeatedly retrieving a pair of

mutual NNs. The only difference is presented as follows. In Chain, when a pair of

mutual NNs (p, o) is found, both of them are removed from the datasets and the list



25

C (if they exist in C) definitely (since p is exhausted and o has been satisfied when

we match p with o in the un-weighted SPM). In Weighted Chain, however, this is

not the case, because it is possible that p is not exhausted or all the demands of o

are not satisfied when we match p with o (with a cetain amount of the service in the

weighted SPM). Specifically, when a pair of mutual NNs (p, o) is found (without loss

of generality, we assume o is in C while p is not, since the other case is symmetric),

Weighted Chain proceeds with two cases.

• Case 1: o.w > p.w. In this case, (p, o, p.w) is inserted into A, o.w is decreased

by p.w, p is removed from P , and p and o are removed from C.

• Case 2: o.w ≤ p.w. In this case, (p, o, o.w) is inserted into A, p.w is decreased

by o.w (if p.w becomes 0, p is removed from P ), o is removed from O, and p

and o are removed from C.

Similar to Chain, it is shown in [19] that Weighted Chain involves nice asymp-

totic features as follows.

Lemma 5 (Number of Operations of Weighted Chain) [19] Weighted Chain

performs at most 3(|P | + |O|) NN queries, and at most |P | + |O| object deletions.

As a result, it is easy to verify that the time complexity of Weighted Chain is

O((|P |+ |O|) · (α(|P |) + β(|P |) + α(|O|) + β(|O|))).



5. Capacity Constrained Assignment Problem

In this chapter, we study another matching problem in spatial databases called

Capacity Constrained Assignment (CCA) [4]. Specifically, we give the motivation

of the CCA problem in Section 5.1 and define the CCA problem in Section 5.2. In

Section 5.3 and Section 5.4 , we study exact methods and approximate methods for

the CCA problem, respectively.

5.1 Motivation

The CCA problem, which will be defined in Section 5.2, is actually identical to

the Optimal Matching Problem (OMP) except the following two differences. First,

the objects (e.g., p and o) involved in CCA are assumed to be in the spatial context.

Second, some objects (objects in P ) have arbitrary integral capacities instead of

unit capacities.

The motivations of CCA are stated as follows. First, there are extensive

real-life examples of OMP where the objects involved are indeed located in the

spatial context. Thus, it is natural to re-consider the OMP problem with some

application domain knowledge about spatial information. Second, as mentioned

in Section 2.1.1, the best-known time complexity for the OMP problem is cubic,

which, however, is prohibitively expensive when large datasets are used. Besides,

most existing techniques for the OMP problem are main-memory based, and hence

they are not suitable for the situations where the data are disk-resided.

In [4], the authors re-considered the OMP (with some adaptions), i.e., CCA,

from the perspective of databases. Specifically, they speeded up the traditional

techniques for OMP by leveraging some spatial properties embodied in the objects

involved. Besides, they utilized the techniques in spatial databases such as index-

ing structure and NN queries to further improve the performance of the proposed

methods.

26



27

p1

p2

p3

o1

o2

o3

p1

p2

p3

o1

o2
o3

5

7

2

(a) Spatial layout (b) Optimal assignment

Figure 5.1: An Example for CCA

5.2 Problem Definition

Let P be a set of service-providers and O be a set of customers. Each service-

provider p has an arbitrary capacity, denoted by p.w, while each customer o has

a unit demand, denoted by o.w, i.e., o.w = 1 for all o ∈ O. We measure the

cost of matching p with o by their Euclidean distance, i.e., c(p, o) = dist(p, o).

The cost of matching M is quantified by the overall cost of the pairs in M , i.e.,

c(M) =
∑

(p,o)∈M c(p, o).

The CCA problem is defined as follows.

Problem 4 (CCA) Given set P and set O, the CCA problem is to find a matching

M between P and O such that:

• each service-provider p occurs at most p.w times in the pairs of M ;

• each customer o occurs at most once in the pairs of M ;

• the cardinality of M is maximized, i.e., |M | = min{
∑

p∈P p.w, |O|};

• the cost of M , c(M), is minimized.

