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ABSTRACT

With the rapid growth of web-based applications, mining personalized preferences

for promotion becomes a hot topic. In this thesis, we focus on two problems related to

user preferences: understanding user preferences and utilizing user preferences.

In understanding user preferences, we propose two sub-problems when we consid-

er temporal user preferences. The first sub-problem is called attribute-based subsequence

matching (ASM) : given a query sequence and a set of sequences, considering the at-

tributes of elements, we want to find all the sequences which are matched by this query

sequence. We propose an efficient algorithm for problem ASM by applying the Chi-

nese Remainder Theorem. The second sub-problem is to find all the attribute-based

frequent subsequences. We adapt an existing efficient algorithm for this second sub-

problem to show that we can use the algorithm developed for the first sub-problem.

Experimental results show that frequent subsequences reflect user preferences, and our

algorithms are scalable in large datasets. This work can stimulate a lot of existing data

mining problems which are fundamentally based on subsequence matching.

In utilizing user preferences, we identify and tackle three sub-problems, finding

top-k profitable products, finding top-k popular products, and finding K-dominating

competitive price. The former two sub-problems are about designing new products,

xii



while the latter one is about pricing new products.

In finding top-k profitable products, we consider generalized user preferences, de-

rived from the skyline concept. We propose a dynamic programming approach which

can find the optimal solution when there are two attributes to be considered. We show

that this problem is NP-hard when there are more than two attributes. Two greedy al-

gorithms are proposed and one of them has theoretical bounds. We also consider this

problem on dynamic datasets and propose update algorithms for different update oper-

ations. We extend this problem by considering another form of customer preferences,

namely tolerant customer preferences in finding top-k popular products. We prove that

this problem is NP-hard and propose a 0.63-approximate algorithm for this problem.

Extensive experiments show the effectiveness and efficiency of our approaches on both

synthetic and real datasets.

In finding K-dominating competitive price in which we consider generalized user

preferences only, we propose an efficient algorithm. We utilize spatial properties for

pruning to speed up our algorithm. An extensive performance study using both syn-

thetic and real datasets is reported to verify its effectiveness and efficiency. We also

provide a real case study to show how our algorithm works in reality.
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CHAPTER 1

INTRODUCTION

With the rapid growth of web-based applications, data mining plays a more and more

important role to users and customers. On one side, commercial companies are eager

to know personalized preferences for promotion instead of flooding customers with ad-

vertisements, especially when they realize that understanding user preferences1 greatly

helps deliver promotions to customers accurately and effectively, which in return re-

wards them with a large increase in sales and profit. On the other side, enormous

business-related data has been recorded and stored in web-based applications and con-

tains undermined information or knowledge about user preferences. Without effective

data mining techniques, those undermined information or knowledge about user prefer-

ences cannot be found directly from raw data. One successful example of data mining

methods for promotion is the introduction of recommendation systems in many large-

scaled web-based applications such as Netflix [56] and Amazon [2]. In this thesis, we

deal with two main issues about user preferences in this area. One is how to understand

user preferences based on historical data which is recorded in web-based applications.

The other is how to utilize user preferences to design new products for profit earning.

In Section 1.1, we introduce how user preferences are defined in the literature and

what kinds of user preferences are focused and used in this thesis. Section 1.2 and

Section 1.3 introduce our work about understanding user preferences and our work

about utilizing user preferences, respectively. Section 1.4 summarizes our contribution

for both understanding user preferences and utilizing user preferences. Section 1.5

provides the road map of the rest of this thesis.
1In this thesis, we use the terms “user preference”, “customer preference” and “consumer preference”
interchangeably.
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1.1 Introduction to User Preferences

User preferences are very important to companies because they can express the ten-

dency of users to choose a list of objects/products. In the literature of data mining,

user preferences have various forms. In collaborative filtering recommendation sys-

tems [39, 45], a “score” given by a user on a product shows the extent of his/her

interest on it. In different scenarios, this “score” is referred to as “rating” or “ranking”.

Different scores given to different products by the same user mean that the user prefers

some products to others. In some previous studies [34], each score is simply a binary

value denoting whether a user likes or dislikes a product. In personalized web-based

applications, strict partial orders are commonly used to express user preferences in

form of a pairwise comparison (e.g., “A is better than B”) since first proposed in [54].

[54] describes that some inconsistencies of user preferences on products are allowed

in practice and should not be considered as a problem. Obviously, the user prefer-

ences based on scores can be transformed to the user preferences based on pairwise

comparisons. Therefore, pairwise comparisons, or formally strict partial orders, are

frequently used to express user preferences in the literature [55, 47, 51, 94]. In this

thesis, we study three forms of user preferences based on pairwise comparisons. The

first form is called a generalized user preference, the second form is called a tolerant

user preference, and the third form is called a temporal user preference.

The first form can be described clearly when people make decisions as follows.

When people make decisions, they have some “rules” in their minds. One obvious rule

is: If product A is “worse” than product B, then we should not choose “A”. In order to

give a more concrete and precise meaning of “worse”, we assume that each product is

associated with a set of attributes. With this assumption, the rule becomes: If product

“A” is worse than product “B” in at least one attribute, and has the same values as B in

all the rest, then product A is “worse” than product B. Products like A should never be
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considered. This is because we have a better choice B compared with A. Therefore,

we regard this kind of rules for decision-making as generalized user preferences. With

these generalized user preferences, we can determine which products are competitive

and which are not. Products like A can be considered as uncompetitive products, while

the rest that are not worse than any other products can be regarded as competitive

products. This observation is captured in the concept of the Skyline Set, commonly

used in the mathematics and theory community. This concept will be defined formally

in Section 4. The competitive products compose the Skyline Set. Apparently, products

in the Skyline Set is preferred to those not in the Skyline Set by any customer.

The second form of user preferences is different from the first form. The second

form allows that different users can specify different preferences. But the first form

represents that different users have the same preferences following the rule described.

The first form is helpful when we have no detailed information about customers. How-

ever, some customers are aware of the differences between those s/he likes and those

s/he dislikes. Therefore, we would like to define user preferences by the tolerance of

the product set s/he likes. For example, if a customer wants to buy a notebook, s/he can

specify his/her preference by < 2.5 kg, 14 inches >, which means that s/he prefers

notebooks with the weight of at most 2.5 kilograms and with the size of at most 14

inches. It looks like dividing the whole product set into two subsets and s/he prefers

products satisfying his/her customer preference in form of < 2.5 kg, 14 inches > to

the other. This form of user preferences is similar to the binary value expression used

in [34], but it is easier to model since customer preferences can be directly interpreted

with this form. We call this form as tolerant user preferences. In the following chap-

ters, if without specification, any user preference refers to tolerant user preference by

default.

The third form is related to the temporal behavior of a user. This is called a tempo-
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ral user preference. Temporal user preferences can be found from customers’ purchase

or rental records during a period. An example of these preferences is that a user who

first buy a MacBook will buy its accessories later. It is easy to see that there is a time

domain here which cannot be found in the previous two forms of user preferences.

More examples will be given later in this thesis.

1.2 Understanding User Preferences

In this section, we describe the problem of “Understanding User Preferences”. The

user preferences studied here are temporal user preferences. As introduced, we want to

understand temporal user preferences by analyzing users’ interests from their historical

(or temporal) behavior. In this thesis, most user temporal behaviors can be expressed

as sequences, for example, transactions in a supermarket and movie rental records in

Netflix [56]. So, in this section, we briefly introduce previous studies on sequences

and then our work.

Sequence analysis is very important in our daily life. Typically, each sequence is

associated with an ordered list of elements. For example, in a movie rental application,

a customer’s movie rental record containing an ordered list of movies is a sequence

example. Most studies [81, 38, 77, 17] about sequence analysis focus on subsequence

matching which finds all sequences stored in the database such that a given query

sequence is a subsequence of each of these sequences. Since subsequence matching

is very useful, it has been commonly adopted in many data mining problems such as

frequent subsequence mining [68, 22, 71, 18, 102], sequence classification [96, 80, 40],

sequence clustering [81, 14] and motif detecting [84, 63].

In many applications, elements are associated with properties or attributes. For

example, each movie is associated with some attributes like “Director” and “Actors”.

Unfortunately, to the best of our knowledge, all existing studies about sequence anal-
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ysis do not consider the attributes of elements. Motivated by this, we propose two

problems. The first problem is: given a query sequence (a potential temporal user

preference) and a set of sequences, considering the attributes of elements, we want to

find all sequences which are matched by this query sequence. This problem is called

attribute-based subsequence matching (ASM). All existing applications for the tradi-

tional subsequence matching problem can also be applied to our new problem provided

that we are given the attributes of elements. We propose a novel algorithm to solve AS-

M. With this algorithm, we can calculate how many customers have the temporal user

preference expressed by the query. The second problem is to find all frequent attribute-

based subsequences. These frequent subsequences can be considered as some popular

temporal user preferences. We also adapt an existing efficient algorithm for this second

problem to show we can use the algorithm developed for the first problem. We also

analyze the found frequent subsequences, which results in interesting findings.

1.3 Utilizing User Preferences

In this section, we elaborate the problem of “Utilizing User Preferences”. Here we

focus on the first two forms of user preferences, namely generalized user preferences

and tolerant user preferences. In this thesis, we are interested in utilizing generalized

user preferences for designing and pricing new products. As we described, general-

ized user preferences are related to the skyline concept. In recent ten years, the skyline

concept has received great attention since proposed in 2001 [24] in the database com-

munity. Initially, it is referred to as a set of competitive products in the market. Since

the skyline concept tells us a basic rule of selecting products from a pool of different

products, it can be regarded as a generalized user preference.

Since proposed, the importance of dominance and skyline analysis (will be defined

formally in Section 4.1) has been well recognized in multi-criteria decision making
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applications. Therefore, most previous works study how to help customers select a set

of possible interesting products from a pool of given products. Some representative

methods based on numerical attributes include a bitmap method [86], a nearest neigh-

bor (NN) algorithm [58], and a branch and bound skylines (BBS) method [69]. Other

methods based on categorical attributes include [26, 25, 94, 79]. Instead of finding the

skyline set from one table, [52, 85] focus on finding the skyline set from the table which

is a result of the natural join of multiple tables. Different from the above work, we ap-

ply the skyline concept from the business perspective. Since skyline is related to the

generalized user preferences, we utilize them for designing and pricing new products.

Our work is mainly on three aspects.

Firstly, we study the problem of finding top-k profitable products when we consider

generalized user preferences. Given a set of products in the existing market, we want to

find a set of k “best” possible products such that these new products are not dominated

by the products in the existing market and the total profit is maximized. The dominance

constraint is related to generalized user preferences. We follow our previous work [90]

to generate a set of possible products from existing products. So the input possible

new product set is the output of the algorithm we proposed in [90]. We proved that this

problem of finding top-k profitable products is NP-hard when the number of attributes

is more than 2. We also proposed a dynamic programming method which finds an exact

solution when the number of attributes is no more than 2, and two greedy algorithms

which find approximate solutions with approximation guarantees when the number of

attributes is more than 2 [91]. We also consider the problem of finding top-k profitable

products when the data changes over time. Three update algorithms are proposed for

insertion, deletion and modification operations.

Secondly, when we additionally consider tolerant user preferences, the problem

turns to finding top-k popular products from a set of possible products such that these

6



new products are not dominated by the products in the existing market and the number

of user preferences satisfied is maximized. The first dominance constraint is related

to generalized user preferences while the second maximization constraint is related to

tolerant user preferences. We propose a greedy algorithm to solve this problem and

show that all the returned products are in the skyline set [75].

Thirdly, when we consider creating products or services in spatial databases, in our

recent work, we propose an interesting problem, finding competitive price, which has

not been studied before, based on generalized user preferences. Given a set of exist-

ing services, for a new service, we want to find the price of the new service such that

the new service is not worse than any existing services in the spatial database (which

corresponds to generalized user preferences). The price found refers to a competitive

price. We also generalize the problem of finding competitive price to the problem of

finding K-dominating competitive price which considers that the new product or ser-

vice should dominate at least K other products or services when K is a positive integer

given by a user. We propose an approach which makes use of some spatial properties

in the spatial database and thus runs efficiently. Finally, we conducted experiments to

show the efficiency of our proposed method.

1.4 Contribution

This thesis contribute to two research areas, namely Understanding User Preferences

and Utilizing User Preferences. The major contributions for Understanding User Pref-

erences are as follows when we consider temporal user preferences.

1. To the best of our knowledge, we are the first to propose problem ASM which

considers the properties of objects. This problem has a lot of convincing applica-

tions. This work can stimulate a number of existing data mining problems which

7



are fundamentally based on subsequence matching such as the frequent subse-

quence mining problem, the longest common subsequence alignment problem

and the discriminative subsequence mining problem.

2. We propose a novel algorithm for problem ASM based on the Chinese Remain-

der Theorem. We propose a data mining problem to find all frequent subse-

quences based on ASM to illustrate how ASM can be used in other data mining

problems. These frequent subsequences are regarded as temporal user prefer-

ences which can be foudn from a lot of users.

3. We conduct some experiments to show the efficiency of our proposed algorithm-

s. The key idea to the efficiency of this algorithm is to compress each whole

sequence with potentially many associated attributes into just a triplet of num-

bers. By dealing with these very compressed representations, we greatly speed

up the attribute-based subsequence matching.

The major contributions for Utilizing User Preferences are as follows when we

consider generalized user preferences and tolerant user preferences.

1. To the best of our knowledge, we are the first to study how to find top-k profitable

products in which generalized user preferences are considered. Finding top-k

profitable products can help the effort of companies to find a subset of products

together with their corresponding profitable prices, which cannot be addressed

by existing methods. We propose a dynamic programming approach which can

find an optimal solution when there are two attributes to be considered. We show

that this problem is NP-hard when there are more than two attributes. Thus, we

propose two greedy approaches to solve the problem efficiently. We also propose

an incremental approach when datasets change over time.

