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ON BOOSTING SPATIAL COMPUTATIONS

FOR LOCATION-BASED SERVICES

by

CHENG LONG

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Nowadays, location-based services (LBSs), which refer to those services that are

based on location (or spatial) data, are broadly used in our daily life. Some popular

types of LBS include “search-nearby” which searches objects (e.g., restaurants, hotels

and shops) near a location, “spatial crowdsourcing” which allows people to post tasks

to be performed at a location (these people are called “requesters”) and people to pick

some tasks to perform (these people are called “workers”), and “trace tracking” which

records the trace of a movement (e.g., the moving trace of a hiker). Each type of LBS

usually relies on some computation based on spatial data (which is termed as spa-

tial computation). For example, the “search-nearby” service relies on spatial keyword

query to find all objects that are near a given query location and contain a given query

keyword, the “spatial crowdsourcing” service relies on spatial matching to match be-

tween tasks and workers, and the “trace tracking” service relies on trajectory data
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management.

In this thesis, we introduce three techniques for boosting the spatial computations

that are central to LBSs, namely the collective spatial keyword query which is one

type of spatial keyword query and finds a set of spatial objects that cover all the given

query keywords and have the smallest distance from the query location, worst-case

optimized spatial matching which matches two sets of spatial objects with the small-

est worst-case cost, and direction-preserving trajectory which simplifies the trajectory

while preserving the direction information embedded in the trajectory data.
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CHAPTER 1

INTRODUCTION

Nowadays, location-based services (LBSs), which refer to those services that are based

on location (or spatial) data, are broadly used in our daily life. Some types of LBSs

include the “search-nearby” service [25, 80, 66, 81] which searches some places (e.g.,

restaurants, hotels and shops) near a location, the “spatial crowdsourcing” service [52,

53, 29, 88] which allows people to post tasks to be performed at a location, and the

“trace tracking” service [107, 102] which records the trace of a movement.

Many apps for smart phones provide some types of LBS. Some examples that pro-

vide the “search-nearby” service include Yelp, Gowalla, Google Places, NearbyFeed,

Sonar, OpenTable, and WeChat. Some examples that provide the “spatial crowdsourc-

ing” service include LocalHands, Airtasker, gMission and iRain. Some examples that

provide the “trace tracking” service include GeoFlyer, Maps+, Nike+ and Run Keeper.

According to appcrawlr.com, there are more than 500 apps that provide LBSs.

Each type of LBS relies on some computation based on spatial data which is called

spatial computation. For example, one type of spatial computation that is the core of

the “search-nearby” service is spatial keyword query, which finds the nearest objects

that contain a given query keyword to a query location, one for the “spatial crowd-

sourcing” service is spatial matching, which finds a matching between two sets of

spatial objects (since spatial crowdsourcing usually involves a procedure of matching

the tasks with the workers), and one for the “trace tacking” service is trajectory data

management (since the trace of a movement is usually represented by a trajectory).

In this thesis, we introduce three techniques, namely the Collective Spatial Key-
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word Query which is one type of spatial keyword queries, Worst-Case Optimized Spa-

tial Matching which is one type of spatial matching and Direction-Preserving Trajec-

tory Simplification which could be used for trajectory data management.

1.1 Collective Spatial Keyword Query

Recently, spatial keyword queries become a hot topic in the literature. One example

of these queries is the collective spatial keyword query (CoSKQ) which is to find a set

of objects in the database such that it covers a set of given keywords collectively and

has the smallest cost. Unfortunately, existing exact algorithms have severe scalabil-

ity problems and existing approximate algorithms, though scalable, cannot guarantee

near-to-optimal solutions. Motivated by this, we study the CoSKQ problem and ad-

dress the above issues. Firstly, we consider the CoSKQ problem using an existing cost

measurement called the maximum sum cost. This problem is called MaxSum-CoSKQ

and is known to be NP-hard. We observe that the maximum sum cost of a set of ob-

jects is dominated by at most three objects which we call the distance owners of the

set. Motivated by this, we propose a distance owner-driven approach which involves

two algorithms: one is an exact algorithm which runs faster than the best-known ex-

isting algorithm by several orders of magnitude and the other is an approximate algo-

rithm which improves the best-known constant approximation factor from 2 to 1.375.

Secondly, we propose a new cost measurement called the diameter cost and CoSKQ

with this measurement is called Dia-CoSKQ. We prove that Dia-CoSKQ is NP-hard.

With the same distance owner-driven approach, we design two algorithms for Dia-

CoSKQ: one is an exact algorithm which is efficient and scalable and the other is an

approximate algorithm which gives a
√
3-factor approximation. We conducted exten-

sive experiments on real datasets which verified that the proposed exact algorithms are

scalable and the proposed approximate algorithms return near-to-optimal solutions.
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1.2 Worst-Case Optimized Spatial Matching.

Bichromatic reverse nearest neighbor (BRNN) queries have been studied extensively

in the literature of spatial databases. Given a set P of service-providers and a set O

of customers, a BRNN query is to find which customers in O are “interested” in a

given service-provider in P . Recently, it has been found that this kind of queries lacks

the consideration of the capacities of service-providers and the demands of customers.

In order to address this issue, some spatial matching problems have been proposed,

which, however, cannot be used for some real-life applications like emergency facil-

ity allocation where the maximum matching cost (or distance) should be minimized.

Motivated by this, we propose a new problem called SPatial Matching for Minimiz-

ing the Maximum matching distance (SPM-MM). Then, we design two algorithms for

SPM-MM, Threshold-Adapt and Swap-Chain. Threshold-Adapt is simple and easy to

understand but not scalable to large datasets due to its relatively high time/space com-

plexity. Swap-Chain, which follows a fundamentally different idea from Threshold-

Adapt, runs faster than Threshold-Adapt by orders of magnitude and uses significantly

less memory. We conducted extensive empirical studies which verified the efficiency

and scalability of Swap-Chain.

1.3 Direction-Preserving Trajectory Simplification

Trajectories of moving objects are collected in many applications. Raw trajectory data

is typically very large, and has to be simplified before use. Motivated by this, we in-

troduce the notion of direction-preserving trajectory simplification (DPTS), and show

both analytically and empirically that it can support a broader range of applications

than traditional position-preserving trajectory simplification (PPTS).

3



1.3.1 On Minimizing the Size

Within DPTS, we define a problem called Min-Size which accepts as input a trajectory

and an error tolerance and finds as output the simplified trajectory of the trajectory,

which has the (directional) error at most the error tolerance and as few positions as

follows. To solve the Min-Size problem, we design two exact algorithms and one

approximate algorithm with a quality guarantee. Extensive experimental evaluation

with real trajectory data shows the benefit of the new techniques.

1.3.2 On Minimizing the Error

The Min-Size problem within DPTS require users to specify an error tolerance which

users might not know how to set properly in some cases (e.g., the error tolerance could

only be known at some future time and simply setting one error tolerance does not

meet the needs since the simplified trajectories would usually be used in many different

applications which accept different error tolerances). In these cases, a better solution

is to minimize the error while achieving a pre-defined simplification size. Motivated

by this, we define another problem for DPTS, called Min-Error, which accepts as

input a trajectory and a budget which is an integer and finds as output the simplified

trajectory of the trajectory, which has the number of positions at most the budget and

the (directional) error as small as possible. Note that the Min-Error problem is the dual

problem of the Min-Size problem. To solve the Min-Error problem, we develop two

exact algorithms and one 2-factor approximate algorithm. Extensive experiments on

real datasets were conducted and verified our algorithms.

The rest of this thesis is organized as follows. We introduce the collective spatial

keyword query, worst-case spatial matching, the Min-Size problem for DPTS, and

the Min-Error problem for DPTS in Chapter 2, Chapter 3, Chapter 4, and Chapter 5,

respectively. We conclude the thesis in Chapter 6 with some future research directions.
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CHAPTER 2

COLLECTIVE SPATIAL KEYWORD

SEARCH

2.1 Introduction

With the proliferation of spatial-textual data such as location-based services and geo-

tagged websites, spatial keyword queries have been studied extensively recently [34,

25, 97, 14]. Given a set of spatial-textual objects and a query constituted by a location

and a set of keywords, a typical spatial keyword query finds the object that best matches

the arguments in the query. One example is to find the object closest to the query

location among all objects that cover all the keywords specified in the query [97].

In some applications, users’ needs (expressed as keywords) are satisfied by multiple

objects collectively instead of a single object [15]. For instance, a tourist wants to have

site-seeing, shopping and dining which could only be satisfied by multiple objects,

e.g., tourist attractions, shopping malls and restaurants. Another example is that a

user would like to set up a project consortium of partners within a certain region that

combine to offer the capabilities required for the successful execution of the whole

project. Finding multiple objects collectively to satisfy users’ needs can be addressed

by Collective Spatial Keyword Query (CoSKQ) [15].

Specifically, CoSKQ is described as follows. LetO be a set of objects. Each object

o ∈ O is associated with a spatial location, denoted by o.λ, and a set of keywords,

denoted by o.ψ. Given a query q with a location q.λ and a set of keywords q.ψ, CoSKQ

is to find a set S of objects such that S covers q.ψ, i.e., q.ψ ⊆ ∪o∈So.ψ, and the cost of

S, denoted by cost(S), is minimized.

5



There are different cost functions for cost(S). One cost function is called the max-

imum sum cost function, denoted by costMaxSum(S), and was studied in [15]. It is

the linear combination of two max components: the maximum distance between q and

an object in S and the maximum distance between two objects within S. CoSKQ

adopting this cost function is called MaxSum-CoSKQ. The other cost function is called

the diameter cost function, denoted by costDia(S). It is defined to be the diameter

of S ∪ {q}. In fact, diameter-related cost functions have been commonly adopted in

graph databases [4, 61, 6, 68] and spatial databases [103, 104, 105]. To the best of our

knowledge, we are the first to study this cost function for CoSKQ. CoSKQ adopting

this cost function is called Dia-CoSKQ.

Given a query q, an object o is said to be relevant (to q) if o contains at least one

keyword in q.ψ. We denote by Oq the set of all relevant objects to q. It is sufficient

to focus on Oq only for a specific query q. Given a set S of objects, S is said to be

feasible if S covers q.ψ. Thus, the optimal solution of CoSKQ is a feasible set with

the smallest cost.

Although MaxSum-CoSKQ (which is proved to be NP-hard) has been studied by

Cao et al. [15], the best-known exact algorithm which we call Cao-Exact is not scal-

able to large datasets and the two existing approximate algorithms which we call Cao-

Appro1 and Cao-Appro2 do not have a very good theoretical guarantee. Specifically,

Cao-Exact is a best-first search method based on the feasible set space whose size

is O(|Oq||q.ψ|). Though equipped with some pruning techniques, Cao-Exact is pro-

hibitively expensive when the dataset is large. For example, in our experiments, Cao-

Exact took more than 10 days for a query containing 6 keywords on a dataset with 8M

objects.

In this thesis, we propose two algorithms for MaxSum-CoSKQ, MaxSum-Exact

and MaxSum-Appro. MaxSum-Exact is an exact algorithm and MaxSum-Appro is a

6



1.375-approximate algorithm.

MaxSum-Exact is more scalable compared with the best-known algorithm, Cao-

Exact. A key observation which is used by MaxSum-Exact is that the number of dis-

tinct costs of all possible feasible sets is cubic (in terms of |Oq|) although the number

of all possible feasible sets is exponential (in terms of |q.ψ|). Given a feasible set S, the

maximum sum cost function of S is dominated (or determined) by at most three objects

in S, namely the object with the greatest distance from q and the two objects with the

greatest pairwise distance within S. We say that these three objects form the distance

owner group of S. Thus, the number of distinct costs of all possible feasible sets is

bounded by the total number of all possible distance owner groups (which is bounded

by O(|Oq|3)). Motivated by this, we propose a distance-owner driven approach called

MaxSum-Exact for MaxSum-CoSK. MaxSum-Exact is a search algorithm based on

the search space containing all possible distance owner groups. Besides, it incorpo-

rates some search strategies which can prune the search space effectively. Usually, one

distance owner group corresponds to many feasible sets. This is verified by our exper-

iments where MaxSum-Exact ran faster than Cao-Exact by 1-3 orders of magnitude.

MaxSum-Appro, the proposed approximate algorithm, improves the best-known

constant approximation factor from 2 to 1.375 without incurring a higher worst-case

time complexity.

Furthermore, we consider Dia-CoSKQ which has not been studied in the literature.

In this thesis, we prove that Dia-CoSKQ is NP-hard. We also adapt Cao-Exact, Cao-

Appro1 and Cao-Appro2 for Dia-CoSKQ. However, these adapted algorithms suffer

from the same drawbacks in MaxSum-CoSKQ.

Motivated by this, we propose two algorithms, namely Dia-Exact and Dia-Appro.

Dia-Exact is an exact algorithm which is also a search algorithm based on the search

space containing all possible distance owner groups and thus it is scalable to large

7



datasets. Dia-Appro gives a
√
3-factor approximation for Dia-CoSKQ.

We summarize our main contributions as follows.

• Firstly, for MaxSum-CoSKQ, we design two algorithms, MaxSum-Exact and

MaxSum-Appro. MaxSum-Exact is more scalable than the best-known exact

algorithm, Cao-Exact. MaxSum-Appro improves the best-known constant ap-

proximation factor from 2 to 1.375 without incurring a higher worst-case time

complexity.

• Secondly, for Dia-CoSKQ, which is new, we prove its NP-hardness and develop

two algorithms, Dia-Exact and Dia-Appro. Dia-Exact significantly outperforms

the adaptation of Cao-Exact, and Dia-Appro gives a
√
3-factor approximation.

• Thirdly, we conducted extensive experiments on both real and synthetic datasets,

which verified our theoretical results and the efficiency of our algorithms.

The rest of this chapter is organized as follows. Section 2.2 gives the definition

of the CoSKQ problem and its existing solutions. Section 2.4 and Section 2.5 study

MaxSum-CoSKQ and Dia-CoSKQ, respectively. Section 2.6 gives the empirical study

and Section 2.3 reviews the related work. Section 2.7 concludes this chapter.

2.2 Background

2.2.1 Problem Definition

Let O be a set of objects. Each object o ∈ O is associated with a location denoted by

o.λ and a set of keywords denoted by o.ψ. Given two objects o and o′, we denote by

d(o, o′) the Euclidean distance between o.λ and o′.λ. Given a query q which consists of

a location q.λ and a set of keywords q.ψ, we denote by Oq the set of relevant objects

each of which contains at least one keyword in q.ψ, and say that a set of objects is

8



feasible if it covers q.ψ. Besides, we introduce a fictitious object oq in O with oq.λ =

q.λ and oq.ψ = ∅. For simplicity, we shall also refer to object oq as q.

Problem Definition [15]. Given a query q = (q.λ, q.ψ), the Collective Spatial Key-

word Query (CoSKQ) problem is to find a set S of objects inO such that S covers q.ψ

and the cost of S is minimized.

In this thesis, we consider two cost functions, the maximum sum cost and the di-

ameter cost.

Given a set S of objects, the maximum sum cost of S, denoted by costMaxSum(S),

is equal to the linear combination of the maximum distance between q and an object in

S and the maximum distance between two objects in S. That is,

costMaxSum(S) = α ·max
o∈S

d(o, q) + (1− α) · max
o1,o2∈S

d(o1, o2) (2.1)

where α ∈ [0, 1] is a user parameter. Same as [15], for ease of exposition, we consider

the case where α = 0.5 only. In this case, we can safely assume that

costMaxSum(S) = max
o∈S

d(o, q) + max
o1,o2∈S

d(o1, o2) (2.2)

In fact, the applicability of all of our algorithms does not rely on the setting of α.

The only part that is affected is the approximation factor of our approximate algorithm

which is bounded by (2 −
√
2/2 · α) (e.g., when α = 0.5, the approximation factor

of our approximate algorithm is 1.375 which is bounded by (2 −
√
2/2 · α) ≈ 1.65).

More details in Section A.1 of the Appendix. The CoSKQ problem using this cost is

called MaxSum-CoSKQ.

As could be noticed, parameter α in the maximum sum cost function is used to

balance the two max components, namely maxo∈S d(o, q) and maxo1,o2∈S d(o1, o2).

Sometimes, however, people may not have a concrete idea of how to specify α. To
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ease this situation, we define an alternative cost function called diameter cost on a set

S of objects, denoted by costDia(S), which is defined to be the larger of these two max

components. That is,

costDia(S) = max
o1,o2∈S∪{oq}

d(o1, o2) (2.3)

The CoSKQ problem using this cost is called Dia-CoSKQ.

Intractability. It has been proved in [15] that MaxSum-CoSKQ is NP-hard. In this

thesis, we prove that Dia-CoSKQ is also NP-hard.

Lemma 2.2.1 Dia-CoSKQ is NP-hard.

Proof. We first give the decision problem of Dia-CoSKQ. Let O be a set of spatial

objects each of which is associated with a set of keywords. Given a number C and a

query q consisting of a location q.λ and a set of keywords q.ψ, the problem is to deter-

mine whether there exists a set S of objects such that S covers q.ψ and costDia(S) < C.

For simplicity, we denote this decision problem by Dia-CoSKQ.

We then utilize a well-known NP-C problem 3-SAT for proving that Dia-CoSKQ

is NP-hard. 3-SAT is described as follows. Let U be a set of literals (binary variables)

{e1, e1, ..., en, en}. Note that ei corresponds to the negation of ei. Given an expression

E = C1 ∧ C2 ∧ ... ∧ Cm where Ci has its from of xi ∨ yi ∨ zi and xi, yi, zi ∈ U for

1 ≤ i ≤ m, it determines whether there exists a truth assignment for ei for 1 ≤ i ≤ n

such that E is true.

Given a 3-SAT problem instance, we construct a Dia-CoSKQ problem instance as

follows. We arbitrarily select a location as q.λ and for each clause Ci in the expression

E, we include Ci in q.ψ as a keyword. Thus, q contains m keywords. To construct

O, we consider the circle Cir with its center at q.λ and its radius equal to 1. For each

pair of literals ei and ei in U , we create two objects oi and o′i on the boundary of Cir

10



such that d(oi, o
′
i) = 2, i.e., the line segment between oi and o′i is a diameter of Cir.

We guarantee that no two objects in O share the same location. Besides, we set oi.λ

(o′i.λ) to be the set of clauses that contain ei (ei). We set C to be 2. Clearly, the above

construction process could be finished in polynomial time.

We proceed to show that the above constructed Dia-CoSKQ problem instance is

equivalent to its corresponding 3-SAT problem instance. Assume that the answer to

3-SAT is “yes”, i.e., there exists a truth assignment A for the literals in U such that E

is true. Then, we construct a set S of objects in O as follows. For each positive literal

ei ∈ U , we include oi in S if ei is true inA. For each negative literal ei ∈ U , we include

o′i in S if ei is false in A. Clearly, oi and o′i cannot be included in S simultaneously.

Consider S. First, S covers q.ψ which could be verified by contradiction. Assume

that there exists a keyword Ci in q.ψ which is not covered by S. Since E is true, Ci

must also be true. Consequently, Ci contains at least one literal which is true. Case

1: this literal is a positive literal ei. In this case, oi is included in S and thus S covers

Ci, which leads to a contradiction. Case 2: this literal is a negative literal ei. In this

case, ei is false and thus o′i is included in S. As a result, S covers Ci, which, again,

leads to a contradiction. Second, we know costDia(S) < C = 2. This is because

maxo∈S d(o) = 1 and maxo1,o2∈S d(o1, o2) < 2 (there exist no pairs of two objects

such that the segment between them forms a diameter).

Consider the other direction. Assume that the answer to Dia-CoSKQ is “yes”, i.e.,

there exist a set S of objects such that S covers q.ψ and costDia(S) < C. Then, we

construct a truth assignment A for the literals in U as follows. For each object oi ∈ S,

we set ei to be true and consequently ei is false. For each object o′i ∈ S, we set ei

to be false and consequently ei is true. For the remaining literals to which no truth

values have been assigned, we set their truth values arbitrarily with the constraint that

ei and ei have different truth values. First, we show that E is a valid assignment, i.e.,
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there exist no pairs of two literals ei and ei such that they have a common truth value.

This could be verified by contradiction. Assume that there exist two literals ei and ei

such that ei and ei have the same truth value. It follows that oi and o′i co-exist in S

which contradicts the assumption that costDia(S) < C = 2. Second, we show that

E is true with the truth assignment A. Again, this could be verified by contradiction.

Assume that E is false. Then, there exists a clause Ci which is false. It follows that

each positive literal ei in Ci (if any) is false and thus oi is not included in S. Each

negative literal ei in Ci (if any) is false and thus o′i is not included in S. As a result, S

does not cover Ci which contradicts that S covers q.ψ. Therefore, E is true and thus

the answer to the 3-SAT problem is “yes”.

Therefore, we know that Dia-CoSKQ is NP-hard.

2.2.2 Existing Solutions

Cao et el. [15] proposed one exact algorithm, Cao-Exact, and two approximate algo-

rithms, Cao-Appro1 and Cao-Appro2, for MaxSum-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method using an index called IR-tree [25].

An IR-tree is an R-tree in which each node is augmented with an Inverted File (IF).

Consider a leaf node N . For each keyword t, we construct an inverted list which is a

list of all objects in node N containing t. All inverted lists in this leaf node N form the

IF of N . Consider a non-leaf node N ′. For each keyword t, we construct an inverted

list which is a list of all child nodes in N ′ covering t. Given a keyword t, a node N ′′

is said to cover t if there exists an object in the subtree rooted at N ′′ containing t. All

inverted lists in this non-leaf node N ′ form the IF of N ′.

Cao-Exact is basically an exhaustive search on the object space with some pruning

strategies in the IR-tree. The worst-case time complexity of Cao-Exact is O(|O||q.ψ|),

which corresponds to the size of the set containing all possible feasible sets.
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Cao-Appro1. Cao-Appro1 gives a 3-factor approximation for MaxSum-CoSKQ.

Specifically, Cao-Appro1 finds for each t ∈ q.ψ, q’s nearest neighbor (NN) in O con-

taining t and returns the set containing all these NNs as the approximate solution.

Since Cao-Appro1 issues NN queries at most |q.ψ| times and each NN query takes

O(log |O|) time [17, 28, 75], the time complexity of Cao-Appro1 is O(|q.ψ| · log |O|).

Cao-Appro2. Cao-Appro2 gives a 2-factor approximation for MaxSum-CoSKQ.

Specifically, Cao-Appro2 enhances Cao-Appro1 as follows. First, Cao-Appro2 in-

vokes Cao-Appro1 and obtains an approximate solution denoted by S1. Let of be the

farthest object from q in S1 and tf be a keyword contained by of but not contained

by any other closer object from q in O. Then, for each object o in O containing tf ,

it finds for each keyword t in q.ψ, o’s nearest object that contains t in O and obtains

a corresponding approximate solution containing all these NNs. Among all these ap-

proximate solutions as well as S1, it returns the one with the smallest cost. Thus, the

approximate solution returned by Cao-Appro2 is no worse than that returned by Cao-

Appro1. Since there are at most |Oq| objects containing tf and the cost for each such

object is simply O(|q.ψ| · log |O|), the worst-case time complexity of Cao-Appro2 is

O(|Oq| · |q.ψ| · log |O|).

2.3 Related Work

Many types of spatial keyword query have been proposed in the literature. Most of

them are different from CoSKQ studied in this thesis since they use a single object to

cover all keywords specified in the query but CoSKQ uses multiple objects collectively

for the same purpose. We review these spatial keyword queries as follows.

A spatial keyword top-k query [25] finds top-k objects where the ranking function

takes both the spatial proximity and the textual relevance of the objects into consid-

eration. This branch includes [25, 80, 66] (Euclidean space), [81] (road networks),
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[83, 26] (trajectory databases), and [98] (moving objects). A common technique shared

by these studies is to design a hybrid indexing structure, which captures both the spa-

tial proximity and the textual information of the objects. The IR-tree adopted by us for

NN queries and range queries was proposed in [25].

A spatial keyword k-NN query [34] finds the k-NNs from the query location, each

of which contains the set of keywords specified in the query. That is, unlike the key-

words in the spatial keyword top-k queries, which are used as a soft constraint, the

keywords in the spatial keyword k-NN queries are used as a hard constraint. This

branch includes [34, 16, 97].

A spatial keyword range query [92, 109, 24] takes a region and a set of keywords

as input and finds the objects each of which falls in the region and contains the set of

keywords. Same as the spatial keyword k-NN queries, the keywords are used as a hard

constraint. Usually, they combine a spatial index (e.g., R-tree and Space Filling Curve

(SFC)) and a textual index (e.g., inverted file) for query processing.

A spatial keyword reverse top-k query [70] finds the set of objects whose spatial

keyword top-k query results include the query. Note that in this case, an object which

consists of a location and a set of keywords could be regarded as a query which also

consists of a location and a set of keywords and vice versa.

AnmCK query [103, 104] is a spatial keyword query that is very similar to CoSKQ.

An mCK query takes m keywords as input and finds m objects with the smallest di-

ameter that cover the m keywords specified in the query. Though both the mCK query

and CoSKQ use a set of objects for covering a set of keywords collectively, they are

different. In the context of an mCK query, it is assumed that each object is associated

with a single keyword while in the context of CoSKQ, each object is associated with a

set of multiple keywords. Besides, anmCK query only takes a set of keywords as input

while our CoSKQ query takes not only a set of keywords but also a query location as
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an input.

In addition to the spatial keyword queries, trip planning [65, 84, 20, 13] is another

branch of related work. In [65], the authors studied a query called “Trip Planning

Query” (TPQ). Given a metric graph consisting of a set of points as vertices each

of which belongs to a category, a starting point, an ending point, and a set of query

categories, the query is to find a route from the starting point to the ending point on the

graph such that for each query category, the route traverses a point belonging to this

category and the cost of the route is the smallest. In [84], the authors studied a query

called “Optimal Sequenced Route” (OSR). Given a set of points each of which belongs

to a category, a starting point and a sequence of query categories, the query is to find a

route which corresponds a sequence of points such that the route follows the sequence

of query categories meaning that the sequence of the corresponding categories of the

points in the route is exactly the same as the sequence of query categories and the

sum of the cost from the starting point to the first point in the route and the cost of

the route is minimized. In [20], the authors studied a query called “Multi-Rule Partial

Sequenced Route” (MRPSR) which unified TPQ an OSR. In [13], the authors studied

a query called “Keyword-aware Optimal Route (KOR)” which corresponds to a variant

of TPQ by considering an additional budget constraint. All of these are different from

the CoSKQ queries studied in this thesis simply because they output a route while

CoSKQ outputs a set.

2.4 Algorithms for MaxSum-CoSKQ

In this section, we propose two algorithms, MaxSum-Exact (Section 2.4.1) and

MaxSum-Appro (Section 2.4.2), for MaxSum-CoSKQ. For clarity, we simply write

costMaxSum(·) as cost(·) if the context of the cost function is clear.

Given a query q and a non-negative real number r, we denote the circle or the disk
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centered at q.λ with radius r by D(q, r). Given a disk D, we denote the radius of D by

radius(D). Given a query q, a disk centered at q.λ is called a q-disk. Given a q-disk

D and an object o in D, o is said to be the boundary object of D if there does not exist

other objects o′ in D such that d(o′, q) > d(o, q). Note that in some cases, a boundary

object of a disk is along the boundary of a disk and in some other cases, it is inside the

disk without touching the boundary of the disk.

2.4.1 Exact Algorithm

In this section, we propose an exact algorithm called MaxSum-Exact. The key to the

efficiency of MaxSum-Exact is based on the splitting property of the maximum sum

cost function.

Splitting Property

Let S ′ be a feasible set. The maximum sum cost of S ′ can be split into two parts,

namely the query distance cost which is maxo∈S′ d(o, q) and the pairwise distance

cost which is maxo1,o2∈S′ d(o1, o2). We define the query distance owner of S ′ to be o

where o = argmaxo∈S′ d(o, q). We also define the pairwise distance owners of S ′ to

be o1 and o2 where (o1, o2) = argmax(o′
1
,o′

2
)∈S′×S′ d(o′1, o

′
2).

Consider Figure 2.1 containing a query location q and 5 objects, namely

o1, o2, o3, o4 and o5. The set of keywords associated with each object can be found

in the figure. Suppose that q.ψ = {t1, t2, t3}. We know that a set S ′ = {o1, o2, o3} is

feasible. The query distance owner of S ′ is o1 and the pairwise distance owners of S ′

are o2 and o3.

According to the above splitting property, the cost of a set S ′ can be dominated (or

determined) by exactly three objects in S ′, namely the query distance owner of S ′ (i.e.,

o) and the two pairwise distance owners of S ′ (i.e., o1 and o2). In other words, we can
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simply write the cost of S ′ as follows.

cost(S ′) = d(o, q) + d(o1, o2)

where o is the distance owner of S ′, and o1 and o2 are the two pairwise distance owners

of S ′. We say that o, o1 and o2 forms a distance owner group. Any feasible set with

its query distance owner as o and its pairwise distance owners as o1 and o2 is said to

be (o, o1, o2)-owner consistent. Note that each feasible set that is (o, o1, o2)-owner

consistent has the same cost equal to d(o, q) + d(o1, o2).

Distance Owner-Driven Approach

Based on the splitting property, we propose a distance owner-driven approach as fol-

lows. This approach maintains a variable S storing the best feasible set found so far.

Initially, S is set to a feasible set (We will describe how we find this feasible set later).

Then, it has four major steps.

• Step 1 (Query Distance Owner Finding): Select one object o in Oq to take the

role of the query distance owner of a set S ′ to be found.

• Step 2 (Pairwise Distance Owner Finding): Select two objects, o1 and o2, in Oq

to take the roles of the pairwise distance owners of the set S ′ (to be found). Note

that o, o1 and o2 form a distance owner group.

• Step 3 (Sub-Optimal Feasible Set Finding): Find the set S ′ which is (o, o1, o2)-

owner consistent (if any), and update S with S ′ if cost(S ′) < cost(S).

• Step 4 (Iterative Step): Repeat Step 1 and Step 2 which find another distance

owner group, and continue with Step 3 until all distance owner groups are tra-

versed.

The above approach gives a search strategy based on the set of all possible distance

owner groups. However, a straightforward implementation of this approach would
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Figure 2.1: An example (CoSKQ)

enumerate all |Oq|3 distance owner groups, which is prohibitively expensive in prac-

tice. Thus, we need a careful design in order to prune the search space effectively. In

the following, we elaborate the pruning features enjoyed by this distance owner-driven

approach, which cannot be found in the best-known algorithm, Cao-Exact.

Firstly, some objects in Oq need not be considered in Step 2 after we select an

object in Step 1. To illustrate this, consider Figure 2.1. Suppose that we pick o1 as the

query distance owner in Step 1. We do not need to consider o4 as objects in Step 2.

This is because d(o4, q) is larger than d(o1, q), which violates the property that o1 takes

the role of the query distance owner of the set S ′ to be found if S ′ contains o1 and o4.

We formalize this pruning feature as follows.

Property 1 (Pruning) Let S ′ be a feasible set. If o is the query distance owner of S ′,

then the two pairwise distance owners of S ′ are inside D(q, d(o, q)).

Proof. Any object o′ ∈ S ′ has d(o′, q) ≤ d(o, q) and thus o′ is inside D(q, d(o, q)).

Secondly, most of the objects in Oq need not be considered to form a set S ′ to be

found in Step 3. To illustrate this, consider Figure 2.1 again. Suppose that we pick o1

as the query distance owner in Step 1, and o2 and o3 as the pairwise distance owners in

Step 2. Similarly, we still do not need to consider o4 as one of the objects to form the

set S ′ since including o4 violates the query distance owner property. Besides, we do not

need to consider o5 to form the set S ′ to be found. This is because d(o2, o5) > d(o2, o3)
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which violates the property that o2 and o3 take the roles of the pairwise distance owners.

Similarly, we formalize this pruning feature as follows.

Property 2 (Pruning) Let S ′ be a feasible set. If o is the query distance owner of S ′,

and o1 and o2 are two pairwise distance owners of S ′, then all objects in S ′ are inside

R whereR = D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2)).

Proof. For each o′ ∈ S ′, we have d(o′, q) ≤ d(o, q) which implies that o′ is inside

D(q, d(o, q)). For each o′ ∈ S ′, we have d(o′, o1) ≤ d(o1, o2) which implies that

o′ is inside D(o1, d(o1, o2)), and d(o′, o2) ≤ d(o1, o2) which implies that o′ is inside

D(o2, d(o1, o2)).

The above pruning features look promising for improving the efficiency of the

proposed approach. Moreover, since objects near to q usually form the optimal set,

we propose to consider the objects in Step 1 iteratively, taking the role of the query

distance owner of the set to be found, in ascending order of their distances to q in order

to further improve the efficiency of the proposed approach.

Usually, the NN of q inOq is not the query distance owner of the set S ′ to be found.

In Figure 2.1, consider the query q with its keyword set to be {t1, t2, t3}. The NN of q

is o2. Suppose that o2 is the query distance owner of S ′. According to Property 2, all

objects in S ′ fall in D(q, d(o2, q)) and they together cover q.ψ. But, in the figure, no

object in D(q, d(o2, q)) contains t2, which implies that we cannot find a feasible set S ′

with o2 as its query distance owner.

Based on this observation, we propose to find the closest possible query distance

owner, say o, of the set S ′ to be found such that there exists a feasible set in the q-disk

D(q, d(o, q)). In addition, we do not want to pick any object which is far away from

q. Thus, we also propose to find the farthest possible query distance owner of S ′ to be

found that we need to consider.
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Closest/Farthest Possible Query Dist. Owner

The following two lemmas show how to find the closest and farthest possible query

distance owners.

Before we present the first lemma about the closest possible query distance owner,

we introduce some notations. Given a query q and a keyword t, the t-keyword nearest

neighbor of q, denoted by NN(q, t), is defined to be the NN of q containing keyword

t. We have a similar definition on NN(o, t) for an object o. We define the nearest

neighbor set of q, denoted by N(q), to be the set containing q’s t-keyword nearest

neighbor for each t ∈ q.ψ, i.e., N(q) is ∪t∈q.ψNN(q, t). Note that N(q) is a feasible

set.

Lemma 2.4.1 (Closest Poss. Query Dist. Owner) Let rmin = maxo∈N(q) d(o, q).

There exists a feasible set in a q-disk D if and only if radius(D) ≥ rmin.

Proof. The proof for the “if” part is trivial since for any q-disk D with radius(D) ≥

rmin, N(q) is a feasible set inD. We prove the “only if” part by contradiction. Assume

radius(D) < rmin and there exists a feasible set S in D. Let of be the farthest object

from q in N(q), i.e., rmin = d(q, of). There exists a keyword tf ∈ of .ψ∩q.ψ such that

tf is not contained by any object that is closer to q than of since otherwise of /∈ N(q).

Since S is feasible, there exists an object o ∈ S that contains keyword tf . As a result,

we have d(o, q) ≤ radius(D) < rmin = d(q, of), which leads to a contradiction.

The above lemma suggests that there is no feasible set in a q-diskD if radius(D) <

rmin. Thus, the disk with its radius equal to rmin is the “smallest” disk we need to

consider. The boundary object of this disk is the closest possible query distance owner.

Note that this object is along the boundary of this disk.

The following lemma gives the “largest” disk we need to consider. Besides, the

boundary object of this disk corresponds to the farthest possible query distance owner.
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Note that this object might or might not be along the boundary of this disk.

Lemma 2.4.2 (Farthest Poss. Query Dist. Owner) Let S be a feasible set and

rmax = cost(S). Let D be a q-disk with radius(D) > rmax. Then, for any feasi-

ble set S ′ containing at least one object outside D, cost(S ′) > cost(S).

Proof. cost(S ′) ≥ maxo∈S′d(o, q) > radius(D) > rmax = cost(S).

The above lemma suggests that when we have known a feasible set S, there is no

need to consider the objects outside D(q, rmax) where rmax = cost(S).

The above two lemmas suggest the “smallest” disk and the “largest” disk we need

to consider. Specifically, the object o which takes the role of the query distance owner

of S ′ to be found must be in the ring which is roughly equal to the “largest” disk minus

the “smallest” disk. Let S be a feasible set. Let rmin = maxo∈N(q) d(o, q) and rmax =

cost(S). We define the ring for S, denoted byR(S), to beD(q, rmax)−D(q, rmin−δ),

where δ is a very small positive real number near to 0.

Lemma 2.4.3 (Ring Candidate) Let S be a feasible set and So be the optimal set for

the MaxSum-CoSKQ problem. The query distance owner of So is inside R(S).

Proof. Let o be the query distance owner of So. First, according to Lemma 2.4.2,

o cannot be outside D(q, rmax) since otherwise cost(So) > cost(S) which leads to

a contradiction. Second, according to Lemma 2.4.1, there exist no feasible sets in

D(q, rmin − δ). Thus, o is not inside D(q, rmin − δ) since otherwise So which is

feasible is inside D(q, rmin − δ) which also leads to a contradiction. Therefore, o is

inside R(S).

It is easy to verify that the region occupied byR(S) becomes smaller when cost(S)

is smaller since the radius of the outer disk of R(S) is equal to cost(S).

21



The MaxSum-Exact Algorithm

Based on the discussion in the previous subsection, we design MaxSum-Exact as shown

in Algorithm 1. Specifically, we maintain S for storing the best-known solution found

so far, which is initialized to N(q). Then, we perform an iterative process as follows.

Consider an iteration. We want to check whether there exists a relevant object in R(S)

that has not been processed. If yes, we pick the nearest relevant object o from R(S)

that has not been processed to take the role of the query distance owner of the set S ′ to

be found (Step 1). This object is said to be the query distance owner for this iteration.

We process it as follows. Firstly, we form the q-disk D with its radius equal to d(o, q)

and find a set P of all pairs (o1, o2) where o1 and o2 are in D for taking the roles of

the pairwise distance owners (Step 2). Secondly, for each pair (o1, o2) in P which is

processed in ascending order of d(o1, o2), we check whether there exists a feasible set

S ′ which is (o, o1, o2)-owner consistent. Case 1: yes. We do the following. Firstly,

if cost(S ′) < cost(S), then we update S by S ′. Secondly, we terminate to search

the remaining pairs in P since the cost of a final set whose pairwise distance owners

corresponds to one of the remaining pairs must be at least the cost of the current set

S ′ whose pairwise distance owners are (o1, o2), the current processed pair. Case 2: no.

We continue to consider the next pair in P until Case 1 is reached or all the pairs in

P have been processed. We continue the above iteration with the next relevant object

from R(S) that has not been processed until all objects in R(S) have been processed

(Step 4).

We verify the correctness of MaxSum-Exact via Theorem 2.4.1.

Theorem 2.4.1 MaxSum-Exact returns a feasible set with the smallest cost for

MaxSum-CoSKQ.

Proof. Let So be one of the feasible sets with the smallest cost for MaxSum-CoSKQ.
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Algorithm 1 Algorithm MaxSum-Exact

Require: query q and a set O of objects
1: S ← N(q)
2: while there is an “un-processed” relevant object o in R(S) do
3: // Step 1 (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object in R(S)
5: // Step 2 (Pairwise Distance Owner Finding)
6: D ← the q-disk with its radius equal to d(o, q)
7: P ← a set of all pairs (o1, o2) where o1 and o2 are in D
8: // Step 3 (Sub-optimal Feasible Set Finding)
9: for each (o1, o2) ∈ P in ascending order of d(o1, o2) do

10: if there exists a feasible set S ′ inD which is (o, o1, o2)-owner consistent then
11: if cost(S ′) < cost(S) then
12: S ← S ′; break
13: // Step 4 (Iterative Process)
14: mark o as “processed”
15: return S

Suppose that o is the query distance owner of So, and o1 and o2 are two pairwise

distance owners of So. According to Lemma 2.4.3, o is inside R(S), where S is the

solution maintained in MaxSum-Exact. Thus, omust have been processed in MaxSum-

Exact (Step 1). When o is processed, pair (o1, o2) is included in P (Step 2) since o1

and o2 are inside D(q, d(o, q)) (Property 1). As a result, any feasible set which is

(o, o1, o2)-owner consistent is retrieved (Step 3) and used to update S (there must exist

some since So is (o, o1, o2)-owner consistent). The resulting S will not be updated

anymore since it has the same cost as cost(So) which is the smallest, and thus S is the

final output.