In the following, for simplicity, let λ be min{
∑

p∈P p.w, |O|}.

To illustrate, consider the example in Figure 5.1. Figure 5.1(a) shows the

problem setting. The assignment shown in 5.1(b) is actually the optimal assignment
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for the CCA problem with the overall cost equal to 14 (5+7+2). That is, we cannot

construct an assignment in this problem with a cost smaller than 14.

5.3 Exact Solutions

In this following, we study the exact methods proposed in [4] for the CCA

problem. Specifically, we show the method of reducing the CCA problem to the

minimum cost flow (MCF) problem in Section 5.3.1 and introduce the Successive

Shortest Path Algorithm (SSPA) for MCF in Section 5.3.2, which acts as a ma-

jor component of the proposed methods in [4]. In Section 5.3.3, we illustrate the

fundamental theorem developed in [4]. We survey all the algorithms for CCA in

Section 5.3.4 and discuss some further enhancements for the proposed algorithm in

Section 5.3.5.

5.3.1 Reduction to Minimum Cost Flow

Similar to the case for OMP, we can solve the CCA problem by reducing it

into a minimum cost flow (MCF) problem as follows.

First, we construct a graph G(V,E) based on P and O. To construct V , we

create a vertex identified by p for each p ∈ P , a vertex identified by o for each o ∈ O

and two additional vertices, source s and destination t. We include all these vertices

into V and thus |V | = |P | + |O| + 2. To construct E, for each possible couple

(p, o), we create edge (p, o) and associate with this edge a cost equal to c(p, o) and a

capacity, denoted by u(p, o), equal to 1. Besides, for each p ∈ P , we create an edge

(s, p), set its cost c(s, p) to 0 and its capacity u(s, p) to p.w. For each o ∈ O, we

create an edge (o, t), set its cost c(o, t) to 0 and its capacity u(o, t) to 1.

Second, we calculate the minimum cost flow (MCF) from s to t on G, denoted

by f . Specifically, the MCF problem on G is to associate each edge (v1, v2) with a

positive flow denoted by f(v1, v2) such that

• f(v1, v2) ≤ u(v1, v2) for each edge (v1, v2) ∈ E (capacity constraint);
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•
∑

(v1,v)∈E f(v1, v) =
∑

(v,v2)∈E f(v, v2) for each vertex v ∈ V − {s, t} (conserva-

tive constraint);

•
∑

(s,v)∈E f(s, v) is maximized (and is equal to λ in our case);

•
∑

(v1,v2)∈E f(v1, v2) · c(v1, v2) is minimized.

To do this, we can leverage a rich literature of MCF algorithms as discussed in

Section 2.1.1.

Third, we construct the matching M for the CCA problem based on f . Specif-

ically, for each edge (p, o) (p ∈ P and o ∈ O), if there is a flow along this edge, we

include the pair (p, o) into M . It can be verified that the resulting matching M

constructed above is the solution of the CCA problem [4].

5.3.2 Successive Shortest Path Algorithm

The Successive Shortest Path Algorithm (SSPA) is a popular method for the

MCF problem [11]. For the graph G(V,E) constructed in Section 5.3.1, the SSPA

algorithm proceeds as follows.

For each vertex v ∈ V , it maintains a value called potential, denoted by v.τ .

For each edge (v1, v2) ∈ E, it keeps a weight, denoted by w(v1, v2). Initially, v.τ

is set to 0 for all v ∈ V , w(v1, v2) is set to c(v1, v2) for all edge (v1, v2) in E and

f(v1, v2) is set to 0 for all edges (v1, v2) in E. It runs with λ iterations.

At each iteration, it computes the shortest path from s to t based on the weight

information of edges using the Dijkstra algorithm on the residual graph of G wrt

the current flow (Refer [5] about how to construct the residual graph wrt a flow).

We emphasize here that all notations of shortest path or shortest distance are based

on the weight information of edges. In the sequel, for simplicity, we mean “shortest

path from s to t” by “shortest path”. Let sp denote the computed shortest path

and vm be the second last vertex along sp. We use v.γ to represent the shortest

distance from s to v. It then augments the flow (unit) along the shortest path sp.