2. We are the first to study the problem of finding top-k popular products in which

8



both generalized user preferences and tolerant user preferences are considered.

We prove that this problems is NP-hard and propose a 0.63-approximate algo-

rithm for this problem. We present a systematic performance study using both

real and synthetic datasets to verify the effectiveness and the efficiency of our

proposed approach.

3. We are the first to study the problem of finding K-dominating competitive price

in which generalized user preferences are considered. We propose an effective

spatial approach by using some spatial properties. We conducted experiments to

show the efficiency of our proposed approach and illustrate the process with a

real case study.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 provides the related work of

understanding user preferences and utilizing user preferences. Chapter 3 describes our

problem ASM, related to understanding user preferences, and elaborates our work in

this new area. The differences between our sequence matching and existing works are

also explained in Chapter 3. Our work about utilizing user preferences is presented in

Chapter 4 and Chapter 5. Chapter 4 studies two problems, namely finding top-k prof-

itable products and finding top-k popular products. Chapter 5 proposes an efficient

algorithm to price new services when spatial databases are considered. Finally, Chap-

ter 6 concludes the thesis and summarizes our plans for future work. All the proofs

of lemmas and theorems in this thesis are presented in the Appendix unless otherwise

stated.
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CHAPTER 2

RELATED WORK

In this chapter, we introduce previous studies in the literature of two problems. As

we described before, sequences are related to temporal user preferences defined in

Chapter 1 for the problem of understanding user preferences. Section 2.1 summarizes

representative studies for the problem of subsequence matching and mining. Since we

consider generalized user preferences and tolerant user preferences for the problem

of utilizing user preferences, and these preferences are related to the skyline concept,

Section 2.2 summarizes various studies about the skyline concept.

2.1 Subsequence Matching and Mining

Subsequence matching attracted a lot of attention in the database community, the data

mining community and the bioinformatic community [38, 17, 43, 81, 14, 77]. Subse-

quence matching can be classified into two types: accurate matching and approximate

matching. Given a query sequence q, accurate (subsequence) matching [81, 14, 77] is

to find all sequences such that q is a subsequence of each of these sequences. On the

other hand, approximate (subsequence) matching [38, 17, 43] is to find all sequences

such that each of these sequences contains a subsequence s′, and the distance between

s′ and a query sequence q is at most a given tolerance threshold.

Due to its usefulness in biological sequences, subsequence matching has been s-

tudied extensively in the literature of bioinformatics. Algorithm SW [81] is known

as the first algorithm solving subsequence matching problem in biological sequences.

Besides, [14] and [77] proposed more efficient algorithms for accurate matching. [14]

10



finds matches by first locating short subsequences of the query in a sequence, and then

assembles neighborhood matches of short subsequences to be matches of the query.

[14] can also answer approximate queries above a given threshold. The authors of [14]

developed an open online application which is one of the most widely used bioinfor-

matics programs.

There are a lot of studies about approximate matching [38, 17, 43] requiring users

to define a distance metric. [38] used the Euclidean distance as a metric and present-

ed an algorithm for approximate matching by using some indexing techniques. [17]

adopted the Dynamic Time Warping (DTW) distance as a metric and proposed an al-

gorithm. [43] proposed to find k sequences with their smallest distances from a given

sequence q where the distance metric adopted is the DTW distance.

Frequent subsequence mining, also known as sequential pattern mining, is an im-

portant problem in sequence data mining, which has been widely studied in the liter-

ature. Based on searching strategy, we can also categorize previous methods into two

major types [36]. One is Apriori-like, breadth-first search methods, while the other is

based on pattern-growth, depth-first search methods. In the literature, [82, 67, 101]

belong to the former category, while [42, 72, 93, 18] belong to the latter one.

The Apriori property was first proposed in [13] to mine association rules in large

databases. [82] utilizes the Apriori property [13] for pruning candidate subsequences.

[67] improves the GSP algorithm in [82] by replacing the hash tree with a prefix tree

for storing candidates. The SPADE algorithm proposed in [101] utilizes a lattice struc-

ture to speed up the searching process. [42] finds frequent itemsets at first, and then

generates frequent sequential patterns by combining frequent itemsets found previous-

ly. [72] follows the pattern-growth strategy in [42], and improves it by considering

prefix subsequences and the postfix subsequences of prefix subsequences in project-

ed databases only. [93] extends [72] to mine closed sequential patterns. The SPAM

11



algorithm proposed in [18] takes the advantage of the bitmap representation to mine

frequent subsequences efficiently.

To the best of our knowledge, no existing studies about subsequence matching and

mining consider the properties of objects which are studied in our paper [76]. Our

work discussed in Chapter 3 belongs to accurate matching. Since the properties of

objects are not considered in previous work [14] and [77], they are not applicable to

our problem.

2.2 Skyline

Skyline queries have been studied since 1960s in the theory field where skyline points

are known as Pareto sets and admissible points [37] or maximal vectors [21]. How-

ever, earlier algorithms such as [21, 20] are inefficient when there are many data

points in a high dimensional space. Skyline queries in database was first studied by

Börzsönyi [24] in 2001.

After that, various techniques were proposed to accelerate the computation of sky-

line and its variations. Here, we briefly summarize some of them. Some representative

methods include a bitmap method [86], a nearest neighbor (NN) algorithm [58], and a

branch and bound skylines (BBS) method [69].

Some representative studies in various problems related to skyline are summarized

as follows. [100, 74, 97, 70] find the skylines with respect to subsets of attributes

instead of all attributes. [25, 27, 94, 79] handle categorical attributes in skyline com-

puting. [25, 27, 79] consider partial ordered domain on categorical attributes. [94]

finds personalized skyline sets given preferences on categorical attributes. Algorithms

to compute skyline sets on dynamic data, such as data streams, time series and moving

objects, are proposed in [88, 48, 103, 50, 30, 32]. [28, 31] proposed methods to handle
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very high dimensional data. Another hot topic is the complementary problem called

Reverse Skyline, which has been studied in [60, 61, 35]. Recently, skyline on uncertain

data has been discussed in [73, 23, 16]. A more recent work [64] studies how to up-

grade products not in the skyline to be in the skyline with the minimum cost. However,

our work are related to top-K queries and representative skyline queries, which are

different from these studies.

Top-K queries about skyline were studied in [69, 62, 87]. [69] discussed ranked

skyline and K-dominating queries. Given a set of points in d-dimensional space,

ranked skyline specifies a monotone ranking function, and returns k tuples in the d-

dimensional space which have the smallest (or greatest) scores according to an input

function. Given a set of points in d-dimensional space, K-dominating queries re-

trieve K points that dominate the greatest number of points. [28] also considered

K-dominating queries, but in high dimensional data.

[62, 87] studied representative skyline queries. The problem is to select k points

among all skyline points according to a pre-defined objective function. The k points in

the output are said to be representative. [62] was the first to introduce representative

skyline queries. [62] finds a set of k points among all skyline points such that the num-

ber of points dominated by this set is maximized. However, the method in [62] cannot

be applied in our problem because we consider both the profitability (or popularity)

of products and the dominance relation of products, but [62] considers the dominance

relation only. Besides, the price of each product is to be found in our problem.

Another definition of representative skyline queries was proposed by [87]. In [87],

representative skyline queries are to find k points (or k representative points) among

all skyline points such that the sum of the distances between each skyline point and its

“closest” representative point is minimized.

All of the above studies are to find k points or tuples given a single table where all
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attribute values of each tuple in the table are given. Our work described in Chapter 4

and Chapter 5 has the following differences. Firstly, we want to find k tuples from one

table (Q), given two tables (one is P and the other is Q) where one of the attribute

values of each tuple in one table (Q) is not given and is to be found. Secondly, the

concept of profit is considered in this thesis but not in the above studies.

There also exist some existing studies focus on profit optimization, since they do

not consider the skyline techniques, they are different from our work. [15] and [59]

are two representative studies. [15] uses an existing economic model, Rosen’s hedonic

price model, to find customer preferences from reviews given by customers in the web

and then find profitable products. Recent work [59] proposes a regression model to find

profitable products. But, since [15] and [59] do not consider the skyline techniques,

some products found by [15, 59] can dominate some other products and thus these

studies cannot guarantee that the products found are in the skyline, which is one of the

goals studied in our work.
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CHAPTER 3

ATTRIBUTE-BASED SUBSEQUENCES

MATCHING AND MINING

In this chapter, we present our work in a new defined subsequence matching problem

called ASM and an extension problem called FASM for understanding user prefer-

ences. The motivation is elaborated in Section 3.1. We give a formal definition of

ASM and preliminaries in Section 3.2. An efficient algorithm for ASM is proposed in

Section 3.3. We apply the proposed algorithm to the frequent attribute-based subse-

quence mining problem (FASM) in Section 3.4. In Section 3.5, we show the experi-

mental results of the proposed algorithms in solving two problems. In Section 3.6, we

conclude this chapter and give some future directions.

3.1 Motivation

A sequence is an ordered list of elements where each element is drawn from a given

element domain set. For example, in the movie rental application, each movie in the

rental store corresponds to an element and a set of all movies corresponds to the ele-

ment domain set. Each customer rents a list of movies. This (ordered) list corresponds

to a sequence. Table 3.1(a) shows a movie rental record table. Each element in the

element domain set is associated with a set of properties or attributes. For instance, in

the movie rental application, each movie is associated with some attributes like “Re-

lease Year”, “Director” and “Actors”. The properties of some movies are shown in

Table 3.1(b). This table is called a property table. In particular, the director of movie

“Titanic” is “James Cameron” and one of the actors is “Leonardo DiCaprio”.
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Customer List of movies
Alice Titanic, The Aviator, Inception
Bob Titanic, The Aviator

Clement The Departed, The Dark Knight
... ...

(a) Movie rental record table
Movie Name Release Year Director Actor 1 Actor 2 ...

Titanic 1997 James Cameron Leonardo DiCaprio Kate Winslet ...
The Aviator 2004 Martin Scorsese Leonardo DiCaprio Cate Blanchett ...

The Departed 2006 Martin Scorsese Leonardo DiCaprio Matt Damon ...
The Dark Knight 2008 Christopher Nolan Christian Bale Heath Ledger ...

Avatar 2009 James Cameron Sam Worthington Zoe Saldana ...
Inception 2010 Christopher Nolan Leonardo DiCaprio Joseph Gordon-Levitt ...

... ... ... ... ... ...
(b) Movie property table

Table 3.1: An example showing the movie rental application

Sequence analysis has received a lot of interest from not only database and data

mining communities but also bioinformatics communities. Database researchers study

subsequence matching [38, 17, 43, 22, 102] and similarity search [65] while data min-

ing researchers study frequent subsequence mining [18] and sequence prediction [80].

On the other hand, bioinformatics researchers study DNA sequence alignment [77],

motif discovery [84, 63] and sequence classification [96, 40].

All of the above sequence analysis applications depend on a fundamental operator

called subsequence matching. Given two sequences s and s′, sequence s is said to be

a subsequence of s′ if for any two elements e and e′ in s where e occurs before e′ in

s, both elements e and e′ occurs in s′ and e occurs before e′ in s′. We also say that s

matches s′ (or s′ is matched by s). For example, if s is “Titanic, Inception” and s′ is

“Titanic, The Aviator, Inception”, then s is a subsequence of s′ and thus s matches s′.

Subsequence matching is formulated as follows: given a set of sequences and a query

sequence q, we want to find all sequences such that q is a subsequence of each of these

sequences. In our running example, if q is “Titanic, Inception”, Alice’s sequence in

Table 3.1 is one of the answers for subsequence matching.

Unfortunately, the traditional subsequence matching problem fails to answer a lot

of interesting questions related to the properties of elements. Consider that we want

to study how movie “Titanic” creates a star “Leonardo DiCaprio”. In order to do this,
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we want to know how many customers are interested in watching movies acted by

“Leonardo DiCaprio” after they watched movie “Titanic”. We regard it as a temporal

user preference since most people know “Leonardo DiCaprio” only after they watched

“Titanic”. Note that “Leonardo DiCaprio” is not a movie (or more formally not an

element in the element domain set) but is a property value of a movie. The traditional

subsequence matching problem cannot achieve this goal because the original problem

is based on the elements but not the property values. Or in other words, traditional

studies can find temporal user preferences on the element level. However, our problem

is to find temporal user preferences on the property values, which are more diverse

and comprehensive. One may adapt the traditional problem and generate all possible

queries in form of “Titanic, x” where x is a movie acted by “Leonardo DiCaprio”. If

there are M movies acted by “Leonardo DiCaprio”, then this adapted approach will

issue M queries, which is quite inefficient.

Motivated by this, we study a new problem called attribute-based subsequence

matching (ASM). Informally speaking, the problem is described as follows: given a

query sequence which contains some elements and some property values, we want to

find all sequences which are matched by this sequence query.

3.2 Problem Definition and Preliminaries

We are given a set E of elements. E is called an element domain set. Each element e is

associated with a setA of m properties or attributes, namely A1, A2, ..., Am. The value

of attribute Ai of an element e is denoted by e.Ai where i = 1, 2, ...,m. In our running

example, a set of movies corresponds to the element domain set E . Attribute “Year of

Release” and attribute “Director” are two examples of the properties of a movie. For

the sake of discussion, we assume that one of the attributes in A can uniquely identify

an element e. This attribute is called an identifying attribute. In our example, attribute
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“Movie Name” is an identifying attribute. Attribute “Director” and attribute “Release

Year” are non-identifying attributes.

We define the domain of attribute Ai, denoted by Di, to be the set of all possible

values in attribute Ai where i = 1, 2, ...,m. For instance, all directors like “James

Cameron” and “Martin Scorsese” form the domain of attribute “Director”. We define

the value domain set, denoted by V , to be the union of the domains of all attributes.

That is, V = ∪m
i=1Di. Note that V is a set of all possible values. The table (like

Table 3.1(b)) containing all attribute values of each element is called the property table.