Algorithm 1 looks straightforward but how to execute this algorithm efficiently

needs more careful design. We propose two computation strategies in the algorithm,

namely the self-iteration computation strategy and the cross-iteration computation

strategy, to execute this algorithm efficiently. The self-iteration computation strategy

is to speed up the operations within an iteration and the cross-iteration computation

strategy is to speed up the operations across different iterations.

Self-Iteration Computation Strategy. Consider an iteration in the algorithm whose

query distance owner is o. Step 1 (lines 3-4) is straightforward. In Step 2 (lines 5-7),
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there is a step of finding a set P of all pairs (o1, o2) where o1 and o2 are in D. There is

no need to keep all pairs (o1, o2) in P and some pairs can be pruned. The following two

lemmas give some hints for pruning. The first lemma (Lemma 2.4.4) is based on the

triangle inequality and the second lemma (Lemma 2.4.5) is based on the best-known

set S found so far.

Lemma 2.4.4 (Triangle Inequality) Let S ′ be a feasible solution whose query dis-

tance owner is o, and pairwise distance owners are o1 and o2. Then, d(o1, o2) ≥

d(o, q)−min{d(o1, q), d(o2, q)}.

Proof. Note that d(o1, o2) ≥ d(o1, o) and d(o1, o2) ≥ d(o2, o). By the triangle

inequality, we know d(o1, o) ≥ d(o, q) − d(o1, q) and d(o2, o) ≥ d(o, q) − d(o2, q).

Thus, we have d(o1, o2) ≥ d(o, q)−min{d(o1, q), d(o2, q)}.

The above lemma suggests that the pair (o1, o2) in P can be pruned if d(o1, o2) <

d(o, q)−min{d(o1, q), d(o2, q)}. Let dmin = d(o, q)−min{d(o1, q), d(o2, q)}. Thus,

dmin corresponds to the smallest distance threshold for a pair (o1, o2).

Lemma 2.4.5 (Best Known Set) Let S ′ be a feasible solution whose query distance

owner is o and pairwise distance owners are o1 and o2. Let S be another feasible

solution. cost(S ′) ≤ cost(S) if and only if d(o1, o2) ≤ cost(S)− d(o, q).

Proof. cost(S ′) ≤ cost(S) deduces d(o, q) + d(o1, o2) ≤ cost(S) which is exactly

d(o, q) ≤ cost(S)− d(o1, o2).

Let S be the feasible set found so far in the algorithm. The above lemma suggests

that the pair (o1, o2) in P can be pruned if d(o1, o2) > cost(S)− d(o, q). Let dmax =

cost(S)− d(o, q). Thus, dmax is the largest distance threshold for a pair (o1, o2).

According to Lemma 2.4.4 and Lemma 2.4.5, we only need to maintain those pairs

with their distances between dmin and dmax in P .
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Consider Step 3 (lines 8-12). Here, we need to process each pair (o1, o2) in P .

The most time-consuming operation is to check whether there exists a feasible set

S ′ which is (o, o1, o2)-owner consistent. Algorithm 2 presents an algorithm for this

task. If it succeeds, it outputs S ′; otherwise, it outputs ∅. First, it checks whether

d(o1, o2) < max{d(o1, o), d(o2, o)}. If yes, we conclude that there exist no feasible set

that is (o, o1, o2)-owner consistent since it violates the condition that o1 and o2 are the

pairwise distance owners (i.e., d(o1, o2) ≥ max{d(o1, o), d(o2, o)}). If no, it initializes

S ′ to be {o, o1, o2}. It also maintains a variable ψ, denoting the set of keywords not

covered by S ′ yet, which is initialized as q.ψ − (o.ψ ∪ o1.ψ ∪ o2.ψ). If ψ = ∅, it

returns S ′ immediately. Otherwise, it proceeds to augment S ′ with some other objects.

According to Property 2, we can safely focus on the region R = D(o, d(o, q)) ∩

D(o1, d(o1, o2)) ∩ D(o2, d(o1, o2)). Therefore, it retrieves the set O′ of all relevant

objects in R. If O′ does not cover ψ, it returns ∅. Otherwise, it enumerates each

possible subset S ′′ of O′ that covers ψ (by utilizing the inverted lists maintained for

each keyword in ψ), augment S ′ by S ′′ (thus S ′ becomes feasible) and checks whether

S ′ is (o, o1, o2)-owner consistent which is equivalent to checking whether o1 and o2 are

still the pairwise distance owners of S ′. If yes, it outputs S ′. Otherwise, it restores

S ′ and checks the next subset of O′. When all subsets of O′ that cover ψ have been

traversed and still no feasible set S ′ which is (o, o1, o2)-owner consistent has been

found, it returns ∅.

Cross-Iteration Computation Strategy. We reuse the information computed in the

previous iterations for the current iteration.

Consider an iteration where the query distance owner for this iteration is o. With

respect to o, we create a q-diskD and also construct set P (line 7 in Algorithm 1). Con-

sider the next iteration where the query distance owner for this iteration is o′. Although

we can construct set P ′ with respect to o′ from scratch by applying the procedure of
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Algorithm 2 Algorithm for checking whether there exists a feasible set S ′ which is
(o, o1, o2)-owner consistent

Require: three objects o, o1 and o2
Ensure: a feasible set which is (o, o1, o2)-owner consistent if any and ∅ otherwise

1: if d(o1, o2) < max{d(o1, o), d(o2, o)} then return ∅
2: S ′ ← {o, o1, o2}
3: ψ ← q.ψ − (o.ψ ∪ o1.ψ ∪ o2.ψ)
4: if ψ = ∅ then return S ′

5: R ← D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2))
6: O′ ← a set of all relevant objects inR
7: if O′ does not cover ψ then return ∅
8: for each subset S ′′ of O′ that covers ψ do
9: S ′ ← S ′ ∪ S ′′

10: if S ′ is (o, o1, o2)-owner consistent then return S ′

11: S ′ ← S ′ − S ′′

12: return ∅

generating set P , a much better approach is to construct set P ′ by using the current

content of P because P ⊆ P ′. Specifically, when we consider the next iteration, we

first construct another setQ to be the set of additional pairs in P ′ compared with P (i.e.,

Q = {(o′′, o′)|o′′ ∈ D(q, d(q, o))}) and then set P ′ to be P ∪Q. Note that P ∩Q = ∅.

The pruning in P mentioned in the self-iteration computation strategy is still valid

even when we construct P ′ in the above way. Specifically, the pairs pruned previously

in P still do not need to be considered in P ′ at the next iteration. This is because

dmin is monotonically increasing and dmax is monotonically decreasing with more

iterations. To illustrate, consider a pair (o1, o2) in P at the previous iteration. Note that

dmin = d(o, q) − min{d(o1, q), d(o2, q)} and dmax = cost(S) − d(o, q). At the next

iteration, o will become o′, which is at least as far as o from q (i.e., d(o′, q) ≥ d(o, q)).

Thus, at the next iteration, dmin will remain the same or will increase. In addition,

the cost of the solution S maintained at the next iteration is at most the cost of that

maintained at the previous iteration. Thus, at the next iteration, dmax will remain the

same or will decrease.
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Implementation and Time Complexity

We adopt the IR-tree built on O to support both the NN query (line 1 of Algorithm 1)

and the range query (line 7 of Algorithm 1 and line 6 of Algorithm 2). For the NN

query, we adopt the best-first search method [45] and for the range query, we perform

a simple breadth-first traversal with the constraint of the range. Besides, given a query

q, since we only focus on the set of relevant objects, when performing NN queries and

range queries, we can utilize the IF information maintained in the IR-tree for pruning.

Since the pairs in P are processed in ascending order of their distances and P

is maintained dynamically (because of the Cross-Iteration Computation Strategy), we

adopt a binary search tree for maintainingP , which allows efficient sorting and update.

Let n1 be the number of iterations (lines 2-14) in MaxSum-Exact (Algorithm 1).

Note that n1 << |Oq| since n1 corresponds to the number of relevant objects we

process in R(S) and the area occupied by R(S) is typically small. Let |P | be the size

of the set P we use in the algorithm. Similarly, we know that |P | << |Oq|2. Let β be

the cost of Algorithm 2. It is easy to verify that the time complexity of MaxSum-Exact

is O(n1 · |P | · β).

Next, we analyze β. The cost of lines 1-4 (Algorithm 2) is dominated by those

of other parts in the algorithm. The cost of lines 5-6 is simply O(log |O| + |Oq|)

since we can issue three range queries and then perform an intersection on the query

results. The cost of line 7 is O(|ψ| · |Oq|). The cost of lines 8-11 is O(|O′||ψ| · |ψ|2)

since it enumerates at most O(|O′||ψ|) subsets S ′′ that cover ψ and each subset incurs

a checking operation (line 10) whose cost is O(|ψ|2) (since |S ′′| = O(|ψ|) and we can

try all pairwise distances within S ′′ to do the checking). Thus, β is O(log |O|+ |Oq|+

|ψ| · |Oq| + |O′||ψ| · |ψ|2). Note that |O′| << |Oq| (since O′ corresponds to a set of

relevant objects in a small region), |Oq| < |O| and |ψ| ≤ |q.ψ| − 1.

In conclusion, the time complexity of MaxSum-Exact is O(n1 · |P | · (log |O| +
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|Oq|+ |ψ| · |Oq|+ |O′||ψ| · |ψ|2)).

2.4.2 Approximate Algorithm

In this section, we propose a 1.375-factor approximate algorithm called MaxSum-

Appro which is better than the best-known 2-factor approximate algorithm, Cao-

Appro2.

Before we present MaxSum-Appro, we introduce the concept of “o-neighborhood

feasible set”. Given a query q and an object o ∈ O, the o-neighborhood feasible set is

defined to be the set containing o and all other objects each of which is the t-keyword

nearest neighbor of o in D(q, d(o, q)) for each t ∈ q.ψ − o.ψ. For example, consider

Figure 2.1. Suppose that the query q.ψ is {t1, t2, t3}. Then, the o1-neighborhood

feasible set is {o1, o2, o3} since q.ψ−o1.ψ = {t1, t3}, o1’s t1-keyword nearest neighbor

in D(q, d(o1, q)) is o2 and o1’s t3-keyword nearest neighbor in D(q, d(o1, q)) is o3.

It could be easily verified that the o-neighborhood feasible set exists iff o is outside

D(q, rmin − δ) since an o-neighborhood feasible set is a feasible set.

In MaxSum-Appro, we only consider the o-neighborhood feasible sets for those

objects o that are inside R(S) where S is a feasible set, and thus they always exist.

We present MaxSum-Appro in Algorithm 3. MaxSum-Appro is exactly Algo-

rithm 1 by replacing Step 2 and Step 3 which are relatively expensive with the new

efficient operation of finding the o-neighborhood feasible set which could be finished

by issuing |q.ψ − o.ψ| NN queries.

Theoretical Analysis. Although the set S returned by the MaxSum-Appro algorithm

might have a larger cost than the optimal set So, the difference is bounded.

Theorem 2.4.2 MaxSum-Appro gives a 1.375-factor approximation for the MaxSum-

CoSKQ problem.
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Algorithm 3 Algorithm MaxSum-Appro

Require: query q and a set O of objects
1: S ← N(q)
2: while there is an “un-processed” relevant object o in R(S) do
3: // Step 1 (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object in R(S)
5: // Step 2 (o-Neighborhood Feasible Set Finding)
6: S ′ ← the o-neighborhood feasible set
7: if cost(S ′) < cost(S) then
8: S ← S ′

9: // Step 3 (Iterative Process)
10: mark o as “processed”
11: return S
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Figure 2.2: Illustration of the proof of Theorem 2.4.2

Proof. Let So be the optimal solution and S be the solution returned by MaxSum-

Appro. Let o be the query distance owner of So. By Lemma 2.4.3, we know that o is

in R(S). Besides, we can safely assume that o is a relevant object. Thus, there exists

an iteration in MaxSum-Appro such that we process o (line 3) and thus we find its

o-neighborhood feasible set denoted by S ′.

Since S is the final solution returned by MaxSum-Appro, we know that cost(S) ≤

cost(S ′). The remaining part of the proof shows that cost(S ′) ≤ 1.375 · cost(So).

Let of be the object in S ′ that is the farthest from o and r1 = d(of , o). Then, all

objects in S ′ fall in D(o, r1). Let r2 = d(o, q). Since o is the query distance owner of

S ′, we know that all objects in S ′ fall in D(q, r2). In summary, all objects in S ′ fall in
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D(o, r1) ∩D(q, r2).

Consider cost(So). It could be verified by using a similar method for proving

Lemma 2.4.1 that maxo1,o2∈So
d(o1, o2) ≥ d(o, of). Thus, we have cost(So) ≥ r2 + r1.

In the following, we consider two cases on r1 according to whether there exists a

line segment linking two points at the boundary of D(q, r2) such that it has its length

equal to 2r2 (i.e., the diameter of D(q, r2)) and falls in D(o, r1) ∩D(q, r2). Note that

the boundary case happens when r1 =
√
2r2 and there exists exactly one such segment.

Case 1: r1 ≤
√
2r2. We denote the intersection points between the boundaries of

D(o, r1) and D(q, r2) by a and b, as shown in Figure 2.2(a). Let c be the intersection

point between segment qo and segment ab. Let x = d(a, c) = d(b, c) and y = d(c, q).

Since △ocb and △qcb are right-angled triangles, we know x2 + (r2 − y)2 = r21 and

y2+x2 = r22 by the hypothesis theorem. By solving these two equations, we obtain x =

√

r21 − r41/4r22 and thus d(a, b) = 2x = 2
√

r21 − r41/4r22. In this case, it can be verified

that maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) (since all objects in S ′ are inD(o, r1)∩D(q, r2), as

shown in the shaded area of Figure 2.2(a)) and hence cost(S ′) ≤ r2+2
√

r21 − r41/4r22.

Therefore,

cost(S ′)

cost(So)
≤ r2 + 2

√

r21 − r41/4r22
r2 + r1

= 1 +
2
√

1− r21/4r22 − 1

r2/r1 + 1

Let z = r1/r2. Thus,
cost(S′)
cost(So)

≤ 1 +
2
√

1−z2/4−1

1/z+1
. Since r1 ≤

√
2r2, we have z ∈

(0,
√
2] 1. We define f(z) = 1 +

2
√

1−z2/4−1

1/z+1
on {z|z ∈ (0,

√
2]}. It could be verified

that f(z) is monotonically increasing on (0, 0.875) and is monotonically decreasing on

(0.875,
√
2]. Thus, f(z) ≤ f(0.875) < 1.375. Therefore,

cost(S ′)

cost(So)
≤ f(z) ≤ 1.375

1The interval (0,
√
2] does not include the boundary case where z = 0 (i.e., r1 = 0). In this case, we

have cost(S′)/cost(So) = 1.
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Case 2: r1 >
√
2r2. Let ab be any segment linking two points at the boundary

of D(q, r2) which has its length equal to 2r2 and falls in D(o, r1) ∩ D(q, r2). For

illustration, consider Figure 2.2(b). That is, d(a, b) = 2r2. Similar to Case 1, it could

be verified that maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. Thus, cost(S ′) ≤ r2 + 2r2.

Therefore,

cost(S ′)

cost(So)
≤ r2 + 2r2

r2 + r1
=

1 + 2

1 + r1/r2
≤ 1 + 2

1 +
√
2
< 1.25

Thus, by combining Case 1 and Case 2, we have cost(S ′) ≤ 1.375·cost(So), which

completes the proof.

Implementation and Time Complexity. We also adopt the IR-tree built on O to

support the NN query and the range query.

Let n1 be the number of iterations in MaxSum-Appro (lines 2-10 in Algorithm 3)

and γ be the cost of executing an iteration. Then, the time complexity of MaxSum-

Appro is O(n1 · γ). Note that γ is dominated by the step of finding the o-neighborhood

feasible set (line 6) whose cost is bounded by O(|q.ψ| · log |O|) (it issues at most

|q.ψ − o.ψ| NN queries each of which takes O(log |O|) time). Thus, γ = O(|q.ψ| ·

log |O|). Therefore, the time complexity of MaxSum-Appro is O(n1 · |q.ψ| · log |O|)

where n1 << |Oq|. Note that the worst-case time complexity of MaxSum-Appro is

O(|Oq| · |q.ψ| · log |O|), which is the same as that of Cao-Appro2.

2.5 Algorithms for Dia-CoSKQ

In this section, we propose two algorithms, Dia-Exact and Dia-Appro, for Dia-CoSKQ.

Similarly, in this section, for clarity, we simply write costDia(·) as cost(·) if the context

of the cost function is clear.
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2.5.1 Exact Algorithm

Interestingly, we can adopt the same MaxSum-Exact algorithm (Algorithm 1) by re-

placing the cost measurement from the maximum sum cost to the diameter cost. We

call this algorithm Dia-Exact. The reason is that we can still use the query distance

owner and the pairwise distance owners of a set S ′ to be found to find the optimal

solution for Dia-CoSKQ. Next, we explain the reason in detail.

Consider the diameter cost. Given a set S ′ of objects in O, we have cost(S ′) =

maxo′,o′′∈S′∪{oq} d(o
′, o′′). Clearly, the (diameter) cost of a set S ′ can be dominated (or

determined) by two pairwise distance owners of S ′∪{oq} (not S ′ used in the maximum

sum cost), which form a distance owner group (for Dia-CoSKQ). It is similar to the

maximum sum cost of a set S ′ which is dominated by the query distance owner of

S ′ and two pairwise distance owners of S ′. But, there are two differences. The first

difference is that the diameter cost is dominated by the pairwise distance owners only

(without the query distance owner). The second difference is that the pairwise distance

owners used for the diameter cost are based on the set S ′ ∪ {oq} instead of S ′.

Based on the above observations, we directly adapt the distance owner-driven ap-

proach as follows. This approach maintains a variable S storing the best feasible set

found so far. Initially, S is set to a feasible set. This involves three major steps.

• Step 1 (Pairwise Distance Owner Finding): Select two objects, o′ and o′′, in

Oq ∪ {oq} to take the roles of the pairwise distance owners of the set S ′ ∪ {oq}

where S ′ is to be found. Note that o′ and o′′ form a distance owner group.

• Step 2 (Sub-Optimal Feasible Set Finding): Find a set S ′ of objects in Oq such

that the pairwise distance owners of S ′ ∪ {oq} are o′ and o′′ (if any), and update

S with S ′ if cost(S ′) < cost(S).

• Step 3 (Iterative Step): Repeat Step 1 which finds another distance group, and

continue with Step 2 until all distance owner groups have been traversed.
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Interestingly, Step 1 which originally finds two objects to take the roles of the two

pairwise distance owners based on S ′ ∪ {oq} can be refined to a number of sub-steps

of finding two objects to take the roles of the two pairwise distance owners based on

S ′ simply (not S ′ ∪ {oq}) and finding an object to take the role of the query distance

owner based on S ′. This refinement can be explained by the following observation.

Observation 1 Let S ′ be the feasible set. The pairwise distance owners of S ′∪{oq} are

either (1) oq and the query distance owner of S ′ or (2) the pairwise distance owners of

S ′.

Suppose that o takes the role of the query distance owner of S ′ to be found, and o1

and o2 take the roles of the two pairwise distance owners of S ′.

Observation 1 involves two cases. In Case (1) of Observation 1, we know that the

pairwise distance owners of S ′ ∪ {oq} are oq and the query distance owner o of S ′. In

this case, we deduce that d(o1, o2) ≤ d(o, q)(= d(o, oq)).

In Case (2) of Observation 1, we know that the pairwise distance owners of S ′ ∪

{oq} are the pairwise distance owners of S ′, say o1 and o2. In this case, d(o, q) ≤

d(o1, o2).

In conclusion, if we know that d(o1, o2) ≤ d(o, q), then oq and o are the pairwise

distance owners of S ′∪{oq}. Otherwise, o1 and o2 are the pairwise distance owners of

S ′ ∪ {oq}.

Thus, Step 1 can be refined with the following three sub-steps.

• Step 1(a) (Query Distance Owner Finding): Select an object o in Oq to take the

role of the query distance owner of a set S ′ to be found.

• Step 1(b) (Pairwise Distance Owner Finding): Select two objects o1 and o2 in

D(q, d(o, q)) to take the roles of the pairwise distance owners of the set S ′ to be

found.
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• Step 1(c) (Pairwise Distance Owner Determination): If d(o, q) ≥ d(o1, o2), as-

sign to o and oq the roles of pairwise distance owners of S ′ ∪ {oq}; otherwise,

assign the roles to o1 and o2.

With this refinement, the distance owner-driven approach still has its similar prun-

ing features under the diameter cost. Specifically, Property 1 and Property 2 used

for MaxSum-CoSKQ have their counterparts used for Dia-CoSKQ as Property 3 and

Property 4, respectively.

Property 3 (Pruning) Let S ′ be a feasible set. If o is the query distance owner of S ′,

then the two pairwise distance owners of S ′ ∪ {oq} are inside D(q, d(o, q)).

Property 4 (Pruning) Let S ′ be a feasible set, o be the query distance owner of S ′,

and o1 and o2 be the two pairwise distance owners of S ′ ∪ {oq}. Then all objects in S ′

fall in D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2)).

Similar to the maximum sum cost, when the diameter cost is used, the object to

be found in Step 1(a) is fetched based on the proximity to the query point q. The

proximity is also related to the closest possible query distance owner (Lemma 2.4.1)

and the farthest possible query distance owner (Lemma 2.4.2). It is easy to verify that

Lemma 2.4.1 and Lemma 2.4.2 still hold when the cost measurement is changed from

the maximum sum cost to the diameter cost. Thus, Lemma 2.4.3, which states that the

ring is the region containing the query distance owners to be considered, still holds.

In summary, we present the algorithm for finding the optimal solution of Dia-

CoSKQ in Algorithm 4 (which is quite similar to Algorithm 1) except that we need

to determine the pairwise distance owner of S ′ ∪ {oq} (in Step 1(c)) which cannot be

found in MaxSum-CoSKQ.
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Algorithm 4 Algorithm Dia-Exact

Require: query q and a set O of objects
1: S ← N(q)
2: while there is an “un-processed” relevant object o in R(S) do
3: // Step 1(a) (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object in R(S)
5: // Step 1(b) (Pairwise Distance Owner Finding)
6: D ← the q-disk with its radius equal to d(o, q)
7: P ← a set of all pairs (o1, o2) where o1 and o2 are in D
8: for each (o1, o2) ∈ P in ascending order of d(o1, o2) do
9: // Step 1(c) (Pairwise Distance Owner Determination)

10: if d(o, q) ≥ d(o1, o2) then o′ ← o; o′′ ← oq
11: else o′ ← o1; o

′′ ← o2
12: // Step 2 (Sub-Optimal Feasible Set Finding)
13: if there exists a feasible set S ′ in D which is (o, o′, o′′)-owner consistent then
14: if cost(S ′) < cost(S) then
15: S ← S ′; break
16: // Step 3 (Iterative Process)
17: mark o as “processed”
18: return S

Theorem 2.5.1 Dia-Exact returns a feasible set with the smallest cost for the Dia-

CoSKQ problem.

Proof. Let So be one of the feasible set with the smallest cost. Let o be the query

distance owner of So, and let o1 and o2 be the two pairwise distance owners of So. First,

o is inside R(S) (Lemma 2.4.3). Thus, there exists an iteration where o is processed.

When o is processed, pair (o1, o2) must be included in P (Property 3). There are two

cases. Case 1: d(o, q) ≥ d(o1, o2). In this case, any feasible set S ′ that is (o, o, oq)-

owner consistent is retrieved and used to update S (there must exist some since So

is (o, o, oq)-owner consistent). Thus, the resulting S has its cost equal to d(o, q) =

cost(So). Case 2: d(o, q) < d(o1, o2). In this case, any feasible set S ′ that is (o, o1, o2)-

owner consistent is retrieved and used to update S (there must exist some since So is

(o, o1, o2)-owner consistent). Thus, the resulting S has its cost equal to d(o1, o2) =

cost(So). In either case, S will not be updated anymore since it has the smallest cost

(i.e., cost(So)) and thus it is the final output.

Same as Section 2.4.1, in Dia-Exact, we have the self-iteration computation strat-
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egy and the cross-iteration computation strategy.

Self-Iteration Computation Strategy: Consider an iteration where the query distance

owner for this iteration is o. We can use the same mechanism described in Section 2.4.1

after dmin and dmax are updated from d(o, q)−min{d(o1, q), d(o2, q)} and cost(S)−

d(o, q) to d(o, q) and cost(S), respectively. All pruning properties still hold.

Note that dmin (which is originally set to d(o, q) − min{d(o1, q), d(o2, q)} in

MaxSum-CoSKQ) is based on the triangle inequality (Lemma 2.4.4), which means

that it can be used for pruning in both MaxSum-CoSKQ and Dia-CoSKQ. However, in

Dia-CoSKQ, dmin can be updated to a tighter value as d(o, q) since all pairs with their

pairwise distances smaller than d(o, q) cannot take the roles of the pairwise distance

owners of S ′ ∪ {oq}.

Cross-Iteration Computation Strategy: We use the same information reuse tech-

niques as in Section 2.4.1 for Dia-Exact since the updated dmin (i.e., d(o, q)) is mono-

tonically increasing and the updated dmax (i.e., cost(S)) is monotonically decreasing

with more iterations. Thus, the pairs pruned in P at the previous iterations need not be

considered in the later iterations.

Time Complexity. It could be verified that the time complexity of Dia-Exact is the

same as that of MaxSum-Exact.

2.5.2 Approximate Algorithm

In this section, we propose a
√
3-factor approximate algorithm which is exactly the

same as Algorithm 3 but the cost measurement used is the diameter cost. This algo-

rithm is called Dia-Appro.

Theoretical Analysis. Although the set S returned by Dia-Appro may have a larger

cost than the optimal set So, it has an approximate factor of
√
3.
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Theorem 2.5.2 Dia-Appro gives a
√
3-factor approximation for the Dia-CoSKQ prob-

lem.

Proof. We use the same notations as defined in the proof of Theorem 2.4.2.

Consider cost(So). Similar to the proof of Theorem 2.4.2, we have

maxo′
1
,o′

2
∈So

d(o′1, o
′
2) ≥ d(o, of) = r1. Recall that maxo′∈So

d(o′, q) = d(o, q) = r2.

As a result, we have cost(So) = max{maxo′∈So
d(o′, q),maxo′

1
,o′

2
∈So

d(o′1, o
′
2)} ≥

max{r2, r1}.

According to the Dia-Appro algorithm, we have cost(S) ≤ cost(S ′). The re-

maining part of the proof shows that cost(S ′) ≤
√
3 · cost(So) which further implies

cost(S) ≤
√
3 · cost(So).

Same as the proof of Theorem 2.4.2, we consider two cases of r1.

Case 1: r1 ≤
√
2r2. This case corresponds to Figure 2.2(a). It can be verified

that maxo′
1
,o′

2
∈S′ d(o′1, o

′
2) ≤ d(a, b) = 2

√

r21 − r41/4r22 (since all objects in S ′ fall in

D(o, r1) ∩D(q, r2) as shown by the shaded area). Recall maxo′∈S′ d(o, q) = r2. As a

result, we have cost(S ′) ≤ max{r2, 2
√

r21 − r41/4r22}.

We further consider three sub-cases under Case 1 based on the relationship among

r1, r2 and 2
√

r21 − r41/4r22.

Case 1(a): r1 ≤
√

2−
√
3r2. In this case, we have r2 > r1 and

r2 ≥ 2
√

r21 − r41/4r22. Thus, cost(So) ≥ max{r2, r1} = r2 and cost(S ′) ≤

max{r2, 2
√

r21 − r41/4r22} = r2 Therefore,

cost(S ′)

cost(So)
≤ r2
r2

= 1

Case 1(b):
√

2−
√
3r2 < r1 ≤ r2. In this case, we have r2 ≥ r1 and
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2
√

r21 − r41/4r22 > r2. Thus, cost(So) ≥ r2 and cost(S ′) ≤ 2
√

r21 − r41/4r22. There-

fore,

cost(S ′)

cost(So)
≤ 2

√

r21 − r41/4r22
r2

=

√

4(
r1
r2
)2 − (

r1
r2
)4 (2.4)

Note that function f(z) =
√
4z2 − z4 is monotonically increasing on (

√

2−
√
3, 1].

Since r1
r2
∈ (

√

2−
√
3, 1], Thus, we have

cost(S ′)

cost(So)
≤

√

4(1)2 − (1)4 =
√
3

Case 1(c): r2 < r1 ≤
√
2r2. In this case, we have r2 < r1 and 2

√

r21 − r41/4r22 >

r2. Thus, cost(So) ≥ r1 and cost(S ′) ≤ 2
√

r21 − r41/4r22. Therefore,

cost(S ′)

cost(So)
≤ 2

√

r21 − r41/4r22
r1

=
√

4− (r1/r2)2 <
√
3

Case 2: r1 >
√
2r2. This case corresponds to Figure 2.2 (b). In this case, d(a, b) =

2r2. Similar to Case 1, we have maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. Therefore,

cost(S ′)

cost(So)
≤ max{r2, 2r2}

max{r1, r2}
=

2r2
r1

<
2r2√
2r2

=
√
2

In view of above discussion, we know that cost(S ′)/cost(So) ≤
√
3, which com-

pletes the proof.

Time Complexity. Since Dia-Appro is identical to MaxSum-Appro except that Dia-

Appro adopts a different cost measurement, Dia-Appro has the same complexity as

MaxSum-Appro.
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2.5.3 Adaptions of Existing Solutions

In this section, we adapt the existing solutions in [15], which are originally designed

for MaxSum-CoSKQ, for Dia-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method based on the object space and thus

its applicability is independent of the cost measurement used in the CoSKQ problem.

Therefore, Cao-Exact can be directly applied to Dia-CoSKQ by replacing the cost

measurement with the diameter cost. However, due to its prohibitively huge search

space, Cao-Exact is not scalable to large datasets.

Cao-Appro1 & Cao-Appro2. We can directly adopt Cao-Appro1 and Cao-Appro2

for Dia-CoSKQ by replacing the maximum sum cost with the diameter cost.

According to [15], the approximation factors of Cao-Appro1 and Cao-Appro2 are

3 and 2, respectively, for MaxSum-CoSKQ. In the following, we prove that both Cao-

Appro1 and Cao-Appro2 give 2-factor approximations for Dia-CoSKQ.

Lemma 2.5.1 Cao-Appro1 and Cao-Appro2 give 2-factor approximations for Dia-

CoSKQ.

Proof. First, we prove that the approximation ratio of Cao-Appro1 is 2.

Let S be the set returned by Cao-Appro1 and So be the optimal set. Let of be the

object in S that is the farthest from q, i.e., d(of , q) = maxo∈S d(o, q). First, we have

cost(So) ≥ d(of , q). Second, for any two objects o1 and o2 in S, we have d(o1, o2) ≤

d(o1, q) + d(o2, q) ≤ 2 · d(of , q) by the triangle inequality. Therefore, cost(S) ≤

max{d(of , q), 2 · d(of , q)} = 2 · d(of , q). As a result, we know cost(S)/cost(So) ≤ 2.

Since the solution returned by Cao-Appro2 is no worse than that returned by Cao-

Appro1, the approximation ratio of Cao-Appro2 is also bounded by 2.
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Figure 2.3: A problem instance for Cao-Appro2

Furthermore, we show that Cao-Appro2 cannot provide better error guarantees by

constructing a problem instance where the approximation ratio of Cao-Appro2 is in-

finitely close to 2.

The problem instance is shown in Figure 2.3. In Figure 2.3(a), we have four objects,

o1, o2, o3 and o4. o1, o2 and o3 are located at the boundary of D(q, r1), D(q, r2) and

D(o1, r2), respectively. r2 = r1 − δ (δ > 0). Besides, q, o1, o2 and o3 are on the same

vertical line l. o4 is on the boundary of D(o1, r1) and outside D(q, r1). In addition,

d(o4, q) = r1 + δ. The keyword information of these objects and the query are shown

in Figure 2.3(b).

Given the above problem instance, Cao-Appro2 works as follows. First, it invokes

the Cao-Appro1 algorithm which returns S1 = {o1, o2} as the first candidate of the

approximate solution whose cost is equal to d(o1, o2) = r1 + r2. Thus, o1 is the

farthest object in S1 from q and t1 is the keyword that is covered by o1 but not by any

other objects in S1. As a result, Cao-Appro2 would invoke Cao-Appro1 for each object

containing t1. In this problem instance, since only o1 contains t1, Cao-Appro2 invokes

Cao-Appro1 at o1 only and S2 = {o1, o3}would be returned as the second candidate of

the approximate solution whose cost is equal to d(o3, q) = r1 + r2. Since Cao-Appro2

obtains two candidates S1 and S2 with the same cost, it returns any of them, say S2,

as the final approximate solution S. However, the optimal solution So of this problem
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instance is {o1, o4} with its cost equal to d(o4, q) = r1 + δ. Therefore,

cost(S2)

cost(So)
=
r1 + r2
r1 + δ

= 2− 3

r1/δ + 1

When δ approaches 0, the ratio approaches 2.

Thus, among all known approximate algorithms for Dia-CoSKQ, our Dia-Appro

provides the best constant-factor approximation.

2.6 Empirical Studies

2.6.1 Experimental Set-up

Datasets. We used the real datasets adopted in [15], namely Hotel, Web and GN.

Dataset Hotel corresponds to a set of hotels in the U.S. (www.allstays.com), each of

which is associated with its location and a set of words that describe the hotel (e.g.,

restaurant and pool). Dataset Web was created from two real datasets. The first one,

named WEBSPAMUK20072, corresponds to a set of web documents. The second one

is a set of spatial objects, named TigerCensusBlock3, which corresponds to a set of

census blocks in Iowa, Kansas, Missouri and Nebraska. Specifically, Web consists of

the spatial objects in TigerCensusBlock, each of which is associated with a document

randomly selected from WEBSPAMUK2007. Dataset GN was collected from the U.S.

Board on Geographic Names (geonames.usgs.gov). Each object in GN is a 2D location

which is associated with a set of keywords describing it (e.g., a geographic name like

valley).

Query Generation. Given a dataset O and a positive integer k, we generated a query

q with the size of its keyword set equal to k as in [15]. For the q.λ part, we randomly

2http://barcelona.research.yahoo.net/webspam/datasets/uk2007

3http://www.rtreeportal.org
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Statistics GN Web Hotel

Number of objects 1,868,821 579,727 20,790

Number of unique words 222,409 2,899,175 602

Number of words 18,374,228 249,132,883 80,845

Table 2.1: Real datasets (CoSKQ)

picked a location from the data space of O. For the q.ψ part, we first sorted all the

keywords that are associated with the objects in O in descending order of their fre-

quencies and then randomly picked k keywords among all keywords each of which

has its percentile rank within range [10, 40] by default. Note that in this way, each of

the keywords in q.ψ has a relatively high frequency.

Algorithms. For MaxSum-CoSKQ, we consider 2 exact algorithms, namely MaxSum-

Exact and Cao-Exact, and 3 approximate algorithms, namely MaxSum-Appro, Cao-

Appro1 and Cao-Appro2. For Dia-CoSKQ, we consider 2 exact algorithms, namely

Dia-Exact and Cao-Exact (the adaption), and 3 approximate algorithms, namely Dia-

Appro, Cao-Appro1 and Cao-Appro2. All algorithms were implemented in C/C++.

Our experiments were conducted on a Linux platform with a 2.66GHz machine

and 4GB RAM.

2.6.2 Experimental Results

We consider 2 measurements, the running time and the approximation ratio (for ap-

proximate algorithms only). For each set of settings, we generated 50 queries, ran

the algorithms with each of these 50 queries, and averaged the experimental measure-

ments.

Experiments for MaxSum-CoSKQ

Effect of |q.ψ|. We generated 5 types of queries with different values of |q.ψ|. The

values we used are 3, 6, 9, 12 and 15. The results on the dataset GN are shown in
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Figure 2.4. According to Figure 2.4(a), our MaxSum-Exact is faster than Cao-Exact

by 1-3 orders of magnitude. When |q.ψ| increases, the running time gap between

MaxSum-Exact and Cao-Exact increases. Besides, MaxSum-Appro and Cao-Appro2

have comparable running time, which verified our theoretical analysis that MaxSum-

Appro and Cao-Appro2 have the same worst-case time complexity. Cao-Appro1 runs

the fastest due to its simplicity. According to Figure 2.4(b), the approximation ra-

tio of our MaxSum-Appro algorithm is near to 1, which shows that the accuracy of

MaxSum-Appro is extremely high in practical. We note here that the approximation

ratio in the figure corresponds to the average over 50 queries, among which, the ap-

proximation ratio of MaxSum-Appro is exactly 1 for most queries (e.g., more than 45).

As a result, the approximation ratio of MaxSum-Appro in the figures is always near to

1. Consistent to our theoretical results, the approximation ratios of Cao-Appro1 and

Cao-Appro2 are larger than that of MaxSum-Appro.

We have similar results on Web (Figure 2.5) and Hotel (Figure 2.6).
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Figure 2.4: Effect of |q.ψ| (GN, MaxSum-CoSKQ)

Effect of average |o.ψ|. Our experiments were based on dataset Hotel whose average

size of a keyword set of an object (|o.ψ|) is nearly 4 (i.e., 80,845/20,790). We generated

a set of several datasets based on dataset Hotel such that the average sizes (i.e., average

|o.ψ|’s) are equal to 4 · i for some integers i. To generate a dataset with its average

|o.ψ| equal to 4 · i, we proceed with i − 1 rounds. At each round, for each object o in
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Figure 2.5: Effect of |q.ψ| (Web, MaxSum-CoSKQ)
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Figure 2.6: Effect of |q.ψ| (Hotel, MaxSum-CoSKQ)

dataset Hotel, we randomly pick another object o′ and update o.ψ to be o.ψ ∪ o′.ψ. It

could be verified that the average |o.ψ| of the resulting dataset is nearly 4 · i. In our

experiments, we vary i by choosing one of the values in {1, 2, 4, 6, 8, 10}. Note that

i = 1 means that the resulting dataset is exactly dataset Hotel.

The results are shown in Figure 2.7. According to Figure 2.7(a), the running times

of all algorithms increase when the average |o.ψ| increases. The reason is that when

the average |o.ψ| increases, the number of relevant objects (|Oq|) in the dataset would

probably increase, which further affects the running times of the algorihtms. Since all

algorithms except for Cao-Appro1 have their time complexities involving |Oq|. Cao-

Appro1, though has its time complexity independent of |Oq|, has its NN queries af-

fected by |Oq|: the larger |Oq| is, the more expensive the NN query would probably

be. Besides, it is worth mentioning that when the average |o.ψ| increases, the increase
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rate of the running time of Cao-Exact is significantly larger than those of the other al-

gorithms including MaxSum-Exact. This is because Cao-Exact is based on the search

space of the set of all possible feasible sets whose size increases rapidly with |Oq|

(|Oq||q.ψ|). Thus, Cao-Exact is not scalable on datasets with a large average |o.ψ|. Ac-

cording to Figure 2.7(b), the average |o.ψ| has no obvious trend on the approximation

ratios of the approximate algorithms. Besides, MaxSum-Appro with its approximation

ratio near to 1 always keeps its accuracy superiority over other approximate algorithms.
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Figure 2.7: Effect of average |o.ψ| (MaxSum-CoSKQ)

Scalability Test. We conducted a scalability test on the algorithms with 5 synthetic

datasets with their sizes varying from 2M to 10M. The synthetic datasets were gener-

ated from a smaller dataset GN. To generate a datasetO with its size equal to n, we first

inserted all the objects from dataset GN into O and then repeatedly created objects in

O such that O has a similar spatial distribution as dataset GN until |O| = n. For each

newly created object o in O, we randomly pick a document from WEBSPAMUK2007

and use it as o.ψ.