After that, for each visited (de-heaped) vertex v during the Dijkstra process, it (1)
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sets v.τ = v.τ − v.γ + vm.γ; (2) for all edges (v, v1) that are incident to v, sets

w(v, v1) = c(v, v1)− v.τ + v1.τ .

The resulting flow calculated by SSPA is guaranteed to be the minimum cost

flow [11]. We note here that the costs of edges keep unchanged during the whole

process of SSPA and it is the weights of edges that the algorithm keeps updating.

The intuition of maintaining the potential (weight) for each vertex (edge) in the

SSPA algorithm is that it wants to guarantee that the weights of edges are always

non-negative which is required by the Dijkstra algorithm.

5.3.3 Fundamental Theorem

Since the constructed graph G(V,E) above is nearly a complete bipartite

graph, applying SSPA directly to the MCF problem on G would incur excessive

memory consumption and costly shortest path calculations. To alleviate these space

and running time problems, the authors of [4] proposed to use only a subset of E,

denoted by Esub, and it can also be guaranteed that at each iteration of SSPA,

the computed shortest path based on Esub is identical to the one based on E if a

condition based on Esub is satisfied.

Before introducing this technique, we first define the concept of a distance

bounded edge set as follows.

Definition 8 (Distance-bounded Edge Set) An edge set Esub ⊆ E is said to be

distance-bounded if

∀(v1, v2) ∈ Esub, c(v1, v2) ≤ φ(E −Esub)

where φ(E−Esub) represents the minimum cost among all costs of edges in E−Esub.

Intuitively, a distance-bounded edge set Esub contains only those edges (v1, v2)

whose costs are below (inclusively) a threshold (e.g., φ(E − Esub)). Esub is called
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“distance-bounded” (instead of “cost-bounded”) is due to the fact that c(p, o) =

dist(p, o) for all edges (p, o) ∈ E.

The fundamental theorem based on the concept of a distance-bounded edge

set is given in Theorem 1.

Theorem 1 (Fundamental Theorem) [4] Given a distance-bounded edge set Esub ⊆

E, let sp be the shortest path from s to t in Esub and τmax be the maximum potential

value (i.e., max{v.τ |v ∈ V }). If the total cost of sp, denoted by c(sp), is at most

φ(E −Esub)− τmax, then sp is also the shortest path in E (complete graph).

The implicit idea behind Theorem 1 is that if the cost incurred by the shortest

path in a subgraph Esub is not larger than the smallest weight among those weights

of all edges in E − Esub, then the shortest path in the complete graph E must not

include any edges in E − Esub (by contradiction).

5.3.4 Algorithms for CCA

According to Theorem 1, at each iteration of SSPA, instead of storing the

complete graph G with the edge set E and computing the shortest path in it, we

can actually maintain a partial graph Gsub of G with a smaller edge set Esub and

compute the shortest path in Gsub, which is identical to the shortest path in the

complete graph G. In this way, we save both the space for storing the graph and

the time for shortest path calculation.

In this part, we study different methods in [4] that utilize the above idea

to improve the performance of SSPA. They include Range Incremental Algorithm

(RIA), Nearest Neighbor Incremental Algorithm (NIA) and Incremental on-Demand

Algorithm (IDA).

5.3.4.1 Range Incremental Algorithm (RIA)

The Range Incremental Algorithm (RIA) performs in an identical way as SSPA

except that in each iteration, the shortest path sp is computed on the subgraph Gsub

in RIA while on the complete graph G in SSPA.
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RIA maintains a threshold T which is used as a lower bound of φ(E − Esub)

during the process of RIA and is set to θ initially, where θ is a user parameter in

RIA and is a non-negative real number. τmax is used to represent the maximum

potential among all potentials of vertices in RIA. Before performing the iterations,

RIA initializes Esub by including all edges with costs at most T in Esub. Thus,

φ(E −Esub) is at least θ after this initialization.