A value v is said to be an identifying value if v is a value of an identifying attribute.

Note that this value v can be used to uniquely identify an element e. For the sake

of clarity, we simply say that v identifies e (or e is identified by v). For example,

both “Titanic” and “The Aviator” are identifying values but “James Cameron” and

“Leonardo DiCaprio” are not. We define U to be a set of all identifying values. Note

that U ⊆ V . If value v is an identifying value, we define the attribute value set of v,

denoted by α(v), to be the set of all possible attribute values of the element identified

by v. For example, if v is “Titanic” (an identifying value), then α(v) = {“Titanic”,

1997, “James Cameron”, “Leonardio DiCaprio”, “Kate Winslet”, ...}.

A sequence is an ordered list of values where each value is drawn from V . Sup-

pose that there are k values in the sequence, a sequence is represented in form of

“v1, v2, ..., vk” where vi ∈ V for i = 1, 2, ..., k. In this representation, for any two

values vi and vj where i < j, vi appears before vj . “Titanic, The Aviator, Inception”

and “Titanic, Leonardo DiCaprio” are two examples of sequences. Consider that s is

in form of “u1, u2, ..., ul”. Value ui in s is defined to have the temporal position equal

to i for i ∈ [1, l]. For example, if s = “Titanic, Leonardo DiCaprio”, then “Titanic” has

the temporal position equal to 1 and “Leonardo DiCaprio” has the temporal position

equal to 2.
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A sequence is said to be an identifying sequence if all values in the sequence are

identifying values (i.e., all values in the sequence are drawn from U). For example,

“Titanic, The Aviator, Inception” is an identifying sequence but “Titanic, Leonardo

DiCaprio” is not.

In a lot of applications, we are given a set S of identifying sequences. Let n be the

total number of identifying sequences in S. In our running example, we are given a

set of identifying sequences and each identifying sequence corresponds to the movie

rental record of a customer. Table 3.1(a) shows the set of identifying sequences. In the

application of finding a researcher, an identifying sequence corresponds to the academ-

ic research background of a researcher while in the biology application, it corresponds

to a protein sequence.

Let q be a query in form of “v1, v2, ..., vk” where vi ∈ V for i ∈ [1, k]. Given a

value v ∈ V and a value u ∈ U , v is said to match u if v ∈ α(u). For example, if u is

“Titanic” and v is “Leonardo DiCaprio”, then “Leonardo DiCaprio” matches “Titanic”

since “Leonardo DiCaprio” ∈ α(“Titanic”).

Definition 3.2.1 (Match) Consider a query q in form of “v1, v2, ..., vk” where vi ∈ V

for i ∈ [1, k]. Consider an (identifying) sequence s ∈ S in form of “u1, u2, ..., ul”

where ui ∈ U for i ∈ [1, l]. Query q is said to match s (or s is matched by q) if there

exist k integers, namely j1, j2, ..., jk, such that (1) for each i ∈ [1, k], vi matches uji ,

and (2) 1 ≤ j1 < j2 < ... < jk ≤ l

Consider that q is “Titanic, Leonardo DiCaprio” and s is “Titanic, The Aviator,

Inception”. Since “The Aviator” was acted by “Leonardo DiCaprio” and “Titanic”

occurs before “The Aviator” in s, it is easy to verify that q matches s. In this example,

k = 2 and l = 3. We also have j1 = 1 and j2 = 2. Note that the first requirement

in the above definition holds (i.e., “Titanic” matches itself and “Leonardo DiCaprio”
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Notation Description
S sequence set
E element Domain set
A attribute set of elements

e.Ai value of element e on attribute Ai

ui the i-th element of a sequence
q a query sequence
V union of domains of all attributes

α(v) identified attribute values of v
P (v) label of v
Vs value matching number of s
Ls lower-bound sequential order number of s
Us upper-bound sequential order number of s
∆i query-aware lifespan of vi of q in s
I(v) inverted list of v
C(q) a set of sequence IDs that satisfy Requirement Value Matching w.r.t. q
n number of sequences
µ average length of sequences
k length of queries
d domain size of each attribute
m number of attributes

Table 3.2: Notations

matches “The Aviator”), and the second requirement also holds (i.e., 1 ≤ j1 < j2 ≤ l).

Most of the notations used in this chapter are listed in Table 3.2.

In this section, we are studying the following problem called Attribute-based Subsequence

Matching (ASM): Given a query sequence q, we want to find all sequences in S which

are matched by q. In our running example, if q is “Titanic, Leonardo DiCaprio”, we

want to find all sequences in S which are matched by q. In Table 3.1(a), Alice’s se-

quence is one of the sequences which are matched by q.

We give some preliminaries in the following. The remainder for a division of a

positive integer N by a positive integer d is denoted by “N mod d”. Notation “mod”

is called a modular operator. Suppose that N is a large number and can be represented

by N 4-byte integers, and d is a small number and can be represented by a 4-byte

integer. The time complexity of the modular operation is O(N ) [44].

Given a positive integer N and a positive integer d, d is said to be a divisor of N if
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(N mod d) = 0. Given three positive integers N,M and d, N and M are said to have

a common divisor d if d is a divisor of both N and M . Two integers N and M are said

to be relatively prime if their greatest common divisor is equal to 1.

The theorems to be introduced are based on the equation using this modular op-

erator in form of (N mod d) = r where N, d and r are three positive integers. This

equation is called a congruence equation. Now we introduce Unique Factorization

Theorem. Unique Factorization Theorem is a fundamental theorem in number theory

and is widely used in cryptography and security field.

Theorem 3.2.1 (Unique Factorization Theorem [44]) Any positive integer N ≥ 1 can

be uniquely expressed as a product of one or more prime numbers called factors of N .

Property 1 (Factorization Property [44]) Given a positive integer N and a positive

integer f , f is a factor of N if and only if (N mod f ) is equal to 0.

Next, we introduce Chinese Remainder Theorem.

Theorem 3.2.2 (Chinese Remainder Theorem [44]) Let m be the number of congru-

ence equations. Let r1, r2, ..., rm be m positive integers. Suppose that there are m

pairwise relatively prime numbers: n1, n2, · · · , nm. Let N = n1n2 · · ·nm . There

exists a unique integer x ∈ [0, N − 1] solving the system of m congruence equations

each of which is in form of (x mod ni) = ri for i ∈ [1,m].

In the literature, we can compute x by Extended Euclidean Algorithm [44] in

O(m(log nmax)
2) time where nmax = maxi∈[1,m] ni. Proofs and other details of Theo-

rem 3.2.1 and Theorem 3.2.2 can be found in [44].
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Algorithm 1 Straightforward Algorithm for problem ASM
Require: a query q and a set S of identifying sequences
Ensure: a set of identifying sequences in S which are matched by q

1: O ← ∅
2: for each s ∈ S do
3: isMatch← checkMatch(q, s)
4: if isMatch = true then
5: O ← O ∪ {s}
6: return O

Algorithm 2 Algorithm checkMatch(q, s) (Naive Implementation)
Require: a query q and an identifying sequence s
Ensure: whether q matches s

1: let s be a sequence in form of “u1, u2, ..., ul”
2: let q be a query in form of “v1, v2, ..., vk”
3: j ← 1
4: for i = 1 to k do
5: find the smallest integer r ∈ [j, l] such that vi ∈ α(ur)
6: if there exists such a value r then
7: j ← r + 1
8: else
9: return false

10: return true

3.3 Modular-based Algorithm

A possible approach for problem ASM is shown in Algorithm 1. In this algorithm,

method checkMatch(q, s) is to return a boolean value indicating whether a query q

matches an identifying sequence s. The efficiency of this algorithm depends on how to

implement method checkMatch. One naive implementation is shown in Algorithm 2

which takes O(lm) time where l is the maximum length of a sequence in S and m

is the total number of attributes. However, the time complexity of Algorithm 1 is

O(nlm) where n is the total number of sequences in S. Apparently, Algorithm 1 is

time-consuming.

We design an algorithm called Modular Algorithm with two major requirements

which are simple to understand and are used to ease the understanding on how we use

Chinese Remainder Theorem for problem ASM. They are Requirement Value Match-

ing and Requirement Sequential Order.

Definition 3.3.1 Given a value v ∈ V and a sequence s ∈ S, p(v, s) is defined to be
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a set of all temporal positions such that each of the values at these positions in s is

matched by v.

Consider Alice’s sequence s. If v is equal to “Leonardo DiCaprio”, then p(v, s) =

{1, 2, 3}. If v is equal to “Martin Scorsese”, then p(v, s) = {2}.

Consider query q in form of “v1, v2, ..., vk”.

Definition 3.3.2 (Requirement Value Matching) Let s be a sequence and q be a query

in form of “v1, v2, ..., vk”. If for each i ∈ [1, k], p(vi, s) ̸= ∅, then s is said to satisfy

Requirement Value Matching.

Intuitively, Requirement Value Matching requires that each value in q matches

some of the values in a sequence s (without considering the temporal ordering of val-

ues). If this requirement is satisfied, we proceed to check the second requirement,

Requirement Sequential Order, considering the temporal ordering of values.

Definition 3.3.3 (Requirement Sequential Order) Let s be a sequence. If there exist

k integers, namely j1, j2, ..., jk, such that ji ∈ p(vi, s) for i ∈ [1, k] and j1 < j2 < ... <

jk, then s is said to satisfy Requirement Sequential Order.

Intuitively, Requirement Sequential Order requires that these “matched” values in

s have the same temporal ordering as the correspondence values in q.

This algorithm involves two major phases. The first phase is called Phase Prepro-

cessing and the second phase is called Phase Query. In Phase Preprocessing, given a

set S of identifying sequences and the property table, we generate not only some syn-

opsis of sequences but also some data structures which will be used in Phase Query.

In Phase Query, given a query q, we find all sequences in S which are matched by q

using the information generated in Phase Preprocessing.
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Value Label Value Label
Titanic 2 The Aviator 13
1997 3 2004 17

James Cameron 5 Martin Scorsese 19
Leonardo DiCaprio 7 Cate Blanchett 23

Kate Winslet 11 ... ...
... ... ... ...

Table 3.3: Labels

Consider a particular sequence s in S and an arbitrary query q. We want to create

a synopsis for s such that we can determine whether q matches s efficiently using

the synopsis. In order to achieve this goal, we should create this synopsis which can

help to determine whether the two requirements are satisfied efficiently. In particular,

the synopsis contains two separate components. The first component, denoted by Vs,

is used for Requirement Value Matching and corresponds to the first number in this

triplet (Section 3.3.1). The other, denoted by Xs, is used for Requirement Sequential

Order and corresponds to the last two numbers in this triplet (Section 3.3.2).

Before we create a synopsis, we first assign each value in V with a unique prime

number called the label of v. The label of v is denoted by P (v). Table 3.3 shows the

labels of some values in V in our running example.

3.3.1 Requirement Value Matching

Given a sequence s ∈ S, Vs is the value matching number of s which is defined as

follows.

Definition 3.3.4 (Value Matching Number) Given a sequence s ∈ S where s is in

form of “v1, v2, ..., vl”, the value matching number of s is defined to be the prod-

uct of the labels of all the values in s and their property values. Formally, Vs =∏l
i=1

∏
v∈α(vi) P (v).
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Algorithm 3 Algorithm valueMatchCheck(q, Vs) for Requirement Value Matching
Require: a query q, Vs
Ensure: whether the temporal order of the matching values in s is consistent with the temporal

order of all values in q
1: let query q be in the form of “v1, v2, ..., vk”
2: for i = 1 to k do
3: compute (Vs mod P (vi)) and store the answer as ai
4: if ai = 0 for each i ∈ [1, k] then
5: return true
6: else
7: return false

Phase Preprocessing: In Phase Preprocessing, for each sequence s ∈ S, we compute

Vs.

It is easy to verify that the running time of this phase is O(nlm) where l is the

greatest length of a sequence.

Phase Query: Recall that Requirement Value Matching is that given a query q and a

sequence s, each value in q matches one of the values in s. By using Vs, we can perform

k modular operations to check whether s satisfies this requirement or not where k is

the length of the query sequence. Algorithm 3 shows the algorithm.

With the following lemma, we know that the algorithm is correct.

Lemma 3.3.1 Let s be a sequence and q be a query in form of “v1, v2, ..., vk”. If

(Vs mod P (vi)) = 0 for each i ∈ [1, k], then s satisfies Requirement Value Matching.

We know that we can use Vs to check for Requirement Value Matching. Now, we

want to introduce a stronger requirement called Requirement Duplicate Value Match-

ing. This requirement states that given a sequence s and a query sequence q, for each

value v in q, if v appears γ times in q and there exists γ values in s such that v matches

each of these γ values, then s is said to satisfy Requirement Duplicate Value Matching.

For example, consider Alice’s sequence s. If q = “Titanic, Titanic”, then s does not

satisfy Requirement Duplicate Value Matching. If q = “Leonardo DiCaprio, Leonardo

DiCaprio”, then s satisfies this requirement.
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Algorithm 4 Algorithm valueMatchCheck(q, Vs) for Requirement (Duplicate) Value
Matching
Require: a query q, Vs
Ensure: whether the temporal order of the matching values in s is consistent with the temporal

order of all values in q
1: let query q be in the form of “v1, v2, ..., vk”
2: V ← Vs
3: for i = 1 to k do
4: compute (V mod P (vi)) and store the answer as ai
5: if ai = 0 then
6: V ← V/P (vi)
7: if ai = 0 for each i ∈ [1, k] then
8: return true
9: else

10: return false

By using Vs, we can also check for Requirement Duplicate Value Matching effi-

ciently. By doing this, we modify Algorithm 3 to Algorithm 4.

Now, we analyze the storage size of Vs. Consider a particular sequence s. Ac-

cording to Definition 3.3.4, we need to multiply ml prime numbers. In all of our

experiments, each prime number can be represented by a 4-byte integer. The storage

size of Vs is at most 4ml bytes. In case that a prime number needs more bits for stor-

age, we can use some libraries [1] over large numbers which contain a lot of efficient

bitwise operations.