The results are shown in Figure 2.8(a), where we do not show the running time of

the algorithm if it runs more than 10 days or out of memory. According to these results,

both our exact algorithm (MaxSum-Exact) and our approximate algorithm (MaxSum-

Appro) are scalable to large datasets with millions of objects. For example, in a dataset

with size equal to 10M, MaxSum-Exact ran less than 100s and MaxSum-Appro ran in

45



real-time. In contrast, Cao-Exact is not scalable. In particular, in our experiments,

Cao-Exact took more than 1 day on a dataset with size equal to 6M and it took more

than 10 days on a dataset with size equal to 8M.
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Figure 2.8: Scalability Test (CoSKQ)

Experiments for Dia-CoSKQ

Effect of |q.ψ|. The results on dataset GN is shown in Figure 2.9. According to Fig-

ure 2.9(a), our Dia-Exact is faster than Cao-Exact by 1-4 orders of magnitude. When

|q.ψ| increases, the running time gap between Dia-Exact and Cao-Exact increases. Be-

sides, Dia-Appro and Cao-Appro2 have comparable running times. According to Fig-

ure 2.9(b), similar to MaxSum-Appro (for MaxSum-CoSkQ), the approximation ratio

of Dia-Appro is near to 1 (for Dia-CoSKQ), which is better than those of Cao-Appro1

and Cao-Appro2.

The results on datasets Web and Hotel are similar and thus they are omitted here

due to the page limit.

Effect of Average |o.ψ|. Similar to the experiments for MaxSum-CoSKQ, we gen-

erated a set of datasets by varying their average |o.ψ| values. The results are shown

in Figure 2.10. According to Figure 2.10(a), when the average |o.ψ| increases, the

running time of Cao-Exact increases significantly while the running times of other al-
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Figure 2.9: Effect of |q.ψ| (GN, Dia-CoSKQ)

gorithms are only slightly affected. This is similar to the case for MaxSum-CoSKQ and

the explanation for MaxSum-CoSKQ as we discussed previously could be applied here

for Dia-CoSKQ. According to Figure 2.10(b), the average |o.ψ| value has no obvious

trend on the accuracy of the approximate algorithms.

Dia-Exact Dia-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.01

1.02

1.03

1.04

1.05

4 8 16 24 32 40

A
pp

ro
xi

m
at

io
n 

ra
tio

No. of words per object

0.001

1

1000

1e+06

1e+09

4 8 16 24 32 40

R
un

ni
ng

 ti
m

e 
(m

ill
is

ec
on

ds
)

No. of words per object

(a) Running time (b) Appro. ratio

Figure 2.10: Effect of average |o.ψ| (Dia-CoSKQ)

Scalability Test. We conducted a scalability test on the algorithms for Dia-CosKQ

with the same synthetic datasets used in the scalability test for MaxSum-CoSKQ.

The results are shown in Figure 2.8(b), where we do not show the running time of

the algorithm if it runs more than 10 days or out of memory. According to these results,

both our exact algorithm (Dia-Exact) and our approximate algorithm (Dia-Appro) are

scalable to large datasets with millions of objects. In contrast, Cao-Exact is not scalable

to large datasets.
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Conclusion: MaxSum-Exact (Dia-Exact) runs faster than Cao-Exact by several or-

ders of magnitude for MaxSum-CoSKQ (Dia-CoSKQ). Besides, MaxSum-Exact (Dia-

Exact) is scalable in terms of |O| as well as the average |o.ψ| but Cao-Exact is not. Our

MaxSum-Appro (Dia-Appro) has a better accuracy while having comparable running

time as those existing approximate algorithms.

2.7 Conclusion

In this chapter, we study two types of the CoSKQ problem, namely MaxSum-CoSKQ

and Dia-CoSKQ. MaxSum-CoSKQ is a CoSKQ problem using the existing maxi-

mum sum cost, which is NP-hard. We design two algorithms for MaxSum-CoSKQ,

MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is an exact algorithm which sig-

nificantly outperforms its existing competitor in terms of both efficiency and scalability

and MaxSum-Appro is an approximate algorithm which improves the best-known con-

stant approximation factor from 2 to 1.375. We also propose a new cost function and

the CoSKQ problem using this function is Dia-CoSKQ. We design two algorithms for

Dia-CoSKQ, Dia-Exact and Dia-Appro. Dia-Exact is an exact algorithm while Dia-

Appro is a
√
3-factor approximate algorithm. Extensive experiments were conducted

which verified our theoretical findings and algorithms.
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CHAPTER 3

WORST-CASE OPTIMIZED SPATIAL

MATCHING

3.1 Introduction

Bichromatic reverse nearest neighbor (BRNN) queries have been studied exten-

sively [51, 57, 95]. Let P be a set of service-providers and O be a set of customers.

A BRNN query is to find which customers in O are “interested” in a given service-

provider in P . However, BRNN queries lack the consideration of the capacities of

service-providers and the demands of customers. In order to address this issue, some

spatial matching problems [96, 91, 90] have been proposed which assign service-

providers to customers with the above consideration.

In some real-life applications like hospital allocation, a common goal is to mini-

mize the maximum distance (or cost) between a hospital and a residential estate served

by this hospital. For example, in the Hong Kong ambulance service, the minimized

maximum cost is about 12 minutes (driving distance) [1].

To illustrate, we go through a toy example as shown in Figure 3.1. In Figure 3.1(a),

P contains three hospitals p1, p2 and p3 and O contains three residential estates o1, o2

and o3. Figure 3.1(b) shows all pairwise distances between P and O. For the sake of

illustration, suppose that the capacity of each hospital p in P is 1, which means that

the greatest amount of the service given by p is 1, and the demand of each residential

estate o in O is also 1, which means that the amount of the service requested by o

is 1. In this case, each hospital can serve at most one residential estate. In order to

minimize the maximum distance between a hospital and the residential estate served
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Figure 3.1: A running example (SPM-MM)

by this hospital, we form an assignment between P and O as shown in Figure 3.2(a).

In this assignment, p1, p2 and p3 serve o1, o3 and o2, respectively. If p serves o, we draw

a line between p and o in the figure. The number next to the line is called the matching

distance between p and owhich corresponds to the Euclidean distance between p and o.

In this assignment, the maximum matching distance (mmd) is equal to 6. Besides, we

cannot find any other assignment which satisfies the service demand of each customer

and has its mmd smaller than 6. Thus, 6 is the optimal mmd.

In this thesis, we propose a new problem called SPatial Matching for Minimizing

Maximum matching distance (SPM-MM). Given a set P of service-providers each

of which has a capacity and a set O of customers each of which has a demand, the

SPM-MM problem is to assign the service-providers in P to the customers in O with

the consideration of the capacities of the service-providers such that the demand of

each customer in O is satisfied and the maximum matching distance (i.e. mmd) is

minimized.

SPM-MM has extensive applications in matching between two sets of objects

where the worst-case cost should be minimized. The notions of “service-provider”

and “customer” in SPM-MM are general and can have alternative semantics in differ-

ent (even non-geographic) applications. One such application is the allocation problem
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between emergency facilities and users. Hospitals, fire stations and police stations are

some examples of emergency facilities and residential estates and commercial areas

are some examples of users. Logistics, data warehouse allocation and mail delivery

are some applications with non-emergency facilities. Profile matching [96] is another

application where we want to match “items” (regarded as service-providers) with “cus-

tomers” such that the worst-case dissatisfactory rate among all customers is minimized.

It turns out that SPM-MM reduces to be a classical problem in computer science,

Bottleneck Matching Problem (BMP) [41], when each service-provider has its capacity

equal to 1 and each customer has its demand equal to 1 as well. Given two sets of n

objects, A and B, and the cost of matching each object in A with each object in B, the

BMP problem is to find the perfect matching with the smallest cost among all perfect

matchings between A and B where the cost of a perfect matching M is defined to be

the greatest cost of matching an object from A and an object from B in M . It can be

verified that SPM-MM becomes BMP when |P | = |O|, each service-provider p ∈ P

(customer o ∈ O) has its capacity (demand) equal to 1, and the distance between p

and o is used as the cost of matching p with o for each p ∈ P and each o ∈ O.

[11] provides a comprehensive study on existing solutions of BMP, among which, the

Threshold algorithm is the fastest.

No existing algorithms can be used to solve the SPM-MM problem. Firstly, the

algorithms for BMP cannot be used directly for SPM-MM since in SPM-MM, the ca-

pacities/demands could be arbitrary positive integers. Besides, we will show that an

adapted version of the Threshold algorithm, which is originally designed for BMP, is

not scalable for SPM-MM. Secondly, the solutions for all existing spatial matching

problems cannot be used for SPM-MM. To illustrate this, we first give a brief back-

ground of these problems. Two major types of spatial matching problems have been

studied. The first one [96] aims to find the fair assignment between P and O which
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Figure 3.2: Spatial matching problems

is to assign to each customer the nearest service-provider that has not been exhausted

of serving other closer customers. Figure 3.2(b) shows the fair assignment between

P and O whose mmd is equal to 10 (> 6). The second one is to find the globally

optimized assignment between P and O which guarantees that each customer’s service

demand is satisfied and the overall matching cost is minimized. Figure 3.2(c) shows

the globally optimized assignment between P and O whose mmd is equal to 7 (> 6).

In this thesis, we design two algorithms for the SPM-MM problem. The first one

is called Threshold-Adapt and the second one is called Swap-Chain. Threshold-Adapt

is an algorithm which shares a similar idea as Threshold which is originally designed

for BMP. Unfortunately, Threshold-Adapt is not scalable to large datasets due to its

high time/space complexity. Swap-Chain is an algorithm which is scalable and runs

faster than Threshold-Adapt by orders of magnitude by using the concept of finding

a series of elements where every two adjacent elements are “close” to each other for

re-matching. The operation of finding a “close” element from another element can be

implemented efficiently by spatial queries.

It is worth mentioning that our proposed algorithms are not limited to the Euclidean

space. In fact, they can also be adapted to non-metric space (with a certain sacrifice

of efficiency). For example, our algorithms can be adapted to settle the SPM-MM

problem in Figure 3.1, even if the distance between a hospital and a residential estate

is their road-network distance. The discussion on how to adapt our techniques to non-
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metric space is given in Section 3.6.

We summarize our main contributions as follows. Firstly, to the best of our knowl-

edge, we are the first to propose the SPM-MM problem, which has extensive real-life

applications. Secondly, to solve SPM-MM, we design our first algorithm, Threshold-

Adapt, based on an idea of one popular solution of BMP, Threshold. Threshold-Adapt

is not scalable for large datasets due to its high time/space complexity. Therefore, we

develop another novel algorithm, Swap-Chain, which runs faster than Threshold-Adapt

by orders of magnitude and is scalable to very large datasets (in millions). Finally, we

conducted extensive empirical studies on these two solutions.

The rest of this chapter is organized as follows. Section 3.2 defines the SPM-MM

problem, and Section 3.3 provides the related work of SPM-MM. Section 3.4 and

Section 3.5 introduce two algorithms, Threshold-Adapt and Swap-Chain, respectively.

Section 3.6 gives some discussions. Section 3.7 includes the empirical studies and

Section 3.8 concludes the chapter.

3.2 The SPM-MM Problem

Let P be a set of service-providers and O be a set of customers. Each service-provider

p (customer o) has a service capacity (demand), denoted by p.w (o.w). We represent

the Euclidean distance between o and p with d(o, p).

Let WO =
∑

o∈O o.w and WP =
∑

p∈P p.w. We assume that the service demands

of all customers in O can be satisfied by the service-providers in P , i.e. WP ≥ WO.

Under this assumption, it is possible that some service-providers are not matched with

customers. In case that WP < WO, we swap the roles of P and O and thus this

assumption still holds.

Problem 1 (SPM-MM) SPM-MM generates the assignment A denoting a set con-
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taining the elements in the form of triplets (o, p, w), where (o, p, w) is called a match

between o and p and denotes that p provides the service with the amount of w to o.

Furthermore, the following three conditions hold.

• No service-provider provides its service of the amount greater than its capacity,

i.e., ∀p ∈ P ,
∑

(o,p,w)∈Aw ≤ p.w.

• Each customer’s service demand is satisfied, i.e., ∀o ∈ O,
∑

(o,p,w)w = o.w.

• The mmd of A is minimized, i.e., max{d(o, p)|(o, p, w) ∈ A} is minimized.

Note that in the following, for clarity, the match (o, p, w) is simply denoted as (o, p)

when w = 1.

In order to ease our discussion, we say that an assignment is full if it satisfies

the Capacity Constraint and the Demand Constraint defined above. Note that there

are an exponential number of full assignments. To illustrate, consider the case where

|P | = |O| = n and the capacity (demand) of each service-provider (customer) is equal

to 1. In this case, there exist n! possible full assignments.

3.3 Related Work

We classify the related work into three branches.

The BMP Problem: The first branch is the Bottleneck Matching problem [41, 11, 32,

36] (BMP). BMP was first proposed by Gross in [41]. Given two sets of n objects,

A = {a1, a2, ..., an} and B = {b1, b2, ..., bn}, and the cost matrix Cn×n (cij represents

the cost of matching ai with bj for 1 ≤ i, j ≤ n), BMP is to find the perfect matching

between A and B, which minimizes the maximum matching cost.

One may come up with the following straightforward solution to solve our SPM-

MM problem by using the existing solutions for BMP. Specifically, we duplicate each o
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inO o.w times and each p in P p.w times. Then, we can use the existing algorithm orig-

inally designed for BMP to find the solution for our SPM-MM problem. However, this

duplication is cumbersome and undesirable (especially when the capacities/demands

are very large), because the resulting datasets would be prohibitively large.

Next, we describe the most popular solution for BMP. [11] provides a compre-

hensive study of the solutions of BMP, among which, the Threshold method has the

lowest time complexity. The best-known algorithm for BMP is due to Gabow and

Tarjan in [36], which is based on Threshold. Threshold is based on the property that

the minimized maximum matching cost (i.e., the optimal mmd) must reside in the cost

matrix Cn×n. Therefore, it maintains a set X containing the candidates of the optimal

mmd, which is initialized to be ∅. For each cost entry c in Cn×n, it first constructs a

bipartite graph between A and B containing the edges each of which is a pair (ai, bj)

whose matching cost is at most c. Then, it checks whether there exists a perfect match-

ing in this bipartite graph. If yes, it includes c in X . Finally, it returns the smallest cost

in X , which is shown to be the optimal mmd. The above checking operation could be

accomplished with a maximum cardinality matching procedure [49] on the correspond-

ing bipartite graph which finds the greatest number of matches in the graph. However,

Threshold incurs an expensive space cost of O(n2) since it has to maintain the cost

matrix Cn×n. Thus, it is not scalable to large datasets.

There is an existing study [32] for BMP in the context of spatial databases where

the matching distance between two objects is their Euclidean distance. The method

in [32] is exactly the Threshold algorithm except that the maximum cardinality match-

ing procedure [49] is improved. However, this method cannot be used directly for

SPM-MM where the capacities/demands are any positive integers. Besides, the tech-

niques in [32] originally designed for improving the maximum cardinality matching

procedure in Threshold cannot be adopted for our Threshold-Adapt algorithm (which
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will be introduced in Section 3.4) since Threshold-Adapt involves no maximum cardi-

nality matching procedure.

A monochromatic version of BMP (i.e., only one set of data) is considered in [18,

33]. But, these studies are different from ours which uses a bichromatic setting where

two sets of data (i.e., P and O) are considered for matching.

Some recent papers [30, 100] in the field of operations research also studied the

bottleneck problem and its variations, but they do not focus on the efficiency is-

sue. Specifically, a common technique in this field [30, 100] is constrained optimiza-

tion/programming, which is known to be slow for large datasets. Besides, [30, 100]

only studied the problems in the context of graphs instead of spatial databases.

Spatial Matching Problems: The second branch is the existing spatial matching prob-

lems [96, 91, 90]. [96] proposed the SPatial Matching problem (SPM), which gener-

ates a fair assignment between P and O. [91] proposed the Capacity Constrained As-

signment problem (CCA), which returns the globally optimized assignment. Recently,

a continuous version of CCA [90] was proposed where customers move dynamically.

Since SPM and CCA have different optimization criteria from SPM-MM, the ex-

isting solutions developed for SPM and CCA cannot be applied here. In fact, as will

be verified in our empirical study, the mmd’s of the assignments of SPM and CCA are

much larger than the mmd of the SPM-MM assignment.

Problems with Minimum Maximum Distance: The third branch is related to some

other problems [46, 8] using the minimum maximum distance as a measurement. Given

n cities, the k-center problem [46], one of the traditional computer science problems,

is to build k warehouses at different cities (k ≤ n) such that the maximum distance

from a city to its nearest warehouse is minimized. The goal of k-center which is to

select k cities out of n cities is different from that of SPM-MM which is to match

service-providers and customers. [8] studied an assignment problem between servers
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and clients. The matching distance between a server and a client depends on both the

physical distance and the load of the server where the load of a server corresponds

to the number of clients served by this server. In other words, the matching distance

between a server and a client defined in [8] in an assignment can be different from the

one in another assignment.

3.4 The Threshold-Adapt Algorithm

3.4.1 Theoretical Properties

Given a set P of service-providers and a set O of customers, let do be the optimal mmd

for the SPM-MM problem. Intrinsically, do is a pairwise distance between a service-

provider p in P and a customer o in O. It follows that do ∈ S, where S is the set of all

possible pairwise distances between P and O, i.e., S = {d(p, o)|p ∈ P, o ∈ O}. Note

that |S| = |P | · |O|. We present this property in the following Lemma 3.4.1.

Lemma 3.4.1 (Search Space) Let do be the optimal mmd for the SPM-MM problem.

do is in S.

Proof. do is a pairwise distance (do ∈ S).

According to Lemma 3.4.1, one straightforward method of finding do is to deter-

mine whether each value in S is feasible for the SPM-MM problem, insert all feasible

values into a set X , and find the minimum value in X as do. The definition of “feasi-

bility” is defined next.

Definition 3.4.1 (Feasibility) Given a positive real number d, d is feasible if and only

if there exists a full assignment A between P and O such that its mmd is at most d.
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Lemma 3.4.2 (Feasibility) Let do be the optimal mmd for the SPM-MM problem. do

is feasible.

Proof. In the SPM-MM assignment which is full, all matching distances are at most

do.

3.4.2 Algorithm

We develop our Threshold-Adapt algorithm by using the search space S and the fea-

sibility property described in Lemma 3.4.2. Specifically, Threshold-Adapt checks the

feasibility of each distance in S and returns the smallest feasible distance.

Theorem 3.4.1 The Threshold-Adapt algorithm returns the optimal assignment for the

SPM-MM problem.

Proof. The correctness follows from Lemma 3.4.1 and 3.4.2.

Let α be the cost of checking the feasibility of a given value d. One straightforward

implementation of Threshold-Adapt has the time complexity equal to O(|S| · α) =

O(|P | · |O| · α). In the following, we consider two issues of Threshold-Adapt.

The first issue is to further reduce the size of the search space from |P | · |O| to

O(log(max{|P |, |O|})) based on the following monotonicity property.

Lemma 3.4.3 (Monotonicity) Let d and d′ be two positive real numbers where d < d′.

If d is feasible, then d′ is feasible.

Proof. Since d is feasible, there exists a full assignment A such that A’s mmd is at

most d and thus A’s mmd is smaller than d′. Therefore, d′ is feasible.

According to the above lemma, if we know that a value d′ in S is not feasible, then

any value d in S smaller than d′ must not be feasible. This gives hints for a further

reduction of the search space.
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Specifically, we sort all values in S in ascending order and store the sorted values

in a list L. Then, we adopt binary search to find the smallest feasible value in L

(which corresponds to the optimal mmd). This method checks O(log |L|) pairwise

distances in S. Note that |L| = |P | · |O|. Thus, the size of the search space becomes

O(log(|P | · |O|)) = O(log(max{|P |, |O|})) which is significantly smaller than the

original size of |P | · |O|.

The second issue is to propose an efficient method to perform the judging task to

determine whether a given value d is feasible or not. We propose the following three-

step algorithm.

Step 1: Construction of a Flow Network wrt d. We construct a flow network

Gd(Vd, Ed) wrt d as follows. We create a source vertex s and a sink vertex t, and

Vd is constructed to be P ∪O ∪ {s, t}. For each pair (o, p) ∈ O × P with d(o, p) ≤ d,

we create an edge (p, o) in Ed and set its capacity to be min{p.w, o.w}. For each p in

P (o in O), we create an edge (s, p) ((o, t)) in Ed and set its capacity to be p.w (o.w).

Step 2: Construction of a Maximum-Flowed Network. We perform a maximum-

flow algorithm [5], denoted by Amax−flow, on the flow network Gd and obtain the

maximum flow from s to t in Gd. We denote the amount of this maximum flow by mf .

The maximum-flowed network is the flow network Gd, where each edge is associated

with its flow in the resulting maximum flow. We denote by e.f the flow associated

with the edge e.

Step 3: Feasibility Checking on d. We compare mf with WO. If mf = WO, we

conclude that d is feasible; otherwise, we conclude that d is not feasible. In the former

case, we construct an assignment, denoted by Ad, based on the maximum-flowed net-

work at Step 2. We initialize Ad to ∅. Then, for each edge e in the form of (p, o) in the

maximum-flowed network with e.f > 0, we create a match (o, p, e.f) in Ad.
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The correctness of the above three-step algorithm is verified by the following

lemma.

Lemma 3.4.4 The three-step algorithm returns a full assignment Ad with its mmd at

most d if and only if d is feasible.

Proof. We consider two cases. Case 1: mf = WO. In this case, the three-step

algorithm returns Ad. We prove that Ad is a full assignment with its mmd at most d.

First, we know that Ad satisfies the Capacity Constraint since for each p ∈ P ,

∑

(o,p,w)∈Ad

w =
∑

e=(p,o)∈E

e.f = (s, p).f ≤ p.w

Second, we show that Ad satisfies the Demand Constraint by contradiction. As-

sume there exists a customer o′ ∈ O whose demand is not satisfied in Ad, i.e.,

∑

e=(p,o′)∈E e.f < o′.w. We have

mf =
∑

e=(p,o)∈E

e.f =
∑

o′′∈O

∑

e=(p,o′′)∈E

e.f

<
∑

o′′∈O

o′′.w = WO

which contradicts mf = WO. Third, it is easy to verify that Ad’s mmd is at most d

since for each edge in the form of (p, o) inE, we have d(p, o) ≤ d (this is guaranteed by

Step 1 of the three-step algorithm). In conclusion, we know thatAd is a full assignment

with its mmd at most d which further implies that d is feasible. Case 2: mf < WO.

In this case, it could be verified that there exists no full assignment which has its mmd

at most d by contradiction (note that a full assignment implies a flow with its amount

equal to WO which contradicts mf < WO). That is, d is not feasible.

Time Complexity. After we address the first issue and the second issue, we know

that the Threshold-Adapt algorithm triggers O(log(max{|P |, |O|})) times of run-
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ning the maximum-flow algorithm. Thus, the time complexity of Threshold-Adapt

is O(log(max{|P |, |O|}) · α) where α is the cost of a maximum-flow algorithm (e.g.,

α = O(n2m) on a flow network with n vertices and m edges if the recently proposed

IBFS algorithm [40] is adopted). We will test different maximum-flow algorithms in

our experiments for optimizing the performance of Threshold-Adapt.

We note here that Threshold-Adapt suffers from two intrinsic space problems which

limit the application scope of Threshold-Adapt to small/medium-sized datasets only.

First, it relies on a search space S whose size is |P | · |O|. This is prohibitively large

when the datasets are large (e.g., S simply occupies about 7.45GB space when |O| =

100k and |P | = 10k). Second, it has to maintain a flow network Gd(Vd, Ed) which has

its worst-case space complexity ofO(|P | · |O|). Motivated by the above space issues of

Threshold-Adapt, we design another algorithm called Swap-Chain in the next section,

which not only avoids these issues by adopting a fundamentally different idea, but also

runs faster by orders of magnitude.

3.5 The Swap-Chain Algorithm

In Section 3.5.1, we give an overview of the Swap-Chain algorithm. We then present

it in Section 3.5.2, and discuss some issues of Swap-Chain and its theoretical results in

Section 3.5.3.

3.5.1 Overview

Swap-Chain has the following three steps.

• Step 1 (Assignment Initialization): It first initializes a full assignment A us-

ing a given strategy. We will discuss different strategies for this step in Sec-

tion 3.5.3. One strategy is finding a fair assignment (which is full) by an existing
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algorithm [96].

• Step 2 (Assignment Adjustment): It re-assigns some matches in A to form

another full assignment A′ such that the mmd of A′ is smaller than that of A.

• Step 3 (Iterative Step): It repeats Step 2 until it is not possible to perform the

assignment adjustment step.

In Step 2, the algorithm reduces the mmd of an assignmentA by re-assigning some

matches in the assignment. Note that the mmd of an assignment denotes the maximum

matching distance of a match in the assignment and this match is called an extreme

match. Specifically, the main idea of Step 2 is to find an extreme match in the assign-

ment, break this match and some other matches, and re-assign these matches such that

the mmd of the resulting assignment is smaller.

3.5.2 Algorithm

Concepts and Algorithm

Before introducing the Swap-Chain algorithm, we introduce some concepts and lem-

mas related to the algorithm.

Let A be an assignment. Given a customer o ∈ O, the deficient demand of o in A

is defined to be o.w −∑

(o,p,w)∈Aw. o is said to have his/her deficient demand in A if

the deficient demand of o in A is non-zero. Otherwise, o is said to have no deficient

demand in A. Given a service-provider p ∈ P , the free capacity of p in A is defined

to be p.w −∑

(o,p,w)∈Aw. Similarly, p is said to have its free capacity or have no free

capacity in A according to different cases. A service-provider p is said to be available

in A if it has its free capacity in A. Otherwise, it is said to be occupied in A.

Definition 3.5.1 (d-Available/Occupied service-provider) Given a non-negative

real number d and a customer o, a service-provider p ∈ P is said to be a d-available
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Figure 3.3: The process of Swap-Chain

service-provider (d-occupied service-provider) for o in A if and only if p is available

(occupied) in A and d(o, p) < d.

Example 1 [d-Available/Occupied service-provider] Consider Figure 3.3(b). For the

ease of illustration, we assume that the capacity (demand) of each service-provider

(customer) is 1 in the figure. Suppose that we have a (non-full) assignment A equal

to {(o1, p2), (o3, p3)}. p1 is an available service-provider in A but both p2 and p3 are

occupied service-providers in A. Let d = 10. Since d(o1, p1) = 5 < d, p1 is a d-

available service-provider for o1 inA. Besides, since d(o2, p2) = 7 < d and d(o2, p3) =

4 < d, both p2 and p3 are two d-occupied service-providers for o2 inA. However, since

d(o2, p1) = 10 which is exactly equal to d, p1 is not a d-available service-provider for

o2 in A. Note that there does not exist any d-available service-provider for o2 in A.

Definition 3.5.2 (d-satisfiability) Given a non-negative real number d and a customer

o, o is said to be d-satisfiable in A if and only if one of the following conditions is

satisfied.

• Availability Condition: There exists a d-available service-provider for o in A,

or

• Non-Availability Condition: There does not exist any d-available service-

provider for o in A and there exists a d-occupied service-provider p′ for o in
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A such that p′ is matched with another customer o′ in A and o′ is d-satisfiable in

A. In this case, (p′, o′) is said to be a d-substitute pair for o in A.

Note that “d-satisfiability” is a recursive definition. The availability condition cor-

responds to the base condition in the recursive definition while the non-availability

condition corresponds to the recursive condition.

Example 2 [d-satisfiability] Consider Example 1. Suppose that the assignment A is

still {(o1, p2), (o3, p3)}. Let d = 10. o1 is d-satisfiable since there exists a d-available

service-provider for o1 in A (i.e., p1). o2 is also d-satisfiable because there does not

exist any d-available service-provider for o2 inA and there exists a d-occupied service-

provider for o2 in A, namely p2, such that p2 is matched with another customer o1 and

o1 is d-satisfiable in A. Thus, (p2, o1) is a d-substitute pair for o2 in A.

The following lemma shows the relationship between “d-satisfiability” and the op-

timal assignment for SPM-MM.

Lemma 3.5.1 (Optimal Assignment) Let A be an assignment. If there does not ex-

ist any extreme match m in A such that the customer originally matched in m is d-

satisfiable in A − {m} where d is the matching distance of m in A, then A is the

optimal assignment for the SPM-MM problem.

Proof.

We consider two cases. The first case is that for each p and each o, p.w = 1 and

o.w = 1. Thus, each match (o′, p′, w′) can be expressed as (o′, p′) (since w′ = 1). The

second case is a general case that for each p and each o, p.w and o.w can be equal to

any positive integer.

Consider the first case. We prove by contradiction. Let A be the assignment such

that there does not exist any extreme match m in A such that the customer o originally
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matched in m is d-satisfiable in A − {m} and d is the matching distance of m in A.

Suppose that A is not the optimal assignment for the SPM-MM problem. That is, there

exists another assignment Ao such that the mmd of Ao, denoted by do, is smaller than

the mmd of A, denoted by d. Let A′ = A− {m}.

Consider Ao. We know that for each match (o′, p′) ∈ Ao, d(o
′, p′) ≤ do. Since

do < d, we have the following. For each match (o′, p′) ∈ Ao,

d(o′, p′) < d (3.1)

There exists a service-provider p1 such that (o, p1) ∈ Ao. We conclude that

d(o, p1) < d (3.2)

Consider A′. We know that o (from match m) is not d-satisfiable in A′. Thus, we

deduce that there does not exist any d-available service provider for o inA′. We further

consider two sub-cases.

Case (a): There does not exist any d-occupied service-provider for o in A′. We

deduce that there does not exist any service-provider p such that d(o, p) < d. This

contradicts to that d(o, p1) < d (in Inequality (3.2)).

Case (b): There exists a d-occupied service-provider for o in A′. According to

Inequality (3.2), we deduce that p1 is a d-occupied service-provider for o in A′. Thus,

there exists a customer o1 which is matched with p1 in A′.

In the following, we will show that o1 is d-satisfiable in A′. After we obtain this

result, we can conclude that o is d-satisfiable in A′, which leads to a contradiction.

We first construct an undirected graph G (which will be used later in the proof) as

follows. Firstly, we construct an assignment Ac = (Ao ∪A′)− (Ao ∩A′). As a result,

all customers in O− o are involved in either zero matches in Ac or exactly two distinct

matches in Ac. We construct a set V of vertices to be P ∪O. For each (o′, p′) ∈ Ac, we
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create an edge (o′, p′). All edges created form a set E. The graph G is defined based

on V and E.

It is easy to verify that in this graph G, any path starting from o is a list containing

interleaved customers and service-providers in the form of (o, p1, o1, p2, o2, ...) such

that the following three rules hold: (R1) o is matched with p1 in Ao, (R2) oi is matched

with pi+1 in Ao for i = 1, 2, ..., and (R3) pi is matched with oi in A′ for i = 1, 2, ....

According to the three rules, we deduce the following two statements: (1) any path

from o to a service-provider in G is non-cyclic, and (2) there exists a path from o to a

service-provider point/vertice pn such that pn is the first service-provider with its free

capacity in A′ along the path. The correctness of Statement (1) can be shown since

there is only one edge involving o in E and each vertice in V −{o} is involved at most

two edges in E. Statement (2) can be proved as follows. Since the total number of

vertices is bounded by |V | and any path P from o to a service-provider is non-cyclic

(by Statement (1)), the length of P is bounded. Consider a customer o′ (not o) along

the path P from o. Since o′ is involved in exactly two edges in E (it is not possible

that o′ is involved in zero edges in E since o′ is along P from o), we know that o′ is

matched in both Ao and A′, and thus the path from o can be prolonged at o′. Consider a

service-provider p′ along the path P from o. If p′ is involved in exactly two edges in E,

similarly, it is matched in both Ao and A′, and thus the path from o can be prolonged

at p′. If it is involved in exactly one edge in E, it means that it is matched in Ao only

(but not A′) (by R2) and thus the path from o cannot be prolonged at p′. In this case, p′

has its free capacity in A′. This completes the proof when we set pn = p′ in this case.

Based on the above two statements, we conclude that the path is of the non-cyclic

form of (o, p1, o1, p2, o2, ..., pn−1, on−1, pn) where pn is the first service-provider with

its free capacity in A′ along the path.

Next, we prove that oi is d-satisfiable in A′ for i = 1, 2, .., n − 1. We prove by
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induction starting from proving the d-satisfiability of on−1 as a base case. This proof

can be done easily by the three rules described above and Inequality (3.1).

Consider on−1. Since on−1 is matched with pn in Ao (by R2), according to Inequal-

ity (3.1), we deduce that d(on−1, pn) < d. Thus, since pn has its free capacity in A′, pn

is a d-available service-provider for on−1 in A′. We conclude that on−1 is d-satisfiable

in A′.

Next, we assume that there exists a positive integer k such that 2 ≤ k ≤ n − 1

and ok is d-satisfiable in A′. With this assumption, we want to prove that ok−1 is

d-satisfiable in A′. Since pn is the first service-provider with its free capacity in A′

along the path, we know that pk has no free capacity in A′ (since 2 ≤ k ≤ n − 1).

Besides, pk is matched with ok−1 in Ao (by R2). According to Inequality (3.1), we

have d(ok−1, pk) < d. We deduce the following Statement (*): pk is a d-occupied

service-provider for ok−1 in A′.

Consider two cases. Case (I): There exists a d-available service-provider for ok−1

in A′. In this case, ok−1 is d-satisfiable in A′ (by Availability Condition).

Case (II): There does not exist any d-available service-provider for ok−1 in A′. In

this case, note that pk is matched with ok in A′ (by R3) and ok is d-satisfiable in A′ (by

the hypothesis). Since pk is a d-occupied service-provider for ok−1 in A′ (by Statement

(*)), we deduce that ok−1 is d-satisfiable in A′ (by Non-Availability Condition).

In Case (I) and Case (II), we have the same conclusion. By induction, we conclude

that oi is d-satisfiable in A′ for i = 1, 2, .., n− 1.

So, o1 is d-satisfiable in A′. The proof for Case 1 is complete.

Consider Case 2. Case 2 can be easily transformed to Case 1 by duplicating each

customer o′ (service-provider p′) o′.w (p′.w) times, and each match (o′, p′, w′)w′ times.

This completes the proof.
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Algorithm 5 Algorithm Swap-Chain(P,O)

1: initialize a full assignment A between P and O
2: while there exists an extreme match m in A which involves a customer o such that
o is d-satisfiable in A − {m} where d is the matching distance of this extreme
match do

3: A← Swap(A,m)
4: return A

The above lemma motivates us to design Swap-Chain as shown in Algorithm 5. In

this algorithm, Swap is the re-matching operation related to an extreme match m in A.

We will describe how we perform this operation next.

The Swap Operation

We first need to introduce a concept called “d-swapping chain” which is used for the

Swap operation. Roughly speaking, it is a list of objects describing which customers

and service-providers in the current assignment are involved in the re-matching (or

Swap) operation such that the new matching distance for each of these customers is

smaller than d where d is a non-negative real number.

A list is represented in the form of (x1, x2, ..., xl) where xi is an object (either a

customer or a service-provider) for i ∈ [1, l] and l is the number of objects in the list.

Given a list L in the form of (x1, x2, ..., xl), a pair in the form of (xi, xi+1) is said to be

an even pair inL if i is divisible by 2. Otherwise, it is said to be an odd pair in L. Given

two listsL1 and L2 where L1 is (x1, x2, ..., xl) and L2 is (y1, y2, ..., yl′), the list concate-

nation of L1 and L2, denoted by L1 ⋄ L2, is defined to be (x1, x2, ..., xl, y1, y2, ..., yl′).

Definition 3.5.3 (d-Swapping Chain) Let A be an assignment. Suppose that o is d-

satisfiable in A. We define a d-swapping chain from o in A, denoted by Cd(o), as

follows according to the availability condition and the non-availability condition.

• Cd(o) is the list (o, p′) if the availability condition is satisfied where p′ is a d-

available service-provider for o in A, or
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• Cd(o) is the list (o, p′)⋄Cd(o′) if the non-availability condition is satisfied where

(p′, o′) is a d-substitute pair for o in A.

Example 3 [d-Swapping Chain] Consider Example 1. The assignment A is still

{(o1, p2), (o3, p3)}. Let d = 10. A d-swapping chain from o1 in A, denoted by Cd(o1),

can be (o1, p1). Besides, a d-swapping chain from o2 in A, denoted by Cd(o2), can be

(o2, p2) ⋄ Cd(o1) (which is equal to (o2, p2, o1, p1)) since (p2, o1) is a d-substitute pair

for o2 in A.

LetA be an assignment and d be a non-negative real number at least the mmd ofA.

Given a customer o, a d-swapping chain from o in A, denoted by C, has the following

properties.

• The total number of objects in C is even.

• C is a list containing interleaved customers and service-providers. The first ob-

ject in C is a customer. We call it as the first customer wrt C. The last object

in C is a service-provider p′ and the second-to-last object in C is a customer

o′. We call p′ as the last service-provider wrt C. Note that p′ is a d-available

service-provider for o′ in A.

• Each odd pair in L is in the form of (o′, p′) and d(o′, p′) < d.

• Each even pair in L is in the form of (p′, o′) and d(p′, o′) ≤ d (note that d(p′, o′)

is at most the mmd while d is at least the mmd as has been specified). For each

even pair (p′, o′) in L, there exists a positive integer w′ such that (o′, p′, w′) ∈ A

and w′ is said to be the weight of the even pair (p′, o′).

Note that given a customer o and a non-negative real number d at least the mmd of

an assignment A, o is d-satisfiable in A if and only if there exists a d-swapping chain

from o in A.
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After we describe the d-swapping chain, we are ready to describe how to perform

the re-matching operation, Swap, based on this chain. For the ease of illustration, we

first assume that the capacity (demand) of each service-provider (customer) is 1. We

call this assumption the unit assumption. After we explain the intuition under the unit

assumption, we will relax it. Under the unit assumption, the amount of the service

given by a service-provider to a customer in a match is exactly equal to 1. Thus, the

weight of each possible even pair in a swapping chain C is equal to 1.

Suppose that we are given a full assignmentA. We describe our Swap algorithm as

follows.

Step (a) (Extreme Match Breaking): We find an extreme match m. Let d be the

matching distance of m in A and o be the customer matched in m. We then break this

extreme match m in A. That is, we remove m from A and form a new assignment A′

(i.e., A′ = A− {m}).

Step (b) (Swapping Chain Finding): We then find a d-swapping chain from o in A′,

denoted by C.

Step (c) (Chain Breaking): Note that each even pair (p′, o′) in C corresponds to a

match in A′. For each even pair (p′, o′) in C, we break the match (p′, o′) (or formally

(o′, p′)) in A′. Note that the customer o′ in each even pair (p′, o′) in C has no deficient

demand before this step but has his/her deficient demand after this step.

Step (d) (Chain Matching): For each odd pair (o′, p′) in C, we form a match (o′, p′)

in A′. At this moment, the customer o′ in each odd pair (o′, p′) in C has no deficient

demand.

Let X be the set of customers involved in the swapping chain C. Note that with the

above Swap algorithm, the mmd, say d′, of the resulting assignment involving only the

customers in X is smaller than the mmd, say d, of the original assignment involving

only the customers in X . This is because we make sure that for each odd pair (o′, p′)
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in C (which forms a match in the resulting assignment), the distance between o′ and p′

is smaller than d.

If the original assignment contains exactly one extreme match, it is easy to see that

the mmd of the resulting assignment involving all customers is smaller than the mmd of

the original assignment involving all customers. However, it is possible that multiple

extreme matches exist in an assignment A which have the same matching distance d.

The mmd of the resulting assignment involving all customers decreases only after we

break all of these extreme matches.