To ensure that the shortest graph sp computed on the subgraph Esub is indeed

the one on the complete graph E, after each shortest path computation, RIA checks

whether the cost of sp, c(sp), is at most T−τmax. We call this checking SP-checking.

There are two cases. Case 1: c(sp) ≤ T − τmax. In this case, sp is concluded to be

the shortest path on the complete graph according to Theorem 1. Correspondingly,

we say this SP-checking succeeds. Case 2: c(sp) > T−τmax. We say the SP-checking

fails. In this case, it keeps performing the following procedures until the SP-checking

succeeds. First, RIA updates T with T + θ. Second, it enlarges Esub by including

in Esub all edges whose costs are within range (T − θ, T ]. Third, it re-computes the

shortest path and performs the SP-checking on it again.

It is easy to verify that RIA achieves the same goal as SSPA. The only dif-

ference is that RIA incrementally enlarges the graph for shortest path computation

in the algorithm, while SSPA uses the complete graph all the time throughout the

algorithm. Thus, RIA saves some space and also running time compared to SSPA.

5.3.4.2 Nearest Neighbor Incremental Algorithm (NIA)

RIA incrementally enlarges the subgraph Gsub based on the parameter θ,

which, however, is not user-friendly. Specifically, for the case that θ is set too

large, the benefits from incrementally maintaining Esub (in Gsub) are limited, while

for the case that θ is set too small, it has to perform the shortest path computations

many times in order to enlarge Esub (in Gsub) sufficiently.

Motivated by this, Nearest Neighbor Incremental Algorithm (NIA) is proposed

to enlarge the subgraph Gsub based on nearest neighbor queries instead of range



33

queries (RIA). NIA is identical to RIA except that whenever the SP-checking fails,

it enlarges Esub by including in it the edge with the minimum cost among all edges

in E − Esub, computes the shortest path based on the enlarged Esub and do the

SP-checking again.

It is shown in [4] that NIA outperforms RIA in terms of running time empiri-

cally.

5.3.4.3 Incremental on-Demand Algorithm

In RIA/NIA, when a shortest path sp on the subgraph Esub is computed, the

SP-checking is to check whether c(sp) ≤ φ(E − Esub) − τmax, where φ(E − Esub)

represents the minimum cost of the edges in E − Esub. The implicit idea is that

φ(E − Esub) − τmax is actually used as the smallest possible cost of the path that

contains an edge in φ(E−Esub). Clearly, if a more tighter bound is used, it is more

likely that the SP-checking would succeed.

Motivated by this, the authors in [4] proposed to use another tighter lower

bound for the SP-checking. More details can be referred in [4].

5.3.5 Further Enhancements

The first enhancement is re-using the information among consecutive Dijkstra

processes during the same iteration of NIA/IDA. This technique is not applied to

RIA since there might be a bulk of edges inserted into Esub at one time when

Esub enlarged, which makes it very difficult to re-use the information generated by

Dijkstra on Esub before the enlargement for the consecutive Dijkstra process on Esub

after the enlargement. In NIA/IDA, Esub is enlarged with one edge by one edge,

which makes it possible to re-use the Dijkstra process information (e.g., heap).

Since this technique is more about implementation than theoretical results, we do

not provide much details in this survey. Refer [4] for more details.

As can be noted, numerous NN queries are invoked during the processes of the

methods introduced above, which incurs excessive cost. To relieve this problem, the

authors in [4] proposed the second enhancement, which is to employ an incremental
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all-nearest-neighbors techniques. The main idea is that, instead of performing NN

queries separately and from scratch each time, it computes the NN results for all

service-providers p ∈ P collectively and incrementally.

5.4 Approximate Solutions

In [4], the authors also developed an approximation mechanism for the CCA

problem, which is tunable between the matching accuracy and the running time.

Specifically, this approximation mechanism has three phases. The first phase is

called partitioning phase. In this phase, smaller datasets denoted by P ′ (O′) are

created based the original datasets P (O). The second phase is termed as concise

matching. As implied by the name, it solves the CCA problem by using the smaller

datasets P ′ and/or O′ and obtains a matching denoted byM ′ which is optimal based

on P ′ and/or O′. The last phase is Refining phase. In this phase, it constructs a

matching M based on the original datasets P and O according to the matching M ′.