Let the storage size of Vs be N . In the above analysis, 4ml is a loose upper bound

on N . In other words, in most cases, N << 4ml. In method valueMatchCheck, it

invovles k modular operations where the divisor of each operation is a prime number.

Note that in all our experiments, each prime number can be represented by a 4-byte

integer. It is easy to verify that the running time of valueMatchCheck is O(kN ).

3.3.2 Requirement Sequential Order

In Section 3.3.2A, we first describe a bulky version of component Xs. Then, in Sec-

tion 3.3.2B, we describe a compressed version of component Xs by just a pair of two

numbers based on Chinese Remainder Theorem.

A. Bulky Version of Xs
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Phase Preprocessing: Before we describe this component, we give some definitions

first.

An interval is defined to be in form of (l, u) where l and u are two positive integers

and l ≤ u.

Definition 3.3.5 (Appear After/Before) Let △i and △j be two intervals (li, ui) and

(lj, uj), respectively. △i appears before△j (or△j appears after△i) if ui < lj .

Definition 3.3.6 (Lifespan) Given a value v ∈ V and a sequence s ∈ S where

p(v, s) ̸= ∅, the lifespan of v in s, denoted by LSv,s, is defined to be an interval in

form of (l, u) where (1) l = min p(v, s) and (2) u = max p(v, s). We define LSv,s.l to

be l and LSv,s.u to be u.

Consider Bob’s sequence s. If v is “Titanic”, then p(v, s) = {1} and thus the lifes-

pan of v in s is (1, 1). If v is “Leonardo DiCaprio”, then p(v, s) = {1, 2} and thus the

lifespan of v in s is (1, 2).

We are ready to describe the bulky version of Xs. Consider a sequence s in S. Let

Y be the set of all values in s and their property values. Let h be the total number of

possible values in Y . For each value v ∈ Y , we create an entry in form of (v, LSv,s).

The bulky version of Xs is equal to the table storing all these entries.

Example 1 Consider Bob’s sequence s, “Titanic, The Aviator”. Note that “Titanic”

has the temporal position equal to 1 and “The Aviator” has the temporal position

equal to 2. The attribute values of “Titanic” are

• “Titanic” (with label = 2),

• “1997” (with label = 3),

• “James Cameron” (with label = 5),
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Value v Lifespan of v in s
“Titanic” (1, 1)
“1997” (1, 1)

“James Cameron” (1, 1)
“Leonardo DiCaprio” (1, 2)

“Kate Winslet” (1, 1)
“The Aviator” (2, 2)

“2004” (2, 2)
“Martin Scorsese” (2, 2)
“Cate Blanchett” (2, 2)

Table 3.4: A table showing the bulky version of Xs

• “Leonardo DiCaprio” (with label = 7) and

• “Kate Winslet” (with label = 11)

The attribute values of “The Aviator” are

• “The Aviator” (with label = 13),

• “2004” (with label = 17),

• “Martin Scorsese” (with label = 19),

• “Leonardo DiCaprio” (with label = 7) and

• “Cate Blanchett” (with label = 23)

Thus, we have the set Y equal to {“Titanic”, “1997”, “James Cameron”, “Leonar-

do DiCaprio”, “Kate Winslet”, “The Aviator”, “2004”, “Martin Scorsese”, “Cate

Blanchett” }. Then, we calculate the lifespan of each value v ∈ Y in this sequence as

shown in Table 3.4. For example, if v = “Titanic”, then the lifespan of v in s is (1, 1).

Similarly, if v = “Leonardo DiCaprio”, then the lifespan of v in s is (1, 2). Table 3.4

corresponds to the bulky version of Xs.

Let l be the greatest length of a sequence in S. There are O(lm) possible values in

Y . Thus, the size of the bulky version of Xs is O(lm). In Section 3.3.2B, we present
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a compressed version of Xs which contains only two positive numbers. Similarly, we

can easily derive that the complexity of this phase is O(lm).

Phase Query: Suppose that we are given a query sequence q and a sequence s in S.

We want to check whether q matches s using the bulky version of Xs.

Definition 3.3.7 (Query-Aware Lifespan) Let s be a sequence in S and Xs be the

bulky version of Xs for s. Given a query sequence q in form of (v1, v2, ..., vk), if s

satisfies Requirement Value Matching with respect to q, then the query-aware lifespan

of s with respect to q, denoted by QA-LS(s, q), is defined to be (△1,△2, ...,△k) where

△i is the lifespan of vi in s for i ∈ [1, k].

Our strategy is to create the query-aware lifespan of s with respect to q according

to the bulky version of Xs. This can be done in O(k) time if the bulky version of Xs

is indexed with a hash data structure. Then, according to the query-aware lifespan, we

can determine whether q matches s efficiently, which will be described next.

Definition 3.3.8 (Non-Overlapping) Consider a sequence s and a query sequence q.

Let the query-aware lifespan of s with respect to q be (△1,△2, ...,△k). The query-

aware lifespan is said to be non-overlapping if and only if for each i, j ∈ [1, k] where

i < j,△i appears before△j .

Definition 3.3.9 (Invalid) Consider a sequence s and a query sequence q. Let the

query-aware lifespan of s with respect to q be (△1,△2, ...,△k). The query-aware

lifespan is said to be invalid if and only if there exist any two integers i, j ∈ [1, k] such

that i < j and△i appears after△j .

With the above definitions, we have the following lemma about how to determine

whether q matches s or not.
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Algorithm 5 Algorithm timespanCheck(q, s, QA-LS(s, q))
Require: a query q, s and QA-LS(s, q)
Ensure: whether s satisfies Requirement Sequential Order

1: if QA-LS(s, q) is non-overlapping then
2: return true
3: else
4: if QA-LS(s, q) is invalid then
5: return false
6: else
7: isMatch← checkMatch(q, s)
8: return isMatch

Lemma 3.3.2 Consider a sequence s and a query sequence q. If the query-aware

lifespan of s with respect to q is non-overlapping, then q matches s. If the query-aware

lifespan of s with respect to q is invalid, then q does not match s.

Suppose that we are given the query-aware lifespan of s with respect to q. Algo-

rithm 5 shows the steps of checking whether q matches s according to the query-aware

lifespan only. It is easy to verify that checking the conditions on whether the query-

aware lifespan is non-overlapping (or invalid) takes O(k) time. If these conditions are

not satisfied, we need to execute the statements in lines 7-8 involving checkMatch

which takes O(lm) time. In our experiments, on average, there are about 90% cases

that the query-aware lifespan is either non-overlapping or invalid. Thus, in most cases,

the running time of sequentialOrderCheck is O(k).

Let us analyze the storage complexity of the bulky version of Xs. Consider a

particular sequence s. Let |Y | be the average size of Y (i.e., the average number of

possible values in a sequence s and their property values). For each value v ∈ Y ,

we need to store entry (v, LSv,s). In our implementation, v is stored in form of a

prime number and LSv,s is stored in form of two temporal positions. Since in all our

experiments, the greastest possible values of each prime number and each temporal

position can be represented by a 4-byte integer, each prime number and each temporal

position are stored in a 4-byte integer. Thus, each entry occupies 4 × 3 = 12 bytes.

Since there are |Y | entries, the storage size of the bulky version of Xs for a particular
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sequence s is equal to 12|Y | bytes.

B. Compressed Version of Xs Based on a Pair of Numbers

Consider a sequence s in S. The bulky version contains h entries and each entry

contains a value and its lifespan in s. This bulky version occupies a lot of space.

Interestingly, the compressed version of Xs to be described contains only two positive

numbers, which is quite space-efficient.

Specifically, given a sequence s ∈ S, the compressed version of Xs is defined

to be equal to a pair of two numbers. The first number is called the lower-bound

sequential order number of s, denoted by Ls, and the second number is called the

upper-bound sequential order number of s, denoted by Us. In Phase Preprocessing,

these two numbers are to be found.

Phase Preprocessing: In Phase Preprocessing, for each sequence s ∈ S, we compute

Ls and Us as follows.

Let Y be the set of all values in s and their property values. Let h be the total

number of possible values in Y . Recall that in the bulky version, for each value v ∈ Y ,

we create an entry in form of (v, LSv,s) where LSv,s is the lifespan of v in s. Note that

LSv,s is in form of (LSv,s.l, LSv,s.u). However, in the compressed version, for each

value v ∈ Y , we conceptually create a pair of congruence equations as follows. The

following equations are in the format of Chinese Remainder Theorem. Note that P (v)

is the label of value v.

(Ls mod P (v)) = LSv,s.l (3.1)

(Us mod P (v)) = LSv,s.u (3.2)

Since we have h values in Y , we conceptually generate h congruence equations in
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form of (3.1) and h congruence equations in form of (3.2).

We first consider the h equations for Ls in form of (3.1) and describe how to deter-

mine Ls, one of the two numbers stored in the compressed form of Xs. Specifically,

since the labels of all values in Y are prime numbers, they are pairwise relatively

prime. Note that P (v) and LSv,s.l are given in Equation (3.1) where v ∈ Y . This is the

equation format of Chinese Remainder Theorem. By using the Extended Euclidean

algorithm, we can find a unique integer Ls ∈ [0, N − 1] where N is the product of the

labels of all values in Y .

We can use a similar technique to find Us by considering the h equations for Us in

form of (3.2). Thus, the final compressed version of Xs are two numbers, namely Ls

and Us.

Example 2 Consider Bob’s sequence again. According to Example 1, we can obtain

the bulky version of Xs (Table 3.4).

In the compressed version, since we have 9 values in Y , we can conceptually for-

mulate 9 congruence equations for Ls and 9 congruence equations for Us. Take v =

“Titanic” for illustration. Since its label is equal to 2 and its LSv,s.l is equal to 1,

according to Equation (3.1), we create

(Ls mod 2) = 1

The other 8 congruence equations for Ls are:

(Ls mod 3) = 1 (Ls mod 11) = 1 (Ls mod 19) = 2

(Ls mod 5) = 1 (Ls mod 13) = 2 (Ls mod 23) = 2

(Ls mod 7) = 1 (Ls mod 17) = 2

Similarly, we can construct the 9 congruence equations for Us. By the Extended Eu-
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Algorithm 6 Algorithm sequentialOrderCheck(q, Ls, Us) for Requirement Sequen-
tial Order
Require: a query q, Ls and Us
Ensure: whether s satisfies Requirement Sequential Order

1: let query q be in the form of “v1, v2, ..., vk”
2: for i = 1 to k do
3: li ← (Ls mod P (vi))
4: ui ← (Us mod P (vi))
5: △i ← (li, ui)
6: call timespanCheck(q, s, (△1,△2, ...,△k))

clidean Algorithm, we obtain Ls = 134, 918, 071 and Us = 7, 436, 431.

We know that the time complexity of finding a solution for Ls (and Us) with m

congruence equations is O(m(log np)
2) time [44] where np is the largest prime num-

bers we use. Since each sequence s is associated with Ls (and Us), the running time of

this phase considering all sequences is equal to O(nm(log np)
2).

Phase Query: Suppose that sequence s satisfies Requirement Value Matching. Recall

that Requirement Sequential Order is that the “matched” values in s have the same

temporal ordering as the correspondence values in q. Algorithm 6 shows how we

check whether s satisfies Requirement Sequential Order using Ls and Us. It is easy to

see Algorithm 6 returns a correct solution with the following lemma.

Lemma 3.3.3 Consider a sequence s. Let Ls and Us be the lower-bound sequential

order number and the upper-bound sequential order, resepectively. Let Y be the set of

all values in s and their property values. Given a value v ∈ Y , the lifespan of v in s is

equal to (l, u) where l = (Ls mod P (v)) and u = (Us mod P (v)).

We analyze the storage complexity of the compressed version of Xs as follows.

Consider a particular sequence s. For this sequence s, we need to store two numbers,

namely Ls and Us. Consider number Ls which is computed based on |Y | congruence

equations. Note that Ls is at most the multiplication of the divisors of all congruence
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equations (i.e.,
∏

v∈Y P (v)). In all of our experiments, each divisor (or each prime

number) can be represented by a 4-byte integer. Thus, Ls can be represented by |Y |

4-byte integers and thus the size of Ls is at most 4|Y | bytes. Note that 4|Y | is a upper

bound of the size of Ls. In most cases, the exact size is smaller than 4|Y |. Similarly, we

can derive that the size of Us is at most 4|Y | bytes. The storage size of the compressed

version of Xs given a particular sequence is at most 4|Y | + 4|Y | = 8|Y | bytes. Since

|Y | is at most ml, the storage size is at most 8ml bytes.

Let N ′ be the storage size of Ls (or Us). Similarly, in the above analysis, 4|Y | is

a loose upper bound on N ′. In other words, N ′ << 4|Y |(< 4ml). Similarly, it is

easy to verify that the running time of sequentialOrderCheck is O(kN ′) time if the

running time of timespanCheck is O(k) in most cases.

3.3.3 Comparison

We compare the storage of the compressed version with the storage of the bulky ver-

sion. Consider Xs of both versions. The compressed version of Xs occupies at most

8|Y | bytes and the bulky version of Xs occupies 12|Y | bytes. Thus, the storage size

of the compressed version of Xs is at most 2/3 of the bulky version of Xs. Now, we

consider the storage size of the compressed/bulky synopsis containing not only Xs but

also Vs. Note that Vs is the common component used by the compressed version and

the bulky version. Note that since the storage size of Xs is equal to 4ml, the com-

pressed synopsis occupies at most 4ml + 8|Y | ≤ 12ml bytes and the bulky synopsis

occupies 4ml + 12|Y | ≤ 16ml. Thus, the storage size of the compressed synopsis is

at most 3/4 (= 12/16) of the storage size of the bulky synopsis. In the experimental

results (Section 3.5), the real compression effect is more significant. On average, the

storage size of the compressed synopsis is about 1/4 of the storage size of the bulky

synopsis. The above theoretical analysis is based on the upper bound of the storage
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size of the compressed synopsis (instead of the exact storage size) and thus the bound

of 3/4 is not quite tight.