Example 4 [Swap] Suppose that the capacity (demand) of each service-provider

(customer) is 1. Consider Figure 3.3(a) which shows a full assignment

{(o1, p2), (o2, p1), (o3, p3)}. We denote this assignment by A. (o2, p1) is an extreme

match in A. Let d = d(o2, p1) = 10. The Swap operation based on A and match

(o2, p1) works as follows. First, we break the extreme match (o2, p1) and the resulting

assignment is shown in Figure 3.3(b). Second, we find a d-swapping chain C from o2

which is (o2, p2, o1, p1) (Refer Example 3 for illustration). Third, we break the even

pairs in C which include (p2, o1) only. Forth, for each odd pair in C, we form its corre-

sponding match and thus matches (o2, p2) and (o1, p1) are formed. Figure 3.3(c) shows

the resulting assignment. Clearly, the new assignment is still full, but with a smaller

mmd (i.e., 7).

Next, we relax the unit assumption such that the capacity (demand) of each service-

provider (customer) could be any positive integer instead of 1. In this case, the weight

of an even pair in a swapping chain C can be different from that of another even pair.

The Swap algorithm can also be used with this relaxation except the following

changes related to the weight of a match.

Step (a) (Extreme Match Breaking): We perform the same operation as before. But,
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after the breaking of an extreme match in the form of (o, p, w), resulting an assignment

A′, we obtain that o has its deficient demand equal to w (instead of 1) while p has its

free capacity at least w (instead of 1).

Step (b) (Swapping Chain Finding): Similarly, we perform the same operation.

Step (c) (Chain Breaking): In this step, due to the weights of matches, we have

to calculate the weights of matches which are used in this chain breaking operation.

Specifically, let W be We(C) ∪ {wo} ∪ {wp} where We(C) is the set of the weights

of all possible even pairs in C, wo is the deficient demand of the first customer wrt C

in A′ and wp is the free capacity of the last service-provider wrt C in A′. We define

the swapping amount of the chain C, denoted by Amount(C), to be minw∈W{w}.

Roughly speaking,Amount(C) corresponds to the greatest possible amount of service

in a match along the chain such that Steps (c) and (d) can be executed successfully. Let

ws = Amount(C). Note that ws is smaller than or equal to the weight of each even

pair in C.

We execute Step (c) as follows. For each even pair (p′, o′) in C, we break the match

(o′, p′, w′) in A′ where w′ is a positive integer and form a match (o′, p′, w′−ws) in A′.

Note that the customer o′ in each even pair (p′, o′) in C has no deficient demand before

this step but has his/her deficient demand equal to ws after this step.

Step (d) (Chain Matching): In Step (d), we perform the matching with the weight ws.

That is, for each odd pair (o′, p′) in C, we form a match (o′, p′, ws) in A′. Note that at

this moment, the customer o′ in each odd pair (o′, p′) in C except the first odd pair has

no deficient demand in A′.

Step (e) (Deficient Demand Checking): This step is new. If the customer o in the

first odd pair has no deficient demand in A′ (this case happens when ws = wo), we can

return the resulting assignment A′ generated from Step (d). If o has his/her deficient

demand in A′ (this case occurs when ws < wo), then we continue to execute Step (b)
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Algorithm 6 Algorithm Swap(A,m)

Require: a full assignment A and an extreme match m in A
1: // Step (a) (Extreme Match Breaking)
2: Let m be the match involving customer o and service-provider p with its matching

distance equal to d
3: A′ ← A− {m}
4: while there exists a d-swapping chain from o in A′ do
5: // Step (b) (Swapping Chain Finding)
6: C ← a d-swapping chain from o in A′

7: // Step (c) (Chain Breaking)
8: ws ← Amount(C)
9: for each even pair (p′, o′) in C do

10: find a match (o′, p′, w′) in A′

11: A′ ← A′ − {(o′, p′, w′)}
12: if w′ 6= ws then A′ ← A′ ∪ {(o′, p′, w′ − ws)}
13: // Step (d) (Chain Matching)
14: for each odd pair (o′, p′) in C do
15: A′ ← A′ ∪ {(o′, p′, ws)}
16: // Step (e) (Deficient Demand Checking)
17: if o has no deficient demand in A′ then break;
18: // Step (f) (Post-Matching)
19: if o has his/her deficient demand in A′ equal to w′′ then
20: A′ ← A′ ∪ {(o, p, w′′)}
21: return A′

to Step (d) until o has no deficient demand in A′ or o becomes not d-satisfiable in A′.

When we stop the above iterative process, if o has no deficient demand in A′, similarly,

we can return A′ as the output. If o is not d-satisfiable in A′, we will run an additional

step called Post-Matching in Step (f).

Step (f) (Post-Matching): This step is also new. It will be executed if o has his/her

deficient demand in A′, say w′′, and is not d-satisfiable in A′. In this case, it is not

possible to reduce the matching distance of the extreme match m involving o. Thus,

we create the match (o, p, w′′) in A′ where p is the service-provider involved in m.

Finally, we return A′.

The pseudo-code of Swap is shown in Algorithm 6.

With Algorithm 6, it is easy to show the correctness of the Swap-Chain algorithm

(Algorithm 5) as follows.

Theorem 3.5.1 The Swap-Chain algorithm returns the optimal assignment for the

73



SPM-MM problem.

Proof. The correctness follows from Lemma 3.5.1.

3.5.3 Remaining Issues & Theoretical Analysis

Remaining Issues. There are two remaining issues in Swap-Chain, namely the initial-

ization of a full assignment (line 1 in Algorithm 5) and the Swapping Chain Finding

step in the Swap algorithm (line 6 in Algorithm 6).

Issue 1: There are many possible ways of initializing a full assignment. In our

implementation, we consider the following two methods, namely Sort and Fair. Sort

returns an assignment by a two-step approach. First, for each o ∈ O, it maintains a list

of all service-providers in ascending order of their distances to o. Second, it processes

all o ∈ O one by one. When processing a specific o, it traverses the service-providers

in o’s corresponding list sequentially and for the currently traversed p, it assigns the

service with the amount equal to min{o.d, p.f} from p to o, where o.d is o’s deficient

demand and p.f is p’s free capacity. The traversing process stops when o’s demand has

been satisfied. Fair denotes the method of generating the fair assignment. Note that

we do not adopt the globally optimized assignment in the initialization since the time

complexity of the algorithm for finding the globally optimized assignment is much

higher than that for finding other assignments like the fair assignment.

Issue 2: For Swapping Chain Finding (i.e., finding a d-swapping chain from a

customer o in an assignment A), we design a Breadth First Search (BFS) method as

follows. It maintains a queue Q and initially inserts o into Q. Then, it processes the

elements in Q one by one as follows. It starts processing the first element in Q. If

the current element in Q (being processed) is a customer, say oc, it inserts into Q all

service-providers (in any order) that have their distances from oc smaller than d and

have not been inserted into Q. These service-providers can be found by issuing a
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range query on P from oc. We say that oc is the parent of all these service-providers.

If the current element in Q (being processed) is a service-provider, say pc, consider

two cases. Case 1: pc has no free capacity. In this case, it inserts all the customers

matched with pc in A into Q (in any order) and pc is said to be the parent of all these

customers. Case 2: pc has its free capacity. In this case, it traces all ancestors of pc

until the (starting) customer o is reached, and returns the traced list (in this list, the

first element is o and the last element is pc) as a d-swapping chain from o. The above

process continues with the next element in Q until either a d-swapping chain is found

or all elements in Q have been processed. In the latter case, it means that there does

not exist any d-swapping chain from o.

Here, we need to perform range queries on P . Let β(|P |) be the cost of a

range query on a dataset of size |P |. In [19], with the data structure with its size

of O(|P |(log |P | log log |P |)2) and its construction time complexity of O(|P | log |P |),

β(|P |) = O(log |P | + k) where k is the size of the answer of this query. In practice,

k << |P | usually holds. Note that in our implementation, instead of the data structure

proposed in [19], we adopt an R-tree index built on P for supporting range queries

since it is available in commercial databases and is found to be efficient in practice

(though it does not have good worst-case asymptotic performance).

Theoretical Properties. We first describe some theoretical properties which will be

used to analyze the time complexity of our Swap-Chain algorithm.

Given a match (o, p, w) in an assignment, we say that (o, p) is its match signature.

Given an assignment A, a list of interleaved objects from P and O in the form of

(o1, p1, o2, p2 . . . , on, pn) is said to be a match cycle if each two adjacent objects in the

list form a match in A, i.e. oi is matched with pi for 1 ≤ i ≤ n, oi+1 is matched with

pi for 1 ≤ i ≤ n − 1, and o1 is matched with pn in the assignment. The length of a

cycle is defined to be the number of elements in the cycle. An assignment A is said to
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be cyclic if A contains a match cycle.

Interestingly, a non-cyclic assignment has a theoretical bound on the number of

matches in the assignment.

Lemma 3.5.2 Given P and O, the number of matches in a non-cyclic assignment is

bounded by |P |+ |O| − 1.

Proof. First, we show that in a non-cyclic assignment A involving no match cy-

cle, there exists an element e (either a service-provider or a customer) such that e is

involved in exactly one match in A (We can prove by contradiction since if each ele-

ment is involved in at least two matches, there exists a match cycle in the assignment).

We say this match is critical. Second, given an assignment A, we iteratively remove

each critical match from A until no matches exist in A. Since each removal operation

makes at least one element unmatched and the last removal operation makes exactly

two elements unmatched, we know the number of matches inA is at most |P |+|O|−1.

Furthermore, given an assignment A with a match cycle C, the following lemma

suggests that C could be destroyed in A easily such that some conditions in A are still

satisfied.

Lemma 3.5.3 Let A be a cyclic assignment with a match cycle C. We can transform

A to another assignment A′ such that (1) the mmd of A′ is at most that of A; (2) the

deficient demand (free capacity) of each o ∈ O (p ∈ P ) remains unchanged and (3)

A′ does not contain C nor any matches with new match signatures compared with A.

Besides, the cost of this transformation is O(n) where n is the length of C.

Proof. Let the cycle C be (o1, p1, o2, p2, ..., on, pn). Without loss of generality, let

(o1, p1) be the match along C which has the smallest matching weight, says wm. We
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break each match (oi, pi, wi) with the amount of wm for each i ∈ [1, n]. Thus, oi has its

deficient demand at least wm and pi has its free capacity at least wm for each i ∈ [1, n].

Next, we create a new match (oi+1, pi, wm) for each i ∈ [1, n − 1] and a new match

(o1, pn, wm). (Note that for the new match formed (o, p, wm), if there exists an original

match (o, p, w) in the assignment, we just combine these two matches as a single match

(o, p, wm + w)). Let A′ be the resulting assignment. It can be verified that o1 and p1

originally matched in A are not matched in A′ and thus A′ does not contain cycle C.

Besides, it is easy to verify that for each o ∈ O,
∑

(o,p,w)∈Aw =
∑

(o,p,w)∈A′ w and for

each p ∈ P ,
∑

(o,p,w)∈Aw =
∑

(o,p,w)∈A′ w. Furthermore, the mmd of A′ is at most that

of A and no matches with new match signatures are formed in A′. Clearly, the cost of

the above process is simply O(n).

Time Complexity. We let |V | = |P | + |O| and |E| = |P | · |O|. Suppose that we

build an index as introduced in [19] on P to facilitate range queries described before.

Let λ be the time complexity of building this index. Let γ be the time complexity of

the full assignment initialization (line 1 of Algorithm 5). Let R be the total number

of possible extreme matches fetched in Swap-Chain (i.e., the number of iterations in

lines 2-3 of Algorithm 5). Let I denote the time complexity of the Swap algorithm.

The time complexity of Swap-Chain is O(λ+ γ +R · I).

Consider λ. From [19], we know that λ = O(|P | log |P |).

Consider γ. If Sort is adopted, it could be verified that γ is equal to O(|O| ·

|P | log |P |). If Fair is used, γ is equal to O((|P | + |O|) · (log |P | + log |O|)) [96].

Besides, we introduce a lemma which will be used later.

Lemma 3.5.4 The assignment initialized by Sort and the assignment initialized by Fair

are both non-cyclic.

Proof. Let As be the assignment initialized by Sort and Af be the one initialized
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by Fair.

We first prove that As is non-cyclic. Suppose Sort processes O in order of

o1, o2, ..., om, where m is the size of O. We denote by Aoi the assignment that is

formed immediately after processing oi (thus, Aom = As). We claim that for a specific

customer oi, among all products that are matched with oi in Aoi , at most one product

has its free capacity non-zero. This can be verified by the principle adopted in Sort that

oi always exhausts the current product chosen to be matched with oi before the next

product is considered. Now, we show As is non-cyclic by contradiction. Assume that

there exists in As a match cycle C = (oc1 , pc1, ..., ocn, pcn). Without loss of generality,

among all customers involved in C, we assume oc1 is the first customer processed by

Sort. Consider Aoc1 (the assignment formed immediately after oc1 is processed). Both

pc1 and pcn are matched with oc1 in Aoc1 (since pc1 and pcn are matched with oc1 in As)

and both of them have their free capacities non-zero (since pc1 (pcn) is matched with

oc2 (ocn) later on where processing oc2 (occn)). Thus, this leads a contradiction that at

most one product matched with oc1 in Aoc1 has its free capacity non-zero.

Next, we prove that Af is non-cyclic by contradiction. This proof can be done by

using the fact that no dangling pair [96] exists in a fair assignment. We only consider

the case where the pairwise distances between P and O are distinct. For the other

case where some pairwise distances are identical, we can always perform an infinites-

imal perturbation on the locations of some products and/or customers such that ties of

distances are broken. Assume that there exists a match cycle C = (o1, p1, ..., on, pn)

in Af . Without loss of generality, we assume that match (o1, p1, w1) has the small-

est matching distance among all matches involved in C. As a result, we know

d(o1, p1) < d(o2, p1) and d(o1, p1) < d(o1, pn), which implies that (o1, p1) is a dan-

gling pair [96]. However, according to [96], there exist no dangling pairs for a fair

assignment. There, we know Af is not a fair assignment, which leads to a contradic-
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tion.

Consider R. Before we give the bound on R, we give a lemma.

Lemma 3.5.5 A match with a given match signature can be fetched as an extreme

match at most once in Swap-Chain.

Proof. This lemma is trivially true if all pairwise distances are distinct. This lemma

also holds even if they are not distinct. This is because during the execution of Swap

(in line 3 of Swap-Chain), once the extreme match with a particular match signature is

broken, no matches with the same match signature will be formed again except the last

Step (f) (i.e., post-processing) which denotes that there is no need to fetch additional

extreme matches and the algorithm terminates.

Note that there are at most |E| (= |P | · |O|) possible match signatures. By

Lemma 3.5.5, we deduce that R is bounded by |E|. In practice, R << |E|. In our

experiments, R is about 500 on average, which is very small compared with |E| which

is as large as 250,000,000 in our default setting.

Consider I . According to Algorithm 6, I depends on the cost of the while-loop

(lines 6-17) and the total number of while-loops, denoted by t. Consider a while-loop

which involves the operation of finding a d-swapping chain (line 6), whose cost is

denoted by C1, the operation of re-matching the elements along the chain (line 7-17),

whose cost is denoted by C2, and an additional operation introduced here which is used

to transform the assignment obtained to a non-cyclic assignment and whose cost is

denoted by C3. Thus, I is t · (C1 + C2 + C3).

Consider C1 which corresponds to the time cost of the BFS implementation. Note

that at the beginning of each while-loop, the assignment is non-cyclic. This is because

the initialized assignment is non-cyclic (Lemma 3.5.4) and at the end of each while-

loop, the additional operation introduced here transforms the assignment to a non-
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cyclic one. Thus, it could be verified that C1 = O(|O| ·β(|P |)+ |P |) (the BFS method

(1) involves at most |O| range queries on P (which incurs the cost of O(|O| · β(|P |))),

and (2) retrieves at most |P |+ |O| − 1 matches (from service-providers) according to

Lemma 3.5.2 and the fact that the assignment is non-cyclic (which incurs the cost of

O(|P |+ |O|))).

Consider C2. It is simply O(|P |+ |O|) (=O(|V |)).

Consider C3. After the Chain Matching step, the assignment contains O(|V |)

matches (since it contains at most |P |+ |O| − 1 matches at the beginning of the while-

loop and the Chain Matching step forms at most min{|P |, |O|} new matches). Clearly,

each match cycle in an assignment A corresponds to a cycle in the un-directed graph

GA(V
′, E ′), which involves P and O as vertices in V ′ and all matches as edges in

E ′. Note that |E ′| = O(|V |) (by Lemma 3.5.2). Thus, to find a match cycle in A,

we can find a cycle in GA and this can be easily achieved by a common DFS tech-

nique [27], which runs in O(|V ′|+ |E ′|) (=O(|V |)) time. According to Lemma 3.5.3,

destroying a match cycle incurs O(|V |) (a match cycle has its length at most |P |+ |O|)

and it does not introduce any match with a new match signature. So, we can trans-

form the assignment to a non-cyclic one by iteratively destroying the match cycles

until no match cycles exist in the assignment. Thus, C3 = O(c · |V |), where c is the

number of match cycles formed due to the Chain Matching step. It could be verified

that c is bounded by min{|P |, |O|} since the Chain Matching step introduces at most

min{|P |, |O|}matches and each such match can form at most one new match cycle. In

practice, c << min{|P |, |O|} (e.g., c is about 17 on average in our experiments under

the default setting).

Consider t. Recall that t is the number of while-loops in Swap needed to re-satisfy

the deficient demand of customer o due to the break operation on the extreme match

involving o. Clearly, t is bounded by w = min{maxp∈P p.w,maxo∈O o.w}. Usually,
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t is much smaller than this upper bound w. For example, in our experiments on real

datasets, on average, t is 2 (with a maximum of 40) but w is in thousands.

In view of the above discussion, we know that I = O(t · (|V | ·β(|P |)+c · |V |)). As

a result, the time complexity of Swap-Chain is O(λ+γ+R · t · (|V | ·β(|P |)+c · |V |)),

where R << |E|, t << min{maxp∈P p.w,maxo∈O o.w}, and c << min{|P |, |O|}.

3.6 Discussion

Any assignment with its mmd equal to the optimal mmd is a solution of SPM-MM.

Thus, there may exist multiple possible solutions for SPM-MM. In this case, our Swap-

Chain returns one of them at random. However, SPM-MM can be enriched by consid-

ering a secondary objective (e.g., minimizing the sum of the matching distances) for

the final solution among these multiple solutions. Furthermore, the bottleneck nature

of the SPM-MM objective makes it quite easy to be incorporated with a secondary

objective since the optimized mmd, say do, can always be used as a hard constraint

for optimizing the secondary objective. Specifically, matching any pair of two objects

which has its distance bounded by do does not destroy the optimality while matching

any pair of two objects which has its distance larger than do definitely ruins the opti-

mality. Thus, we can adopt a two-step mechanism for the SPM-MM problem with a

secondary objective. First, we compute the optimal mmd, say do, using Swap-Chain.

Second, we ignore all pairs (o, p) with d(o, p) > do for matching when optimizing the

secondary objective. For instance, if the secondary objective is to minimize the sum of

the matching distances, we can solve this enriched version of SPM-MM easily by first

computing the optimal mmd do and then adopting any popular algorithm for Minimum

Weight Matching [5] with the constraint that all pairs (o, p) with d(o, p) > do cannot

be matched (this could be achieved by excluding from the graph used by the algorithm

all those edges with the corresponding distances larger than do).
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Next, we discuss SPM-MM in a more general setting where the pairwise distances

between P and O could be non-metric or non-spatial. Interestingly, our proposed

methods can also be adapted to this general setting. Threshold-Adapt still works in

the general setting (recall that Threshold-Adapt is adapted from Threshold which is

designed for general bipartite graphs). We can also adapt Swap-Chain to the general

setting with some sacrifice of its time complexity as follows. Two parts involved in

Swap-Chain rely on the spatial setting, namely the Fair method for initializing a full

assignment (a fair one) and the BFS method for finding a d-swapping chain in an

assignment A. To initialize a fair assignment in the general setting, one can adopt

the Stable Marriage algorithm which incurs the cost of O(|P | · |O|) [37] (instead of

O((|P | + |O|) · (log |P | + log |O|)) in the spatial setting [96]). To find a d-swapping

chain from a customer o in the general setting, one can first materialize a directed graph

G′(V ′, E ′) such that (1) V ′ = P ∪ O; (2) for each o ∈ O, (o, p) is a directed edge in

E ′ for all p ∈ P with d(o, p) < d; (3) for each p ∈ P , (p, o) is a directed edge in E ′ for

all o ∈ O that is matched with p in A, and then find a path from o to a service-provider

p with its free capacity non-zero using a BFS on G′. The resulting path corresponds to

a d-swapping chain from o in A. Clearly, |V ′| = |V | and |E ′| ≤ |E|. Thus, the cost of

the BFS method is O(|V |+ |E|) (instead ofO(|O| ·β(|P |)+ |P |) in the spatial setting,

where β(|P |) is the range query cost on P ).

Finally, we would like to note some differences between our d-swapping chain

technique and the well-known augmenting path techniques. A typical augmenting path

technique is used for computing the maximum flow whose main idea is to iteratively

finding an augmenting path and augmenting the flow along this path until no augment-

ing paths are possible. As could be noticed, the goal of an augmenting path technique

is to increase the flow iteratively while the goal of our d-swapping chain technique is to

keep the flow while decreasing the mmd of the corresponding matching. Specifically,

in our d-swapping chain technique, we find an extreme match (o, p) and break it so
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Cardinality
Populated
Areas (PA)

Fire Sta-

tions (FS)
AB 4,999 447

BC 6,609 595

ON 12,474 1,215

QC 12,936 1,259

Table 3.1: Real datasets (SP-
M-MM)

Factor Configuration

Cardinality (|O|) 10k, 30k, 50k, 70k, 100k

Dim. 2, 3, 4, 5

Size ratio (r) 5, 10, 15, 20, 25

Weight ratio (k) 1, 1.5, 2, 2.5, 3

O’s weights [1, 10)

Scalability (|O|) 250k, 500k, 750k, 1000k

Table 3.2: Synthetic datasets (SPM-MM)

that we will find a d-swapping chain from o, while in an augmenting path technique,

there is no such breaking operation on a chosen match before the augmenting path is

to be found.

3.7 Empirical studies

We used four real datasets, namely AB, BC, ON and QC, in our experiments. Each

real dataset contains two sets of spatial objects, a set of populated areas (PA) and a

set of fire stations (FS). Specifically, dataset AB contains the set of PAs and the set of

FSs in Alberta, Canada. Datasets BC, ON and QC contain the same information in

the three other provinces in Canada, namely, British Columbia, Ontario and Quebec,

respectively. We collected the PAs from Census Canada (http://www12.statcan.gc.ca),

each of which corresponds to a dissemination area, and estimated the coordinates of

PAs with the help of the Postal Code Conversion File of Canada [86]. The population

of each PA ranges from 400 to 700 in most cases [86]. We collected the FSs from Fire-

Canada (http://www.firecanada.ca) and estimated the coordinates of FSs via Google

Maps. The capacities of FSs range from 5,500 to 10,000. The coordinates are all nor-

malized to range [0,10000]. For each dataset, we adopt the set of PAs as O and the set

of FSs as P . The summaries of the real datasets are shown in Table 3.1.

We also used synthetic datasets in our experiments, which are generated as follows.

The coordinates of spatial objects follow the Uniform distribution on range [0, 10000]
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by default. The demand of each customer in O is set to be [1, 10) randomly. To

generate the capacities of the service-providers in P , we define a parameter k, called

weight ratio, to be the expected ratio between the sum of the service capacities of

all service-providers and the sum of the service demands of all customers, i.e., k =

∑

p∈P p.w/
∑

o∈O o.w. Based on the configuration of k, we set the capacities of the

service-providers. By default, the capacities are set to be [80, 120) randomly. The

parameter configuration of synthetic datasets is shown in Table 3.2 where the default

values are shown in bold font.

3.7.1 SPM-MM vs. Existing Spatial Matching Problems

We conducted experiments to compare the optimal mmd, mmdo, with the mmd’s

of the fair assignment and the globally optimized assignment, namely mmdfair and

mmdglobal, respectively. In this experiment, we randomly select 10% (5%) in P and

10% (5%) in O for each real (synthetic) dataset. This is because the algorithm (we use

the SSPA algorithm in [5]) for computing mmdglobal is not scalable to large datasets.

Figure 3.4 shows that mmdfair and mmdglobal are larger than mmdo. For example,

in the real dataset ON (Figure 3.4(a)), the ratio between mmdfair (mmdglobal) and

mmdo is about 3.5 (2.3). We have similar results on synthetic datasets as shown in

Figure 3.4(b).
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3.7.2 Performance Study

Next, we give the performance study on our proposed algorithms, namely Threshold-

Adapt and Swap-Chain, which include eight instances in total. The details are de-

scribed as follows.

Recall that Threshold-Adapt involves a maximum-flow procedure. In the literature,

many maximum-flow algorithms have been developed which could be categorized into

three branches, namely, Augmenting-Path (which mainly includes Dinic, BK and IBFS

[40]), Push-Relabel (which mainly includes HIPR and PRF), and Pseudoflow (which

mainly includes HPR). More details about these maximum-flow algorithms could be

found in [2] (and the references therein). Besides, according to [2], these maximum-

flow algorithms usually favor different applications and it is not always the case that

a maximum-flow algorithm with a smaller time complexity runs faster than another

with a larger one. Motivated by this, we consider all the above six maximum-flow

algorithms, namely, Dinic, BK, IBFS, HIPR, PRF and HPF, for optimizing Threshold-

Adapt, and the corresponding instances of Threshold-Adapt are denoted by TA-Dinic,

TA-BK, TA-IBFS, TA-HIPR, TA-PRF and TA-HPF, respectively. Besides, we consider

two instances of the Swap-Chain algorithm, namely, Swap-Fair and Swap-Sort, with

the initialization methods of Fair and Sort, respectively.

We evaluated the algorithms mainly in terms of running time and memory, and

study the effects of cardinality, dimensionality, size ratio and weight ratio on the per-

formance of the algorithms. The memory of Threshold-Adapt is mainly due to the

search space S and the flow network graph, and the memory of Swap-Chain is mainly

due to the R-tree built on P and the maintained assignment.

We implemented our algorithms in C/C++ and conducted the experiments on a

Linux platform with a 2.26GHz CPU and 36GB physical memory.

We present our experimental results as follows.
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(1) Effect of Cardinality. We vary |O| and the results are shown in Figure 3.5. We

have the following observations. First, there is a clear efficiency gap between the Swap-

Chain algorithms and the Threshold-Adapt algorithms and the gap becomes larger

when the data size increases. For example, when |O| = 100k, Swap-Chain is faster

than TA-IBFS by more than one order of magnitude. Second, the two Swap-Chain

algorithms favor different cases. Specifically, Swap-Sort runs faster than Swap-Fair

on relatively small datasets (e.g., ≤ 40k) while the opposite case becomes true on rel-

atively large datasets. This could be explained by the fact that (1) Swap-Sort has no

cost of building an R-tree on O while Swap-Fair does and (2) Swap-Sort has a more

expensive initialization procedure (i.e., Sort) than Swap-Fair. Third, the memory us-

ages of the Swap-Chain algorithms are quite low while those of the Threshold-Adapt

algorithms are dramatically higher (by 2-3 orders of magnitude). For example, when

|O| = 100k, the Swap-Chain algorithms use less than 50MB while each of Threshold-

Adapt algorithms occupies more than 15GB memory. Forth, among all Threshold-

Adapt algorithms, TA-IBFS runs the fastest and occupies the least memory. For ease

of presentation, in the following, we focus on TA-IBFS only as the representative of

the Threshold-Adapt algorithms since it beats all other instances of Threshold-Adapt

in terms of both time efficiency and space efficiency.
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Figure 3.5: Effect of cardinality (synthetic datasets, SPM-MM)

(2) Effect of Dimensionality. Figure 3.6 shows the results of the effect of dimen-
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sionality. We observe that the dimensionality only affects the Swap-Fair algorithm

slightly. Specifically, when the dimensionality increases, the running time of Swap-

Fair increases slightly. This is because Swap-Fair needs to build the R-trees on both

P (for searching d-swapping chains) and O (for computing a fair assignment), which

cost increases when the dimensionality increases. The dimensionality has negligible

effects on Swap-Sort and TA-IBFS.
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Figure 3.6: Effect of dimensionality (synthetic datasets, SPM-MM)

(3) Effect of Size ratio. We observe some opposite trends on running time and memory

when we increase the size ratio r compared with those when we increase the data size.

This is reasonable since when the size ratio r increases, |P | decreases (note that |O| is

fixed).
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Figure 3.7: Effect of size ratio (synthetic datasets, SPM-MM)

(4) Effect of Weight ratio. Figure 3.8 shows the effect of the weight ratio k. We
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observe that the weight ratio has slight effect on TA-IBFS only. Specifically, when k

increases, the running time of TA-IBFS decreases slightly. The reason might be that

when k increases (i.e., the total capacities of the service-providers becomes relatively

larger), it is more likely that an augmenting path (note that IBFS is an augmenting path

algorithm) carries more flow and thus the process of computing the maximum-flow

could be finished more quickly.
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Figure 3.8: Effect of weight ratio k (synthetic datasets, SPM-MM)

(5) Scalability test. Figure 3.9 shows the results of the scalability test for Swap-Sort

and Swap-Fair. Since Threshold-Adapt is not scalable, we did not conduct this test for

Threshold-Adapt. As shown in the figure, the two algorithms are still efficient on large

datasets (in millions). Furthermore, Swap-Fair is more scalable than Swap-Sort. This

is because on a large dataset, the initialization process of Swap-Fair (i.e., Fair) is much

faster than that of Swap-Sort (i.e., Sort).

(6) Experiments on real datasets. Figure 3.10 shows the results for real datasets

which are similar to the results for synthetic datasets. Compared with the Threshold-

Adapt algorithm, our Swap-Chain algorithms run faster and use significantly less mem-

ory.

(7) Comparison with the Threashold algorithm in Euclidean space. We are inter-

ested in studying the performance of our proposed algorithms when they are used for
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Figure 3.9: Scalability test (synthetic datasets, SPM-MM)
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Figure 3.10: Results for real dataset (SPM-MM)

the un-weighted version of SPM-MM (i.e., all the capacities/demands are 1’s). We

compare our algorithm with the state-of-the-art called Match [32] which has a theoret-

ical time complexity of O(n1.5 logn). We note here that though Match has a smaller

time complexity, it has quite a narrow application scope (i.e., for the un-weighted ver-

sion only) and the time complexity is restricted to the 2D space only [32]. The results

are shown in Figure 3.11. We observe that our Swap-Chain algorithms have compara-

ble running time with the Match algorithm and run even faster than Match on relatively

large datasets. This might be due to the fact that a constant factor which could be large

is omitted from the time complexity analysis in [32]. Besides, we found that our Swap-

Chain algorithms enjoy the superiority of space efficiency over the Match algorithm.

We also used our real datasets for this experiment by setting the capacities/demands to

1s and observed similar results.
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Figure 3.11: Threshold vs. Swap-Chain (SPM-MM)

(8) Experiments with a Secondary Objective. Besides, we conducted some experi-

ments on the SPM-MM problem with a secondary objective of minimizing the sum of

matching distances called sum-md. Let Ammd(Asum−md) be the assignment obtained

by optimizing mmd (sum-md) only. Let Ammd,sum−md be the assignment obtained by

optimizing mmd first and sum-md second. We adopted the SSPA algorithm [5] for op-

timizing sum-md. We conducted our experiments on both synthetic and real datasets

where each synthetic/real dataset was sampled first with the sampling rate set to 5%

due to the relatively expensive cost of SSPA. The results on the real datasets are shown

in Figure 3.12. We observe that on average, compared to Asum−md, Ammd,sum−md can

be obtained with a similar time (the cost of optimizing mmd is an additional part but

the constraint of the optimized mmd helps reduce the running time of the process of

optimizing sum-md) and has the sum-md value usually not far away from the sum-md

value of Asum−md (e.g., within 1.1 factor).

(9) Experiments with non-Euclidean Distances. In addition, we conducted some ex-

periments on our proposed algorithms (Threshold-Adapt and Swap-Chain) when they

are applied to the cases where non-Euclidean distances are used. We used the same real

datasets except that the underlying distances between pairs of two objects are measured

by the driving time between the two objects. The results are shown in Figure 3.13. We

observe that compared with the case of using the Euclidean distances, the efficiency
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Figure 3.12: Experiments with a secondary objective (SPM-MM)

of Threshold-Adapt is similar while the efficiency of the Swap-Chain algorithms, es-

pecially Swap-Fair, degrades to some extent. But, the Swap-Chain algorithms still

retain the superiority over Threshold-Adapt in terms of both time efficiency and space

efficiency. For example, on dataset QC, the running time of Swap-Fair (Swap-Sort) is

about 15s (9s) while that of Threshold-Adapt is nearly 17s. Thus, compared with the

spatial setting, the degrading ratio of Swap-Fair (Swap-Sort) is about 9/15 (8/9) and

that of Threshold-Adapt is about 16/17.
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Figure 3.13: Experiments with non-Euclidean distances (SPM-MM)

(10) Comparison with the Augmenting Path Technique. We also conducted exper-

iments on the Swap-Chain algorithms with the adaptions of Augmenting Path (AP)

techniques [5]. We interpret our d-swapping chains as augmenting paths and denote

the resulting Swap-Chain algorithms corresponding to Swap-Fair and Swap-Sort by
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AP-Fair and AP-Sort, respectively. In our implementations of AP-Fair and AP-Sort,

when finding an augmenting path which corresponds to finding a d-swapping chain in

Swap-Fair and Swap-Sort, respectively, we do a BFS in a graph structureGwhich con-

tains the edges (o, p) for all pairs of (o, p) with d(o, p) < d and also the edges (p, o) for

all matches (o, p, w) in the current assignment. Figure 3.14 shows the results. We ob-

serve that there is a clear efficiency gap between Swap-Fair (Swap-Sort) and AP-Fair

(AP-Sort), and this gap becomes larger when the data size increases. Besides, AP-Fair

(AP-Sort) occupies significantly more memory than Swap-Fair (Swap-Sort). The rea-

son for the efficiency gap is that each range query on P in Swap-Fair (Swap-Sort) is

performed in O(log |P | + k) time [19] where k is the size of the answer of the query

while its counterpart in AP-Fair (AP-Sort) is performed by scanning an adjacent list

which takesO(|P |) time. The reason for the results of memory usage is that Swap-Fair

(Swap-Sort) maintains no graph structures while AP-Fair (AP-Sort) does.
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Figure 3.14: d-swapping chain vs. Augmenting path (SPM-MM)

Conclusion: The Swap-Chain algorithms, which are efficient and scalable, beat the

Threshold-Adapt algorithms in terms of both time efficiency and space efficiency. Be-

sides, Swap-Sort runs faster than Swap-Fair when the datset is relatively small (e.g.,

|O| ≤ 40k) while Swap-Fair enjoys its superiority over Swap-Sort on large datasets.
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3.8 Conclusion

In this chapter, we propose a new problem called SPatial Matching for Minimizing

Maximum matching distance (SPM-MM). We design two algorithms for SPM-MM,

namely Threshold-Adapt and Swap-Chain. Threshold-Adapt is simple and easy to

understand but not scalable to large datasets. Swap-Chain avoids the scalability issues

of Threshold-Adapt by adopting a novel idea of swapping the matches iteratively and

runs faster than Threshold-Adapt by orders of magnitudes. We conducted extensive

experiments which verified the efficiency and scalability of Swap-Chain.
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CHAPTER 4

DIRECTION-PRESERVING TRAJECTORY

SIMPLIFICATION: MINIMIZING THE SIZE

4.1 Introduction

With the proliferation of GPS-embedded devices (e.g., smart phones and taxis), tra-

jectory data is becoming ubiquitous. Indeed, it has been studied extensively in the

past decades in the literature of Moving Objects Databases (MOD) [85, 76], and peo-

ple use trajectory data for many different purposes, e.g., traffic analysis [69], route

recommendation [71, 93], social relationship analysis [78, 99], and user behavior anal-

ysis [106, 87]. Trajectory data is usually generated by periodically collecting the posi-

tion of a moving object with the help of the GPS technologies.

Since the raw trajectory data is usually very large, simplifying trajectory data is

important. To appreciate this, consider a city with 10k taxis. Suppose that we track the

trajectory of each taxi by sampling its position once every 5 seconds (i.e., the sampling

rate is 5s). The size of the collected trajectories for just one day is approximately 4

GB.

Raw trajectory data is large, and hence expensive to store. Even worse, it is expen-

sive to manipulate and to analyze on account of its large size. In fact, most existing

query processing and data mining algorithms on trajectory data are memory-resident

and thus cannot be used with raw trajectory data that is too large to fit in memory.

A question one may ask is why not just sampling less frequently to reduce the size

of the data. The answer is that, in real life, objects have great variance in their ve-

locities. A taxi moving at 40 mph would have moved about 100 yards in 5s, whereas
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another taxi stuck at a traffic signal may not have moved at all. Obviously, we need

more frequent observations of the former than of the latter. Similarly, we need more ob-

servations to capture a taxi that makes a turn and fewer for one that continues straight.

Therefore, standard practice is to oversample initially, and then to simplify by elimi-

nating observations that add little information.

In view of this, several algorithms have been developed for simplifying trajectory

data [72, 31, 79, 74, 56]. All these algorithms make the natural assumption that the

goal should be to simplify trajectories such that the position information captured in the

simplified trajectories is “similar” to the position information captured in the original

trajectories. We can call them position-preserving trajectory simplification algorithms.

However, as we will soon see, this objective, though natural, is not the best choice in

many situations. To illustrate, let us work through a toy example in detail.

Example 5 (Motivating Example) Consider three raw trajectories T1, T2 and T3 as

shown in bold lines in Figure 4.1(a)(i), (a)(ii) and (a)(iii), respectively. Each of these

trajectories has four positions, p1, p2, p3 and p4. T1 and T2 are similar to each other,

and each of them is dissimilar to T3. Thus, a trajectory clustering algorithm, such

as [64], should group T1 and T2 in the same cluster and place T3 by itself in a separate

cluster.

Now suppose that these raw trajectories are too large, and so must be simplified to

three points each before being further processed. We could use an existing position-

preserving trajectory simplification, denoted byApos, for this simplification. Following

existing studies, the first position p1 and the last position p4 in each trajectory have to

be kept. Therefore, one of position p2 and position p3 is to be retained, and the other

one dropped.

Consider the simplification process on T1. It can drop either p2 or p3 in the sim-

plified trajectory. Let d1 (d2) be p2’s (p3)’s perpendicular distance to line segment
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p1p3 (p2p4). Since d1 > d2, Apos drops p3 and returns the simplified trajectory T ′
1 as

shown in Figure 4.1(b)(i). Similarly, Apos return T ′
2 (Figure 4.1(b)(ii)) and T ′

3 (Fig-

ure 4.1(b)(iii)) as the simplified trajectories of T2 and T3, respectively. We now see

that, though raw trajectories T1 and T2 are similar, their simplified trajectories T ′
1 and

T ′
2 generated by Apos are dissimilar. On the other hand, raw trajectories T1 and T3

are dissimilar, but their simplified trajectories T ′
1 and T ′

3 generated by Apos are simi-

lar. In consequence, the clustering algorithm on the simplified trajectories T ′
1, T ′

2 and

T ′
3, places T1 and T3 together into one cluster, and thus fails to produce correct (or

expected) clusters.

In contrast, as will be shown later, a direction-preserving trajectory simplification

method we introduce below, denoted by Adir, would simplify T1, T2 and T3 to T ′′
1

(Figure 4.1(c)(i)), T ′′
2 (Figure 4.1(c)(ii)) and T ′′

3 (Figure 4.1(c)(iii)), respectively. Since

T ′′
1 and T ′′

2 are similar to each other and each of them is dissimilar to T ′′
3 , the clustering

algorithm based on these simplified trajectories would produce the expected clusters.