These three phases are introduced in a more detailed way in the following three

sections, respectively.

5.4.1 Partitioning Phase

In [4], the objects in P and those in O are assumed to be maintained in

different ways. Specifically, set P , whose size is assumed to be much smaller than

O’s, is stored in main memory, while set O is indexed by an R-tree on disk. As a

result, different methods are provided in [4] for partitioning the objects in P and

those in O. The method of partitioning the objects in P is called Service-provider

Approximation (SA) and that of partitioning the objects in O is called Customer

Approximation (CA). The goal is to partition the objects into different groups such

that the diagonal of the minimum bounding rectangle (MBR) of each group is at

most a user parameter χ. Intuitively, the larger χ is, the smaller number of groups

it will obtain.

SA groups the objects in P by scanning the objects in the ascending order of
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their Hilbert values [44]. For each scanned object p, if there exists a group that can

include p while yielding an MBR with the diagonal at most χ, p is included in that

group; otherwise, it creates another new group and includes p in this new group.

CA groups the objects inO by traversing the R-tree once. Specifically, it begins

at the root. If the underlying node, denoted by N , is an inner-node, we create groups

according to the following two cases. Case 1: N ’s MBR has its diagonal at most

χ. In this case, CA simply creates a group and includes in this group all objects in

the descendants of N . After that, CA will not traverse the nodes on the subtree of

N . Case 2, N ’s MBR has its diagonal more than χ. CA continues to traverse each

child node of N . In the other case where N is a leaf-node. It recursively splits the

MBR of N into halves until the diagonal of the half becomes at most χ. Then, for

each resulting half, it creates one group and includes in this group all the objects

located in the half.

Besides, for each group constructed by SA/CA, a representative p′ (o′) at the

geometric centroid (weighted geometric centroid for SA) of the group is created to

represent all the objects in the group. The capacity (demand) of p′ (o′) is set to the

sum of the capacities (demands) of the objects in the group. The new dataset P ′

(O′) corresponds to the set containing all these representatives.

5.4.2 Concise Matching

In the phase, it distinguishes the approximation mechanism into two approx-

imate algorithms. The first algorithm applies the exact methods for CCA on P ′

and O, and we denote this algorithm by SA (P ′ is used instead of P ). The second

algorithm applies the exact methods for CCA on P and O′, and we denote this

algorithm by CA (O′ is used instead of O). We denote the resulting matching by

M ′ for either SA or CA.

5.4.3 Refining Phase

In this phase, the approximation mechanism constructs the matching on the

original datasets P and O, denoted by M , according to M ′. The underlying idea is
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as follows. If two representatives p′ ∈ P ′ and o′ ∈ O′ are matched with each other,

then we can match any object p in the group represented by p′ with any object

o in the group represented by o′ (with the consideration of capacities/demands).

In particular, in [4], the authors proposed two heuristics about how to match the

objects in the group represented by p′ with those in the group represented by o′ when

p′ and o′ are matched with each other in M ′. They are the NN-based refinement

and the exclusive NN refinement. Refer to [4] for more details.

5.4.4 Approximation Guarantees

Before providing the approximation guarantees of SA and CA, we first define

the approximation error clearly. Given set P and set O, let Mopt andMappr represent

the optimal solution and the approximate solution of the CCA problem on P and

O, respectively. Then, the approximation error of Mappr is defined to be c(Mappr)−

c(Mopt).

It is shown in [4] that SA and CA have approximation guarantees as shown in

Theorem 2 and Theorem 3, respectively.

Theorem 2 (Approximation Guarantee of SA) [4] The approximation error

of SA is bounded by 2 · λ · χ.

Theorem 3 (Approximation Guarantee of CA) [4] The approximation error

of CA is bounded by λ · χ.