3.3.4 Putting Two Requirements Together

In this section, we present algorithms to combine the two requirements together in

addition to introducing an indexing technique called inverted list.

3.3.5 Phase Preprocessing

In addition to the steps we discussed previously, we describe an indexing technique

called inverted list. Suppose that each sequence s ∈ S is given a unique sequence ID.

Given a value v ∈ V , the inverted list of v, denoted by I(v), is defined to be a set of

sequence IDs such that one of the values in each of these sequences has its property

values equal to v. Given a query q, we define C(q) to be a set of sequence IDs where

each of the sequences with these IDs satisfies Requirement Value Matching. Thus,

C(q) is equal to ∩k
i=1I(vi).

So, there are two major steps in Phase Preprocessing. The first step is to generate

the inverted list of v for each value v ∈ V . The second step is to generate the synopsis

of each sequence s (where the synopsis is in form of a triplet (Vs, Ls, Us)).

Note that both component Vs described in Section 3.3.1 and inverted lists are used

for Requirement Value Matching. However, there are some differences. Firstly, in-

verted lists are used to locate sequences satisfying Requirement Value Matching by

sequence IDs. Secondly, Vs can be used for Requirement Duplicate Value Matching

but inverted lists cannot.

Note that the complexity of synopsis generation is O(nlm) where l is the greatest

length of a sequence. Generating inverted lists also takes O(nlm) time. The overall

complexity of this phase is equal to O(nlm).
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Algorithm 7 Modular Algorithm for problem ASM
Require: a query q and a set S of identifying sequences
Ensure: a set of identifying sequences in S which are matched by q

1: O ← ∅
2: for each s ∈ C(q) do
3: isMatch← checkMatch-Synopsis(q, s)
4: if isMatch = true then
5: O ← O ∪ {s}
6: return O

Algorithm 8 Algorithm checkMatch-Synopsis(q, s)
Require: a query q and an identifying sequence s
Ensure: whether q matches s

1: isValueMatch← valueMatchCheck(q, Vs)
2: if isValueMatch = true then
3: isSeqOrder← sequentialOrderCheck(q, Ls, Us)
4: if isSeqOrder = true then
5: return true
6: return false

3.3.6 Phase Query

With the inverted list, we can modify Algorithm 1 to Algorithm 7. The differences

come from the statements in Line 2 and Line 3. Firstly, in Line 2 of Algorithm 7,

instead of processing all sequences in S, we process the sequences in C(q) using the

inverted list. Secondly, in Line 3 of Algorithm 7, instead of calling the original method

checkMatch without using any synopsis, we call the new method checkMatch-Synopsis

using the synopsis.

Algorithm 8 shows the algorithm for checkMatch-Synopsis. With Lemmas 3.3.1,

3.3.2 and 3.3.3, it is easy to verify the following theorem.

Theorem 3.3.1 Algorithm 7 returns all sequences which are matched by q.

The proof of Theorem 3.3.1 is omitted as it can be easily derived from the proofs

of Lemmas 3.3.1, 3.3.2 and 3.3.3.

Consider Algorithm 7. There are O(n) sequences in C(q). Consider a sequence in

C(q). We need to execute checkMatch-Synopsis (Algorithm 8). In this algorithm, we

know that valueMatchCheck takes O(kN ) time and sequentialOrderCheck(q, Ls, Us)

takes O(kN ′) time in most cases. Thus, checkMatch-Synopsis takes O(k(N +N ′))
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Straightforward Algorithm  

(Alg. 1) 

checkMatch  

(Alg. 2) 

Modular Algorithm  

(Alg. 7) 

checkMatch-Synopsis 

(Alg. 8) 

valueMatchCheck  

(Alg. 3 or Alg. 4) 

sequentialOrderCheck 

(Alg. 6) 

timespanCheck  

(Alg. 5) 

(a) Straightforward Algorithm (b) Modular Algorithm

Figure 3.1: Invocation diagrams of Straightforward Algorithm and our Modular Algo-
rithm

time. SinceN ≥ N ′, the time complexity of checkMatch-Synopsis becomes O(kN ).

In conclusion, the overall time complexity of Algorithm 7 is O(nkN ).

We show the invocation diagrams of Straightforward Algorithm and our Modular

Algorithm in Figure 3.1. Each rounded-corner rectangle in Figure 3.1 represents a

modular in the corresponding algorithm and each modular can be implemented by the

algorithms specified in the brackets.

3.4 Frequent Attribute-based Subsequence Mining

In this section, we introduce a data mining problem, frequent attribute-based subse-

quence mining, which frequently makes use of the efficient operator for ASM (i.e.,

checking whether a query sequence matches a sequence in the dataset). Traditional

frequent subsequence mining has been studied extensively in the literature [68, 18, 71,

102, 22]. It is useful to find frequent patterns in order to study customers’ behaviors

and temporal patterns. As introduced at the beginning of this chapter, ASM focuses on

finding temporal user preferences. In this section, we propose frequent attribute-based

subsequence mining (FASM), to find some popular temporal user preferences. It is

the same as the traditional mining except that we consider the property table. These

popular temporal user preferences are useful to companies. For example, with popu-

lar temporal user preferences as features, we can categorize customers into different
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groups. Then we can make different promotion strategies for different groups accord-

ing to their temporal user preferences.

Given a sequence p in form of “v1, v2, ..., vx” where vi ∈ V for i ∈ [1, x], the

frequency of p is defined to be the total number of sequences in S which are matched

by p. Given a parameter θ which is a positive integer and a user parameter, a sequence

p is said to be frequent if the frequency of p is at least θ. The problem of finding

frequent attribute-based subsequence mining (FASM) is: given a parameter θ, we want

to find all possible frequent sequences in S.

There are at least two categories of finding frequent subsequence mining in the

literature. The first category is singleton-based mining while the second category is

set-based mining.

In singleton-based mining, a sequence is represented in form of “u1, u2, ..., ul”

where ui ∈ V for i ∈ [1, l]. At each timestamp, there is only at most one value ∈ V in

the subsequence [36]. Singleton-based mining is to find all frequent subsequences in

the dataset which have their frequencies at least a given threshold θ.

In set-based mining, a sequence is represented as a set-sequence in form of “G1, G2, ..., Gl”

where Gi ⊆ V for i ∈ [1, l] [82, 18]. At each timestamp, there can be more than

one value ∈ V in the set-sequence (which is represented by a set Gi instead of a

value in V) [36]. In this category, the concept of subsequence (or set-subsequence)

is defined differently as follows. Given a set-sequence g in form of “G1, G2, ..., Gl”

where Gi ⊆ V for i ∈ [1, l] and another set-sequence h in form of “H1, H2, ..., Hl′”

where Hi ⊆ V for i ∈ [1, l′], g is said to be a set-subsequence of h if there exist

l integers, namely j1, j2, ..., jl, such that (1) for each i ∈ [1, l], Gi ⊆ Hji , and (2)

1 ≤ j1 < j2 < ... < jl ≤ l′. If g is a set-subsequence of h, then h is said to contain

g. In set-based mining, each set-sequence in the dataset is in form of “G1, G2, ..., Gl”.

The frequency of a set-sequence g is equal to the total number of set-sequences in the
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dataset containing g. Set-based mining is to find all frequent set-subsequences in the

dataset which have their frequencies at least a given threshold θ.

Note that our FASM problem is a special case of the set-based mining. That is, all

sequences found in our FASM problem can be found in the set of set-sequences found

in the set-based mining. Since our FASM problem is a special case of the set-based

mining, we adapt an existing algorithm in the literature of set-based mining for our

FASM problem, by using our efficient query operator in ASM. In the literature, most

algorithms for set-based mining requires to enumerate some potential candidates as the

output and count the total number of sequences in the dataset which are matched by

each candidate (query sequence). Our operator for ASM can be used in the counting

step. Whenever we need to obtain the count for each candidate, we can perform our

operator. Since these algorithms involves a large set of candidates and their counting

step is not optimized, if their counting step is replaced by our operator, the efficiency

of the algorithms can be improved a lot. In the experiment, we use the algorithm in

[18] to illustrate how the operator can improve the performance of the algorithm. Any

other choice is also possible.

Besides, our operator can also be used to solve a more general problem, the set-

based mining, using the above approach. For each candidate in form of “G1, G2, ..., Gl”

where Gi is a set of values for i ∈ [1, l], we generate all possible sequences in form of

“v1, v2, ..., vl” where vi ∈ Gi for i ∈ [1, l]. Each generated sequence can be regarded

as a query sequence in ASM.

3.5 Experiment Results

We implemented above three algorithms in C/C++, namely Naive, MA and MAI. In

Section 3.3, we described two possible straightforward approaches for problem ASM.

Since the first approach takes an exponential time with respect to the length of the query
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Number of sequences n 250k, 500k, 750k, 1M
Average length of sequences µ 20, 40, 60, 80, 100

Length of queries k 5, 10, 15, 20
Domain size of each attribute d 100, 200, 30, 40

Number of attributes m 5, 10, 15, 20

Table 3.5: Default values

length which is not scalable, we implemented the second straightforward approach

(Algorithm 1), called Naive. MA is Modular Algorithm without inverted list which is

Algorithm 7 where C(q) in line 2 is replaced by S. MAI is Modular Algorithm with

inverted list which is Algorithm 7. For MA and MAI, we adopt the compressed version

of the synopsis because it occupies less storage and have nearly the same execution

time in Phase Preprocessing and Phase Query compared with the bulky version. We

do not compare with existing sequence matching algorithm because our problem is a

new problem and defined on a new kind of sequences. The existing algorithms for the

traditional sequence matching problems are not applicable for our problem.

All the experiments were performed on a 2.4GHz PC with 4.0GB RAM, on a Lin-

ux platform. We did experiments on both synthetic and real datasets. For the synthetic

datasets, we first generate the length of the sequence following a given Gaussian distri-

bution with its mean equal to µ and its standard derivation equal to 5 where µ is a user

parameter representing the average length of a sequence. In addition to the dataset size

n and the average length of each sequence µ, the synthetic data generator also simu-

lates the number of attributes m, the size of each attribute domain d and the length of

each query k. We assume these three values are fixed for all the sequences in a single

dataset. In order to find at least one matching in the whole dataset, we extract each

query sequence from an arbitrary sequence in the dataset. The values of each param-

eter used in the experiments are given in Table 3.5, where the default values are in

bold. Finally, we generate the synthetic datasets according to every distinct parameter

setting in Table 3.5.
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In the experiments, we evaluate the algorithms with four measurements: (1) Pre-

processing Time, (2) Execution Time, (3) Storage and (4) Compression Ratio. (1) Pre-

processing time of MA and MAI corresponds to the time cost in Phase Preprocessing.

Naive has no preprocessing step. So, we do not consider it. (2) Query time refers to the

time an algorithm takes to answer 100 queries. Since the query time of MA (MAI) us-

ing the compressed synopsis is similar to the query time of MA (MAI) using the bulky

synopsis, we only report MA (MAI) using the compressed synopsis. (3) Storage is the

total memory consumption used for each data structure and the original dataset. The

storage of Dataset Size is the memory occupied by the sequence data. The storage of

Inverted List is the memory occupied by the inverted list. The storage of Compressed

Synopsis is the memory occupied by the compressed version of Xs and Vs, while the

storage of Bulky Synopsis is the storage occupied by the bulky version of Xs and Vs.

(4) Compression Ratio is the ratio of the storage of Compressed Synopsis to that of

Bulky Synopsis.

3.5.1 Effects of n, µ, k, d and m on Synthetic Datatsets

We study the effects of n, µ, k, d and m as follows.

Effect of database size n: Figure 3.2(a) shows that the preprocessing in MAI is

slightly larger than that of MA. It is because that MAI needs to generate the inverted list,

but MA does not. In Figure 3.2(b), when the execution time of Naive increased sharply

when n increases, the execution time of MA and MAI increased slightly. As expected,

the storage of Bulky Synopsis is much larger than that of Dataset Size, Inverted List

and Compressed Synopsis in Figure 3.2(c). The compression ratio is around 24% as

shown in Figure 3.2(d).

Effect of sequence length µ: Figures 3.3(a), (b) and (c) have similar trends as Fig-

ures 3.2(a), (b) and (c). In Figure 3.3(c), each data structure increases with µ. Note that
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the compressed synopsis also increases. In the compressed synopsis, each sequence is

compressed into a 3-number synopsis which is independent of the sequence length.

So, apparently, it seems that it should not increase with the sequence length. How-

ever, when the sequence becomes longer, the compressed synopsis needs much larger

prime numbers and thus the synopsis representation needs more storage. Notice that,

in Figure 3.3(d), as µ increased, the compression ratio decreased slowly, which mean-

s the longer the sequence is, the smaller storage the compressed synopsis occupies

compared with the bulky synopsis.

Effect of k: As expected, the length of the query sequence does not affect the

processing time and the storage of every data structure, as shown in Figure 3.4(a),

Figure 3.4(c) and Figure 3.4(d). From Figure 3.4(b), we can see that the execution

time of MA and MAI remained unchanged while that of Naive increased slightly.

Effect of d: As d increases, the storage of the compressed synopsis increased s-

lightly, so that the compression ratio also increased, as shown in Figure 3.5(c) and

Figure 3.5(d). When d increased, the diversity of the sequences in the database also in-

creased sharply, each generated sequence is much more dissimilar to other sequences.

Consequently, the execution time of MA and MAI decreased in Figure 3.5(b).

Effect of m: When m increased, the processing time and storage increased, as

shown in Figure 3.6(a) and Figure 3.6(c). But the compression ratio remained around

24% in Figure 3.6(d). But in Figure 3.6(b), the execution time of MAI remained when

m increases. However, the execution time of Naive increased significantly. It means

that MAI can deal with sequences that have a large number of attributes efficiently.