Before we can discuss direction-preserving trajectory simplification in depth, we

first have to describe what direction information is, which we do next.

4.1.1 Direction Information

When an object moves from position p to position p′, we define the direction of this

movement to be the angle of an anticlockwise rotation from the positive x-axis to a

vector from p to p′. The directions of all movements captured in the trajectory is called

the direction information, and is used heavily, both directly and indirectly, in a wide

range of applications on trajectory data. We list some of them as follows.

• Map Matching [9]. Given a digital map of a road network and a trajectory of an

object moving on the road network, the map matching problem is to locate the
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Figure 4.1: A motivating example (for DPTS)

trajectory on the digital map. Since each road segment in the road network has its

own orientation, restricting the directions of the movements in the trajectory, the

direction information plays an essential role in most map matching algorithms

[9].

• Knowledge Discovery on Trajectory Data. As with other types of data, a rich

set of knowledge discovery tasks has been proposed on the trajectory data [39].

Among them, many algorithms rely heavily on the direction information, which

include [64, 50] for Clustering, [62] for Outlier Detection and [63] for Classi-

fication.

• Direction-based Query Processing. Sometimes, there are reasons to query tra-

jectory information directly. One example is to find the trajectories moving

within a direction range in a given time slot [10]. Another example is to find

trajectories similar to a given trajectory, where the similarity measurement is

based solely on moving direction [77].

In short, there are many situations in which direction preservation is important.

Furthermore, as we show analytically in Section 4.3 and empirically in Section 4.6,
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direction preservation is stronger than position preservation, in that a simplification that

preserves direction information well can be shown to preserve position information

also, within some reasonable bounds. However, the converse is not true: position-

preserving simplifications can be very bad at direction preservation.

4.1.2 Direction-Preserving Trajectory Simplification (DPTS)

In this thesis, we propose a new trajectory simplification mechanism called Direction-

Preserving Trajectory Simplification (DPTS) such that the direction information loss

due to the simplification process is bounded. Within DPTS, we propose a direction-

based measurement Ed, which is new and is defined to measure the error of a sim-

plified trajectory in terms of the direction information. Let T be a trajectory and T ′

be a simplification of T . The error (or simplification error) of T ′ under Ed, denoted

by ǫ(T ′), is equal to the maximum angular difference between the direction of the

movement during each time period in T and the direction of the movement during the

same time period in T ′. Then, the problem we study within DPTS, called the Min-

Size problem, is to simplify a given trajectory such that its size is minimized and its

incurred simplification error (i.e., ǫ(T ′)) is bounded by a given error tolerance ǫt where

ǫt ∈ [0, π).

We use the maximum angular difference rather than the average angular difference

to preserve better the shape of the trajectory. If we used the average one, we could still

have a few segments that were completely off, resulting in the types of errors illustrated

in Figure 4.1 for position-preserving techniques.

In this thesis, we study the properties of DPTS, develop multiple algorithms to

solve the Min-Size problem, both exactly and approximately, and evaluate our algo-

rithms experimentally. Specifically, we make the following contributions.

Contribution. First, we propose a novel notion of direction-preserving trajectory sim-
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plification (DPTS), which favors a wide spectrum of applications on trajectory data.

Second, we show that DPTS not only preserves direction information, but also pre-

serves position information, thereby supporting a wide range of applications. Third,

we adopt a common dynamic programming (DP) technique for Min-Size. Since it is

not scalable, we propose a novel exact algorithm called SP for Min-Size. SP solves

Min-Size by first constructing a graph based on the given trajectory, then computing a

shortest path in this graph and finally returning the solution for Min-Size according to

the shortest path found. The time complexity of SP is O(C · n2), where C is usually

a small constant (C = 1 if ǫt ≤ π/2). Fourth, since even an O(n2) running time is

likely to be unacceptable for a large n, we propose a scalable approximate algorithm

called Intersect which runs inO(n) time. We show that Intersect provides a certain de-

gree of the quality guarantee in terms of the size of the simplified trajectory returned,

in spite of running so fast. Finally, we perform a careful experimental comparison

of these algorithms and a baseline using real trajectory data. The baseline is devel-

oped by common sense modifications of standard trajectory simplification techniques

to address the Min-Size problem.

The rest of this chapter is organized as follows. We define the Min-Size problem

in Section 4.2 and review the related work in Section 4.3. We introduce the exact and

approximate algorithms for Min-Size in Section 4.4 and Section 4.5, respectively. We

give the empirical study in Section 4.6 and conclude this chapter in Section 4.7.

4.2 Problem Definition

A trajectory is represented by a sequence of n triplets in the form of

((x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)), where (xi, yi) is the position in the 2D Eu-

clidean space at time stamp ti. We define positions pi = (xi, yi) for each i ∈ [1, n].

Then, T ’s trace is the sequence of ordered positions, i.e., (p1, p2, ..., pn).
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Figure 4.2: A running example (Min-Size)

Since the direction information of a trajectory is captured by its trace only, in the

following, following existing studies, we focus on the trace part of the trajectory and

use the terms “trajectory” and “trace” interchangeably. Thus, we simply denote T by

(p1, p2, ..., pn) by keeping the position information only. The size of T , denoted by |T |,

is defined to be the number of positions in T .

Consider a running example as shown in Figure 4.2. In this figure, the trajectory T

is represented in the form of (p1, p2, ..., p10). The size of this trajectory (i.e., |T |) is 10.

The start position of T is p1 and the end position of T is p10.

The straight line linking two positions pi and pj in T where 1 ≤ i < j ≤ n is

denoted by pipj . If pi and pj are adjacent in T (i.e., j = i + 1), then pipj is said to

be a segment in T . Thus, a trajectory could also be regarded as a sequence of n − 1

segments joining at n− 2 positions (in addition to unique start and end positions).

In Figure 4.2, the solid horizontal straight line connecting p1 and p2 is denoted by

p1p2. Similarly, the dashed inclined straight line connecting p1 and p3 is denoted by

p1p3. Here, p1p2 is a segment in T but p1p3 is not a segment in T . All segments in T

are shown in solid lines in the figure. In T , there are 9 segments jointing at 8 positions,

namely p2, p3, ..., p9.

Trajectory T ′ is said to be a simplification of T if T ′ is of the form of

(ps1 , ps2, ..., psm) where m ≤ n and 1 = s1 < s2 < ... < sm = n. Note that p1

and pn in T must be kept in any simplification of T . There are m − 1 segments in
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T ′, and T ′ is using m − 1 segments to represent T containing n − 1 segments. For

each k ∈ [1, m), the segment pskpsk+1
in T ′ is used to approximate the sequence of

segments between psk and psk+1
in T , namely pskpsk+1, psk+1psk+2, ..., psk+1−1psk+1

. In

other words, this sequence of segments in T is approximated by a single segment (i.e.,

pskpsk+1
) in T ′ only.

Consider our running example. Let T ′ = (p1, p3, p6, p10). T
′ is a simplification of

T in Figure 4.2. Here, s1 = 1, s2 = 3, s3 = 6 and s4 = 10. Note that the size of T ′ is

4. All segments in T ′ are shown in dashed lines in the figure. There are 3 segments in

T ′. In other words, T ′ is using 3 segments to approximate 9 segments in T . Consider

segment p1p3 in T ′. It is used to approximate the sequence of segments between p1

and p3 in T , namely p1p2 and p2p3. In other words, p1p2 and p2p3 are approximated by

a single segment p1p3. Similarly, trajectory T ′′ = (p1, p10) is also a simplification of

T , which uses only one segment (i.e., p1p10) to approximate the whole trajectory T .

Direction-based Error Measurement Ed. Given a segment pipi+1 in T , the direction

of pipi+1, denoted by θ(pipi+1), is defined to be the angle of an anticlockwise rotation

from the positive x-axis to a vector from pi to pi+1. Thus, each direction falls in

[0, 2π). Consider our running example (Figure 4.2). θ(p7p8) is π/4(= 0.788) radian

and θ(p4p5) is 7π/4(= 5.498) radian, as illustrated in Figure 4.3(a). It is easy to verify

that θ(p1p2) is equal to 0 radian, θ(p2p3) is equal to 0.983 radian (= tan−1 3/2) and

θ(p1p3) is equal to 0.644 radian (= tan−1 3/4).

The angular difference between two directions θ1 and θ2, denoted by△(θ1, θ2), is

defined to be the minimum of the angle of the anticlockwise rotation from θ1 to θ2 and

that from θ2 to θ1, i.e.,

△(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|} (4.1)

For illustration, Figure 4.3(b) shows the case where △(θ1, θ2) = |θ1 − θ2| and Fig-
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Figure 4.3: Examples illustrating the definition of “direction” and “angular difference”

ure 4.3(c) shows the case where △(θ1, θ2) = 2π − |θ1 − θ2|. Note that the angular

difference between any two directions falls in [0, π].

Consider our running example. The angular difference between θ(p1p2) and

θ(p1p3) is |0 − 0.644| = 0.644 and that between θ(p2p3) and θ(p1p3) is |0.983 −

0.644| = 0.339.

Let T ′ = (ps1, ps2, ..., psm) be a simplification of T The simplification error of T ′

under Ed, denoted by ǫ(T ′), is defined as follows. Given a segment pskpsk+1
in T ′, the

simplification error of pskpsk+1
, denoted by ǫ(pskpsk+1

), is defined to be the greatest

angular difference between the direction of pskpsk+1
and the direction of a segment in

T approximated by pskpsk+1
. That is,

ǫ(pskpsk+1
) = maxsk≤h<sk+1

△(θ(pskpsk+1
), θ(phph+1))

Then, the simplification error of T ′ underEd is defined to be the greatest simplification

error of a segment in T ′. That is,

ǫ(T ′) = max1≤k<m ǫ(pskpsk+1
) (4.2)

Consider back our running example (Figure 4.2). Each segment in T ′ has its sim-

plification error. Consider the first segment p1p3 in T ′ which approximates two seg-

ments in T , namely p1p2 and p2p3. Recall that △(θ(p1p3), θ(p1p2)) = 0.644 and
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△(θ(p1p3), θ(p2p3)) = 0.339. Thus, the simplification error of p1p3 (i.e., ǫ(p1p3)) is

equal to max{0.644, 0.339} = 0.644. Similarly, we compute the simplification er-

rors of the second segment p3p6 and the third segment p6p10 in T ′ which are both

equal to 0.785. Thus, the simplification error of T ′ in this example is equal to

max{0.644, 0.785, 0.785} = 0.785.

In the following, when we write ǫ(pipj) (0 ≤ i < j ≤ n), we mean the simplifica-

tion error of pipj when it is used to approximate the line segments between pi and pj

in T .

Problem Statement of The Min-Size Problem. Let T be a trajectory and ǫt be the

error tolerance (ǫt < π). Trajectory T ′ is said to be an ǫt-simplification of T if T ′ is a

simplification of T and ǫ(T ′) ≤ ǫt.

The DPTS problem is formalized as follows.

Problem 2 (Min-Size) Given a trajectory T and an error tolerance ǫt, the Min-Size

problem is to find the ǫt-simplification of T with the smallest size.

Consider our running example. Suppose that we set ǫt to 0.785. T ′ is an ǫt-

simplification of T since ǫ(T ′) = 0.785 ≤ ǫt. In fact, T ′ is the ǫt-simplification of

T with the smallest size (which involves only four remaining positions).

4.3 Related Work

We describe how DPTS relates to existing error measurements (Section 4.3.1) and

trajectory simplification techniques (Section 4.3.2).
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4.3.1 Existing Error Measurements

In this section, we show that the direction-preserving simplified trajectories give

error guarantees in position-related properties, such as length and speed. How-

ever, the reverse is not true. That is, the position-preserving simplified trajectories

[72, 74, 79, 56, 31] do not give any error guarantee on the direction information.

Before we give our claims/properties, we review some representative existing error

measurements.

Existing Error Measurements

Let T = (p1, p2, ..., pn) be a trajectory and T ′ = (ps1, ps2, ..., psm) be a simplification

of T (m ≤ n). Several position-based measurements for evaluating the “simplification

error” of T ′ have been defined in the literature. These measurements for T ′ are usually

defined to be a distance measure which takes T and T ′ as input. For each position ph

of T at the time stamp equal to th where 1 ≤ h ≤ n, the distance measure defines the

estimated position of ph, denoted by p′h, in T ′ based on some criteria. Let d(·, ·) be the

Euclidean distance between two given points. Thus, the distance measure is defined to

be maxh∈[1,n] d(ph, p
′
h). Since different distance measures have different definitions on

estimated positions, in the following, we focus on how to define estimated positions

for some representative distance measures.

(1) Closest Euclidean Distance: With this distance measure, p′h is defined to be the

location on the segment pskpsk+1
of T ′ with sk ≤ h ≤ sk+1, which has the smallest

Euclidean distance from ph. We define a mapping function MC which maps ph and T ′

to p′h for this distance measure. That is, p′h =MC(ph, T
′).

(2) Synchronous Euclidean Distance: Under this distance measure, p′h can be calcu-

lated with the following steps. The first step is to find the segment pskpsk+1
of T ′ with
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sk ≤ h ≤ sk+1. The second step is to find a point along the line passing through

two points, namely (xsk , ysk , tsk) and (xsk+1
, ysk+1

, tsk+1
), in a three-dimensional space

such that the third dimensional value (representing the time dimension) of this point

is th. Then, p′h is set to be the first two-dimensional values of this point. Simi-

larly, we define a mapping function MS which maps both ph and T ′ to p′h. That is,

p′h =MS(ph, T
′).

However, all of them adopt position-based distances instead of the direction-based

distance studied in this thesis. In the next section, we show that they do not give any

error guarantee on the direction information.

Theoretical Properties

The length between two positions pi and pj wrt T (i < j), denoted by len(pi, pj|T ), is

defined to be the length of the trace from pi to pj in T . That is,

len(pi, pj |T ) =
∑j−1

k=i d(pk, pk+1)

The (average) speed between two positions pi and pj wrt T (i < j), denoted by

speed(pi, pj |T ), is equal to len(pi, pj|T )/(tj − ti), where ti (tj) is the time stamp

corresponding to pi (pj).

Interestingly, DPTS gives error guarantees on the length and speed information.

Consider that T is a trajectory and T ′ is an ǫt-simplification of T with ǫt < π/2. For

any two adjacent positions pi and pi+1 in T where i ∈ [1, n), both the length and

the speed between the two corresponding estimated positions wrt T ′ are theoretically

bounded. The estimated positions are determined by a mapping function. In the re-

maining of this chapter, if no distance measure is specified explicitly, we assume that

the Closest Euclidean Distance (i.e., MC(·, ·)) is used by default. The results based on

the other mapping function (i.e.,MS(·, ·)) can be found in Section A.2 in the Appendix.

105



Lemma 4.3.1 (Bounded Length/Speed) Let T be a trajectory and T ′ be an ǫt-

simplification of T with ǫt < π/2. For any two adjacent positions pi and pi+1 in T

where i ∈ [1, n),

cos(ǫt) ≤ len(p′i,p
′

i+1
|T ′)

len(pi,pi+1|T )
≤ 1 and cos(ǫt) ≤ speed(p′i,p

′

i+1
|T ′)

speed(pi,pi+1|T )
≤ 1

where p′i =MC(pi, T
′) and p′i+1 =MC(pi+1, T

′).

Proof. Let pskpsk+1
be the segment of T ′ such that psk is the last position with

sk ≤ i and psk+1
is the first position with sk+1 ≥ i + 1. Consider Figure 4.4(a) for

illustration. Since ǫt < π/2, we can verify that p′i and p′i+1 are located along pskpsk+1
.

Let ψi be the angle formed by the two lines that pass through pipi+1 and pskpsk+1
.

Thus,

len(p′i, p
′
i+1|T ′) = d(p′i, p

′
i+1) = cos(ψi) · d(pi, pi+1)

= cos(ψi) · len(pi, pi+1|T ) ≥ cos(ǫt) · len(pi, pi+1|T )

which implies that cos(ǫt) ≤ len(p′i,p
′

i+1
|T ′)

len(pi,pi+1|T )
≤ 1. Besides, since speed(p′i, p

′
i+1|T ′) =

len(p′i, p
′
i+1|T ′)/(ti+1 − ti) and speed(pi, pi+1|T ) = len(pi, pi+1|T )/(ti+1 − ti), we

know cos(ǫt) ≤ speed(p′i,p
′

i+1
|T ′)

speed(pi,pi+1|T )
≤ 1.

Interestingly, DPTS gives an error bound on the position information (in addition

to the length/speed information).

Lemma 4.3.2 (Bounded Position Error) Let T be a trajectory and T ′ be an ǫt-

simplification of T with ǫt < π/2. For each position pi in T where i ∈ [1, n], we

have

d(pi, p
′
i) ≤ 0.5 · tan(ǫt) · Lmax

where p′i =MC(pi, T
′) and Lmax = maxk∈[1,m) len(psk , psk+1

|T ′).
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Figure 4.4: Proofs of Lemma 4.3.1, Lemma 4.3.2 and Lemma 4.3.3

Proof. Let pskpsk+1
be the segment of T ′ such that psk is the last position with psk ≤ i

and psk+1
is the first position with psk+1

≥ i. We construct a rhombus ⋄abcd with four

corners, namely a, b, c and d, such that a is at psk , c is at psk+1
and the angle between

ab (cb) and ad (cd) is equal to 2 · ǫt. Consider Figure 4.4(b) for illustration where ⋄abcd

is indicated by the shaded area. We claim that pi is inside ⋄abcd which we prove by

contradiction.

Assume that pi is outside ⋄abcd. We partition the plane into 4 parts with the two

lines that pass through ac and bd as indicated by I, II, III and IV in Figure 4.4(b),

where o is the intersection of the two lines. We consider 4 cases of which partition pi

is in. Without loss of generality, suppose pi falls in part I.

Since pi is outside ⋄abcd, we know θ(psk , pi) falls outside range [θ(ad), θ(ab)]. For

illustration, consider Figure 4.4(c).

Consider the segments between psk and pi in T . For each such segment phph+1

(sk ≤ h < i), we denote by −−−−→phph+1 the vector from ph to ph+1. We know that the di-

rection of each such vector falls in range [θ(ad), θ(ab)] since otherwise ǫ(T ′) > ǫt. As

a result, we know θ(pskpi) falls in range [θ(ad), θ(ab)] since −−→pskpi =
∑

sk≤h<i
−−−−→phph+1.
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This, however, contradicts the fact that θ(pskpi) falls outside range [θ(ad), θ(ab)].

Thus, we know that pi falls in ⋄abcd. Therefore, we have

d(pi, p
′
i) ≤ d(b, o) = tan(ǫt) · d(a, o) = 0.5 · tan(ǫt) · d(a, c)

= 0.5 · tan(ǫt) · len(psk , psk+1
|T ′) ≤ 0.5 · tan(ǫt) · Lmax

which finishes the proof.

Next, we show that existing position-preserving simplified trajectories do not have

bounds on the direction information.

Lemma 4.3.3 (Unbounded Direction Error) Let T be a trajectory and T ′ be a

(direction-based) ǫt-simplification of T with ǫt < π/2. Let TC be a (position-based)

simplified trajectory of T such that |TC| = |T ′| and the error of TC under the Clos-

est Euclidean Distance is minimized. There exists a dataset such that ǫ(TC) ≈ π and

ǫ(T ′) ≈ 0.

Proof. We prove by constructing a problem instance as shown in Figure 4.4(d). T =

(p1, p2, p3, p4, p5) is a trajectory, where p1, p2, p3 and p5 are located at a horizontal line

and p4 has its perpendicular distance from this line equal to a small real number d△.

Besides, d(p2, p3) = δ where δ << d△.

Suppose that we can only keep 4 positions in the simplified trajectory. In other

words, we have to remove 1 position from the 5 positions. If we consider preserving the

direction information, p4 will be removed and thus T ′ = (p1, p2, p3, p5). Thus, ǫ(T ′) =

ǫ(p3p5) ≈ 0. If we consider preserving the position information, p2 will be removed

and thus TC = (p1, p3, p4, p5). Hence, ǫ(TC) = ǫ(p1p3) = △(θ(p1p3), θ(p2p3)) ≈ π.

108



4.3.2 Existing Trajectory Simplification

Many trajectory simplification techniques have been proposed. We categorize them by

the main idea employed in the algorithm as follows. They are Split [72, 31], Merge

[79, 74], Greedy [56, 72] and Dead-Reckoning [60]. Split is an approach which finds

a position in a given trajectory, according to the heuristic value of the position, to split

the whole trajectory into two sub-trajectories and continues the process iteratively on

each of the split sub-trajectories which cannot be approximated by a line segment

connecting its start position and its end position. Merge is an approach which finds

two adjacent segments in a given trajectory, according to the heuristic value computed

from these two adjacent segments, discards the position p bridging these two segments,

and create a segment connecting the non-bridging end position of one segment and the

non-bridging end position of the other segment. It continues the process iteratively

until discarding any position p violates the error tolerance. Greedy is an approach

which finds a sequence of the greatest number of consecutive segments to be discarded

and create a segment connecting the two end positions of this sequence iteratively until

discarding any sequence of 2 consecutive segments violates the tolerance constraint.

Dead-Reckoning is an online algorithm which reads each position sequentially and

determines whether this position is discarded or not according to a heuristic criterion.

The aforementioned ideas of Split, Merge and Greedy can be adapted to the Min-

Size problem. The only change is to change the error measurement to our simplifi-

cation error (Equation (4.2)). However, they have their drawbacks. First, they cannot

return optimal solutions. Second, as shown in our experiments, they are not efficient

compared with our proposed Intersect algorithm. Details of the adaptation can be

found in Section B.1 of the Appendix.

Other related studies include [12] which studies the error bounds of several queries

on the simplified trajectories with bounded simplification errors mainly measured by
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the position information, [23] which studies the trajectory simplification problem with

the consideration of the shape and also the semantic meanings of the trajectory, [22]

which introduces a multi-resolution polygonal curve approximation (also called line

simplification) algorithm for trajectory simplification, and [55] which studies the tra-

jectory simplification problem where the trajectories are constrained to a road network.

None of these studies pay attention to the direction information for trajectory simplifi-

cation.

4.4 Exact Algorithm

A naive solution for the Min-Size problem is to traverse each possible simplification

of T with its simplification error at most ǫt and then to pick the one with the smallest

size. Since the number of all possible simplifications of a trajectory T is 2|T |−2, this

solution is not feasible in practice. Alternatively, one may adopt a common dynamic

programming (DP) technique for the Min-Size problem. Unfortunately, the time com-

plexity of this technique is cubic. For the sake of space, we include this DP algorithm

in Section B.2 in the Appendix. Instead, we propose a method called SP which is much

faster and scalable.

Algorithm SP involves the following three steps.

• Step 1 (Graph Construction): It first constructs a graph based on the given

trajectory.

• Step 2 (Shortest Path Finding): It computes a shortest path in this graph.

• Step 3 (Solution Generation): It finally returns the solution for Min-Size ac-

cording to the shortest path found.

In Step 1, it constructs a graph wrt ǫt, denoted by Gǫt(V,E), as follows. For each
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Figure 4.5: The graph Gǫt constructed based on the running example when ǫt is set to
be π/4 = 0.785

position pi of T where 1 ≤ i ≤ n, it creates a vertex for pi in V . For each pair of two

positions (pi, pj) where i < j, it creates an edge (pi, pj) in E if ǫ(pipj) ≤ ǫt.

In Step 2, it finds the shortest path from p1 to pn in Gǫt by a shortest path algorithm

(e.g., a BFS search). Here, the length of a path is defined to be the number of edges

involved along the path.

In Step 3, it generates the solution for Min-Size according to the shortest path

found. Note that all vertices involved in this shortest path correspond to all positions in

the ǫt-simplification of T with the smallest size. Thus, if the ordering of the positions

(or vertices) involved in the shortest path is “ps1-ps2-...-psm”, it returns the solution T ′

as (ps1, ps2 , ..., psm).

Example 6 (Algorithm SP) Consider our running example in Figure 4.2. Suppose

that ǫt = 0.785. In Step 1 of the SP algorithm, we can construct graph Gǫt accordingly

as shown in Figure 4.5. In this figure, we construct a vertex for each position in T .

Besides, for each pair of positions pi and pj where i < j, if ǫ(pipj) ≤ ǫt, we create an

edge (pi, pj). Note that ǫ(pipi+1) = 0 for each i ∈ [1, n− 1].

In Step 2, we can find the shortest path in this graph. It is easy to verify that p1-p3-

p6-p10 is the shortest path. Finally, in Step 3, we construct the solution of Min-Size as

(p1, p3, p6, p10).

Let us analyze the time complexity of a straightforward implementation of al-

gorithm SP. For Step 1, a straightforward solution for constructing Gǫt is to try all

111



Algorithm 7 The SP algorithm with the practical enhancement

Require: A trajectory T = (p1, p2, ..., pn) and the error tolerance ǫt
1: H0 ← {p1}; U ← {p2, p3, ..., pn}; l← 1
2: while true do
3: Hl ← ∅
4: //process the positions in Hl−1 and U in a reversed order
5: for each pi in Hl−1 and each pj in U where i < j do
6: if ǫ(pipj) ≤ ǫt then
7: if pj = pn then
8: return the trajectory corresponding to the shortest path from p1 to pn
9: U ← U\{pj}; Hl ← Hl ∪ {pj}

10: l ← l + 1

possible pairs of (pi, pj) where 1 ≤ i < j ≤ n and to check whether ǫ(pipj) ≤ ǫt.

Since there are O(n2) possible such pairs and the checking cost for each pair is O(n),

the time complexity of Step 1 is O(n3). For Step 2, a simple BFS could be adopted

to find the shortest path from p1 to pn in Gǫt , which takes O(|V | + |E|) time. Since

|V | = O(n) and |E| = O(n2), we know that the cost of BFS is O(n2). Step 3 which

returns the solution takes O(n) time. As we can see, the time complexity of Step 1

(i.e., the graph construction) dominates those of Step 2 and Step 3. Thus, the overall

time complexity of a straightforward implementation of algorithm SP is O(n3). Be-

sides, the space complexity of SP is simply O(|V | + |E|) which corresponds to the

space cost of maintaining Gǫt.

In the following, we propose two kinds of enhancement techniques in order to

improve the efficiency of our SP algorithm. The first one is called the practical en-

hancement (Section 4.4.1) which is to improve the performance of the algorithm in a

practical way. The second one is called the complexity improvement (Section 4.4.2)

which is to improve the theoretical time complexity of the algorithm from cubic to

quadratic with some properties.

4.4.1 Practical Enhancement

The practical enhancement is to construct Gǫt (in Step 1) on the demand of the

BFS procedure used in Step 2. Specifically, the straightforward implementation has
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to materialize all possible edges in Gǫt in Step 1 and then perform the BFS procedure

in Step 2. Here, the enhancement constructs only some of the edges in Gǫt which are

needed in the BFS procedure. Since some other edges need not be constructed, the

space consumption can be reduced and some computations can be also saved.

Given a position p in T and a non-negative integer l, p is said to be an l-length

position if the length of the shortest path from p1 to p in Gǫt is equal to l. Given a non-

negative integer l, we define the l-length unique set, denoted by Hl, to be the set of all

l-length positions in T . For example, the 0-length unique set H0 is {p1}. Consider the

BFS procedure starting from p1 on Gǫt . It first retrieves the set of positions which are

the out-neighbors of p1. This set corresponds to H1. Then, starting from each position

p in H1, it retrieves the set of positions which are the out-neighbors of p and have not

been retrieved before. This set corresponds to H2. The above process continues from

H2 in the same manner until pn is retrieved.

In view of the above discussion, we design our SP algorithm with this enhancement

as follows. We maintain the l-length unique sets Hl (l = 0, 1, 2, ...) which store the

positions retrieved by the BFS procedure and U for storing the remaining positions

that have not been retrieved by the BFS procedure. We initialize H0 to be {p1} and U

to be {p2, p3, ..., pn}. We then compute Hl based on Hl−1 for l = 1, 2, ... iteratively as

follows. We start from each position pi inHl−1. For each position pj in U , we compute

ǫ(pipj). If ǫ(pipj) ≤ ǫt, we further check whether pj is pn. If so, we stop the process

since the shortest path from p1 to pn has been found; otherwise, we exclude pj from U

and include it in Hl. Besides, when processing the positions in Hl−1 and U , we impose

a reversed order, which corresponds to pn, pn−1, ..., p1. The intuition is that we expect

that pn could be retrieved earlier in this way. We present our enhanced SP algorithm in

Algorithm 7.

Complexity Analysis. The worst-case time complexity of the SP algorithm with the
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Figure 4.6: Illustration of fdr(p2p3|ǫt) and fdr(p1p2|ǫt)

practical enhancement keeps the same as that of the straightforward implementation,

i.e., it is still O(n3). However, in practice, with the practical enhancement, the SP

algorithm is more efficient since some computations of ǫ(pipj) are avoided, and it is

also more scalable since there is no need to materialize Gǫt. The space complexity

of SP with the practical enhancement is simply O(n) since it maintains each position

once and does not materialize Gǫt explicitly.

4.4.2 Complexity Improvement

The complexity improvement is to improve the time complexity of our SP algorithm

from cubic to quadratic by using some properties for our algorithm. In this section, we

focus on the complexity improvement based on the straightforward implementation

for illustration. In Section 4.4.3, we describe how this complexity improvement can be

incorporated with the practical enhancement.

As can be noticed, the cost of the straightforward implementation is dominated by

the construction of graph Gǫt . In this section, we propose a technique to reduce the

cost of constructing the graph from O(n3) to O(C ·n2) time, where C is shown to be a

small constant in most cases. The major idea of such an improvement is to reduce the

time complexity of checking whether ǫ(pipj) ≤ ǫt (in the graph construction step) from

O(n) to O(C) by utilizing a new concept called “feasible direction range”. Before we

present the main idea, we first introduce some related concepts.
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Given two angles θ1 and θ2 in [0, 2π), an angular range, represented in the form

of [θ1, θ2], is defined to be a set of all possible angles of a vector originated from

the origin when it is rotated anti-clockwise from θ1 to θ2. For example, the shaded

part in Figure 4.6(a) shows the angular range of [0.198, 1.768], and the shaded part in

Figure 4.6(b) shows the angular range of [5.498, 0.785]. Since the direction of p2p3 is

0.983 radian, we say that its direction is in [0.198, 1.768] but not in [5.498, 0.785]. Sim-

ilarly, since the direction of p1p2 is 0 radian, we say that its direction is in [5.498, 0.785]

but not in [0.198, 1.768].

Definition 4.4.1 (feasible direction range) Given a segment phph+1 (1 ≤ h < n) in

T , the feasible direction range of phph+1 wrt ǫt, denoted by fdr(phph+1|ǫt), is defined

to be the angular range in the form of [θ1, θ2] with θ1 = [(θ(phph+1) − ǫt) mod 2π]

and θ2 = [(θ(phph+1) + ǫt) mod 2π].

The feasible direction range of phph+1 wrt ǫt corresponds to a set of all possible

directions each of which has its angular difference from phph+1 at most ǫt. We can

write fdr as follows.

fdr(phph+1|ǫt) = [θ(phph+1)− ǫt, θ(phph+1) + ǫt] mod 2π (4.3)

Consider our running example. Suppose that ǫt is set to 0.785. Since the direction

of p2p3 is 0.983 radian, fdr(p2p3|ǫt) = ([0.983 − 0.785, 0.983 + 0.785] mod 2π) =

[0.198, 1.768] (See Figure 4.6(a)). Similarly, since the direction of p1p2 is 0 radian,

fdr(p1p2|ǫt) = ([0−0.785, 0+0.785] mod 2π) = [5.498, 0.785] (See Figure 4.6(b)).

We denote by T [i, j] the sub-trajectory of T that is between position pi and position

pj (1 ≤ i < j ≤ n), i.e., T [i, j] = (pi, pi+1, ..., pj). We define the feasible direction

range of a sub-trajectory T [i, j] wrt ǫt, denoted by fdr(T [i, j]|ǫt), to be the intersection
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Figure 4.7: Illustration of intersection operations between two angular ranges

of the fdr’s of the segments in T [i, j]. That is,

fdr(T [i, j]|ǫt) = ∩i≤h<jfdr(phph+1|ǫt) (4.4)

In our running example, fdr(T [1, 3]|ǫr) is equal to ∩1≤h<3fdr(phph+1|ǫt) =

fdr(p1p2|ǫt) ∩ fdr(p2p3|ǫt) = [5.498, 0.785] ∩ [0.198, 1.768] = [0.198, 0.785]. Fig-

ures 4.6(a) and (b) illustrate this scenario.

In the following, we simply write fdr(phph+1) (fdr(T [i, j])) for fdr(phph+1|ǫt)

(fdr(T [i, j]|ǫt)) if the context of ǫt is clear.

In some cases, an intersection between an angular range and another angular range

results in a single angular range. In some other cases, this intersection operation results

in multiple disjoint angular ranges. To illustrate, an intersection between [0, 1.5] and

[1.0, 2.0] results in a single angular range [1, 1.5] (as shown in Figure 4.7(a)). An

intersection between [0, 4.0] and [3.5, 1.0] results in two angular ranges [3.5, 4.0] and

[0, 1.0] (as shown in Figure 4.7(b)).

Thus, from Equation (4.4), since fdr(T [i, j]) involves multiple intersection opera-

tions of angular ranges, it may consist of multiple disjoint angular ranges. We denote

by ||fdr(T [i, j])|| the number of disjoint angular ranges in fdr(T [i, j]).

With the concept of “feasible direction range”, we are now ready to describe how

we can check whether ǫ(pipj) ≤ ǫt efficiently.
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Lemma 4.4.1 Let T = (p1, p2, ..., pn) be a trajectory. ǫ(pipj) ≤ ǫt iff θ(pipj) is in

fdr(T [i, j]).

Proof. “if”: Assume that θ(pipj) is in fdr(T [i, j]). It follows that θ(pipj) is in

fdr(phph+1) and thus △(θ(pipj), θ(phph+1)) ≤ ǫt for i ≤ h < j. Therefore,

ǫ(pipj) = max{△(θ(phph+1), θ(pipj))|i ≤ h < j} ≤ ǫt.

“only-if”: this direction could be verified similarly.

Lemma 4.4.1 suggests that checking whether ǫ(pipj) ≤ ǫt is equivalent to checking

whether θ(pipj) is in fdr(T [i, j]). Suppose that fdr(T [i, j]) has been computed. Then,

checking whether ǫ(pipj) ≤ ǫt takes O(||fdr(T [i, j])||) only (compared with O(n) in

the straightforward implementation).

Note that in some cases, ǫ(pipj) > ǫt but ǫ(pipj+k) ≤ ǫt where j > i > 0 and

k > 0. By Lemma 4.4.1, we know that θ(pipj) is not in fdr(T [i, j]) but θ(pipj+k) is in

fdr(T [i, j+k]). To illustrate, in our running example (Figure 4.2), if we set ǫt = π/4,

then ǫ(p6p9) > ǫt but ǫ(p6p10) ≤ ǫt. By Lemma 4.4.1, θ(p6p9) is not in fdr(T [6, 9])

but θ(p6p10) is in fdr(T [6, 10]).

Now, we know that the checking step can be done in O(||fdr(T [i, j])||). There

are two remaining issues related to this checking step. The first issue is related to

the size of fdr(T [i, j]). If this size is very large, the checking step is still expensive.

Fortunately, we find that this size is usually a small constant. When ǫt ≤ π/2, it is

equal to 1. The second issue is how to compute fdr(T [i, j]) efficiently for each i and

j where i < j.

Issue 1: Size of fdr(T [i, j])

Lemma 4.4.2 Let T = (p1, p2, ..., pn) be a trajectory and ǫt be the error tolerance.

Then, given two integers i and j (1 ≤ i < j ≤ n), ||fdr(T [i, j])|| is bounded by
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min{1 + ⌊ ǫt
(π−ǫt)

⌋, j − i}.

Proof. We first give some concepts based on an angular range and provide a lemma

which is used to prove Lemma 4.4.2.

We denote the universe angular range [0, 2π) by U , Given an angular range [a, b],

we denote its complement wrt U , which is the angular range (b, a), by [a, b]c. We

define the span of an angular range [a, b], denoted by [a, b].span, to be equal to (b −

a)( mod 2π). We define the span of fdr(T [i, j]) (1 ≤ i < j ≤ n), denoted by

fdr(T [i, j]).span, to be equal to the sum of the spans of the disjoint angular ranges

that are involved in fdr(T [i, j]).

Lemma 4.4.3 Let [a, b] and [a′, b′] be two angular ranges. [a, b] ∩ [a′, b′] involves two

disjoint angular ranges iff [a′, b′]c (i.e., (b′, a′)) falls in [a, b] completely.

Proof. This could be verified easily by the fact that [a, b] ∩ [a′, b′] involves two

disjoint angular ranges, namely [a, b′] and [a′, b], iff (b′, a′) falls in [a, b] completely.

Suppose fdr(pkpk+1) is [ak, bk] for i ≤ k < j. Then, fdr(T [i, j]) is equal

to ∩j−1
k=i [ak, bk]. Besides, we know [ak, bk].span = 2ǫt for i ≤ k < j since

ak = θ(pkpk+1)− ǫt mod 2π and bk = θ(pkpk+1) + ǫt mod 2π (Definition 4.4.1).

First, we prove ||fdr(T [i, j])|| ≤ j − i by induction of k = j − i. Base step:

k = 1. The correctness is obvious since fdr(T [i, i + 1]) = [ai, bi] which involves

one angular range only (i.e., [ai, bi]) and thus ||fdr(T [i, i+ 1])|| = 1. Induction step:

||fdr(T [i, i+ k)|| ≤ k implies ||fdr(T [i, i+ k+1)|| ≤ k+ 1. Assume ||fdr(T [i, i+

k)|| = r (r ≤ k). Specifically, let [a′1, b
′
1], [a

′
2, b

′
2], ..., [a

′
r, b

′
r] be the r disjoint angular

ranges involved in fdr(T [i, i + k]). Then, fdr(T [i, i + k + 1]), which is equal to

fdr(T [i, i+ k]) ∩ [ai+k, bi+k], corresponds to r intersections, [a′h, b
′
h] ∩ [ai+k, bi+k] for

1 ≤ h ≤ r, each two of which are disjoint. Among these r intersections, we show that
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at most one involves two disjoint angular ranges by contradiction. Assume that there

exists h1 and h2 (i ≤ h1 6= h2 ≤ r) such that both [a′h1 , b
′
h1
]∩[ai+k, bi+k] and [a′h2, b

′
h2
]∩

[ai+k, bi+k] involve two disjoint angular ranges. According to Lemma 4.4.3, we know

that (bi+k, ai+k) is in both [a′h1, b
′
h1
] and [a′h2 , b

′
h2
], which leads to a contradiction since

[a′h1 , b
′
h1
] and [a′h2 , b

′
h2
] are disjoint. As a result, fdr(T [i, i+k1]) involves at most r+1

disjoint angular ranges. That is, ||fdr(T [i, i+ k + 1])|| ≤ r + 1 ≤ k + 1.

Second, we prove ||fdr(T [i, j])|| ≤ 1 + ⌊ ǫt
π−ǫt
⌋. We compute fdr(T [i, i +

1]), fdr(T [i, i+ 2]), ..., fdr(T [i, j]) sequentially based on the following equation.

fdr(T [i, i+ k + 1]) = fdr(T [i, i+ k]) ∩ [ai+k, bi+k]

= fdr(T [i, i+ k])\(bi+k, ai+k) (4.5)

We have two cases regarding Equation 4.5. Case 1: ||fdr(T [i, i + k + 1])|| =

||fdr(T [i, i+k])||+1. In this case, according to Lemma 4.4.3, (bi+k, ai+k) is in one of

the disjoint angular ranges that are involved in fdr(T [i, i+ k + 1]). Then, we deduce

that fdr(T [i, i+k+1]).span = fdr(T [i, i+k]).span− (2π−2ǫt) since (ai+k−bi+k)

mod 2π = 2π − 2ǫt. Case 2: ||fdr(T [i, i + k + 1)|| = ||fdr(T [i, i + k)||. In this

case, we have fdr(T [i, i+k+1]).span ≤ fdr(T [i, i+k]).span since the span is non-

increasing after an intersection operation. In view of the above two cases, we conclude

that the increase of the number of disjoint angular ranges by 1 (in Case 1 only) is due to

the decrease of the span by (2π− 2ǫt). Since at the beginning, ||fdr(T [i, i+1])|| = 1

and fdr(T [i, i + 1]).span = 2ǫt, ||fdr(T [i, i + k])|| has its greatest value equal to

(1 + ⌊ 2ǫt
2π−2ǫt

⌋).