Note that the difference between the approximation error of SA and that of

CA is due to their different strategies for locating the representatives. Specifically,

for each group, SA defines its representative at the weighted (using the capacity

information) centroid of the rectangle, while CA simply defines the representative

at the geometrical centroid of the rectangle since each customer is assumed to have

demand of 1. More details can be found in [4].



6. Variants of Matching in Spatial Databases

In this chapter, we study three variants of matching problems in spatial databases.

They include Continuous Spatial Assignment of Moving Users (Section 6.1), Match-

ing in Preference Databases (Section 6.2) and Facility Location Allocation Problem

(Section 6.3).

6.1 Continuous Spatial Assignment of Moving Users

In [20], the authors study the Continuous Spatial Assignment (CSA) prob-

lem. The CSA problem is identical to the CCA problem except the following two

differences.

First, apart from the capacity constraint, CSA imposes one more constraint

called coverage constraint on each service-provider p ∈ P . More specifically, each

service-provider p ∈ P has a coverage region and it cannot provide its service to the

customers outside its coverage region. Second, CSA considers the scenario where the

service-providers are fixed while the customers are moving dynamically. The goal

of the CSA problem is to continuously report the optimal assignment (i.e., similar

to the one for CCA but with the coverage constraint) in the dynamic environment.

To handle the CSA problem, the authors of [20] proposed to first initialize

an optimal assignment of CSA and then maintain this assignment according to the

dynamic changes in the environment.

Specifically, the initialization of the optimal assignment has three steps. The

first step makes some approximate matches that must be included in the optimal

assignment by using some geometrical properties. Besides, it excludes some pairs of

service-providers and customers that must not be in the optimal assignment. The

second step then distinguishes different types of service-providers and subsequently

decomposes the problem into several smaller ones based on this information. The

third step solves each smaller problem instances with appropriate methods.

37
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To model the dynamic environment, three types of events are considered

in [20], namely location update, connect request and disconnect request. The au-

thors classify these events into two categories, namely insertion and deletion. More

specifically, an insertion indicates a connect request from a customer, while a dele-

tion means a disconnect request from a customer. A location update can be regarded

as a deletion (at the old location) plus an insertion (at the new location). For each

event category, a corresponding algorithm for updating the optimal assignment is

provided in [20]. Refer the paper for more details.

6.2 Matching in Preference Databases

[45] studies the matching problem between objects and preference queries on

the objects. Let P be a set of objects and each object p ∈ P is represented by a

set of attributes that describe the object. Let O be a set of queries and each query

is issued with a set of weights (sum to 1) indicating the relative importance of the

corresponding attributes. We define the score of query-object pair (p, o), denoted

by score(p, o), as the weighted sum of all the attributes of p by using the weights

of o. The goal is to find a fair assignment M between P and O, that is, there does

not exist a query-object pair (p, o) such that

• score(p, o) > score(p, o′) where o′ is currently matched with p in M (this

condition is trivially true if p is not matched);

• score(p, o) > score(p′, o) where p′ is currently matched with o in M (this

condition is trivially true if o is not matched).

Same as the SPM problem, the above matching problem is a special instance

of the Stable Marriage Problem (SMP). We say a query-object pair (p, o) is stable

if (1) there is no o′ ∈ O such that score(p, o′) > score(p, o) and (2) there is no

p′ ∈ P such that score(p′, o) > score(p, o). It is shown in [45] that this problem can

be solved by repeatedly finding stable query-object pairs (p, o) and removing them

from the problem.
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One straightforward method for retrieving a stable query-object pair is to do

brute-force searching. Specifically, it calculates the score for each possible pair and

pick the pair with the largest score, say (p, o). It is easy to verify that the picked

query-object pair (p, o) is indeed stable.

Clearly, the above method incurs expensive cost since it has to consider all

objects p in order to traverse all possible query-object pairs. Instead, the authors

of [45] observe that it is sufficient to only consider the skyline [46] of P for this

purpose. This is because the measure of the score is monotone to the attributes

of objects, i.e., if object p dominates object p′, then for any query o, we have

score(p, o) > score(p′, o).