3.5.2 Results on Real Datasets

Besides the synthetic datasets, we also did experiments on three real datasets: Net-

flix [56], BookX [5], and Genealogy [3]. (1) Netflix is a famous movie rental com-
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Figure 3.2: Effect of n (dataset size)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20  40  60  80  100

P
re

pr
oc

es
si

ng
 T

im
e 

(s
)

µ

MA
MAI

 0

 20

 40

 60

 80

 100

 120

 140

 20  40  60  80  100

E
xe

cu
tio

n 
T

im
e 

(s
)

µ

Naive
MA
MAI

(a) (b)

 0

 500

 1000

 1500

 2000

 2500

 20  40  60  80  100

S
to

ra
ge

 (
M

B
)

µ

Dataset Size
Inverted List

Compressed Synopsis
Bulky Synopsis

 0

 5

 10

 15

 20

 25

 30

 20  40  60  80  100

C
om

pr
es

si
on

 R
at

io
 (

%
)

µ

(c) (d)

Figure 3.3: Effect of µ (average length of a sequence)
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Figure 3.4: Effect of k (the length of a query sequence)
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Figure 3.5: Effect of d (the domain size of each attribute)
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Figure 3.6: Effect of m (the number of attributes of each object)

Datasets n m µ No. of Elements Avg. Duplicates
Netflix 478905 3 157 7653 11.2%
BookX 91400 3 11.7 262554 4.2%

Genealogy 1000 3 2.5 1553 13.3%

Table 3.6: Statistics of real datasets

Execution Time (s)
Dataset Naive MA MAI

Compression Ratio (%)

Netflix 205.939 85.446 6.744 31.382
BookX 2.489 2.034 0.681 30.978

Genealogy 0.011 0.004 0.003 21.699

Table 3.7: Execution time on real datasets
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pany. We process the rating record dataset provided by Netflix to generate a rating

sequence dataset through grouping the ratings by customerID (the identification of a

customer) and sorting them by the rating date. (2) BookX (BookCrossing) is an online

book searching and rating website. We download the ratings dataset and use a similar

method to generate a sequence for every reader. (3) Genealogy dataset is collected by

ourselves, which contains biographic sequences of 1000 researchers. Some statistics

of the three datasets are shown in Table 3.6. The queries are generated by randomly

selecting subsequences of sequences in each real dataset with a given length. In this

table, No. of Elements is the number of elements appearing in this dataset, and Avg.

Duplicates is the average proportion of duplicate attribute values in one sequence.

The first four columns in Table 3.7 shows the execution time on the three real

datasets. The execution time of MAI is much smaller than that of Naive in every real

dataset. The last column in Table 3.7 shows that the compression ratio of Netflix and

BookX is around 30%, a little higher than that of the synthetic datasets. We summarize

the other statistics of the experiments on real datasets. The greatest prime numbers

used in encoding the three real datasets is 4,863,427. The greatest number used in the

compressed synopsis contains 2100 digits. Although this number is large, the modular

operation over this number can be done efficiently with the GMP library [1].

3.5.3 Results for FASM

A. Performance

We conducted experiments for the FASM problem on the BookX dataset. We insert MA

as an operator in SPAM [18] for FASM. Due to the bitmap representation of database,

SPAM cannot process attribute-based sequences of length more than 64, which are

common in Netflix and BookX. The SPAM using our operator MA is denoted by S-

PAMMA. We compare SPAMMA with the SPAM algorithm without using our MA op-
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erator, denoted by ASPAM. The experimental results can be found in Figure 3.7 where

θ/n is the frequency threshold in fraction.
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Figure 3.7: Results for FASM on BookX by SPAMMA

In Figure 3.7(a), the execution time of SPAMMA is much smaller than ASPAM.

When θ is larger, fewer subsequences are checked whether they are frequent according

to the given threshold θ. So, the resulting frequent subsequence set is also smaller, as

shown in Figure 3.7(b).

B. Case Study

By running SPAMMA, we found some interesting frequent subsequences. For example,

when θ/n is set to 0.01, we can find “<Deutscher Taschenbuch Verlag>, <Piper>” as

a frequent subsequence. “Deutscher Taschenbuch Verlag” is a publisher, while “Piper”

is a book. Note that “Deutscher Taschenbuch Verlag” and “Piper” belong to differ-

ent attributes. We can interpret this frequent subsequence to a popular temporal user

preference that people who prefer books from <Deutscher Taschenbuch Verlag> also

prefer the book <Piper>. Another interesting case is a frequent subsequence, “<She’s

Come Undone>”. It is a book with two versions published by two different publish-

ers: one is Washington Square Press, and the other is Pocket Books. In the result,

“<She’s Come Undone, Washington Square Press>” is also a frequent subsequence,

but “<She’s Come Undone, Pocket Books>” is not. It means that compared with the

Pocket Books version, readers prefer the Washington Square Press version. When we

checked these two versions on Amazon [2], we found that the Washington Square Press

version of this book has a higher paper quality. Maybe this is the reason why more peo-
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ple choose the Washington Square Press version. We can see that, by comparing two

related popular temporal user preferences, we can find more useful information on

customer behaviors.

3.6 Conclusions and Future Directions

In this chapter, we proposed a new problem called Attribute-based Subsequence Match-

ing Problem which has many applications. The main difference between our problem

and traditional subsequence matching problems is that we consider properties of el-

ements of sequences. We proposed an efficient algorithm for this problem using the

Chinese Remainder Theorem to compress each sequence into a triplet of numbers. We

also illustrated how our algorithm can be used for mining frequent subsequences. Fi-

nally, we conducted experiments to show that our algorithm is very efficient, nearly

two orders of magnitude better than the straightforward method on synthetic datasets.

We also embedded our algorithm into an existing algorithm to mine frequent attribute-

based subsequences. Experimental results showed that our algorithm can be used in

many applications which have subsequence matching operations. We had interesting

findings in the frequent subsequences found, which show that the temporal user pref-

erences found by our algorithms make sense in the reality.

In FASM, we did not consider how to find a proper threshold θ as this is a given

parameter. But users may have problems in selecting a proper θ so that meaningful

and reasonable subsequences are in the result set while redundant, meaningless, short

subsequences are not. It is obvious that, setting a too large value to θ will result in

missing a lot of meaningful and reasonable subsequences; Setting a too small value to

θ will generate a enormous result set with lots of redundant subsequences. Besides,

for some of the subsequences, their frequencies are not so significant in the whole

set, however, they may be discriminative in different groups of sequence owners. We
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have an observation from real life, different groups have different interests in common.

For example, young people are more likely to prefer movie “Avatar” to movie “City

Lights” or “Modern Times”; Animation movies like “The Ice Age” are preferred by

children, but not so popular in other groups. This observation tells us that setting a

fixed threshold to mine frequent subsequences in the whole dataset may leave some

meaningful subsequences only significant in some groups of owners out. In order to

capture these missing meaningful subsequences, we measure the difference between

the frequency of a subsequence with respect to a special group of sequence owners and

that of the whole dataset and return sequences with a big difference only. We would

like to leave it as a future work.

Another possible direction is to use our method to analyze protein sequences. Pro-

tein sequences are composed of twenty amino acids. Each amino acids may have

different functions when appearing with some other amino acids as functional pairs

or triples. It is interesting to apply our technique to find those functional combina-

tion of amino acids and also analyze other common features of proteins with common

functional combination of amino acids.
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CHAPTER 4

FINDING TOP-K PROFITABLE AND TOP-K

POPULAR PRODUCTS

In this chapter, we study problems about utilizing user preferences when we consider

generalized user preferences and tolerant user preferences. We first describe the pre-

liminaries in Section 4.1. Then, we study the problem of Finding Top-k Profitable

Products over Static Datasets with solutions in Section 4.2, the problem of Finding

Top-k Profitable Products over Dynamic Datasets with solutions in Section 4.3 and

the problem of Finding Top-k Popular Products with solutions in Section 4.4, respec-

tively. Section 4.5 gives the experimental settings. Extensive experimental results are

given in Section 4.6, Section 4.7 and Section 4.8. Finally, we concludes this chapter in

Section 4.9.

4.1 Preliminaries

4.1.1 Background: Skyline

The skyline analysis involves multiple attributes. The values in each attribute can be

modeled by a partial order on the attribute. A partial order≼ is a reflexive, asymmetric

and transitive relation. A partial order is also a total order if for any two values u and

v in the domain, either u ≼ v or v ≼ u. We write u ≺ v if u ≼ v and u ̸= v.

By default, we consider tuples in an w-dimensional1 space S = x1× · · · × xw. For

each dimension xi, we assume that there is a partial or total order. For a tuple p, p.xi is

1In this section, we use the terms “attribute” and “dimension” interchangeably.
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Package Distance-to-beach (km) Price
p1 7.0 200
p2 4.0 350
p3 1.0 500
p4 3.0 600

Table 4.1: Packages in the existing market

Package Distance-to-beach (km) Price Cost
q1 5.0 ? 100
q2 4.5 ? 200
q3 0.5 ? 400

Table 4.2: Potential packages in the new travel agency

the projection on dimension xi. For dimension xi, if p.xi ≼ q.xi, we also simply write

p ≼xi
q. We can omit xi if it is clear from the context.

For tuples p and q, p dominates q with respect to S, denoted by p ≺ q, if for any

dimension xi ∈ S, p ≼xi
q, and there exists a dimension xi0 ∈ S such that p ≺xi0

q.

If p dominates q, then p is more preferable than q. The set of tuples dominated by p is

denoted by D(p).

Definition 4.1.1 (Skyline) Given a dataset D containing tuples in space S, a tuple

p ∈ D is in the Skyline of D (i.e., a skyline tuple in D) if p is not dominated by any

tuples in D. The skyline of D, denoted by SKY (D), is the set of skyline tuples in D.

Example 3 (Skyline) Consider that a customer is looking for a vacation package to

Hannover using some travel agencies like Expedia.com [4] and Priceline.com [6].

The customer uses two criteria for choosing a package, namely price and distance-

to-beach, where price is the price of a package and distance-to-beach is the distance

between a hotel in a package and a beach. Table 4.1 shows four packages: p1, p2, p3

and p4. The skyline set of P contains p1, p2 and p3.
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4.1.2 Notations

The skyline of a given dataset D is denoted by SKY (D). We have a set P of m

tuples in the existing market, namely p1, p2, ..., pm (for example, packages in Table 4.1

). Each tuple p has l attributes, namely A1, A2, ..., Al. The domain of each attribute

is R. The value of attribute Aj for tuple p is given and is denoted by p.Aj where

j ∈ [1, l]. In particular, the last attribute Al represents attribute price and all other

attributes represent the attributes other than price.

Besides, we have a set Q of n potential new tuples, namely q1, q2, ..., qn (for exam-

ple, packages in Table 4.2). Similarly, each tuple q has the same l attributes, namely

A1, A2, ..., Al. The value of attribute Aj for tuple q is denoted by p.Aj where j ∈ [1, l].

However, the value of attribute Al for tuple q is not given and the value of each of the

other attributes is given. We assume that no two potential new tuples in Q are identical

(i.e., no two tuples in Q have the same attribute values for A1, A2, ..., Al−1). In addi-

tion to these l attributes, each tuple q is associated with one additional cost attribute

C. The value of attribute C for q is denoted by q.C. We assume that for any two

tuples in P ∪ Q, they have at least one attribute value different among the first l − 1

attributes. This assumption allows us to avoid several complicated, yet uninteresting,

“boundary” cases. If this assumption does not hold, the proposed algorithms can be

modified accordingly.

In our running example of Table 4.1 and Table 4.2, P contains 4 tuples, namely

p1, p2, p3 and p4 (Table 4.1), and Q contains 3 tuples, namely q1, q2 and q3 (Table 4.2).

Attribute A1 and attribute A2 are “Distance-to-beach” and “Price”, respectively. At-

tribute C is “Cost”.

Let pricemax be the greatest possible price of a tuple in P . We assume that the

price of each tuple in Q should be set to a value at most pricemax. This assumption

makes sense since we do not want the price of each package too high compared with all
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existing packages. Besides, since there are an infinite number of possible values in R,

we assume the domain of attribute “Price” (i.e., Al) is defined to be D ={i·σ|i is a non-

negative integer and i·σ ≤ pricemax}where σ is a real number and a user parameter. If

we want to have a finer granularity, we should set σ to a smaller value. This assumption

makes sense in real applications where attribute Price involves discrete values instead

of continuous values.

4.2 Finding Top-k Profitable Products over Static Dataset-

s

To differ from the problem studied in the next subsection, we specify that the problem

studied in this subsection is over static datasets. In most part of this thesis, we call it

Finding Top-k Profitable Products (TPP) for short without any ambiguity.

4.2.1 Motivation

Consider that a new travel agency wants to start some new packages from a pool of

potential packages as shown in Table 4.2, given the existing packages in the market as

shown in Table 4.1. Table 4.2 shows three potential packages, namely q1, q2 and q3.

In this table, attribute distance-to-beach and attribute cost of each package are given.

However, attribute price is to be determined by the agency.

Example 4 (Profitable Price with One Package) Suppose that we select only one new

package, say q1. What price should we set for package q1? If we set the price of q1 to

be $100, since the cost of q1 is $100, the profit of q1 is equal to $100-$100 = $0. In

other words, we cannot earn any profit. If we set the price to be $400, although we can

earn $400-$100 = $300, this new package q1 is dominated by p2 in the existing market.

In other words, it is likely that no customer will select q1 since p2 is better than q1.
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However, if we set the price to be $300, not only can we earn $300-$100 = $200 but

also q1 is not dominated by any packages in the existing market. We say that $300 is a

profitable price of q1 but $100 and $400 are not profitable prices of q1.