According to Lemma 4.4.2, ||fdr(T [i, j])|| is usually bounded by a small constant.

Let C = min{1+ ⌊ ǫt
(π−ǫt)

⌋, j − i}. In particular, when ǫt ≤ π/2, ⌊ ǫt
(π−ǫt)

⌋ is equal to 0.

In this case, ||fdr(T [i, j])|| is exactly equal to min{1, j − i} = 1 (since j > i).
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Issue 2: How to Compute fdr(T [i, j]) Efficiently

A straightforward method to compute fdr(T [i, j]) is to compute fdr(phph+1) (i ≤

h < j) independently and then to intersect these fdr’s. This straightforward method,

nevertheless, incurs the cost of Ω(n) on average. Since we have Θ(n2) instances of

fdr(T [i, j]), computing all instances of fdr(T [i, j]) with this method incurs the total

cost of Ω(n3). Fortunately, this method could be improved significantly since it in-

volves a lot of redundant work. A better method only takes O(C) instead of Ω(n) to

compute fdr(T [i, j]) based on the following incremental property.

Given two integers i and j where 1 ≤ i < j < n,

fdr(T [i, j + 1]) = fdr(T [i, j]) ∩ fdr(pjpj+1) (4.6)

Suppose that the content of fdr(T [i, j]) is known, since the total number of angular

ranges in fdr(pjpj+1) is 1, we can compute fdr(T [i, j+1]) inO(C) time. Note that C

is the greatest number of angular ranges in fdr(T [i, j]) and the intersection operation

between two intervals could be finished in O(1) time.

Thus, we propose to compute fdr(T [i, j]) (1 ≤ i < j ≤ n) using the incremental

property. Specifically, it involves n rounds.

• At round 1, it computes fdr(T [h, h+ 1]) (i.e., fdr(phph+1)) for 1 ≤ h < n.

• At round r (r > 1), it computes fdr(T [h, h+r]) for 1 ≤ h ≤ n−r. Specifically,

it computes fdr(T [h, h + r]) by intersecting fdr(T [h, h + r − 1]) (which has

been maintained at round r − 1) and fdr(ph+r−1ph+r). Note that this operation

takes O(C) time.

Complexity Analysis. The time complexity of the above method for computing

fdr(T [i, j])’s for 1 ≤ i < j ≤ n is O(C · n2) since it involves n rounds and each
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round incurs the cost of O(C · n). Since there are O(n2) times of checking whether

ǫ(pipi+1) ≤ ǫt and each checking can be done in O(C) time with the fdr(T [i, j])

information, the time complexity of the SP algorithm with the complexity improve-

ment is O(C · n2). Besides, the above method of computing fdr(T [i, j])’s has its

space complexity of O(C · n) since at each round, it is sufficient to maintain O(n)

fdf(T [i, j])’s each of which involves O(C) intervals. Since the SP algorithm with the

complexity improvement materializes Gǫt explicitly, we know that its space complex-

ity is O(C · n+ |V |+ |E|), where V (E) is the vertex (edge) set of Gǫt .

4.4.3 Combining The Two Enhancements

The practical enhancement involves the construction of only some edges, which means

that we just need to perform the checking of ǫ(pipj) ≤ ǫt for some pairs of positions

(pi, pj) only where 1 ≤ i < j ≤ n. However, the cost of checking whether ǫ(pipj) ≤ ǫt

is O(n) which is expensive. In contrast, the complexity improvement reduces the cost

of checking whether ǫ(pipj) ≤ ǫt from O(n) to O(C), but the undesired part is that it

always computes fdr(T [i, j]) for all pairs of positions (pi, pj).

In this part, we propose to unify the good aspects of both the practical enhance-

ment and the complexity improvement and at the same time, to avoid their undesired

aspects. Our strategy is to maintain fdr(T [i, j]) (1 ≤ i < j ≤ n) (i.e., the idea of com-

plexity improvement) on the demand of the BFS process (i.e., the idea of the practical

enhancement). Specifically, when checking whether ǫ(pipj) ≤ ǫt (1 ≤ i < j ≤ n),

we have two cases. Case 1: fdr(T [i, j]) has been computed. In this case, the check-

ing could be finished in O(C) time. Case 2: fdr(T [i, j]) has not been computed. In

this case, we recursively resort to fdr(T [i, j − 1]) for computing fdr(T [i, j]). This

recursive process stops either in Case 1 or fdr(T [i, i + 1]) is acquired. Note that

fdr(T [i, i+ 1]) could be computed in O(1) time by Equation (4.3).
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This version of SP algorithm enjoys the benefit of the practical enhancement since

it checks whether ǫ(pipj) ≤ ǫt (1 ≤ i < j ≤ n) on demand of the BFS process and

does not materialize Gǫt explicitly, and it also enjoys the benefit of the complexity im-

provement since it adopts the “feasible direction range” concept for checking whether

ǫ(pipj) ≤ ǫt, which is fast.

It could be verified that the worse-case time complexity of the SP algorithm with

both the practical enhancement and the complexity improvement is O(C · n2) since it

computes only a sub-set of all possible fdr(T [i, j])’s.

Besides, the space complexity of this version of SP is O(C · n) (it is sufficient

to maintain for each i the computed fdr[i, j] with the largest j among all computed

fdr[i, j]’s throughout the execution of the algorithm since each fdr[i, j] is enquired at

most once and note that it does not materialize Gǫt).

4.5 Approximate Algorithm

According to the discussion in Section 4.4, the time complexity of an exact algorithm

for Min-Size is at least quadratic. This, however, is not scalable enough when the

datasets involves millions of positions. In this section, we develop an approximate

algorithm called Intersect for the Min-Size problem, which runs in linear time and

gives a certain degree of quality guarantee.

Before we describe Intersect, we first give a concept of “feasibility” used in the

algorithm. Given an error tolerance ǫt and two integers i and j where 1 ≤ i < j ≤ n,

pipj is said to be ǫt-feasible iff fdr(T [i, j]|ǫt) is non-empty. With this concept, we

have the following property.

Lemma 4.5.1 (Feasibility) Given an error tolerance ǫt and two integers i and j where

1 ≤ i < j ≤ n, if pipj is ǫt
2

-feasible, then ǫ(pipj) ≤ ǫt.
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Proof. Since pipj is ǫt
2

-feasible, fdr(T [i, j]|ǫt/2) is non-empty.

We prove with two steps.

First, we deduce that for any two segments between i and j in T , vhvh+1 and

vh′vh′+1 (i ≤ h < h′ < j), we have △(θ(phph+1), θ(ph′ph′+1)) ≤ ǫt. Let

θ1 = θ(phph+1) and θ2 = θ(ph′ph′+1). Since fdr(T [i, j]|ǫt/2) is non-empty, we

know fdr(phph+1|ǫt/2) and fdr(ph′ph′+1|ǫt/2) intersects. Let θ3 be a direction that

is in both fdr(phph+1|ǫt/2) and fdr(ph′ph′+1|ǫt/2). Thus, △(θ1, θ3) ≤ ǫt/2 and

△(θ2, θ3) ≤ ǫt/2. As a result, according to Equation (4.1), we have

△(θ1, θ3) = min{|θ1 − θ3|, 2π − |θ1 − θ3|} ≤ ǫt/2 (4.7)

△(θ2, θ3) = min{|θ2 − θ3|, 2π − |θ2 − θ3|} ≤ ǫt/2 (4.8)

Next, we show that△(θ1, θ2) ≤ ǫt. Consider four cases.

Case 1: |θ1 − θ3| ≤ 2π − |θ1 − θ3| and |θ2 − θ3| ≤ 2π − |θ2 − θ3|. In this case, we

have |θ1 − θ3| ≤ ǫt/2 and |θ2 − θ3| ≤ ǫt/2. Thus,

|θ1 − θ2| = |θ1 − θ3 + θ3 − θ2| ≤ |θ1 − θ3|+ |θ2 − θ3| ≤ ǫt

Therefore,△(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|} ≤ ǫt.

Case 2: |θ1 − θ3| > 2π− |θ1 − θ3| and |θ2 − θ3| ≤ 2π− |θ2 − θ3|. In this case, we

have |θ1 − θ3| > 2π − ǫt/2 and |θ2 − θ3| ≤ ǫt/2.

|θ1 − θ2| = |θ1 − θ3 − (θ2 − θ3)| ≥ |θ1 − θ3| − |θ2 − θ3| >

2π − ǫt/2− ǫt/2 = 2π − ǫt

Therefore,△(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|} ≤ ǫt.

Case 3: |θ1 − θ3| ≤ 2π − |θ1 − θ3| and |θ2 − θ3| > 2π − |θ2 − θ3|. This case is

symmetric with Case 2 and the proof is similar.
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Case 4: |θ1 − θ3| > 2π − |θ1 − θ3| and |θ2 − θ3| > 2π − |θ2 − θ3|. In this case,

we have 2π − |θ1 − θ3| ≤ ǫt/2 and 2π − |θ2 − θ3| ≤ ǫt/2. As a result, we have

|θ1 − θ3| > π which implies that θ1 and θ3 are at different sides of the x-axis, and

|θ2 − θ3| > π which implies that θ2 and θ3 are at different sides of the x-axis as well.

Without loss of generality, assume that θ3 is at the upper side of the x-axis. Then, both

θ1 and θ2 are at the lower side. Furthermore, we assume assume θ1 ≥ θ2 without loss

of generality. Then, |θ1− θ2| ≤ 2π−|θ2− θ3| ≤ ǫt/2 < ǫt. Consider Figure 4.8(a) for

illustration. Therefore,△(θ1, θ2) ≤ |θ1 − θ2| ≤ ǫt.

By combining the above four cases, we have△(θ1, θ2) ≤ ǫt.

Second, we show that ǫ(pipj) ≤ ǫt. According to the results in the first step,

for any two segments between pi and pj in T , the angular difference between their

directions is at most ǫt. It is easy to verify that there exists an angular range [a, b]

such that the directions of all the segments between pi and pj in T fall in [a, b] and

the span of [a, b] is bounded by ǫt (where the definition of “span” can be found in

the proof of Lemma 4.4.2). Given two positions p and p′, we denote the vector from

p to p′ by
−→
pp′. Besides, it could be verified that θ(pipj) falls in the angular range

[a, b] by utilizing the fact that −−→pipj =
∑j−1

h=i
−−−−→phph+1. For illustration, consider Fig-

ure 4.8(b), where [a, b] corresponds to [θ(pi+1pi+2), θ(pi+2pi+3)]. Therefore, we know

△(θ(pipj), θ(phph+1)) ≤ ǫt for i ≤ h < j since the angular difference between any

two directions falling in range [a, b] is smaller than that the angular difference between

a and b, which is bounded by ǫt. Thus, we know ǫ(pipj) ≤ ǫt.

Specifically, Intersect has the following steps. Let T ′ be a variable storing the

simplified trajectory to be returned. Let e be a variable storing the position index of

the last position in T ′. Let h be a variable storing the position index of the position in

T being processed. Initially, Intersect initializes T ′ to be (p1), and then sets e to be

1 (since p1 is currently the last position in T ′). Then, it reads each of the remaining
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Figure 4.8: Proof of Lemma 4.5.2

Algorithm 8 The Intersect Algorithm

Require: A trajectory T = (p1, p2, ..., pn); an error tolerance ǫt
Ensure: An ǫt-simplification of T ′

1: T ′ ← (p1); e← 1; h← 2
2: while h ≤ n do
3: while h ≤ n and peph is ǫt

2
-feasible do

4: increment h by 1
5: append ph−1 to T ′; e← h− 1
6: return T ′

positions sequentially. It sets h to 2 (since p2 is the position in T to process next). It

proceeds with an iterative step as follows. Whenever h ≤ n and peph is ǫt
2

-feasible, it

increments h by 1. It terminates this iterative step when either (1) h > n or (2) h has

just been incremented to a value such that peph is not ǫt
2

-feasible. For both stopping

conditions, we know that peph−1 is ǫt
2

-feasible and thus by Lemma 4.5.1, we have

ǫ(peph−1) ≤ ǫt. Thus, ph−1 is appended to T ′. Then, e is set to h − 1. It repeats the

above iterative step whenever h ≤ n. At the end, it returns T ′. The pseudo-code of

Intersect is shown in Algorithm 8.

With Lemma 4.5.1, it is easy to verify that the trajectory returned by Intersect is an

ǫt-simplification of T .

Lemma 4.5.2 Let T ′ be the output of the Intersect algorithm in Algorithm 8. Then, T ′

is an ǫt-simplification of T .

Intersect not only scans the data once only and returns an ǫt-simplification of T at
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the end, but also provides a certain degree of guarantee on the size of the simplified

trajectory.

Lemma 4.5.3 (Size Bound) Let T ′ be the output of the Intersect algorithm in Algo-

rithm 8. We have |T ′| ≤ |T ′′|, where T ′′ is the ǫt/2-simplification of T with the mini-

mum size.

Proof. Let T = (p1, ..., pn), T
′ = (ps1, ..., psm) and T ′′ = (pr1, ..., prl). By def-

inition, we have s1 = r1 = 1 and sm = rl = n. Note that n = |T |, m = |T ′| and

l = |T ′′|.

First, we prove that fdr(T [rk, rk+1]|ǫt/2) is non-empty for 1 ≤ k < l. Consider a

specific k ∈ [1, l − 1]. Since T ′′ is an ǫt/2-simplification, i.e., ǫ(T ′′) ≤ ǫt/2, we know

ǫ(prkprk+1
) ≤ ǫt/2. As a result, we know △(θ(phph+1), θ(prkprk+1

)) ≤ ǫt/2, which

further implies that θ(prkprk+1
) falls in fdr(phph+1|ǫt/2) for rk ≤ h < rk+1. Thus,

fdr(T [rk, rk+1]|ǫt/2) is non-empty.

Next, we prove m ≤ l by contradiction. Assume that m > l. In the follow-

ing, we want to show that sk ≥ rk for k = 1, 2, ..., l. When k = 1, it is true since

s1 = r1 = 1. Consider k = 2. According to Algorithm Intersect, we know that

fdr(T [s1, s2]|ǫt/2) is non-empty but fdr(T [s1, s2 + 1]|ǫt/2) is empty. We can say

that s2 is the greatest possible position such that fdr(T [s1, s2]|ǫt/2) is non-empty. Be-

sides, since fdr(T [r1, r2]|ǫt/2) is non-empty and r1 = s1, we derive that s2 ≥ r2.

Consider k = 3. Since fdr(T [r2, r3]|ǫt/2) is non-empty and s2 ≥ r2, we con-

sider two cases. Case 1: s2 < r3. In this case, we know that fdr(T [s2, r3]|ǫt/2)

is non-empty and thus s3 ≥ r3. Case 2: s2 ≥ r3. In this case, we also de-

duce that s3 ≥ r3 (since s3 > s2). By combining these two cases, we conclude

that s3 ≥ r3. Continuing the above procedure, we can deduce that sk ≥ rk for
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k = 1, 2, ..., l. Since m > l, we have sl < sm and thus sl + 1 ≤ sm = rl. Note that

fdr(T [rl−1, rl]|ǫt/2) = fdr(T [rl−1, sl−1]|ǫt/2)∩fdr(T [sl−1, sl+1]|ǫt/2)∩fdr(T [sl+

1, sm]|ǫt/2) (When sl + 1 = sm, we define fdr(T [sl + 1, sm]|ǫt/2) to be the uni-

verse angular range). Besides, since fdr(T [rl−1, rl]|ǫt/2) is non-empty, we deduce

that fdr(T [sl−1, sl + 1]|ǫt/2) is non-empty, which, however leads to a contradiction

because according to algorithm Intersect, fdr(T [sl−1, sl+1]|ǫt/2) is empty. Thus, we

conclude that m ≤ l, which implies that |T ′| ≤ |T ′′|.

Complexity Analysis. We know that variable h is incremented whenever line 4 of

Algorithm 8 is executed. Both the stopping condition of the outer while-loop (line 2)

and one of the stopping conditions of the inner while-loop (line 3) are “h ≤ n”. We

conclude that there are O(n) times to execute the steps in line 3, line 4 and line 5. The

step in line 4 and the step in line 5 take O(1) time. In the following, we show that the

step in line 3 also takes O(1) time. Thus, the time complexity of Intersect is O(n).

The remaining issue is to derive the time complexity of the step in line 3. In line

3, checking whether h ≤ n can be done in O(1) time. However, a straightforward im-

plementation of checking whether peph is ǫt
2

-feasible (line 3) (or equivalently checking

whether fdr(T [e, h]|ǫt/2) is non-empty) is expensive. This is because as described in

Section 4.4.2, computing fdr(T [e, h]|ǫt/2) from scratch is expensive. By using the

same technique in Section 4.4.2, we can perform this checking operation in O(1) time.

Specifically, we introduce a variable called fdr to store the content of fdr(T [e, h]|ǫt/2).

We have the following two changes in the algorithm due to this variable. Firstly, be-

tween line 2 and line 3, we insert a statement that “fdr← fdr(peph|ǫt/2)”. Note that

h = e + 1 at this moment, and the time complexity of this statement is O(C ′) where

C ′ = min{1+⌊ ǫt/2
(π−ǫt/2)

⌋, h−e} (by using Lemma 4.4.2). Secondly, in the inner while-

loop, just after line 4, we insert a statement that “fdr← fdr ∩fdr(ph−1ph|ǫt/2)”. Note

that the time complexity of this statement is O(C ′). With these two changes, checking
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whether peph is ǫt
2

-feasible (line 3) is equivalent to checking whether the current con-

tent of fdr is non-empty because the current content of fdr is equal to fdr(T [e, h]|ǫt/2)

(by Equation (4.6)). Furthermore, since ǫt is at most π and thus ǫt/2 is at most π/2,

we deduce that C ′ = O(1). We conclude that the time complexity of the step in line 3

is O(1).

The space complexity of Intersect isO(n) (which corresponds to the memory usage

for storing the simplified trajectory T ′).

4.6 Empirical Studies

We introduce the datasets and also the algorithms for our empirical study in Sec-

tion 4.6.1, and then present the empirical results of DPTS, the exact algorithms for

the Min-Size problem, and the approximate algorithms for the Min-Size problem, in

Section 4.6.2, in Section 4.6.3, and in Section 4.6.4, respectively.

4.6.1 Datasets and Algorithms

We used 5 real datasets in our experiments, namely Deer, Elk, Hurricane, Geolife and

T-Drive. Deer and Elk1 are two animal movement datasets which contain the radio-

telemetry locations of deers in 1995 and elks in 1993, respectively. Hurricane2 contains

the trajectories of the Atlantic hurricanes from year 1950 to year 2004. These three

datases (i.e., Deer, Elk and Hurricane) are benchmark datasets for trajectory cluster-

ing [64]. Geolife3 records the outdoor movements of 182 users in a period of 5 years

and T-Drive4 is a set of taxi trajectories in Beijing. These two datasets are widely-used

1http://www.fs.fed.us/pnw/starkey/data/tables/

2http://weather.unisys.com/hurricane/atlantic/

3http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/

4http://research.microsoft.com/apps/pubs/?id=152883
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# of trajec-
tories

total # of

positons

average #
of posi-
tions per
trajectory

directional difference

between two adjacent
segments (Mean, S.D.)

Deer 32 20,065 627 (1.669, 0.948)

Elk 33 47,204 1,430 (1.647, 0.984)

Hurricane 570 17,736 31 (0.213, 0.300)

Geolife 17,621 24,876,978 1,412 (0.364, 0.615)

T-Drive 10,359 17,740,902 1,713 (0.657, 0.803)

Table 4.1: Real datasets (DPTS and Min-Size)

for a broad range of applications on trajectory data [107, 101]. The statistics of these

datasets are summarized in Table 4.1.

We study 5 exact algorithms with the following notions. DP is the dynamic pro-

gramming algorithm and SP is the straightforward implementation of the SP algorithm.

SP-prac (SP-theo) is the SP algorithm with the practical enhancement (complexity im-

provement) only and SP-both is the one with all enhancements. Besides, we study 4

approximate algorithms, Split, Merge, Greedy and Intersect. The first three are the

adaptations of the existing trajectory simplification methods and the forth is proposed

in this thesis.

All algorithms were implemented in C/C++ and run on a Linux platform with a

2.66GHz machine and 4GB RAM.

4.6.2 Relevance to Existing Studies

In this section, we conducted experiments to show how DPTS is relevant to existing

studies.

Bounds of DPTS wrt Existing Measurements

In this part, we verify the theoretical bounds of the length (speed) error and the position

error of DPTS as introduced in Section 4.3.1.

We vary the tolerance ǫt on {0.2, 0.4, 0.6, 0.8, 1}. The results about length (speed)
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errors are shown in Figure 4.9(a), where the “length (speed) ratio” is defined to be

mini∈[1,n){len(p′i, p′i+1|T ′)/len(pi, pi+1|T )} where p′i is the estimated position of pi on

T ′ for i ∈ [1, n]. Thus, the larger this ratio is, the more accurate the length (speed)

information of the simplified trajectory is. Note that the length ratio and the speed

ratio (with respect to a segment in the original trajectory) are exactly the same since

the speed is equal the length divided by the time difference between the time stamps of

the two end-points of the segment, and the time difference in the original trajectory is

kept to be the same as the time difference in the simplified trajectory. We observe that

the theoretical bound of the length (speed) ratio is usually good (e.g., it is about 0.92

when ǫt = 0.4).

The results about the position error are shown in Figure 4.9(b). We observe that

the empirical position error is usually significantly smaller than the theoretical bound

(by near to one order of magnitude). Besides, when ǫt increases, the increase in the

position error of DPTS becomes smaller. When ǫt becomes large, the position error of

DPTS keeps quite stable.
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Figure 4.9: Verification of theoretical error bounds (Geolife, DPTS)

DPTS vs. PPTS

In this part, we want to compare DPTS with Position-Preserving Trajectory

Simplification (PPTS) in terms of two measurements, namely the position error and
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the direction error. In Section 4.3, we show that the position error of DPTS is bounded

(Lemma 4.3.2) while the direction error of PPTS is un-bounded (Lemma 4.3.3). We

study how worst the position error of DPTS compared with PPTS is and how worst the

direction error of PPTS compared with DPTS is.

We adopt the Douglas-Peucker algorithm [31] for PPTS which is the most popular

existing algorithm for PPTS [72, 12, 43], and we use our SP algorithm for DPTS. We

vary ǫt for DPTS. For a fair comparison, we enforce that the simplified trajectories

from DPTS and PPTS have the same size. The results are shown in Figure 4.10(a) for

position errors and in Figure 4.10(b) for direction errors. Consider Figure 4.10(a). It

could be noticed that though the position errors of DPTS are usually larger than those

of PPTS, the difference is small. For example, the ratio of the position errors is between

1.85 to 3. Consider Figure 4.10(b). We observe that the direction errors of PPTS are

significantly larger than that of DPTS. For example, when ǫt = 0.2, the ratio is more

than 10. Besides, the direction errors of PPTS are greater than 2, a value greater than

π/2, even with a small value of ǫt and is nearly to π, the greatest possible direction

error, with a medium value of ǫt, which implies that PPTS can hardly preserves the

direction information. In conclusion, our DPTS preserves the direction information by

its nature and also the position information to a certain degree, but PPTS preserves the

position information only but not the direction information.
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An Application Study (Trajectory Clustering)
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Figure 4.11: Trajectory Clustering Study (Deer, DPTS)

In Section 4.6.2, we compared DPTS and PPTS with their favor-metrics (i.e., the

position error, favoring PPTS, and the direction error, favoring DPTS). In this section,

we compare DPTS with PPTS with a neutral metric, the clustering quality, for a real-

life application, trajectory clustering.

The main idea is as follows. Let D be a set of raw trajectories. We perform DPTS

(PPTS) on each trajectory in D and obtain a set of simplified trajectories, denoted

by Dd (Dp). Then, we perform a clustering procedure on each of these two sets of

trajectories and obtain the corresponding clustering results. We regard the clustering

results based on D as ground truth and measure the qualities of the clustering results

on Dd and Dp. We verify DPTS by showing that the clustering results on Dd are

consistently better (closer to the ground truth) than those on Dp.

Consider the clustering procedure on D first. The clustering results based on D

(i.e., the cluster membership of each trajectory) could be represented by a binary ma-

trix Mnt×nc
, where nt is the number of trajectories in the set and nc is the number of

resulting clusters. Note that under some clustering mechanisms such as the one in [64],

a trajectory could belong to multiple clusters. For each trajectory T ∈ D, its cluster

membership could be represented by an nc-dimensional binary vector. For each pair

of trajectories T1 and T2 in D, we measure the similarity between T1 and T2 by the

Euclidean distance between T1’s cluster membership (which is a vector) and T2’s clus-
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ter membership (which is a vector). If the distance is below a pre-set threshold σ, we

regard T1 and T2 to be similar; otherwise, we regard T1 and T2 to be dissimilar. Thus,

based on the clustering results on D, we can always obtain a similarity matrix which

indicates for each pair of two trajectories in D whether they are similar or not. Let S

be such a similarity matrix corresponding to D. The distance threshold σ for deciding

whether two trajectories are similar is set to 0.5 by default (all distances are normalized

to [0, 1]).

For a specific trajectory T ∈ D, we denote its simplification in Dd and Dp by T d

and T p, respectively.

Similarly, we perform the same clustering procedure onDd and Dp as we did on D

and obtain their corresponding similarity matrices, denoted by Sd and Sp, respectively.

We measure the quality of the clustering on Dd (and the clustering on Dp) as fol-

lows. For a pair of two trajectories T1 and T2 in D, we have 4 cases. Case 1: T1 and T2

are similar (wrt S) and T d1 and T d2 (the simplified trajectories of T1 and T2 under DPTS)

are similar (wrt Sd). In this case, we have an occurrence of true positive (TP). Case 2:

T1 and T2 are dissimilar (wrt S) and T d1 and T d2 are similar (wrt Sd). In this case, we

have an occurrence of false positive (FP). Similarly, Case 3 and Case 4 correspond to

the occurrences of false negative (FN) and true negative (TN), respectively. We adopt

three measures in our experiments for measuring the clustering results. The first is

called Rand, which is defined to be (|TP | + |TN |)/(|TP | + |FP | + |FN | + |TN |)

where | · | denotes the number of occurrences. The second and the third are defined

to be |TP |/(|TP | + |FP |) and |TN |/(|TN | + |FN |), respectively. The larger the

measure is, the better the clustering is.

For the trajectory clustering procedure, we adopt the TRACLUS algorithm [64] and

the CATS algorithm [50]. According to [50], existing trajectory clustering algorithms

fall in two categories. The first category includes those algorithms which take each
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trajectory as a whole for clustering while the second category includes the algorithms

which use sub-trajectories for clustering. CATS is the state-of-the-art in the first cate-

gory and TRACLUS is the state-of-the-art in the second category [50].

For the PPTS procedure, again, we adopt the popular Douglas-Peucker algorithm.

We vary the error tolerance ǫt with the values of 0.2, 0.4, 0.6, 0.8 and 1 for DPTS.

Figure 4.11(a), (b) and (c) show the results about the Rand measure, the measure of

|TP |/(|TP |+ |FP |) and the measure of |TN |/(|TN | + |FN |) on the Deer dataset,

respectively.

We observe that the clustering based on the simplified trajectories returned by

DPTS is consistently better than that based on the simplified trajectories returned by

PPTS. This might be explained by the fact that the direction information is heavily

used in the trajectory clustering algorithms and the direction information loss due to

DPTS is bounded while that due to PPTS is un-bounded.

4.6.3 Performance Study of the Exact Algorithms

In the part, we study the effects of 2 factors, namely the data size (i.e., |T |) and the error

tolerance (i.e., ǫt), on the performance of the exact algorithms. We use 2 measures,

namely the running time and the memory.

Effect of |T |. The values used for |T | are around 2k 4k, 6k, 8k and 10k (ǫt is fixed

to be 1). For each setting of |T |, we select a set of 10 trajectories each of which

has its size near to this value and run DPTS on each of these trajectories. Then, we

average the experimental results on these trajectories (this policy is used throughout

our experiments without specification). Figure 4.12 show the results on Geolife. Ac-

cording to these results, SP-both is the fastest while DP is the slowest due to its high

time complexity. Besides, the complexity improvement helps to reduce the running

time dramatically (e.g., SP-theo is faster than SP by 2-3 orders of magnitude). This
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could be easily explained by the fact that with the complexity improvement, the cost of

checking whether ǫ(pipj) ≤ ǫt is reduced from O(n) to O(C) (C is a small constant).

Though the practical enhancement improves the time efficiency a little, it helps to re-

duce the memory significantly (e.g., the memory occupied by SP-theo is 1-3 orders of

magnitude larger than that occupied by SP-both and the difference increases when |T |

increases on Geolife).

The experimental results on T-Drive are similar and thus they are omitted.
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Figure 4.12: Effect of data size |T | (Geolife, Min-Size)

Effect of ǫt. The values used for ǫt are 0.2, 0.4, 0.6, 0.8 and 1 in radians (|T | is fixed to

be 5k). Figure 4.13 shows the results on Geolife. According to these results, ǫt affects

the SP algorithms only. Specifically, the running times of all SP algorithms increase

slightly when ǫt becomes larger. This is because a larger ǫt usually results in Gǫt with

more edges and thus the BFS process on Gǫt needs more time.

Compression Rate. We also study the effect of ǫt on the size ratio which is defined to

be equal to
∑

T ′∈D′ |T ′|/∑T∈D |T |, whereD is the set of raw trajectories and D′ is the

set of the corresponding simplified trajectories. Note that a smaller size ratio means a

higher compression rate. The results are shown in Figure 4.14. We have the following

observations. First, the size ratio decreases significantly when we increase the toler-

ance from 0 slightly. This is good since it implies that under DPTS, the trajectory data

could be simplified significantly with a small error. Second, we observe that the size
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Figure 4.13: Effect of error tolerance ǫt (Geolife, Min-Size)

ratio is strictly smaller than 1 (e.g., it is about 0.9 for the Geolife datasets) even if the

error tolerance is set to be 0. This implies that the real-life trajectories usually involve

a certain degree of redundancy and could be simplified without incurring any error.
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Scalability Test. Figure 4.15 shows the results of the scalability test on the exact

algorithms. We only show the results of SP-theo and SP-both since the other exact

algorithms are not scalable on large datasets due to their expensive time complexities.

According to these results, both SP-theo and SP-both are scalable to large trajectory

datasets with millions of positions, and SP-both runs slightly faster than SP-theo. It

is noted that SP-both occupies significantly less memory than SP-theo and thus SP-

both is more scalable than SP-theo. This is because SP-both does not materialize Gǫt

explicitly while SP-theo does.
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Figure 4.15: Scalability test for exact algorithms (Geolife, Min-Size)

4.6.4 Performance Study of the Approximate Algorithms

In this part, we study the effects of |T | and ǫt on the approximate algorithms. We

use 3 measures, namely the running time, the memory and the approximation error.

The approximation error of an approximate algorithm is defined to be |T ′|/|T ∗|, where

T ′ is the simplified trajectory returned by the approximate algorithm on a given raw

trajectory and T ∗ is the simplified trajectory returned by an exact algorithm on the

same raw trajectory.

Effect of |T |. The values used for |T | are around 200k, 400k, 600k, 800k and 1000k

(ǫt is fixed to be 1). Figure 4.16 shows the results. According to these results, Intersect

is the fastest, which is at least 1 order of magnitude faster than other approximate

algorithms. This is because Intersect runs in linear time while the other algorithms

run in quadratic time in the worst case.Besides, Intersect occupies the least memory

and Greedy occupies slightly more memory than Intersect (though the difference in

Figure 4.16(b) is not obvious).

Effects of ǫt. Figure 4.17 shows the effects of ǫt on the approximate algorithms, where

we vary ǫt with 0.2, 0.4, 0.6, 0.8 and 1 (|T | is fixed to be 500k). According to these

results, Greedy runs faster than Split and Merge with small ǫt’s. This is because with

a smaller ǫt, it is less likely that a long sequence of consecutive segments could be
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Figure 4.16: Effect of data size |T | (Geolife, Min-Size)

approximated with one segment and thus the cost of checking the error of the segment

linking the start position and the end position is small.
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Figure 4.17: Effect of the error tolerance ǫt (Geolife, Min-Size)

Compression Rate & Approximation Error. Figure 4.18(a) shows the results on the

compression rates of the approximate algorithms. We also show the theoretical bound

of the size the trajectory returned by Intersect (Lemma 4.5.3). Figure 4.18(b) shows

the results on the approximate errors of the approximate algorithms. Both these results

verify our Intersect algorithm.

Scalability Test. The largest trajectory in our real datasets contains around 2M posi-

tions only. In order to generate larger trajectories, we concatenate multiple trajectories

in ascending order of their time stamps into one. Figure 4.19 shows the results of the

scalability test on the approximate algorithms. According to these results, Intersect is
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very fast on large datasets with more than 20M positions. For example, Intersect runs

in 13.3s on the trajectory with 24,876,978 positions. In contrast, the running times of

other approximate algorithms increase much faster when |T | increases.

Split Merge Greedy Intersect

 0

 200

 400

8 12 16 20

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Data size (millions)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8 12 16 20

M
em

or
y 

(M
B

)

Data size (millions)

(a) Running time (b) Memory

Figure 4.19: Scalability test for approximate algorithms (Geolife, Min-Size)

4.7 Conclusion

In this chapter, we propose direction-preserving trajectory simplification, which has

not been studied in the literature, as a novel alternative to the traditional position-

preserving trajectory simplification. We propose an exact algorithm called SP and

an approximate algorithm called Intersect. We conducted experiments to show the

efficiency and the scalability of our proposed methods.
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CHAPTER 5

DIRECTION-PRESERVING TRAJECTORY

SIMPLIFICATION: MINIMIZING THE

ERROR

5.1 Introduction

In Chapter 4, we study the Min-Size problem, which is to simplify a given trajectory

such that the error of the simplified trajectory is at most a given error threshold and

its size is minimized. Here, the size of a simplified trajectory is defined to be the total

number of positions kept in the trajectory. The Min-Size problem is suitable only when

users have clear knowledge about the error tolerance.

In some cases, users might not know how to specify the error tolerance clearly.

This could be because the simplified trajectories will be used in the future and thus

the details are not available at the moment or the simplified trajectories will be used

in different applications which might have different accuracy requirements and thus

it is not suitable to specify one error tolerance for simplifying trajectories. In these

cases, a better way is to retain the accuracy as much as possible while achieving a

certain degree of compression rate for simplifying trajectories. Specifically, we are

given a storage budget denoting the greatest size of a simplified trajectory to be stored

(note that the storage budget implies a compression rate requirement), and the goal is

to minimize the error of the simplified trajectory. We call this problem the Min-Error

problem which corresponds to the dual problem of the Min-Size problem.

In this thesis, we develop multiple algorithms for the Min-Error problem, both ex-

act and faster approximate algorithms. Specifically, our major contributions are sum-
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marized as follows. First, we define a new problem called Min-Error which minimizes

the simplification error under a storage budget. Second, to solve the Min-Error prob-

lem exactly, we explore the idea of dynamic programming and binary search, resulting

in two different algorithms, with the time complexities of O(Wn3) and O(n2C logn),

respectively (W is the storage budget, n is the size of the trajectory and C is a small

constant). Third, motivated by the relatively high complexities of the exact algorithms,

we further develop an approximate algorithm which runs inO(n log2 n) time and gives

a 2-factor approximation. Fourth, we conducted extensive experiments on real datasets

which verified our proposed algorithms.

The remainder of this chapter is organized as follows. Section 5.2 defines the

Min-Error problem. Section 5.4 and Section 5.5 introduce our exact and approximate

algorithms, respectively. Section 5.6 gives the empirical study. Section 5.3 studies the

related work and Section 5.7 concludes the chapter.

5.2 Problem Definition

The concepts and notations are the same as those defined in Section 4.2. We use

Figure 5.1 as a running example which would be used throughout this chapter. In

Figure 5.1, there is a trajectory T = (p1, p2, ..., p8). T has 8 positions, i.e., p1, p2..., p8,

and thus the size of T is equal to 8. T has 7 segments, i.e., p1p2, p2p3, ..., p7p8, which

correspond to the solid line segments in the figure.

The Min-Error problem is to simplify a given trajectory such that the error of the

simplified trajectory is the smallest and the size of the simplified trajectory is at most a

given positive integerW called the storage budget. The formal definition is as follows.

Problem 3 (Min-Error) Given a trajectory T and a positive integer W , the Min-

Error problem is to find a simplification T ′ of T such that |T ′| ≤ W and ǫ(T ′) is
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minimized.

To illustrate, consider the Min-Error problem with its input trajectory as T in Fig-

ure 4.2 and its input storage budget as 3. Then, T ′ = (p1, p5, p8) is the optimal solution

since we cannot find any other simplification of T with its size at most 3 and its error

smaller than ǫ(T ′) (= 0.785).

5.3 Related Work

As we have discussed in Chapter 4, most existing studies on trajectory simplifica-

tion aim to preserve the position information of the trajectory, which we call position-

preserving trajectory simplification (PPTS), by adopting a position-based error mea-

surement for measuring the error of the simplified trajectory [31, 72, 79, 60, 74, 56].

A position-based error of a simplified trajectory is usually defined to be the maximum

Euclidean distance between a position on the original trajectory and its “mapped” posi-

tion on the simplified trajectory. Two major methods have been proposed to define for

a position p on the original trajectory its “mapped” position on the simplified trajectory,

namely the closest distance function [31], which defines the “mapped” position to be

the closest position from p on the simplified trajectory, and the synchronous distance

function [72, 79, 60, 74, 56], which defines the “mapped” position to be the position
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with the same time stamp on the simplified trajectory as p. The algorithms used by

these studies are mainly heuristic-based.

Some other existing studies on trajectory simplification include [67] which aims

to minimize the area enclosed by the original trajectory and the simplified trajectory,

[82, 23] which consider the semantic information of a trajectory for trajectory simpli-

fication, [54, 38, 55] which study the trajectory simplification problem on trajectories

constrained on road networks, [94, 89, 79, 47, 58, 60, 48, 74, 59, 56] which study the

online trajectory simplification problem, [21] which combines the trajectory simplifi-

cation process and the encoding process for better compression rate, [12, 35] which

study the effects of trajectory simplification on some spatio-temporal queries, [73]

which provides a preliminary empirical study on several trajectory simplification algo-

rithms, [22] which proposes a multi-resolution trajectory simplification method, and

[108] which provides a preliminary literature study on trajectory simplification.

Another closely related topic is polygonal curve approximation [3] (a good survey

could be found in [44]). However, none of these studies consider the direction-based

error as adopted in this thesis.

5.4 Exact Algorithm

Given a simplification T ′ of T , we say that T ′ is affordable iff |T ′| ≤ W . Let T ′
o be the

optimal solution of the Min-Error problem and ǫo be the error of T ′
o, i.e., ǫo = ǫ(T ′

o).

Then, T ′
o corresponds to one affordable simplification with the smallest error.