Motivated by this, the authors in [45] proposed a method which only considers

the skyline of P at each stage for stable query-object pair retrieval. Besides, an

efficient technique for dynamically maintaining the skyline results is developed. This

is because each time the algorithm finds a stable query-object pair (p, o), p is removed

from P and thus the skyline of P should be updated accordingly. Furthermore, this

skyline maintenance technique is proved to be I/O optimal. More details about this

technique can be found in [45].

In [45], the authors considers two variants of this matching problem. The first

is more general than the original one. Specifically, it allows the objects to have

arbitrary capacities, e.g., there could be a certain number of identical objects. The

second one allows the situation where each query could have a de-normalized set of

weights, which means different users have different priorities.

6.3 Facility Location Allocation Problem

The facility location allocation problem has been widely studied in the oper-

ational research community [47, 48]. Specifically, let P be a set of facilities and

O be a set of users. Given a set of matching strategies and matching constraints,

the objective of the facility location allocation is to determine a set of locations for

the service-providers (whose locations are not fixed at the beginning) such that the
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matching between P and O based on the given matching strategies and matching

constraints is optimized (according to some appropriate criteria).

The solutions of the facility location allocation problem mainly have two steps:

designing models to simulate the problem and developing algorithms based on

the applied models. Among the existing models, P-median model [49], covering

model [50] and center model [51] are three basic ones. Other models are usually

built on these basic models by imposing appropriate constraints. As for algorithms,

mainly two types of algorithms have been proposed. One is to utilize mix-integer

programming (MIP) algorithms [52], and the other is heuristic-based [53].

In fact, the facility location allocation problem is very complicated. There

are a lot of components that we need to specify, such as the matching strategies,

matching constraints and optimization criteria. In fact, the matching problem is

taken as a sub-component in the facility allocation problem. Specifically, after al-

locating locations to the facilities, we need perform the matching process based on

the matching strategies and matching constraints to obtain the corresponding “op-

timal” matching, which could act as a measurement of the quality of the current

location allocation.



7. Conclusion and Future Work

We make a conclusion of this survey in Section 7.1 and point out some future work

directions in Section 7.2.

7.1 Conclusion

In this survey, we first study traditional matching problems in computer sci-

ence and propose a general framework of the matching problems in spatial databases.

Then, we introduce some spatial databases techniques (e.g., NN and RNN) that

might be used for solving matching problems in spatial databases. After that, two

well studied matching problems in spatial databases, namely SPM and CCA, are

introduced in detail. Besides, we discuss some variants of the matching problems in

spatial databases finally.

7.2 Future work

In this part, we point out several future directions related to matching prob-

lems in spatial databases.

7.2.1 Continuous Matching in Spatial Databases

Most existing matching problems assume static datasets. However, in many

real-life scenarios (e.g., wireless network communication), the objects involved in

the matching problems are dynamic. For instance, existing objects may leave the

datasets, new objects might join the datasets, and the objects can also move in the

data space . Thus, it is required that the matching algorithms should continuously

report the desirable matchings according to changes in the dynamic environment.

Still, much efforts need to be devoted to solving these issues.
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7.2.2 Other Matching Strategies

Another research direction is motivated by the fact that up to now, only

two basic matching strategies have been considered in the matching problems in

spatial databases, namely the fair assignment (i.e., the one in SPM) and the optimal

assignment (i.e., the one in CCA). That is, other traditional matching strategies

(e.g., Leximin optimal assignment) have not been studied in the context of spatial

databases yet. Thus, it would be quite interesting to explore some nice spatial

properties that can be utilized for solving these matching problems in a more efficient

way when they are put in the context of spatial databases.

7.2.3 Matching Problems in Other Types of Databases

It is promising to consider the matching problems in other types of databases,

such as spatial network databases and relational databases.

Inspired by the idea of studying the matching problems in spatial databases,

we attempt to consider the matching problems in other databases such as spatial

network databases (SNDB) and relational databases (RDB) . Take the extension to

SNDB as an example. Is is quite intuitive, since in many applications, the distance

between two entities is not measured by their Euclidean distance studied in SPM

and CCA, but their network distance.
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