Let us consider another example that we want to select only one new package q2

(instead of q1). Similarly, if we set the price to be $200, the profit is $0. If we set the

price to be $400, q2 is dominated by p2. However, if we set the price to be $300, we

can earn $100 and q2 is not dominated by any packages in the existing market. Thus,

$300 is a profitable price of q2 but $200 and $400 are not.

Unfortunately, how we set the price of a new package may affect how we set the

price of another new package.

Example 5 (Profitable Price with Two Packages) Suppose that we are interested in

selecting two new packages, says q1 and q2, instead of only one new package. From

Example 4, if we set both the price of q1 and the price of q2 to be $300 separately, then

we can earn some profits and they are not dominated by any packages in the existing

market. However, after we set these prices, the new package q1 is dominated by another

new package q2. An alternative price setting/assignment is that the prices of q1 and q2

are set to $250 and $300, respectively. In this assignment, it is easy to verify that q1

(q2) is not dominated by not only any packages in the existing market but also another

new package q2 (q1). Besides, the profits of q1 and q2 are $150 and $100, respectively.

The sum of these profits is equal to $250.

From the above example, we learn that how we set the price of a new package may

affect how we set the price of another new package. Let Q be the set of potential new

packages. In general, we want to select k packages from Q where k is a positive integer

and is an input parameter. For example, k is equal to 2 in Example 5. We denote the set

of these selected packages by Q′. Let F (Q′) be a utility function on Q′ which returns
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a real number. Different sets for Q′ can give different values of F . If the value of F

is larger, then the set for Q′ is more preferable. One example of F is a function which

returns the sum of the profits of all packages in Q′ as illustrated in Example 5.

In this section, we study the following problem: Given a set P of packages in

the existing market and a set Q of potential new packages, we want to select a set

Q′ of k packages from Q such that the sum of the profits of the selected packages

is maximized (Here, F (Q′) is specified to be the sum of the profits of the selected

packages) and each selected package is not dominated by any packages in the existing

market and any selected new packages. We call this problem finding top-k profitable

products (TPP).

Finding top-k profitable products is common in many real life applications. Oth-

er applications include finding profitable laptops in a new laptop company, finding

profitable delivery services in a new cargo delivery company and finding profitable

e-advertisements in a webpage.

4.2.2 Problem Definition

In Example 5, we selected q1 and q2 from Q when k = 2. However, when k is large,

There exist many possible subsets containing k tuples from Q. Let us consider one

particular subset Q′. The price of each of these k tuples (represented by attribute Al)

in Q′ is to be assigned with a value in D. Given a tuple q in Q, after we set q.Al to a

value v, the profit of q, denoted by△(q, v), is defined to be v − q.C.

We define a price assignment vector of Q′, denoted by v, in form of (v1, v2, ..., vn).

vi is said to be the i-th entry of v. If qi ∈ Q′ where i ∈ [1, n], then vi is assigned with

a value in D. Otherwise, vi is set to 0.

A price assignment vector v is said to be feasible if after we set the price of each

qi ∈ Q′ to vi, each qi ∈ Q′ is in the skyline with respect to P ∪Q′.
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Definition 4.2.1 (Profit of Selection) Let Q′ be a set of k tuples selected from Q. Let

v be the price assignment vector of Q′ in form of (v1, v2, ..., vn). The profit of Q′ with

v, denoted by Profit(Q′,v), is defined to be
∑

qi∈Q′△(qi, vi).

Definition 4.2.2 (Optimal Price Assignment Vector) Let Q′ be a set of k tuples se-

lected from Q. Let V be a set of all possible feasible price assignment vectors for Q′.

The optimal price assignment vector of Q′ is defined to be the price assignment vector

vo for Q′ such that

Profit(Q′,vo) = max
v′∈V

Profit(Q′,v′)

The optimal profit of Q′, denoted by Profito(Q
′), is defined to be Profit(Q′,vo)

where vo is the optimal price assignment vector of Q′.

In Section 4.2.3, we describe an efficient algorithm to find the optimal price assign-

ment vector given a set Q′ of k selected tuples.

We just learnt that given a particular set Q′, we can determine the optimal profit

of Q′. However, there are many possible subsets of Q containing k tuples. The com-

pany wants to find a selection containing k tuples from Q such that the total profit is

maximized.

Problem 1 (Finding Top-k Profitable Products) LetQ be the set of all possible sub-

sets containing k tuples from Q. We want to select a set Q′ of k tuples from Q such

that Profito(Q
′) = maxQ′′∈Q Profito(Q

′′).

This problem is called finding top-k profitable products (TPP). Important notations

used are in Table 4.3.

A naive way for this problem is to enumerate all possible subsets of size k from

Q, calculate the optimal profit of each possible subset, and choose the subset with the
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Notation Description
P a set of tuples in the existing market
Q a set of potential new tuples
m the size of P
n the size of Q
k the total number of tuples in Q to be selected

q.Aj the j-th attribute value of tuple q
l the number of the attributes of tuples in P
Q′ the set of top-k profitable products

Profit(Q′,v) total profit of Q′ when the price vector is v
Profito(Q

′) the optimal profit of Q′

γ(X, q) the set of all tuples in X which quasi-dominate q
SKY (P ) the skyline of P

σ the granularity of attribute price
S(i, t) the set Q′ of size t where

i ∈ [1, n] and t ∈ [0, k]
such that Profito(Q

′) =
maxQ′′∈Q Profito(Q

′′) where
Q is the set of all possible subsets
containing t tuples from Q(i)

v(i, t) the optimal price assignment vector of set S(i, t)
T (i, t) the (optimal) profit of set S(i, t)
N N is a positive integer where N << m+ n

Table 4.3: Notation table

greatest profit. However, this approach is not scalable because there are an exponential

number of all possible subsets. This motivates us to propose efficient algorithms for

problem TPP which will be described in Section 4.2.4 and Section 4.2.5. Before that,

we first introduce an algorithm embedded in both the dynamic programming approach

and greedy approaches in Section 4.2.3.

4.2.3 Finding Optimal Price Assignment

We present an algorithm for finding the optimal price assignment called AOPA in

O(k(log(m+ n) +N)) time given a set Q′ of size k where N << (m+ n).

Suppose that Q′ is a selection set. Our objective is to find the optimal price assign-

ment vector of Q′. After setting the prices of all tuples in Q′ according to this vector,

the tuples in Q′ are in the skyline with respect to P ∪Q′.

57



Let X = P ∪Q′. Given p ∈ X and p′ ∈ X , p is said to quasi-dominate p′ if (1) p

dominates p′ with respect to the first l − 1 attributes, namely A1, A2, ..., Al−1, or (2) p

has the same l − 1 attribute values as p′. In our running example, l = 2. Suppose that

Q′ = {q1, q2}, p2 quasi-dominates both p1 and q1 since p2 dominates both p1 and q1

with respect to attribute “Distance-to-Beach”. p2 also quasi-dominates q2. Let γ(X, qi)

be a set containing all tuples in X which quasi-dominate qi. For example, suppose that

Q′ = {q1, q2}. γ(X, q1) = {q2, p2, p3, p4} and γ(X, q2) = {p2, p3, p4}.

The following lemma gives us an intuition of how to design an algorithm to find

the optimal price assignment vector of Q′.

Lemma 4.2.1 Suppose that p ∈ X and qi ∈ Q′. Consider that we are given a price

assignment vector of Q′ equal to v = (v1, v2, ..., vn) such that we set the price of each

qj (i.e., qj.Al) in Q′ to vj , j = 1, 2, · · · , n. If p dominates qi, then p ∈ γ(X, qi).

According to the above lemma, we divide the tuples in X into two groups.

• Group 1 (Outside γ): Group 1 is the set of all tuples not in γ(X, q) (more

specifically, all tuples in X − γ(X, q)). The tuples in this group do not dominate

q regardless of any price assignment vector of Q′.

In our running example, let Q′ = {q1, q2}. Consider q1. Since p1 is not in

γ(X, q1), we know that p1 does not dominate q1.

• Group 2 (Inside γ): Group 2 is the set of all tuples in γ(X, q). For a particular

price assignment vector of Q′, some tuples in this group may dominate q while

for another particular price assignment vector of Q′, they may not dominate q.

For example, consider q1 again. Consider a price assignment vector v = (300, 300, 0).

Note that q2 is in γ(X, q1). After we set the prices of q1 and q2 with vector v, q2

dominates q1.
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Consider another price assignment vector v′ = (250, 300, 0). After we set the

prices of q1 and q2 with vector v′, q2 does not dominate q.

Our objective is to make sure that each tuple q ∈ Q′ is in the skyline with respect

to X(= P ∪Q′). That is, each tuple q in Q′ is not dominated by any tuple in X . This

is our goal. Consider Group 1 (Outside γ). We can achieve the goal because all tuples

in this group do not dominate q. Consider Group 2 (Inside γ). It is possible that some

tuples in γ(X, q) dominate q for a particular price assignment vector. For another price

assignment vector, they do not dominate q.

In the above, we learn that if we want to determine the price of qi in Q′ such that qi

is in the skyline, we only need to consider the tuples in γ(X, q).

Given a tuple q ∈ Q′, we know that only the tuples in X quasi-dominating q affect

the price of q. Note that the prices of all tuples in P are given and the prices of all

tuples in Q′ are to be found. Thus, according to the quasi-dominance relationship,

we design a progressive algorithm which finds the price of each tuple q in Q′ by the

following principle.

Principle 1 Whenever we want to find the price of qi in Q′, we make sure that the

prices of all tuples in Q′ quasi-dominating qi have already been determined.

Next, we need to determine the ordering of processing tuples in Q′ which follows

the above principle. We define the following monotonically increasing function f

which can determine the ordering. Given a tuple q in Q, function f is defined as

follows.

f(q) =
l−1∑
i=1

q.Ai

In our running example, l = 2. The f value of each tuple q ∈ Q can be found in

Table 4.4. The ordering of tuples in X is q3, q2 and q1.
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Tuple f
q1 5.0
q2 4.5
q3 0.5

Table 4.4: The f value of each tuple p ∈ Q

The f function can be used to evaluate tuples. According to our setting for each

attribute, the smaller value the better. Therefore, the value of f function is also the

smaller the better. Different attributes have different physical meanings, it is hard to

directly align the f function with some physical meaning, but we can use f function to

sort tuples, which results in a reasonable sorting that related to quasi-dominate. With

this function f , we know the following lemma.

Lemma 4.2.2 Suppose p and p′ are in X . If p quasi-dominates p′, then f(p) is smaller

than or equal to f(p′).

For example, since p2 quasi-dominates p1, f(p2)(= 4) is smaller than f(p1)(= 7).

With the above lemma, we can first compute the f values of all tuples in Q′. We

sort the tuples in Q′ in ascending order of these f values. Then, we determine the price

of each tuple q in Q′ according to this ordering, which follows Principle 1.

After we obtain the ordering of processing the tuples in Q′, we present an algorithm

to determine the optimal price assignment vector of Q′ incrementally.

Without loss of generality, we assume that q1, q2, ..., qk are the tuples in Q′ sorted

in ascending order of the f values. Let Q0 = ∅. Let Qi = Qi−1 ∪ {qi} where i =

1, 2, 3, ..., k.

Lemma 4.2.3 Suppose that p ∈ X and qi ∈ Q′. Consider that we are given the

optimal price assignment vector of Qi−1 equal to vi−1 = (v1, v2, ..., vn) such that we

set the price of each qj (i.e., qj.Al) in Qi−1 to vj . Suppose that γ(X, qi) ̸= ∅. Let

vi be a price assignment vector equal to vi−1 except that the i-th entry of vi is set to

(minp∈γ(X,qi) p.Al)− σ. vi is the optimal price assignment vector of Qi.
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By Lemma 4.2.3, we can derive a progressive algorithm as shown in Algorithm 9.

Algorithm 9 Algorithm AOPA(Q′)
Require: A set Q′ of tuples in Q
Ensure: the optimal profit assignment vector of Q′

1: Q′′ ← ∅
2: v← (0, 0, ..., 0)
3: for each qi ∈ Q′ (which is processed in the sorted ordering) do
4: v← findOptimalIncrementalPrice(qi, Q′′,v) (See Algorithm 10)
5: Q′′ ← Q′′ ∪ {qi}
6: return v

Algorithm 10 Algorithm findOptimalIncrementalPrice(qi, Qi−1,vi−1)

Require: A set Qi−1(= {q1, q2, ..., qi−1}), tuple qi in Q′ and the optimal price assign-
ment vector vi−1 of Qi−1

Ensure: the optimal price assignment vector vi of Qi
1: vi ← vi−1

2: find a set Y containing all tuples in P ∪Q′ which quasi-dominate qi
3: if Y ̸= ∅ then
4: v ← (minp∈Y p.Al)− σ
5: else
6: v ←∞
7: set the i-th entry in vi to v
8: return vi

With Lemma 4.2.3, it is easy to verify the following theorem.

Theorem 4.2.1 Given a set Q′ of k tuples selected from Q, Algorithm AOPA returns

the optimal price assignment of Q′.

Implementation and Time Complexity: In Algorithm 10, the most time-consuming

operation is the step of finding all tuples in P ∪ Q′ which quasi-dominate qi. One

possible implementation is to build an R*-tree index on dataset P ∪Q′ according to the

first l− 1 attributes. If we perform a range query with the range equal to “Ai ≤ qi.Ai”

for each i ∈ [1, l − 1], then we can find all tuples in P ∪ Q′ which quasi-dominate qi.

However, with this implementation, we have to build different indexes on P ∪ Q′ for

different selection sets Q′, which is not efficient.

Another possible implementation is to build an R*-tree index on dataset P ∪ Q

(instead of P ∪ Q′) according to the first l − 1 attributes. Similarly, we perform a
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range query with the same range as above and find all tuples in P ∪ Q which quasi-

dominate qi. In this implementation, since Q′ ⊆ Q, we can do a post-processing step

to select all tuples in P ∪ Q′ which quasi-dominate qi. This implementation has its

advantage that we only need to build an index once for any selection set. We adopt this

implementation in our experiment.