Let F be the set containing all affordable simplifications of T . A naive method

for the Min-Error is to perform an exhaustive search over F and find the one with the

smallest error, which, however, is not feasible since the size of F is exponential in

terms of W (specifically, |F| =
(

n−2
W−2

)

). A better way is to design a dynamic pro-
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gramming algorithm since we have the following sub-problem optimality property: If

T ′ = (ps1, ps2, ..., psm) is an optimal solution for the Min-Error problem instance with

its input trajectory of T and its input storage budget of W , then T ′′ = (ps2 , ..., psm)

is also an optimal solution for another Min-Error problem instance with its input tra-

jectory of T [s2 : n] and its input storage budget of W − 1. We call this dynamic

programming algorithm DP, and since there is not much surprise in the development

of DP, we omit the details of DP here and put them in Section B.3 of the Appendix.

Unfortunately, DP has a time complexity of O(Wn3), which is prohibitively expen-

sive on large datasets. Thus, in the following, we design a binary search algorithm

called Error-Search for the Min-Error problem. Error-Search has a time complexity

of O(n2C log n) (C is usually a small constant) which is significantly smaller than that

of DP.

Let E be the set containing all ǫ(pipj)’s for 1 ≤ i < j ≤ n, i.e., E = {ǫ(pipj)|1 ≤

i < j ≤ n}. Note that |E| = O(n2). We observe that the minimized error ǫo is con-

tained in E , i.e., ǫo ∈ E . This could be easily verified by the fact that any simplification

has its error equal to the greatest simplification error of its segment, which is covered

by E by definition.

Given a non-negative real value ǫ, we say that ǫ is an affordable error if there exists

an affordable simplification T ′ in F such that ǫ(T ′) ≤ ǫ. Thus, ǫo corresponds to the

smallest affordable error.

In view of the above discussion, we design an algorithm called Error-Search as

follows. Firstly, we construct the search space E . Secondly, for each ǫ ∈ E , we

check whether there exists an affordable simplification T ′ with ǫ(T ′) ≤ ǫ (i.e., we

check whether ǫ is an affordable error) which we call the error affordability check on

ǫ. We note here that we can adopt a binary search strategy (instead of a linear scan

strategy) for searching on E since we have the following monotonicity property: if ǫ is
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an affordable error, then any ǫ′ > ǫ is also an affordable error. Thirdly, we return as

T ′
o the affordable simplification corresponding to the smallest affordable error found

(which is exactly ǫo).

The correctness of Error-Search is obvious. In the following, we discuss (1) how

to construct the search space E , (2) how to perform the error affordability check on a

given ǫ, and (3) the time and space complexities of Error-Search.

(1) Construction of E . Recall that E = {ǫ(pipj)|1 ≤ i < j ≤ n}. Thus, we have

O(n2) instances of ǫ(pipj)’s in E . A straightforward method for computing ǫ(pipj)

(1 ≤ i < j ≤ n) is to compare θ(pipj) with θ(phph+1) for each h ∈ [i, j). This

method, though simple, incurs the worst-case cost of O(n). Thus, the overall cost of

constructing E based on this method isO(n3), which is too costly. In the following, we

develop a more efficient method for computing ǫ(pipj) (1 ≤ i < j ≤ n) which runs in

O(logn) time only instead of O(n) time, resulting in the overall cost of constructing

E being O(n2 log n).

Our method is based on the concept of “opposite direction” which will be described

in detail next. Recall that ǫ(pipj) corresponds to the greatest angular difference be-

tween θ(pipj) and a direction in θ[i : j]. Thus, computing ǫ(pipj) could be finished by

finding the direction in θ[i : j] which has the greatest angular difference from θ(pipj).

Let θ∗ denote this direction. With θ∗, we can easily compute ǫ(pipj) by computing the

angular difference between θ(pipj) and θ∗ with Equation (4.1). In the following, we

focus on how to find θ∗.

Let θ(pipj)
− be the opposite direction of θ(pipj), i.e., θ(pipj)

− = [(θ(pipj) + π)

mod 2π]. We observe that θ∗ is exactly the direction in θ[i : j] which has the smallest

angular difference from θ(pipj)
−. This is simply because any direction θ in θ[i : j]

has its angular difference from θ(pipj) equal to π minus its angular difference from

θ(pipj)
−, i.e.,△(θ, θ(pipj)) = π −△(θ, θ(pipj)

−).
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To illustrate, consider Figure 5.3. θ(p1p2), θ(p2p3), θ(p3p4), and θ(p4p5) corre-

spond to θ[1 : 5]. θ(p1p5) and θ(p1p5)
− are also shown. As could be verified, θ(p2p3)

is the direction in θ[1 : 5] which has the greatest angular difference from θ(p1p5) and

also the smallest angular difference from θ(p1p5)
−.

Thus, we propose to search θ∗ with two steps. First, we sort the directions in θ[i : j]

in ascending order and let θ1, θ2, ..., θj−i be the resulting sorted list (note that sorting

from scratch incurs a cost of O(n logn) here, and what we do is to incrementally

maintain the sorted list of θ[i : j] based on the one of θ[i : j − 1] which has already

been maintained for computing ǫ(pipj−1) if we compute ǫ(pipj−1) first, and thus this

step could be finished in O(logn) time). Second, we find the direction in the sorted list

which has the smallest angular difference from θ(pipj)
− (i.e., θ∗) and this step could

also be done in O(logn) time with a binary search process based on the sorted list. In

combination of the first step and the second step, our method finds θ∗ inO(logn) time.

In view of the above discussion, we know that E could be constructed in

O(n2 logn) time since we have O(n2) instances of ǫ(pipj) each with a computation

cost of O(logn).

(2) Error Affordability Check on ǫ. Given a value ǫ, the task is to check whether

there exists an affordable simplification T ′ in F with ǫ(T ′) ≤ ǫ. A linear scan method

over F is not feasible since the size of F is exponential. In the following, we propose

a method which runs in O(n2C) time where C is usually a small constant.
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Lemma 5.4.1 Let ǫ be a non-negative value and T ′ be a simplification of T with its

error at most ǫ and its size minimized. Then, ǫ is an affordable error iff T ′ is affordable.

Proof. “⇒”: Suppose that ǫ is an affordable error, i.e., there exists an affordable

simplification T ′′ with ǫ(T ′′) ≤ ǫ. We have |T ′| ≤ |T ′′| ≤ W , and thus we know that

T ′ is affordable.

“⇐”: Clearly, ǫ is an affordable error since T ′ is affordable and has its error at most

ǫ by definition.

Lemma 5.4.1 suggests that the error affordability check on a given value ǫ can be

implemented with the following two steps. First, we compute the simplification T ′

of T with its error at most ǫ and its size minimized. This essentially corresponds to

solving a Min-Size problem instance with its input trajectory as T and its input error

tolerance as ǫ. Thus, this step can be done by executing an exact algorithm of the

Min-Size problem. Second, we check whether T ′ is affordable (i.e., the size of T ′ is

at most W ). If yes, then ǫ is an affordable span. Otherwise, it is not. According to

the results in Chapter 4, the time complexity of the exact algorithm for the Min-Size

problem is O(n2C) (where C is usually a small constant, e.g., C = 1 if ǫ ≤ π/2), and

hence we know that the time complexity of the above method of performing an error

affordability check is also O(n2C).

(3) Time & Space Complexity of Error-Search. In conclusion, the time complexity

of Error-Search is O(n2C logn) since the cost of constructing E is O(n2 logn), the

cost of sorting E (for binary search) is O(n2 log n2) (= O(n2 log n)), and the cost

of performing the error affordability check O(logn2) times (in the binary search) is

O(n2C · log n2) (= O(n2C log n)). The space complexity of Error-Search is O(n2)

which corresponds to the space cost of storing the search space E .
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5.5 Approximate Algorithm

In this section, we present our approximate algorithm called Span-Search for the Min-

Error problem which runs in O(n log2 n) time and gives a 2-factor approximation.

Specifically, in Section 5.5.1, we introduce an estimator of the error of a simplification

of T called span. In Section 5.5.2, based on this estimator, we define a new problem

called Min-Span whose optimal solution corresponds to a 2-factor approximation of

the Min-Error problem. In Section 5.5.3, we give an overview of Span-Search which

returns the optimal solution of the Min-Span problem in O(n log2 n) time. In Sec-

tion 5.5.4, we give the details of Span-Search and analyze its time and space complex-

ities.

5.5.1 An Estimator of Error

We define the span of an angular range [θ1, θ2], denoted by ξ([θ1, θ2]), to be equal to

the angle of an anti-clockwise rotation from a vector with its direction equal to θ1 to

another vector with its direction equal to θ2. Specifically, we have

ξ([θ1, θ2]) =







θ2 − θ1 if θ2 ≥ θ1

2π − (θ1 − θ2) if θ2 < θ1
(5.1)

Note that ξ([θ1, θ2]) is non-negative, and for any θ1 and θ2 in [0, 2π), we have

ξ([θ1, θ2]) + ξ([θ2, θ1]) = 2π.

To illustrate, consider Figure 5.2 where we have θ1 = 5.820 and θ2 = 1.107.

Thus, we know ξ([θ1, θ2]) = ξ([5.820, 1.107]) = 2π − (5.820 − 1.107) = 1.570 and

ξ([θ2, θ1]) = ξ([1.107, 5.820]) = 5.820− 1.107 = 4.713.

Let D be the set of the directions of all possible segments in T , i.e., D = θ[1 : n].

Note that |D| = n−1. Given a setD′ ⊆ D, any angular range that covers all directions

in D′ is said to be a covering angular range of D′. Among all covering angular ranges
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of D′, the one with the smallest span is called the minimum covering angular range of

D′ which we denote by mcar(D′).

To illustrate, consider Figure 5.4 where we show D′ = θ[1 : 5] =

{θ(p1p2), θ(p2p3), θ(p3p4), θ(p4p5)} and two other directions θa and θb. Then, [θa, θb]

(see the sector area in lighter color) is a covering angular range of D′ since all

directions in D′ fall in [θa, θb]. Besides, the minimum covering angular range of

D′, i.e., mcar(D′), is [θ(p2p3), θ(p3p4)] (see the sector area in darker color) since

[θ(p2p3), θ(p3p4)] covers all directions in D′ (i.e., [θ(p3p4), θ(p5, p6)] is a covering an-

gular range of D′) and there exists no other covering angular range of D′ with its span

smaller than that of [θ(p2p3), θ(p3p4)] (= 1.570) (See Figure 5.2).

Note that the two boundaries of mcar(D′) always come from D′ since otherwise

the range could be shrunk further and it does not have the minimum span.

Let T = (p1, p2, ..., pn) be a trajectory and T ′ = (ps1, ps2, ..., psm) be a simplifica-

tion of T . The span of T ′, denoted by ξ(T ′), is defined to be the greatest span of the

minimum covering angular ranges of θ[sk : sk+1] where k ∈ [1, m), i.e.,

ξ(T ′) = max1≤k<m{ξ(mcar(θ[sk : sk+1]))} (5.2)

To illustrate, consider our running example in Figure 4.2. T ′ = (p1, p5, p8) is a

simplification of T . As mentioned before, mcar(θ[1 : 5]) = [θ(p2p3), θ(p3p4)] =

[5.821, 1.107] and thus ξ(mcar(θ[1 : 5])) = ξ([5.821, 1.107]) = 1.570. Besides,

mcar(θ[5 : 8]) = [θ(p6p7), θ(p5p6)] = [5.498, 0.464] and thus ξ(mcar(θ[5 : 8])) =

ξ([5.498, 0.464]) = 1.249. Therefore, ξ(T ′) = max{ξ(mcar(θ[1 : 5])), ξ(mcar(θ[5 :

8]))} = max{1.570, 1.249} = 1.570.
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5.5.2 The Min-Span Problem

In this part, we define a problem called Min-Span which is quite similar to Min-Error,

but with a different objective.

Problem 4 (Min-Span) Given a trajectory T and a positive integerW , the Min-Span

problem is to find a simplification T ′ of T such that |T ′| ≤ W and ξ(T ′) is minimized.

To illustrate, consider a Min-Span problem instance with its input trajectory as T

in Figure 4.2 and its input W as 3. It could be verified that T ′ = (p1, p5, p8) is the

optimal solution of this problem instance since we cannot find any other simplification

of T which has its size at most 3 and its span smaller than ξ(T ′) (= 1.570).

Interestingly, the optimal solution of the Min-Span problem is a 2-factor approxi-

mation of the Min-Error problem.

Lemma 5.5.1 Let T ′
o be the optimal solution of the Min-Error problem with its input

trajectory as T and its input storage budget as W . Let T ′
ξ be the optimal solution of the

Min-Span problem with its input trajectory and its input storage budget both the same

as the Min-Error problem. Then, ǫ(T ′
ξ) ≤ 2 · ǫ(T ′

o).

Proof. This proof is divided into two parts. In the first part, we show that any simpli-

fication T ′ = (ps1, ps2, ..., psm) of T satisfies
ξ(T ′)
ǫ(T ′)

∈ [1, 2] which we prove with two

steps.

First, we show that for any k ∈ [1, m), we have

ǫ(pskpsk+1
)

ξ(mcar(θ[sk:sk+1]))
∈ [1/2, 1] (5.3)

Suppose that mcar(θ[sk : sk+1]) is [θa, θb]. Note that θa and θb are two directions

in θ[sk : sk+1]. We have two cases.
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Case 1: ξ([θa, θb]) ≤ π. For illustration, consider Figure 5.5(a). In this case,

θ(pskpsk+1
) is covered by [θa, θb]. Therefore, we have

ǫ(pskpsk+1
) = max{△(θ(pskpsk+1

), θa),△(θ(pskpsk+1
), θb)}

∈ [1/2, 1] · (△(θ(pskpsk+1
), θa) +△(θ(pskpsk+1

), θb))

= [1/2, 1] · ξ([θa, θb])

Case 2: ξ([θa, θb]) > π. In this case, θ(pskpsk+1
) could be or not be covered by

[θa, θb]. We further consider two sub-cases.

Case 2(a): θ(pskpsk+1
) is covered by [θa, θb]. For illustration, consider Fig-

ure 5.5(b). The proof of this case is similar to the one of Case 1 and thus it is omitted

here.

Case 2(b): θ(pskpsk+1
) is not covered by [θa, θb]. Then, θ(pskpsk+1

) is covered by

[θb, θa]. For illustration, consider Figure 5.5(c). Let θc and θd be two directions in

θ[sk : sk+1] such that θc and θd are in [θa, θb] and no directions in θ[sk : sk+1] other

than θc and θd are in [θc, θd] (Note that θc and θd always exist). Then, we know that

[θd, θc] corresponds to a covering angular range of θ[sk : sk+1] and θ(pskpsk+1
) falls

in [θd, θc]. Besides, we know ξ([θd, θc]) ≥ ξ([θa, θb]) since [θa, θb] is the minimum

covering angular range of θ[sk : sk+1]. Similar to Case 1, we have
ǫ(pskpsk+1

)

ξ([θd,θc])
∈ [1/2, 1]

which implies that ǫ(pskpsk+1
) ≥ 1

2
· ξ([θd, θc]) ≥ 1

2
· ξ([θa, θb]). Furthermore, we have

ǫ(pskpsk+1
) ≤ π < ξ([θa, θb]). In combination, we have

ǫ(pskpsk+1
)

ξ([θa,θb])
∈ [1

2
, 1].

Second, Let k′ = argmaxk∈[1,m){ξ(mcar(θ[sk : sk+1]))} and k′′ =

argmaxk∈[1,m){ǫ(pskpsk+1
)}. By using Equation (5.3), we have

ξ(T ′) = ξ(mcar(θ[sk′ : sk′+1])) ≤ 2 · ǫ(psk′psk′+1
)

≤ 2 · ǫ(psk′′psk′′+1
) = 2 · ǫ(T ′) (5.4)
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Figure 5.5: Proof of Lemma 5.5.1

and

ξ(T ′) = ξ(mcar(θ[sk′ : sk′+1])) ≥ ξ(mcar(θ[sk′′ : sk′′+1]))

≥ ǫ(psk′′psk′′+1
) = ǫ(T ′) (5.5)

By using Equations (5.4) and (5.5), we obtain
ξ(T ′)
ǫ(T ′)
∈ [1, 2].

In the second part, we show that ǫ(T ′
ξ) ≤ 2 · ǫ(T ′

o) as follows.

ǫ(T ′
ξ) ≤ ξ(T ′

ξ) ≤ ξ(T ′
o) ≤ 2 · ǫ(T ′

o)

5.5.3 The Span-Search Algorithm: Overview

In this part, we develop an algorithm called Span-Search which returns the optimal

solution of the Min-Span problem in O(n log2 n) time and thus gives a 2-factor ap-

proximation for the Min-Error problem (Lemma 5.5.1).

Let T ′
ξ be the optimal solution of the Min-Span problem and ξo be the span of

T ′
ξ. Essentially, T ′

ξ corresponds to the affordable simplification with the smallest span.

Span-Search first maintains a search space S containing ξo and then searches ξo over

S (T ′
ξ can also be retrieved when ξo is found).
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Concepts & Search Space S

We introduce some concepts used for defining the search space S and then give

a precise definition of S. Suppose that T ′
ξ is (ps1 , ps2, ..., psm). From Equa-

tion (5.2), we know ξ(T ′
ξ) = max1≤k<m{ξ(mcar(θ[sk : sk+1]))}. Let k∗ =

argmax1≤k<m{ξ(mcar(θ[sk : sk+1]))}. Then, we have ξo = ξ(T ′
ξ) = ξ(mcar(θ[sk∗ :

sk∗+1])). Consider ξ(mcar(θ[sk∗ : sk∗+1])). Let [θ, θ′] be mcar(θ[sk∗ : sk∗+1]). Note

that θ and θ′ are two directions in θ[sk∗ : sk∗+1]. Then, we derive that ξo = ξ([θ, θ′])).

By Equation (5.1), we have

ξo =







θ′ − θ if θ′ ≥ θ

2π − (θ − θ′) if θ′ < θ
(5.6)

Essentially, θ and θ′ could be the directions of any two segments of T . Thus, we

have the following observation.

Observation 2 (Pairwise Direction Difference) Let ξo be the optimal span of the

Min-Span problem. There exist two segments of T such that ξo is equal to either θ′− θ

or 2π − (θ − θ′) where θ and θ′ are the directions of the two segments.

Based on the above observation, we construct an (n − 1) × (n − 1) matrix Θ

containing both θ′ − θ and 2π − (θ − θ′) for each possible pair (θ, θ′) ∈ D × D,

whereD is the set of the directions of all possible segments of T , and define the search

space S to be the multi-set of all values in the matrix Θ. Note that the size of S is

(n − 1)2 = O(n2). Specifically, Θ is defined as follows. Let L = (θ1, θ2, ..., θn−1) be

the sorted list of the values in D in ascending order. For each i ∈ [1, n − 1] and each

j ∈ [1, n− 1], we define

Θ[i][j] =







θj − θi if j ≥ i

2π − (θi − θj) if j < i
(5.7)
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θ1 θ2 θ3 θ4 θ5 θ6 θ7
L: 0 0.464 0.785 1.107 5.498 5.820 5.961

Table 5.1: Sorted list of the directions in θ[1 : 8]

0 0.464 0.785 1.107 5.498 5.820 5.961

5.819 0 0.321 0.643 5.034 5.356 5.497

5.498 5.962 0 0.322 4.713 5.035 5.176

5.176 5.640 5.961 0 4.391 4.713 4.854

0.785 1.249 1.570 1.892 0 0.322 0.463

0.463 0.927 1.248 1.570 5.961 0 0.141

0.322 0.786 1.107 1.429 5.820 6.142 0

Table 5.2: Matrix Θ defined by Equation (5.7)

Θ[1 : 1][1] Θ[1 : 2][2] Θ[1 : 3][3] Θ[1 : 4][4] Θ[1 : 5][5] Θ[1 : 6][6] Θ[1 : 7][7]
Θ[2 : 7][1] Θ[3 : 7][2] Θ[4 : 7][3] Θ[5 : 7][4] Θ[6 : 7][5] Θ[7 : 7][6]

Table 5.3: The array set representing matrix Θ

(1,1,1), (1,2,2), (1,3,3), (1,4,4), (1,5,5), (1,6,6), (1,7,7)

(2,7,1), (3,7,2), (4,7,3), (5,7,4), (6,7,5), (7,7,6)

Table 5.4: The index triplet set (for the original search space S)

(1,0,1), (1,1,2), (1,1,3), (1,2,4), (1,5,5), (1,6,6), (1,7,7)

(2,4,1), (3,4,2), (4,5,3), (5,7,4), (6,7,5), (7,7,6)

Table 5.5: The index triplet set (for the updated search space resulted from the pruning
based on pivot ξ = 1.249)

To illustrate, consider Table 5.1 which shows the sorted list of D of the trajectory

T in Figure 4.2 and Table 5.2 which shows the corresponding matrix Θ.

With Observation 2, it is easy to verify that ξo is in S. We present this result in the

following lemma.

Lemma 5.5.2 The span of the optimal solution of the Min-Span problem (i.e., ξo) is in

S.

For example, as mentioned before, for the Min-Span problem with its input tra-

jectory as T presented in Figure 4.2 and its input W as 3, ξo is equal to 1.570 which

corresponds to Θ[6][4].
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Given a value ξ, we say that ξ is an affordable span iff there exists an affordable

simplification of T with its span at most ξ. It immediately follows that ξo corresponds

to the smallest affordable span. With Lemma 5.5.2, we know that ξo is the smallest

affordable span in S.

Strategy of Searching over S

After we introduced the concepts and defined the search space S in the previous sec-

tion, in this section, we present a strategy called Span-Search for finding the optimal

span ξo on S. Given a value ξ, we call the procedure of checking whether ξ is an

affordable span the span affordability check on ξ. This procedure, when called with

an input of ξ, also returns an affordable simplification T ′ with ξ(T ′) ≤ ξ if ξ is an

affordable span.

As we described before, we know that ξo is the smallest affordable span in S. Thus,

we propose to find ξo with three steps.

• Step 1 (Searching Step): Step 1 is to find a value ξ from S and perform a span

affordability check on ξ. If ξ is an affordable span, it also obtains an affordable

simplification T ′. Let ξbest be a variable denoting the best-known affordable span

in S (i.e., the smallest affordable span in S seen so far), initialized to ∞. Let

T ′
best be a variable denoting the simplified trajectory with its span at most ξbest.

If ξ is an affordable span and ξ < ξbest, it updates ξbest and T ′
best with ξ and T ′,

respectively.

• Step 2 (Iterative Step): Step 2 is to perform Step 1 iteratively with one of the

remaining values in S to be found until there is no remaining value in S.

• Step 3 (Output Step): Step 3 is to return ξbest and T ′
best.

A simple strategy of implementing Step 1 called Random-Search is to select a ran-
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dom value from S as ξ. The algorithm with this strategy is too costly since S involves

O(n2) values and thus the algorithm needs to performO(n2) span affordability checks.

Another strategy of implementing Step 1 called Binary-Search is to always select

the median of the values in the current search space as ξ since the result of the span

affordability check on the median could be used to prune at least half of the current

search space due to the following monotonicity property.

Property 5 (Monotonicity) Let ξ and ξ′ be two real numbers where ξ < ξ′. If ξ is an

affordable span, then ξ′ is also an affordable span.

Specifically, if ξ is an affordable span, we can prune all values at least ξ in

the current search space; otherwise, we can prune all values at most ξ in the cur-

rent search space. Although the algorithm with the Binary-Search strategy performs

2 logn = O(logn) span affordability checks only, it is still not scalable (since it needs

to materialize a search space S which occupies O(n2) space) and too costly (since it

introduces extra cost for finding the medians which takes O(n2 logn) time1).

In this thesis, we propose a new strategy called Span-Search. which differs from

Random-Search and Binary-Search as follows.

• Span-Search does not materialize the search space S explicitly as Linear-Search

and Binary-Search do, instead, it materializes a concise representation of S

called index triplet set (the details will be introduced in Part I of Section 5.5.4)

which occupies O(n) space only.

• Span-Search performs the span affordability check always on a pivot wrt the

current search space (the details will be introduced in Part II of Section 5.5.4)

1One can either sort the values in S at the right beginning with O(n2 logn2) = O(n2 logn) time
and then pick the medians each with O(1) time afterwards or run a median selection algorithm [7]
which returns the median of N values with O(N) time whenever a median is required. Both take
O(n2 logn) time.
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Algorithm 9 Span-Search

1: Initialize the index triplet set T of S (Part I of Section 5.5.4)
2: //Steps 1 & 2
3: while there exist values in the current search space represented by T do
4: Find a pivot ξ wrt the current search space (Part II of Section 5.5.4)
5: Perform a span affordability check on ξ (Part III of Section 5.5.4)
6: Update ξbest and T ′

best if necessary
7: Prune the search space with ξ by updating T (Part IV of Section 5.5.4)
8: //Step 3
9: return ξbest and T ′

best

at Step 1, which is different from Random-Search (on an random value from

the current search space) or Binary-Search (on the median of the current search

space). The details of how to perform a span affordability check on a given value

will be introduced in Part III of Section 5.5.4.

• Span-Search prunes at least 1
4

of the current search space after each span afford-

ability check (whose details will be introduced in Part IV of Section 5.5.4). This

implies that Span-Search needs to perform O(logn) span affordability checks

only.

• Span-Search has the time complexity ofO(n log2 n) and the space complexity of

O(n) both superior over those of Linear-Search and Binary-Search (the details

will be discussed in Part V of Section 5.5.4).

The pseudo-code of Span-Search is given in Algorithm 9.

5.5.4 The Span-Search Algorithm: Details

In this section, we give the details of Span-Search.

Part I: Concise Representation of S

In this part, we introduce our index triplet set which can concisely represent the search

space S with O(n) space (note that a full materialization of S occupies O(n2) space).
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We introduce some related concepts first. Given an l-sized arrayX and two integers

i, i′ ∈ [1, l], if i < i′, then X [i] is said to be before the position of X [i′] in the array X ,

and X [i′] is said to be after the position of X [i] in the array X . If i = i′, X [i] is said to

be at the position of X [i′] in the array X .

Since S is the multi-set containing all values in matrix Θ, we focus on describing

how to represent Θ concisely.

For each s, e and j ∈ [1, n − 1] where s ≤ e, we denote by Θ[s : e][j] the array

containing the values between the sth position and the eth position in the jth column

of Θ, i.e., Θ[s : e][j] = {Θ[s][j], Θ[s+ 1][j], ..., Θ[e][j]}.

For each column of Θ, say, Θ[1 : n − 1][j] where j ∈ [1, n − 1], which itself is

an array, we maintain it with two arrays, namely Θ[s1 : e1][j] and Θ[s2 : e2][j], where

s1 = 1, e1 = j, s2 = j+1, and e2 = n−1 (note that the (n−1)th column corresponds

to one array (i.e., Θ[1 : n− 1][n− 1]) only). As a result, the values in Θ are organized

with 2(n − 1) − 1 (= O(n)) arrays each in the form of Θ[s : e][j]. Let A be the set

containing all these arrays. Thus, the size of A is O(n). Note that the multi-set of

values of the arrays in A is exactly equal to S. In the following, for clarity, when we

write A, we mean the array set corresponding to the matrix Θ of the search space S.

To illustrate, consider Table 5.2 where each column is divided into two arrays: one

with white background and the other one with gray background. Table 5.3 shows the

corresponding array set A.

A nice feature about A is that all arrays in A are non-increasing 2 which could be

verified easily by using Equation (5.7) and the fact that for each i, i′ ∈ [1, n− 1] where

i ≤ i′, we have θi ≤ θi′ .

Property 6 (Non-Increasing Arrays) Each array in A is non-increasing.

2Given an l-sized array X where l is a positive integer, X is said to be non-increasing if for each
i, i′ ∈ [1, l] where i < i′, X [i] ≥ X [i′].
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To illustrate, consider the arrays in Table 5.3 and their corresponding content shown

in Table 5.2. It could be easily noticed that all the arrays are non-increasing.

We have introduced the concepts used to define the index triplet set. Let S be the

search space and A be the corresponding array set. The index triplet set of S, denoted

by T , is the set containing triplets of the indices of all arrays in A. That is,

T = {(s, e, j)|Θ[s : e][j] ∈ A} (5.8)

Note that each triplet in T identifies an array in A concisely. The space complexity of

T is O(n) only since we have O(n) arrays in A each with its space cost of O(1) in T .

For example, Table 5.4 shows the index triplet set corresponding the array set shown

in Table 5.3.

Interestingly, T alone concisely represents the multi-set of values of the arrays in

A (or the search space S). This is because for each triplet (s, e, j) ∈ T , we know

that conceptually, we have Θ[i][j] where i = s, s + 1, ..., e. We do not materialize the

content of Θ[i][j] explicitly since given the indices (i.e., i and j), the content can be

retrieved in O(1) time by using Equation (5.7). Instead, we materialize T only. In the

following, for the sake of convenience, we refer A instead of T to represent the entire

search space S (though T is the materialized version for A).

Part II: Definition, Search Space & Retrieval of a Pivot

In this part, we answer three questions: (1) what is a pivot, (2) where can we find a

pivot and (3) how to find a pivot.

(1) What is a pivot? Before we define what is a pivot, we introduce a concept called

bisector and its related concepts.

For each array Θ[s : e][j] in A, we define its bisector, denoted by b(s, e, j), to

be Θ[⌈s+e
2
⌉][j]. Since Θ[s : e][j] is non-increasing, we know that at least half of the
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values in Θ[s : e][j] are at most its bisector b(s, e, j) and at least half of the values

in Θ[s : e][j] are at least its bisector b(s, e, j). For example, the bisector of array

Θ[3 : 7][2] is Θ[5][2] which is equal to 1.249 (See Table 5.2).

For a given value ξ ∈ S, the arrays in A could be categorized into three dis-

joint groups, namely the group containing those arrays with the bisectors strictly

smaller than ξ which we denote by A(ξ,−), the group containing those arrays with

the bisectors exactly equal to ξ which we denote by A(ξ,=), and the group con-

taining those arrays with the bisectors strictly larger than ξ which we denote by

A(ξ,+). Let N(A(ξ,−)), N(A(ξ,=)), and N(A(ξ,+)) be the size of the multi-set

of the values of the arrays in A(ξ,−), A(ξ,=), and A(ξ,+), respectively. Note that

N(A(ξ,−)) +N(A(ξ,=)) +N(A(ξ,+)) = |S|.

To illustrate, consider the array set A shown in Table 5.3. Suppose ξ = 1.249.

Then, we know A(ξ,−) = {Θ[1 : 1][1], Θ[2 : 7][1], Θ[1 : 2][2], Θ[1 : 3][3], Θ[4 :

7][3], Θ[1 : 4][4]}, A(ξ,=) = {Θ[3 : 7][2]}, and A(ξ,+) = {Θ[5 : 7][4], Θ[1 :

5][5], Θ[6 : 7][5], Θ[1 : 6][6], Θ[7 : 7][6], Θ[1 : 7][7]}. As a result, we have

N(A(ξ,−)) = 20, N(A(ξ,=)) = 5, and N(A(ξ,+)) = 24. Note that N(A(ξ,−)) +

N(A(ξ,=)) +N(A(ξ,+)) = 49 = |S|.

Now, we are ready to define what is a pivot.

Definition 5.5.1 (Pivot) Given a value ξ ∈ S, ξ is defined to be a pivot wrt S if

min{N(A(ξ,−)) +N(A(ξ,=)), N(A(ξ,+)) +N(A(ξ,=))} ≥ |S|
2

.

For example, ξ = 1.249 corresponds to a pivot wrt S since min{N(A(ξ,−)) +

N(A(ξ,=)), N(A(ξ,+))+N(A(ξ,=))} = min{20+5, 24+5} = 25 ≥ |S|
2

(= 49/2).

In the following, we simply write “a pivot wrt S” as “a pivot” if the context of S is

clear.
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(2) Where can we find a pivot? Before we give the details, we introduce a property

first.

Property 7 Given ξ, ξ′ ∈ B with ξ < ξ′, we have

N(A(ξ,−)) +N(A(ξ,=)) ≤ N(A(ξ′,−)) +N(A(ξ′,=))

N(A(ξ,+)) +N(A(ξ,=)) ≥ N(A(ξ′,+)) +N(A(ξ′,=))

This essentially says that N(A(ξ,−)) + N(A(ξ,=)) is non-decreasing while

N(A(ξ,+)) +N(A(ξ,=)) is non-increasing when ξ increases.

Proof. This is simply because A(ξ,−) ∪ A(ξ,=) ⊆ A(ξ′,−) and A(ξ′,+) ∪ A(ξ′,=

) ⊆ A(ξ,+).

Let B be the multi-set containing the bisectors of all arrays in A, i.e., B =

{Θ[⌈s+e
2
⌉][j]|Θ[s : e][j] ∈ A}. Note that the size of B is O(n), and B ⊆ S. We

claim that there exists a pivot in B.

Lemma 5.5.3 At least one of the values in B is a pivot wrt S.

Proof. Let ξ1, ξ2, ..., ξ|B| be the sorted list of B in ascending order. We prove

Lemma 5.5.3 by contradiction. Assume that none of the values in B is a pivot.

Consider ξ1. Clearly, N(A(ξ1,−)) = 0 and thus N(A(ξ1,=)) + N(A(ξ1,+)) =

|S|. Therefore, we know N(A(ξ1,−)) +N(A(ξ1,=)) < |S|/2 since otherwise ξ1 is a

pivot which leads to a contradiction.

Consider ξ|B|. Similarly, we know N(A(ξ|B|,+)) = 0 and thus N(A(ξ|B|,−)) +

N(A(ξ|B|,=)) = |S|. Therefore, we know N(A(ξ|B|,+)) + N(A(ξ|B|,=)) < |S|/2

since otherwise ξ|B| is a pivot wrt S which leads to a contradiction.

By using Property 7 and the above results, we know there exists h1 ∈ [1, |B|) such

thatN(A(ξh1,−))+N(A(ξh1,=)) < |S|/2 andN(A(ξh1+1,−))+N(A(ξh1+1,=)) ≥
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|S|/2. Similarly, there exists h2 ∈ (1, |B|] such that N(A(ξh2,+)) +N(A(ξh2,=)) <

|S|/2 and N(A(ξh2−1,+)) +N(A(ξh2−1,=)) ≥ |S|/2.

We consider 3 cases. Case 1: h2 < h1+1. We haveN(A(ξh2,−))+2 ·N(A(ξh2,=

)) + N(A(ξh2,+)) < |S|/2 + |S|/2 = |S| which leads to a contradiction. Case 2:

h2 = h1+1. This contradicts the fact thatN(A(ξh1,−))+N(A(ξh1,=))+N(A(ξh2,=

)) +N(A(ξh2,+)) = |S|. Case 3: h2 > h1 + 1. We deduce that ξh1+1 is a pivot which

leads to a contradiction. That is, we deduce a contradiction in all cases which finishes

our proof.

To illustrate, consider the search space S corresponding to

the array set shown in Table 5.3. We can compute B =

{0, 0.785, 0, 1.249, 0.321, 1.248, 0.322, 1.570, 4.713, 5.820, 4.713,

6.142, 4.854}. As mentioned before, 1.249 is a pivot wrt S which is contained in B.

Lemma 5.5.3 is very usefully since it not only implies that there always exists a

pivot, but also implies that we can focus on B which has its size of O(n) for finding a

pivot.

(3) How to find a pivot? According to Lemma 5.5.3, we can focus on B for finding

a pivot. A straightforward method is to traverse the values in B one by one, check

whether it is a pivot, and stop when a pivot is found. Note that given a value ξ, the cost

of checking whether ξ is a pivot or not is O(n) since we haveO(n) arrays inA and the

number of values in an array Θ[s : e][j] is simply e− s+ 1 which could be computed

in O(1) time.

Fortunately, we can find a pivot in a smarter way with a binary search over B based

on the monotonicity properties shown in Property 7. Specifically, we first sort the

values in B in ascending order and obtain a sorted list. Let bm be the value at the

middle of the list. Then, we compute N(A(bm,−)), N(A(bm,=)), and N(A(bm,+)).

If min{N(A(bm,−))+N(A(bm,=)), N(A(bm,+))+N(A(bm,=))} ≥ |S|
2

, we return
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bm as a pivot; otherwise, we have two cases.

• Case 1: N(A(bm,−)) + N(A(bm,=)) < |S|
2

. In this case, we can safely prune

all values that are at most bm in B (Here, pruning a value means that we ignore

this value for finding a pivot, which is considered in this section, but this value

is still in the current search space S (or A)).

• Case 2: N(A(bm,+)) + N(A(bm,=)) < |S|
2

. In this case, we can safely prune

all values that are at least bm in B.

In conclusion, if bm is a pivot, we are done, and otherwise we can prune at least half

of the search space B and repeat the process based on the remaining search space until

we find a pivot.

The time complexity of the above method is simply O(n logn) since the sorting

procedure has the cost of O(n logn) and the binary search procedure has O(logn)

iterations each has the cost of O(n) for checking whether a given value is a pivot.

Part III: Span Affordability Check on ξ

In this part, we introduce our method for performing the span affordability check on a

given ξ.

Let ξ be a non-negative value. Given a simplification T ′ of T , we say that T ′ is a

ξ-simplification (of T ) iff ξ(T ′) ≤ ξ.

Similar to the error affordability check described in Section 5.4, we perform the

span affordability check on a given ξ as follows. First, we compute the ξ-simplification

with the smallest size, say, T ′. Then, we compare |T ′| with W . If |T ′| ≤ W , we

conclude that ξ is an affordable span; otherwise, we conclude that ξ is not an affordable

span. The correctness of this method is obvious and the remaining issue is how to find

the ξ-simplification with the smallest size for a given ξ.
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Algorithm 10 Finding ξ-simplification with the smallest size

1: T ′ ← (p1)
2: i← 1; j ← i+ 1
3: while j ≤ n do
4: while j ≤ n and ξ(mcar(θ[i : j])) ≤ ξ do
5: j ← j + 1
6: Append pj−1 to T ′

7: i← j − 1
8: return T ′

We design our algorithm as follows. Let i be the position index of T where the

algorithm starts at. Initially, i is set to 1 and pi is appended to T ′. It tries to approximate

as many consecutive segments starting from pi in T as possible while adhering to the

constraint that the span of the minimum covering angular range of the set containing

the directions of these segments is at most ξ. To do it, it checks the position index j

starting from i + 1 one by one. If ξ(mcar(θ[i : j])) ≤ ξ, it continues to check the

next position index by updating j to j + 1 until either j > n (i.e., j = n + 1) or

ξ(mcar(θ[i : j])) > ξ. Then, it appends pj−1 to T ′ since in either the case of j > n

(i.e., j = n + 1), or the case of ξ(mcar(θ[i : j])) > ξ, the segments between pi and

pj−1 form the longest possible sequence starting from pi that could be approximated

by one segment in T ′. After that, it continues the process from pj−1 by updating i with

j − 1. It stops if j > n which implies j = n+ 1. The pseudo-code of the algorithm is

shown in Algorithm 10.

We illustrate Algorithm 10 with the input trajectory as T in Figure 4.2 and ξ as

1.249. Note that ξ = 1.249 is a pivot. In this case, n = 8. T ′ is first initialized as (p1)

and i = 1. It starts from j = i + 1 = 2. It computes ξ(mcar(θ[1 : 2])) = 0 since

θ[1 : 2] = {θ(p1p2)} = {0.785} and thusmcar(θ[1 : 2]) = [0.785, 0.785]. Since j ≤ n

and ξ(mcar(θ[1 : 2])) ≤ ξ = 1.249, it updates j to be j + 1 = 3. Again, it computes

ξ(mcar(θ[1 : 3])) = 1.248. Since j ≤ n and ξ(mcar(θ[1 : 3])) ≤ ξ = 1.249, it

updates j to be j + 1 = 4. Then, it computes ξ(mcar(θ[1 : 4])) = 1.570. This time,

since ξ(mcar(θ[1 : 4])) > ξ = 1.249, it stops updating j, but appends pj−1 (i.e., p3) to
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T ′ (thus T ′ becomes (p1, p3)) and updates i to be j − 1 = 3. It implies that (p1, p2, p3)

is the longest possible sequence starting from p1 which has the span at most ξ = 1.249.

It repeats the same process with the new starting position p3 and keeps increasing j by

1 until j = 7 since ξ(θ[3 : 7]) = 1.892 > ξ = 1.249. Then, it appends pj−1 (i.e., p6) to

T ′ (thus T ′ becomes (p1, p3, p6)) and updates i to be j − 1 = 6. It continues the same

process with the new starting position p6 and keeps increasing j by 1 until j = 9 since

j > n. Then, it appends pj−1 (i.e., p8) to T ′ (thus T ′ becomes (p1, p3, p6, p8)) and stops

the process. At the end, it returns T ′ which is (p1, p3, p6, p8).

Lemma 5.5.4 Algorithm 10 finds the ξ-simplification with the smallest size for a given

ξ.

Proof. Let T ′ = (ps1, ps2, ..., psm) be the simplification returned by Algorithm 10. Let

T ′′ = (pt1 , pt2 , ..., ptl) be the ξ-simplification with the smallest size. By definition, we

have s1 = r1 = 1 and sm = tl = n. Note that |T ′| = m and |T ′′| = l.

Assume that m > l. We prove that for each k ∈ [1, l], we have sk ≥ rk by

deduction.

Base step: k = 1. We have sk = rk = 1.

Deduction step: k > 1. Assume that we have sk−1 ≥ rk−1. According to

Algorithm 10, we have ξ(mcar(θ[sk−1 : j])) ≤ ξ for j ∈ [sk−1 + 1, sk] while

ξ(mcar(θ[sk−1 : sk + 1])) > ξ. Since sk−1 ≥ rk−1, we know rk ≤ sk since otherwise

ξ(mcar(θ[rk−1 : rk])) ≥ ξ(mcar(θ[rk−1 : sk + 1)) ≥ ξ(mcar(θ[sk−1 : sk + 1])) > ξ,

which leads to a contradiction. The above inequalities are based on the fact that

ξ(mcar(D)) is non-decreasing when the set D includes more directions.

Therefore, we have sl ≥ rl = n, which leads to a contradiction that sl < sm = n.

This finishes our proof.
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Algorithm 10 has the time complexity ofO(n logn), whose implementation details

and time complexity analysis could be found in Section B.4 of the Appendix.

Recall that the span affordability check on a given ξ is performed by first finding

the ξ-simplification T ′ with the smallest size via Algorithm 10 and then comparing |T ′|

with W . Thus, the cost of performing the span affordability check is dominated by the

cost of Algorithm 10, which is O(n logn).

To illustrate, consider the span affordability check on ξ = 1.249 with the input

trajectory as T in Figure 4.2 and the input W as 3. As discussed before, the ξ-

simplification T ′ with the smallest size is (p1, p3, p6, p8). Since T ′ has its size equal to

4 which is larger than W = 3, we know that ξ = 1.249 is not an affordable span.

Part IV: How to Prune Search Space with a Pivot

In this part, we describe how we can prune at least 1
4

of the current search space based

on a pivot. Suppose that ξ is a pivot. We can prune the current search space based on

two different cases.

• Case 1: ξ is not an affordable span. In this case, we know that ξo > ξ and we can

prune values at most ξ. To do this, for each arrayΘ[s : e][j] inA(ξ,−)∪A(ξ,=),

we prune its values that are at or after the position of its bisector (because they

are at most its bisector and its bisector is at most ξ) by shrinking it to Θ[s :

⌈s+e
2
⌉ − 1][j] (Θ[s : ⌈s+e

2
⌉ − 1][j] is dropped if ⌈s+e

2
⌉ − 1 < s). Note that the

number of values pruned is at least
N(A(ξ,−))+N(A(ξ,=))

2
. Since ξ is a pivot, we

know N(A(ξ,−)) + N(A(ξ,=)) ≥ |S|
2

which implies that we have pruned at

least
|S|
4

values. Here, by shrinking Θ[s : e][j] to Θ[s : ⌈s+e
2
⌉ − 1][j] in A, we

mean updating the triple (s, e, j) with (s, ⌈s+e
2
⌉ − 1, j) in the index triplet set T

corresponding to A.

• Case 2: ξ is an affordable span. We can perform the pruning operation in a
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symmetric way as Case 1 by shrinking each arrayΘ[s : e][j] inA(ξ,+)∪A(ξ,=)

to Θ[⌈s+e
2
⌉ + 1 : e][j] (Θ[⌈s+e

2
⌉ + 1 : e][j] is dropped if ⌈s+e

2
⌉ + 1 > e).

Similar to Case 1, we derive that 1
4

of the current search space is pruned, and the

corresponding shrinking operation is executed on T .

In conclusion, using a pivot can prune 1
4

of the current search space.

To illustrate, consider our running example where Table 5.3 shows the array set

corresponding to the current search space R containing 49 values. Suppose that we

have found a pivot ξ = 1.249. Now, we illustrate the pruning process based on ξ.

Since ξ is not an affordable span (we know it from the examples discussed before), we

prune the search space R be updating each array Θ[s : e][j] in A(ξ,−) ∪ A(ξ,=) to

be Θ[s : ⌈s+e
2
⌉ − 1][j]. As discussed before, A(ξ,−) = {Θ[1 : 1][1], Θ[2 : 7][1], Θ[1 :

2][2], Θ[1 : 3][3], Θ[4 : 7][3], Θ[1 : 4][4]} and A(ξ,=) = Θ[3 : 7][2]}. The arrays in

these two sets will be updated and the index triplet set of the updated array set is shown

in Table 5.5. As could be verified, the number of values in the search space represented

by this updated index triplet set is equal to 35, i.e., (49 − 35) = 14 values have been

pruned (note that 14 > 49
4

).

Note that our index triplet set for representing the search space makes the process

of executing the pruning operations extremely convenient, i.e., all we need is to update

the indices (i.e., s and e) of each array Θ[s : e][j], and thus the pruning operations

could be executed in O(n) time since we have O(n) arrays only.

Remark. The pruning operations only shrink the arrays and thus Property 6 still holds

for the updated array set which further implies that we can repeat our process to find a

pivot ξ wrt the updated search space, perform a span affordability on ξ and prune the

updated search space at the next iteration until the search space becomes empty. Note

that the process involves O(logn) iterations only since at least 1
4

of the search space is

pruned at each iteration.
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# of trajectories total # of positons average # of positions per trajectory

Geolife 17,621 24,876,978 1,412

T-Drive 10,359 17,740,902 1,713

Table 5.6: Real datasets (DPTS and Min-Error)

Part V: Time & Space Complexity of Span-Search

In this part, we analyze the time and space complexities of Span-Search. Span-Search

proceeds with iterations. At each iteration, it first finds a pivot ξ wrt the current search

space (which can be done in O(n logn) as shown in Part II of Section 5.5.4), checks

the span affordability on ξ (which can be done in O(n logn) as shown in Part III of

Section 5.5.4), and prunes at least 1
4

of the current search space (which can be done in

O(n) as shown in Part IV of Section 5.5.4). It could be verified easily that the process

involves 2 logn/ log(4/3) = O(logn) iterations. Therefore, the time complexity of

Span-Search is O(logn · (n log n + n logn + n)) = O(n log2 n). Besides, the space

complexity of Span-Search is simply O(n) which corresponds to the space cost for

maintaining the index triplet set.

5.6 Experiments

We used two real datasets in our experiments, namely Geolife and T-Drive. Geolife3

records the outdoor movements of 182 users in a period of 5 years and T-Drive4 is

a set of taxi trajectories in Beijing. These two datasets are widely used for a broad

range of applications on trajectory data [107, 101]. The statistics of these datasets are

summarized in Table 5.6.

Since the experimental results in Chapter 4 already show the advantage of using

DPTS over PPTS, we focus on the performance of our proposed algorithms in this

thesis. All algorithms were implemented in C/C++ and ran on a Linux platform with a

3http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/

4http://research.microsoft.com/apps/pubs/?id=152883
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2.66GHz machine and 40GB RAM.

5.6.1 Comparison with Wavelet Transformation

First, following [12], we use the Haar Wavelet Transformation as a baseline of tra-

jectory simplification and compare it with our Min-Error mechanism in terms of how

good they are for preserving the direction information. The major idea of wavelet

transformation is to transform the raw data which corresponds to a set of n numbers

into a set of n coefficients (this step does not introduce any information loss and the

raw data could be completely restored with these n coefficients) and store k coefficients

only where k < n, e.g., top-k coefficients (note that this step saves some storage space

with the compression rate of k/n, but introduces some information loss since n − k

coefficients are dropped). To get an approximation of the raw data (which contains n

values), a set of n values is constructed based on the k stored coefficients. We adopt

wavelet transformation for trajectory simplification with the purpose of preserving the

direction information as follows. We maintain the set of the directions of the segments

of a given trajectory (this corresponds to the direction information of the trajectory),

perform wavelet transformation on the set of directions and store a certain number of

coefficients according to the storage budget. The goodness of wavelet transformation

for preserving the direction information is measured by the maximum and also average

angular difference between an original direction and its corresponding approximated

direction constructed based on the stored coefficients. For both measures, the smaller,

the better.

We conducted experiments on Min-Error and wavelet transformation by varying

the storage budget W , and the results are shown in Figure 5.6 where “Wavelet trans.

(max.)” and “Wavelet trans. (avg.)” denote the maximum and the average angular

difference of wavelet transformation, respectively, and “Min-Error (max.)” denotes
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the maximum angular difference between the direction of a segment pp′ in the original

trajectory and the direction of the segment that approximates pp′ in the simplified tra-

jectory generated by the exact algorithm, Error-Search, for Min-Error (note that this

corresponds to the direction-based error). Note that for Min-Error, we do not show the

average angular difference since it is extremely small. According to these results, we

have the following observations. First, wavelet transformation performs poorly when

being used for preserving the direction information, e.g., in most cases, wavelet trans-

formation results in high maximum and average angular difference, and this holds even

when the storage budget W is near to |T |. This essentially tells that wavelet transfor-

mation is not suitable for preserving the direction information when being used for

trajectory simplification. Second, Min-Error performs significantly better than wavelet

transformation in terms of preserving the direction information. Thus, in the following,

we focus on Min-Error only in our experiments.

We also show the effects of the storage budget W on the direction-based error

in more detail in Figure 5.7 and we observe that when W is relatively small (e.g.,

W ≤ 0.2), a small increase on W yields a significant reduction on the optimal error,

while when W is relatively large (e.g., W ≥ 0.5), even a large increase on W helps a

little to reduce the optimal error.
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We do not adopt the principle of minimum description length (MDL) [42] for our
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Min-Error problem since MDL is for balancing between the size and the error of the

simplied trajectory and thus it does not allow users to specify a size constraint or opti-

mize the simplification error.

Next, we study the performance of our exact and approximate algorithm in Sec-

tion 5.6.2 and in Section 5.6.3, respectively.

5.6.2 Performance Study of the Exact Algorithms

In this part, we study the effects of 2 factors, namely the data size (i.e., |T |) and the

storage budget (i.e., W ) on the performance of our exact algorithms, namely DP and

Error-Search. We use 2 measures, namely the running time and the memory.

Effect of |T |. The values used for |T | are around 2,000, 4,000, 6,000, 8,000 and

10,000 (W is fixed to be 0.2, i.e., W = 0.2 ∗ |T |). For each setting of |T |, we select

a set of 10 trajectories each of which has its size near to this value and run our exact

algorithms on each of these trajectories. Then, we average the experimental results

on these trajectories (this policy is used throughout our experiments without specifica-

tion). Figure 5.8 show the results on Geolife. According to these results, Error-Search

is always faster than DP, and the efficiency gap between them becomes larger when

the data size increases. This could be easily explained by the fact that Error-Search

has smaller time/space complexities than DP.

The experimental results on T-Drive are similar and thus they are omitted due to

page limit.

Effect of W . The values used for W are 0.1, 0.2, 0.3, 0.4 and 0.5 (|T | is fixed to about

6,000). The results are presented in Figure 5.9. We observe that DP has both its run-

ning time and its memory increase with W , which could be explained by the fact that

DP has its problem space proportional to W . In contrast, W has no significant effects

on Error-Search since Error-Search has its time/space complexities independent ofW .
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Scalability test. Figure 5.10 shows the scalability test results on the exact algorithms.

We observe that DP is limited to medium-sized datasets only while Error-Search can

go much further. For example, on a trajectory with about 50,000 positions, DP runs

for several days and occupies nearly 30GB memory, while Error-Search runs for about

1hr and occupies about 10GB memory.

5.6.3 Performance Study of the Approximate Algorithms

In this part, we study the effects of |T | and W on two approximate algorithms, namely

Span-Search and Douglas-Peucker. Douglas-Peucker is an adaptation of the traditional

Douglas-Peucker algorithm [31], whose major idea is to recursively cut the trajectory at

one of the end of the segment that has the greatest angular difference from the segment

172



 100

 1000

 10000

 100000

 1e+06

10000 20000 30000 40000 50000

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Data size

DP
Error-Search

 0

 10000

 20000

 30000

 40000

10000 20000 30000 40000 50000

M
em

or
y 

(M
B

)

Data size

DP
Error-Search

(a) (b)

Figure 5.10: Scalability test (Geolife, Min-Error)

linking the start position and the end position of this trajectory until we have W − 1

sub-trajectories and then use one segment to approximate each sub-trajectory. We note

here that Douglas-Peucker is the most popular algorithm for trajectory simplification

in the literature [31, 72, 43]. We use 3 measures, namely the running time, the memory

and the approximation factor. The approximation factor of an approximate algorithm

is defined to be ǫ(T ′)/ǫ(T ′
o), where T ′ is the simplified trajectory returned by this

approximate algorithm on a given raw trajectory and T ′
o is the simplified trajectory

returned by an exact algorithm on the same raw trajectory. Clearly, the smaller the

approximation factor is, the better approximation quality the algorithm has.

Approximation factor. We present the results with two figures, Figure 5.11(a) and

Figure 5.11(b). Figure 5.11(a) shows for each approximate algorithm, the (absolute)

error of the simplified trajectory returned and also the optimal error (i.e., the error of

the simplified trajectory returned by an exact algorithm such as Error-Search), and

Figure 5.11(b) shows the approximation factors of the approximate algorithms. Ac-

cording to these results, Span-Search is consistently better than Douglas-Peucker in

terms of approximation quality. We emphasize here that Douglas-Peucker has its ap-

proximation factor usually around 3. In contrast, Span-Search usually achieves an

approximation factor around 1.5, though its theoretical worst-case bound is 2. In other

words, Douglas-Peucker has an error that is 200% greater than optimum while Span-
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Search achieves an error only 50% greater than optimum.
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Figure 5.11: Approximation quality (Geolife, Min-Error)

Effect of |T |. The values used for |T | are around 20,000, 40,000, 60,000, 80,000 and

100,000 (W is fixed to 0.2). Figure 5.12 shows the results. According to these re-

sults, Span-Search, though slower than Douglas-Peucker, runs reasonably fast (e.g.,

on a dataset with about 100,000 positions, Span-Search runs less than 1000s). Be-

sides, both Span-Search and Douglas-Peucker are space efficient (e.g., they occupy

less than 30MB) which could be explained by the fact that Span-Search has a linear

space complexity and so does Douglas-Peucker.
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Figure 5.12: Effects of data size |T | (Geolife, Min-Error)

Effect of W . The values used for W are 0.1, 0.2, 0.3, 0.4 and 0.5 (|T | is fixed to about

60,000). The results are shown in Figure 5.13. We notice that both Span-Search and

Douglas-Peucker are only slightly affected by W . Specifically, when W increases,
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both the algorithms run a little bit slower. For Span-Search, with a larger W , the span

affordability check procedure would probably maintain a larger binary search tree and

also a larger priority queue which incurs more cost. For Douglas-Peucker, with a larger

W , it would do more “cut” operations and thus it incurs more cost.
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Figure 5.13: Effects of storage budget W (Geolife, Min-Error)

Scalability test. Figure 5.14 shows the scalability test results on the approximate al-

gorithms. According to results, we know that Span-Search is scalable to large datasets.

For example, on a dataset with about 500,000 positions, Span-Search runs for a couple

of hours and occupies less than 150MB memory.
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Figure 5.14: Scalability test (Geolife, Min-Error)

Additional experiments. We also conducted experiments on a variant of Error-Search

which adopts the Douglas-Peucker algorithm for performing each error affordability

check approximately and thus it corresponds to an approximate algorithm for the Min-
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Error problem. We observed that this variant of Error-Search was dominated by our

Span-Search algorithm in terms of both the running time and the minimized error. Due

to the page limit, the details are omitted.

Empirical conclusion. About the exact algorithms, Error-Search has its superiority

over DP in terms of both time and space efficiency. About the approximate algorithms,

Span-Search has its approximation quality consistently better than Douglas-Peucker

and is scalable to large datasets.

5.7 Conclusion

In this chapter, we identified a new application scenario for DPTS and defined a cor-

responding problem, i.e., the Min-Error problem. Then, we designed two exact algo-

rithms, DP and Error-Search, based on dynamic programming and binary search, re-

spectively. Since the time complexities of the exact algorithms are relatively high, we

further developed an approximate algorithm Span-Search which runs in O(n log2 n)

time and gives a 2-factor approximation. We conducted extensive experiments on real

datasets which verified our proposed algorithms.
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CHAPTER 6

CONCLUSION AND FUTURE WORK PLAN

In this thesis, we introduce three techniques for boosting the spatial computations

which are central to some location-based services, namely the collective spatial key-

word query, worst-case optimized spatial matching, and direction-preserving trajectory

simplification.

We have the future work plans as follows as regarding to techniques introduced in

this thesis. As for the collective spatial keyword query (CoSKQ), we plan to study the

problem of finding a feasible set with the smallest cost where the cost is defined based

on the shortest route that traverses all objects in the set, the problem of finding a feasi-

ble set with the smallest cost per object, and the CoSKQ problem in a dynamic setting

where the query point is moving. As for the worst-case optimized spatial matching,

we plan to study the problem of finding the worst-case optimized spatial matching in a

dynamic setting where the customers and/or the service-providers are moving and the

problem of finding a location for setting up a new service-provider such that the maxi-

mum matching distance is reduced as much as possible. As for the direction-preserving

trajectory simplification (DPTS), we plan to study the problem of performing DPTS

in an online setting, the problem of doing DPTS where each line segment of the tra-

jectory is associated with a weight (i.e., different segments have different importance;

for example, it is fairly intuitive that a longer road segment is regarded to be more

important than a shorter one), and the problem of trajectory simplification where the

error is defined based on some other information than the directional information, e.g.,

the speed information.
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[60] R. Lange, T. Farrell, F. Dürr, and K. Rothermel. Remote real-time trajectory

simplification. In PerComm’09, pages 1–10. IEEE, 2009.

[61] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks.

In SIGKDD, pages 467–476. ACM, 2009.

[62] J. G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect

framework. In ICDE, pages 140–149. IEEE, 2008.

[63] J. G. Lee, J. Han, X. Li, and H. Gonzalez. Traclass: trajectory classification

using hierarchical region-based and trajectory-based clustering. PVLDB’08,

1(1):1081–1094, 2008.

[64] J. G. Lee, J. Han, and K. Y. Whang. Trajectory clustering: a partition-and-group

framework. In SIGMOD, pages 593–604. ACM, 2007.

[65] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng. On trip plan-

ning queries in spatial databases, pages 273–290. Advances in Spatial and

Temporal Databases. Springer, 2005.

[66] Z. Li, K. Lee, B. Zheng, W. Lee, D. Lee, and X. Wang. Ir-tree: An efficient

index for geographic document search. TKDE, pages 585–599, 2011.

[67] G. Liu, M. Iwai, and K. Sezaki. A method for online trajectory simplification

by enclosed area metric. ICMU’12, 2012.

[68] W. Liu, W. Sun, C. Chen, Y. Huang, Y. Jing, and K. Chen. Circle of friend query

in geo-social networks. In Database Systems for Advanced Applications, pages

126–137. Springer, 2012.

184



[69] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing. Discovering spatio-

temporal causal interactions in traffic data streams. In SIGKDD, 2011.

[70] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest neighbor search.

In SIGMOD, pages 349–360. ACM, 2011.

[71] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based most fre-

quent path in big trajectory data. In SIGMOD, 2013.

[72] N. Meratnia and R. de By. Spatiotemporal compression techniques for moving

point objects. EDBT, pages 561–562, 2004.

[73] J. Muckell, J. H. Hwang, C. T. Lawson, and S. Ravi. Algorithms for com-

pressing gps trajectory data: an empirical evaluation. In SIGSPATIAL, pages

402–405. ACM, 2010.

[74] J. Muckell, J. H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. Ravi. Squish:

an online approach for gps trajectory compression. In Proceedings of the 2nd

International Conference on Computing for Geospatial Research and Applica-

tions, pages 1–8. ACM, 2011.

[75] K. Mulmuley. Computational geometry: An introduction through randomized

algorithms. In Prentice Hall, 1993.

[76] D. Patel, C. Sheng, W. Hsu, and M. L. Lee. Incorporating duration information

for trajectory classification. In ICDE, pages 1132–1143. IEEE, 2012.

[77] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. Andrienko, and

Y. Theodoridis. Similarity search in trajectory databases. In TIME, pages 129–

140. IEEE, 2007.

[78] H. Pham, C. Shahabi, and Y. Liu. Ebm-an entropy-based model to infer social

strength from spatiotemporal data. SIGMOD, 2013.

185



[79] M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory streams with

spatiotemporal criteria. In SSDBM, pages 275–284. IEEE, 2006.

[80] J. Rocha, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient processing of
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APPENDIX A

THEORETICAL RESULTS

A.1 The Approximation Factor of MaxSum-Appro in

General Case

In this part, we show that the approximation factor of MaxSum-Appro with a general

setting of α is equal to (2−
√
2/2 · α).

We use the same notations as defined in the proof of Theorem 2.4.2.

Consider cost(So). Same as the proof of Theorem 2.4.2, we have

maxo′∈So
d(o′, q) = d(o, q) = r2 and maxo1,o2∈So

d(o1, o2) ≥ d(o, of) = r1. As a

result, we have

cost(So) ≥ α · r2 + (1− α) · r1 (A.1)

Consider cost(S ′). Same as the proof of Theorem 2.4.2, we consider two cases.

Case 1: r1 ≤
√
2r2 (See Figure 2.2(a) for illustration). In this case, we have

maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2
√

r21 − r41/4r22. Recall that maxo′∈S′ d(o′, q) =

d(o, q) = r2. As a result, we have

cost(S ′) ≤ α · r2 + (1− α) · 2
√

r21 − r41/4r22 (A.2)
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Therefore,

cost(S ′)

cost(So)
≤ α · r2 + (1− α) · 2

√

r21 − r41/4r22
α · r2 + (1− α) · r1

= 1 +
(1− α) · (2

√

r21 − r41/4r22 − r1)
α · r2 + (1− α) · r1

= 1 +
(1− α) · (2

√

1− r21/4r22 − 1)

α · r2/r1 + 1− α

< 1 +
(1− α) · (2

√
1− 0− 1)

α ·
√
2/2 + 1− α

= 1 +
1− α

α ·
√
2/2 + 1− α

= 2−
√
2/2 · α

1− (1−
√
2/2) · α

< 2−
√
2/2 · α
1− 0

= 2−
√
2/2 · α

Case 2: r1 >
√
2r2 (See Figure 2.2(b) for illustration). Similar to Case 1, it could

be verified that maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. As a result, we have

cost(S ′) ≤ α · r2 + (1− α) · 2r2 (A.3)

Therefore,

cost(S ′)

cost(So)
≤ α · r2 + (1− α) · 2 · r2

α · r2 + (1− α) · r1
=

α+ (1− α) · 2
α + (1− α) · r1/r2

≤ 2− α
α + (1− α) ·

√
2
< 2− α < 2−

√
2/2 · α

Thus, by combining Case 1 and Case 2, we have cost(S ′) ≤ (2 −
√
2/2 · α) ·

cost(So), which finishes the discussion.
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A.2 Theoretical Error Bounds wrt the Synchronous

Euclidean Distance

In this part, we show that when the mapping function MS(·, ·) (i.e., Synchronous Eu-

clidean Distance) is used, the position error of DPTS is bounded (Lemma A.2.1) and

the direction error of PPTS is un-bounded (Lemma A.2.2).

Lemma A.2.1 (Bounded Position Error) Let T be a trajectory and T ′ be an ǫt-

simplification of T with ǫt < π/2. For each position pi in T where i ∈ [1, n], we

have

d(pi, p
′
i) ≤ 0.5 · (1 + 1/ cos(ǫt)) · Lmax

where p′i =MC(pi, T
′) and Lmax = maxi∈[1,n) len(psi , psi+1

|T ′).

Proof. Let pskpsk+1
be the segment of T ′ such that psk is the last position with sk ≤ i

and psk+1
is the first position with sk+1 ≥ i+1. Consider Figure A.1(a) for illustration.

By using triangle inequality, we have

d(pi, p
′
i) ≤ len(psk , pi|T ) + d(psk , p

′
i)

and

d(pi, p
′
i) ≤ len(pi, psk+1

|T ) + d(p′i, psk+1
)
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By using the above two equations, we have

d(pi, p
′
i) ≤ len(psk , pi|T ) + d(psk , p

′
i)

+ len(pi, psk+1
|T ) + d(p′i, psk+1

)

= len(psk , psk+1
|T ) + len(psk , psk+1

|T ′)

≤ 1/ cos(ǫt) · len(psk , psk+1
|T ′) + len(psk , psk+1

|T ′)

= (1 + 1/ cos(ǫt)) · len(psk , psk+1
|T ′)

≤ (1 + 1/ cos(ǫt)) · Lmax

which completes the proof.

pi

psk
psk+1p

′

i

pi+1pi−1

psk+1−1psk+1

δ

d△
p1

p2

p3
p4

p5

p6

A A A
(a) (b)

Figure A.1: Proofs of Lemma A.2.1 and Lemma A.2.2

Lemma A.2.2 (Unbounded Direction Error) Let T be a trajectory and T ′ be a

(direction-based) ǫt-simplification of T with ǫt < π/2. Let TC be a (position-based)

simplified trajectory of T such that |TC| = |T ′| and the error of TC under the Syn-

chronous Euclidean Distance is minimized. There exists a dataset such that ǫ(TC) ≈ π

and ǫ(T ′) ≈ 0.

Proof. We prove by constructing a problem instance as shown in Figure A.1(b). T =

(p1, p2, p3, p4, p5, p6) is a trajectory, where all positions except p5 are along a horizontal

line such that d(p2, p1) = d(p4, p1) = A, d(p3, p1) = A− δ and d(p6, p1) = 3A. Here,

A is a positive real number. Besides, p5 is located a little bit above the horizontal line

with its perpendicular distance to the horizontal line equal to d△. We have δ << d△.

Suppose that we can only keep 5 positions in the simplified trajectory. In other

words, we have to remove 1 position from the 6 positions. If we consider preserving
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the direction information, p4 will be removed and thus T ′ = (p1, p2, p3, p5, p6). As

a result, ǫ(T ′) ≈ 0. If we consider preserving the position information, p3 will be

removed (since the position error of p3 under the Synchronous Euclidean Distance is

the smallest) and thus TC = (p1, p2, p4, p5, p6). As a result, ǫ(TC) ≈ π.
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APPENDIX B

ALGORITHMS AND ADAPTATIONS OF

EXISTING ALGORITHMS

B.1 Adaptations of Existing Trajectory Simplification

Methods

The existing trajectory simplification methods described in Section 4.3 can be adapted

to the Min-Size problem. However, these adaptations have limitations. We discuss

both the adaptations and their limitations next.

Let T = (p1, p2, ..., pn) be a trajectory and ǫt be the error tolerance.

Split. It splits T at a splitting position into two sub-trajectories if

the error of approximating T with one segment exceeds ǫt. Let i be

argmax1<h<n{△(θ(phph+1), θ(p1pn))}. We select pi as the splitting position. It then

performs the same procedure recursively on each of the sub-trajectories. At the end, it

approximates each resulting trajectory with one segment.

The time complexity of Split is O(n2) because in the worst case, it always chooses

the second position of the remaining trajectory as the splitting point.

Merge. It regards each segment in T as a sub-trajectory. It then iteratively merge two

adjacent sub-trajectories T1 and T2 into one if the error of approximating the merged

trajectory with one segment is bounded by ǫt until no such merge operations are possi-

ble. When multiple candidates of two adjacent sub-trajectories for merging are avail-

able, we choose the one with the smallest error when the corresponding merged tra-

jectory is approximated with one segment. At the end, it approximates each resulting
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sub-trajectory with one segment.

The time complexity of Merge is O(n2) since, in the worst case, it always merges

the first two remaining sub-trajectories and the final simplified returned is p1pn.

Greedy. Let T ′ be the simplified trajectory to be computed by Greedy, which is ini-

tialized as (p1) at the beginning. Greedy scans the positions of T starting from p1 se-

quentially. It iteratively finds the position pi such that ǫ(pepi) ≤ ǫt and ǫ(pepi+1) > ǫt,

where pe is the last position in T ′ currently maintained in the algorithm, and then ap-

pends pi to T ′. At the end, it appends pn to T ′.

The time complexity of Greedy is O(n2). This is because, in the worst case, where

the output T ′ contains only two positions, p1 and pn, it has to compute ǫ(p1p3), ǫ(p1p4),

..., ǫ(p1pn). Since each ǫ(p1p3) takes O(n) time, the time complexity is O(n2).

B.2 The Dynamic Programming Algorithm for the

Min-Size Problem

In the following, we design a dynamic programming (DP) algorithm for the Min-Size

problem. Let T [i, j] be the sub-trajectory of T , which starts at pi and ends at pj where

1 ≤ i < j ≤ n, i.e., T [i, j] = (pi, pi+1, ..., pj). We denote by S[i, j] the optimal

solution of the Min-Size problem where the trajectory input is T [i, j] and the error

tolerance is still ǫt. Let N [i, j] denote the number of segments maintained in S[i, j]

(which is equal to the size of the optimal solution (i.e., S[i, j]) minus one). Note that

minimizing the number of segments in the simplified trajectory is exactly equal to

minimizing the size of the simplified trajectory.

Consider S[i, j]. There are two cases.

• Case 1: ǫ(pipj) ≤ ǫt. That is, T [i, j] could be approximated by one segment

(i.e., pipj) with the error bounded by the tolerance. In this case, we have S[i, j] =
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(pi, pj) and N [i, j] = 1.

• Case 2: ǫ(pipj) > ǫt. In this case, T [i, j] cannot be approximated with one

segment only such that the error tolerance constraint is satisfied. Thus, there

exists at least one position pk∗ in T [i, j] excluding its start position and its end

position where i < k∗ < j. Besides, we have N [i, j] = N [i, k∗] +N [k∗, j] and

k∗ = argmini<k<j{N [i, k] +N [k, j]}.

In conclusion, we can compute N [i, j] in the way as shown in Equation (B.1).

N [i, j] =







1 if ǫ(pipj) ≤ ǫt

mini<k<j{N [i, k] +N [k, j]} Otherwise
(B.1)

Based on Equation (B.1), we can design a DP algorithm for the Min-Size problem.

Note that N [1, n] corresponds to the number of segments maintained in the optimal

solution of the Min-Size problem with the input as T .

Complexity Analysis. For each problem instance N [i, j], we first check whether

ǫ(pipj) ≤ ǫt. The cost is simplyO(n) since it computes△(pipj , phph+1) for i ≤ h < j

in order to obtain ǫ(pipj). Besides, it takes O(1) and O(n) time to obtain N [i, j] in

Case 1 and Case 2, respectively. Thus, the overall cost for a specific problem instance

of N [i, j] is still O(n). Since we have in total O(n2) possible problem instances of

N [i, j], the time complexity of the DP algorithm is O(n2 · n) = O(n3).

B.3 The Dynamic Programming Algorithm for the

Min-Error Problem

Let T = (p1, p2, ..., pn) (n ≥ 2) be a trajectory and W ≤ n be a positive integer. We

denote by Min-Error(T , W ) the Min-Error problem with the input trajectory as T and

the input storage budget as W . Then, we denote by S[i, k] (i ∈ [1, n] and k ∈ [2,W ])
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the solution of Min-Error(T [i : n], k) which is a simplification of T [i : n] and denote

by E[i, k] the error of S[i, k] (note that the case of k = 1 is trivial and thus it is

ignored). Then, we have the following Equation (B.2) for computing E[i, k]. The idea

is that in the case of k ≥ n − i + 1, the optimal solution is T itself and thus it has the

error equal to 0; in the case of W = 2, the optimal solution is (pi, pn) and thus it has

the error equal to ǫ(pipn); and in other cases, the optimal solution is best one among

(pi, ph)⋄S[h, k−1] for h = i+1, i+2, ..., n, where ⋄ is the “concatenation” operator,

and thus it has the error equal to minh∈[i+1,n]max{ǫ(piph), E[h, k − 1]}.

E[i, k] =















0 k ≥ n− i+ 1

ǫ(pipn) k = 2

minh∈[i+1,n]max{ǫ(piph), E[h, k − 1]} Otherwise

(B.2)

Correspondingly, we have the following Equation (B.3) for computing S[i, k] (i ∈

[1, n] and k ∈ [2,W ]).

S[i, k] =



























T [i : n] k ≥ n− i+ 1

(pi, pn) k = 2

(pi, ph∗) ⋄ S[h∗, k − 1] where h∗ =

argminh∈[i+1,n]max{ǫ(piph), E[h, k − 1]} Otherwise

(B.3)

DP is the dynamic programming algorithm based on Equation (B.2) and Equa-

tion (B.3).

We analyze the time complexity of the DP algorithm as follows. The process

of computing S[i, k] (via Equation (B.3)) relies on the results of E[i, k] (via Equa-

tion (B.2)) (i ∈ [1, n] and k ∈ [2,W ]).

Consider the part of computing all instances ofE[i, k]. We haveO(n·W ) instances

of E[i, k]. For a specific E[i, k], the cost of case k ≥ n − i + 1 is simply O(1), the

cost of case k = 2 is simply O(n), and the cost of one of the other cases is O(n2).

Note that a straightforward method for computing an instance of ǫ(pipj) (1 ≤ i ≤
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j ≤ n) runs in O(n) time. Thus, the time cost of computing all E[i, k]’s is O(Wn3)

(=O(Wn · (1 + n+ n2))).

Consider the part of computing all instances of S[i, k]. Again, we have O(n ·W )

instances of S[i, k]. For a specific S[i, k], based on the result of E[i, k], the cost of case

k ≥ n− i+ 1 is O(1), the cost of case k = 2 is O(1), and the cost of one of the other

cases is O(n) (provided that ǫ(piph) has been maintained when computing E[i, k]’s).

As a result, the time cost of computing all S[i, k]’s (based on the results of E[i, k]’s) is

O(Wn2) (=(Wn · (1 + 1 + n))).

In conclusion, the time complexity of DP is O(Wn3). Besides, the space complex-

ity of DP is simply O(n2).

B.4 Implementation & Time Complexity (Algorithm

10)

Before we analyze the time complexity of Algorithm 10, we discuss how we compute

mcar(θ[i : j]) for 1 ≤ i < j ≤ n first.

We compute mcar(θ[i : j]) as follows. Suppose [θa, θb] is mcar(θ[i : j]). As

discussed before, θa and θb are two directions in θ[i : j]. We construct a search space

R for [θa, θb] as R = {[θh+1, θh]|h ∈ [1, j − i]} where θ1, θ2, ..., θj−i is the list of the

directions in θ[i : j] sorted in ascending order and θh+1 corresponds to θ1 if h = j − i.

We claim that [θa, θb] is inR.

Lemma B.4.1 Let [θa, θb] be mcar(θ[i : j]) where i, j ∈ [1, n] and i < j. Then,

[θa, θb] ∈ R.

Proof. First, we know that [θa, θb] belongs to {[θc, θd]|θc, θd ∈ θ[i : j]} which we

denote byR′.
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Second, we prove the lemma by showing that any angular range inR′−R is not a

covering angular range of θ[i : j]. For any angular range [θh, θk] (h, k ∈ [1, j − i]) in

R′ − R, we have h 6= k + 1 (k + 1 corresponds to 1 if k = j − i). We then deduce

that θk+1 is not covered by [θh, θk] and thus [θh, θk] is not a covering angular range of

θ[i : j].

R has the following nice property. Each of the ranges in R is a covering angular

range of θ[i : j] which could be verified by the fact that for each range [θh+1, θh] where

h ∈ [1, j − i], all directions in θ[i : j] (except for θh and θh+1) do not fall in [θh, θh+1]

(since θh and θh+1 are adjacent in the sorted list) and thus they fall in [θh+1, θh].

Property 8 Any range inR is a covering angular range of θ[i : j].

By using Lemma B.4.1 and Property 8, we compute mcar(θ[i : j]) by first con-

structingR which has the cost of O((j− i) log(j− i)) and then finding the range with

the smallest span in R which has the cost of O(j − i). Thus, mcar(θ[i : j]) (and thus

ξ(θ[i : j])) could be computed in O((j − i) log(j − i)) time.

Now, we are ready to analyze the time complexity of Algorithm 10. Suppose that

T ′ = (ps1, ps2, ..., psm) is a simplification returned by Algorithm 10. Then, the time

cost of Algorithm 10 is dominated by the costs of computing ξ(mcar(θ[s1 : j]))’s for

j = s1 +1, s1 +2, ..., s2 +1, ξ(mcar(θ[s2 : j]))’s for j = s2 +1, s2 +2, ..., s3 +1, ...,

and ξ(mcar(θ[sm−1 : j])) for j = sm−1 + 1, sm−1 + 2, ..., sm.

We compute ξ(mcar(θ[sk : j])) for j = sk + 1, sk + 2, ..., sk+1 + 1 incrementally

as follows. When computing ξ(mcar(θ[sk : j])) where j ∈ [sk + 1, sk+1 + 1], we

maintain two data structures, namely a binary search tree and a priority heap, dynami-

cally maintaining the sorted list of θ[sk : j] and the correspondingR (for each angular

range in R, its span is used as its key in the priority queue), respectively. With the

information of the priority heap built on R, ξ(mcar(θ[sk : j])) could be computed in
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O(1) time.

We consider the problem of how to maintain the binary search tree and the priority

heap for computing ξ(mcar(θ[sk : j+1)) based on those for computing ξ(mcar(θ[sk :

j])). Note that the only difference between θ[sk : j] and θ[sk : j + 1] is that θ[sk :

j + 1] includes one more direction, i.e., θ(pjpj+1). Thus, the cost of maintaining the

binary search tree for θ[sk : j + 1] is simply O(log(sk+1 − sk)) (note that j ∈ [sk +

1, sk+1 + 1]). Besides, the only difference between the search space R for computing

ξ(mcar(θ[sk : j])) and the one for computing ξ(mcar(θ[sk : j + 1)) is that one range

in the former, say, [θc, θd], is split into two, i.e., [θc, θ(pjpj+1)] and [θ(pjpj+1), θd], in

the latter, where θc and θd are two directions adjacent to θ(pjpj+1) in the sorted list of

θ[sk : j + 1] which could be retrieved in O(log(sk+1 − sk)) time by using the binary

search tree for θ[sk : j + 1]. Therefore, we can also maintain the priority heap for

computing ξ(mcar(θ[sk : j + 1])) in O(log(sk+1 − sk)) time (we first retrieve θc and

θd and then update three elements in the priority heap, namely deleting [θc, θd] and

inserting [θc, θ(pjpj+1)] and [θ(pjpj+1), θd]). In conclusion, the cost for maintaining

the binary search tree and the priority heap for computing ξ(mcar(θ[sk : j + 1]))

based on those for computing ξ(mcar(θ[sk : j])) is O(log(sk+1 − sk)). As a result,

the cost of computing ξ(mcar(θ[sk : j])) for j = sk + 1, sk + 2, ..., sk+1 + 1 using the

above incremental implementation is O((sk+1 − sk) · log(sk+1 − sk)), which further

implies that the time complexity of Algorithm 10 using this implementation is

∑

k∈[1,m)
O((sk+1 − sk) log(sk+1 − sk)) = O(n logn)
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