Suppose that we are given an R*-tree index on dataset P ∪ Q in the second im-

plementation. We want to analyze the time complexity of the step of finding all tu-

ples in P ∪ Q′ which quasi-dominate qi. In most cases, the cost of a range query is

O(log(|P |+ |Q|)+N) where N is the total number of tuples returned in a range query.

Typically, N is extremely small compared with (|P |+ |Q|). That is, N << |P |+ |Q|.

The post-processing step takes O(N) time. Thus, the step of finding all tuples in P∪Q′

which quasi-dominate qi takes O(log(|P |+ |Q|) +N) time.

After we analyze the time complexity of this time-consuming operation, it is easy

to verify that Algorithm 10 takes O(log(|P |+ |Q|) +N) time.

Consider Algorithm 9. Since there are |Q′| iterations (in lines 3-5) and each iter-

ation calls Algorithm 10 (which takes O(log(|P | + |Q|) + N) time), the overall time

complexity of Algorithm 9 is O(|Q′|(log(|P | + |Q|) + N)). Since m = |P |, n = |Q|

and k = |Q′|, the time complexity becomes O(k(log(m+ n) +N)).

4.2.4 Dynamic Programming Approach

In this section, we present a dynamic programming approach which finds an optimal

solution for problem TPP when l = 2.

Consider l = 2. Without loss of generality, we assume that q1, q2, .., qn are sorted

in ascending order of the f values. Q(i) is defined to be a set of tuples in Q such that

these tuples are quasi-dominated by qi. Let S(i, t) denote the set Q′ of size t where

i ∈ [1, n] and t ∈ [0, k] such that Profito(Q
′) = maxQ′′∈Q Profito(Q

′′) where Q
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is the set of all possible subsets containing t tuples from Q(i) . Let v(i, t) denote the

optimal price assignment vector of set S(i, t). Let T (i, t) denote the (optimal) profit of

set S(i, t).

Let us use a symbol α(qi, S,v) to represent findOptimalIncrementalPrice(qi, S,v).

In the following, we describe how to find three variables, namely v(i, t), T (i, t)

and S(i, t). Consider two cases.

• Case 1: qi is included in the final selection of size t.

By Lemma 4.2.3, the optimal price assignment vector of S(i, t), denoted by

v(i, t), can be obtained from the optimal price assignment vector of S(i− 1, t−

1), denoted by v(i− 1, t− 1).

Thus, we have the following equation.

v(i, t) = α(qi, S(i− 1, t− 1),v(i− 1, t− 1)) (4.1)

Thus,

T (i, t) = T (i− 1, t− 1) + v (4.2)

where v is the i-th entry in v(i, t). Let Tselect = T (i− 1, t− 1) + v.

Similarly, S(i, t) can be obtained as follows.

S(i, t) = S(i− 1, t− 1) ∪ {qi} (4.3)

• Case 2: qi is not included in the final selection.

We have

v(i, t) = v(i− 1, t) (4.4)

We have
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T (i, t) = T (i− 1, t) (4.5)

and

S(i, t) = S(i− 1, t) (4.6)

Let TnotSelect = T (i− 1, t).

Note that we want to maximize the profit of the selection set of size t. Obviously, if

Tselect ≥ TnotSelect, we should select qi in the selection set (which corresponds to Case

1). Otherwise, we should not select qi (which corresponds to Case 2).

The pseudo-code of the dynamic programming approach is shown in Algorithm 11.

Algorithm 11 Dynamic programming approach
Require: P,Q and k
Ensure: the final selection Q′ of size k and the optimal price assignment vector v of

Q′

1: for i = 1 to n do
2: T (i, 0)← 0
3: S(i, 0)← ∅
4: for t = 1 to k do
5: T (1, t)← α(q1, ∅, (0, 0, ..., 0))
6: S(1, t)← {q1}
7: for t = 1 to k do
8: for i = 1 to n do
9: vselect ← α(qi, S(i− 1, t− 1),v(i− 1, t− 1)

10: v ← the i-th entry in vselect

11: Tselect ← T (i− 1, t− 1) + v
12: TnotSelect ← T (i− 1, t)
13: if Tselect ≥ TnotSelect then
14: // Case 1: qi is selected
15: v(i, t)← α(qi, S(i− 1, t− 1),v(i− 1, t− 1))
16: T (i, t)← Tselect

17: S(i, t)← S(i− 1, t− 1) ∪ {qi}
18: else
19: // Case 2: qi is not selected
20: v(i, t)← v(i− 1, t)
21: T (i, t)← TnotSelect

22: S(i, t)← S(i− 1, t)
23: Q′ ← Q(n, t)
24: v← v(n, t)
25: return Q′ and v
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Theorem 4.2.2 Algorithm Dynamic Programming returns an optimal solution Q′ of

size k for problem TPP (i.e., the set Q′ of size k with the greatest profit) when l = 2.

Time Complexity: Consider Algorithm 11. Statements from line 1 to line 3 takes

O(n) time while statements from line 4 to line 6 takes O(k · k(log(m + n) + N)) =

O(k2(log(m + n) + N)) time. Consider statements from line 7 to line 22. There

are O(kn) iterations where the statements from line 9 to line 22 correspond to an

iteration. It is easy to verify that each iteration takes O(k(log(m + n) + N) + n)

time. Thus, statements from line 7 to line 22 takes O(kn(k(log(m+ n) +N) + n)) =

O(k2n(log(m+ n) +N) + kn2) time.

4.2.5 Greedy Algorithms

In the previous section, we described a dynamic programming approach which finds

an optimal solution when l = 2. However, when l > 2, we show that the problem is

NP-hard as follows.

Theorem 4.2.3 When l > 2, problem TPP is NP-hard.

Since the problem is NP-hard, we propose two greedy algorithms for this problem.

As we described in Example 5, the price of a new selected tuple may affect the price

of another new selected tuple. We call this phenomenon a price correlation. The first

version of the greedy algorithm is the algorithm which selects tuples in Q iteratively

without considering the price correlation. The first greedy algorithm returns a solution

with a theoretical guarantee on the profit. The second version is the algorithm which

selects tuples in Q iteratively considering the price correlation. The second greedy

algorithm performs well empirically.
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Algorithm 12 Greedy algorithm (Version 1)
1: v← (0, 0, ..., 0)
2: for each q ∈ Q do
3: find the standalone profit of q
4: Q′ ← a set of the k tuples which have the greatest standalone profits
5: return Q′

Greedy Based Algorithm I

The first version of the greedy algorithm is the algorithm which selects tuples in Q

iteratively without considering the price correlation.

For each tuple q in Q, we first define the optimal profit of the selection set contain-

ing q only. We call this profit the standalone profit of qi.

Definition 4.2.3 (Standalone Profit) Given a tuple q in Q, the standalone profit of q,

denoted by SP (q), is defined to Profito({q}).

The first version of the greedy algorithm is described as follows. Specifically, for

each tuple q in Q, we find the standalone profit of q. Then, we choose k tuples which

have the greatest standalone profits. This version is shown in Algorithm 12.

Although this greedy approach is a heuristical approach, it has theoretical guaran-

tees on the profit returned by the algorithm.

Suppose that O is the optimal selection set for problem TPP (i.e., the selection set

which has the greatest profit). Note that the optimal profit of O is equal to Profito(O).

Recall that we want to maximize the profit, due to the heuristical nature of the greedy

algorithm, this algorithm may return a selection Q′ which has a lower profit (which is

equal to Profito(Q
′)). It is easy to verify that

Profito(Q
′) ≤ Profito(O)

In the following, we give two theoretical results about the error guarantee on the profit
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returned by the algorithm. The first result corresponds to an additive error guarantee

while the second one corresponds to a multiplicative error guarantee.

Theorem 4.2.4 Let O be the optimal selection set and Q′ be the selection set returned

by Algorithm 12.

Profito(O)− ϵadd ≤ Profito(Q
′)

where

ϵadd =
k(k − 1)

2
σ

Theorem 4.2.5 Let O be the optimal selection set and Q′ be the selection set returned

by Algorithm 12. Suppose that Profito(Q
′) > 0. Let ∆ =

∑
qi∈Q′ SP (qi). Algorith-

m 12 is a (1− ϵmult)-approximate algorithm. That is,

Profito(Q
′) ≥ (1− ϵmult)Profito(O)

where ϵmult =
k(k−1)σ

2∆
.

Time Complexity: Consider Algorithm 12. We need to calculate the standalone profit

of q for each tuple q ∈ Q. This step takes O(k(log(m+n)+N)) time. Then, we need

to choose the k tuples which have the greatest standalone profits, which can be done

in O(k log k) time. Thus, the time complexity of Algorithm 12 is O(k(log(m + n) +

N)+k log k). Since k = O(m+n), the complexity becomes O(k(log(m+n)+N)) =

O(k log(m+ n) + kN).

Greedy Based Selection II

In the previous subsection, we describe the first version of the greedy algorithm which

does not consider the price correlation. In this subsection, we describe the second
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Algorithm 13 Greedy algorithm (Version 2)
1: Q′ ← ∅
2: while |Q′| ≤ k do
3: for each qi ∈ Q do
4: xi ← AOPA(Q′ ∪ {qi})
5: find the tuple qi in Q such that qi has the greatest value of xi

6: Q′ ← Q′ ∪ {qi}
7: return Q′

version of the greedy algorithm which select tuples in Q iteratively considering the

price correlation.

The second version of our greedy algorithms is shown in Algorithm 13.

Time Complexity: Consider Algorithm 13. There are O(k) iterations where state-

ments from line 3 to line 6 correspond to an iteration. Consider an iteration. State-

ments from line 3 to line 4 take O(n · k(log(m+n)+N)) = O(nk(log(m+n)+N))

time. Statements from line 5 to line 6 takes O(n log n) time. Thus, each iteration takes

O(nk(log(m+ n) +N) + n log n) = O(nk(log(m+ n) +N)) time. The overall time

complexity of Algorithm 13 is O(k ·nk(log(m+n)+N)) = O(nk2(log(m+n)+N)).

Note that compared with the time complexity of Algorithm 12 (i.e.,O(k log(m+ n) +

kN)), the time complexity of Algorithm 13 is higher.

4.2.6 Extension with the h-dominance Constraint

In problem TPP, after we set the price of each tuple in the selection set Q′, we know

that each of these tuples is in the skyline with respect to P ∪Q′. In other words, after

we set the price of each tuple in Q′, each of these tuples is one of the best choices for

the customer to choose (because there may be more than one tuple in the skyline). In

order to make sure that each tuple in Q′ will be chosen by a customer in the market

with a higher probability, we would like to set the price of each of these tuples such that

not only each of these tuples is in the skyline but also each of these tuples dominates at

least h tuples in the existing market P where h is an input parameter. This problem is
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called Finding top-k profitable products (TPP) with the h-dominance constraint. The

h-dominance constraint corresponds to that each of these tuples dominates at least h

tuples in the existing market P . If we set h=0, then the new problem becomes problem

TPP without the h-dominance constraint. The algorithm proposed for the original

problem can be adapted easily for the new problem. Details can be found in [91].

4.3 Finding Top-k Profitable Products over Dynamic

Datasets

In the above section, we discussed how to find top-k profitable products over static

datasets P and Q. However, in some cases, datasets are dynamic and change from

time to time. In this section, we study the problem of finding top-k profitable products

on dynamic datasets. Since there are two kinds of datasets, namely P and Q, which can

change over time, in the following, we focus on studying how to find top-k profitable

products when P changes. We do not discuss the case when Q changes because similar

conclusions can also be drawn.

We study three kinds of operations on P , namely insertion, deletion and modifica-

tion. Suppose that o is one of the three operations. After o is executed on P , we obtain

a new dataset denoted by Pnew. Specifically, we have the following operations and the

corresponding Pnew.

1. (Insertion) A tuple pnew is inserted into P . Then, Pnew = P ∪ {pnew}.

2. (Deletion) A tuple p is removed from P . Then, Pnew = P − {p}.

3. (Modification) Some of the attribute values of a tuple p in P are changed and p

becomes p′. Then, Pnew = (P − {p}) ∪ {p′}.

Note that a modification operation can be regarded as a sequence of the other two

69



operations (i.e., a deletion operation and then an insertion operation). It is sufficient

to describe how we execute the deletion operation and the insertion operation. We in-

troduce how we execute the insertion operation and deletion operation in Section 4.3.1

and Section 4.3.2, respectively.

Problem 2 (Dynamic TPP) Let o be an operation and Pnew be the resulting set P

after o is executed on P . We want to find a set Q′
new of top-k profitable products based

on Pnew and Q.

A straightforward approach is to run one of the algorithms in Section 4.2.5 on the

new datasets Pnew and Q from scratch whenever there is an operation. However, it is

very costly because this approach does not make use of some useful results computed

before the operation is executed. Instead, we propose an incremental algorithm to find

a set Q′
new of top-k profitable products based on not only the new datasets Pnew and Q

but also the previous result Q′ (computed based on the previous datasets P and Q).

Since P changes over time, it is desirable to design an efficient algorithm. In

the following, we give an incremental version of Greedy1 because Greedy1 is more

efficient compared with Greedy2. This incremental version which is based on not only

the new datasets Pnew and Q but also the previous result Q′, and returns the same

selection set as the original Greedy1 which is based on the new datasets only.

Now, we focus on describing how the insertion operation is executed.

4.3.1 Insertion into P

Suppose that a new tuple pnew is inserted into P and then Pnew is formed. Before

we discuss our incremental algorithm, we first give two lemmas or properties for the

insertion operation.

Lemma 4.3.1 (Pnew-Based Property) If pnew /∈ SKY (Pnew), then Q′
new = Q′.
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Algorithm 14 Incremental Algorithm for Insertion
1: // Checking Pnew-Based Property (specified in Lemma 4.3.1)
2: if pnew ̸∈ SKY (Pnew) then
3: Q′

new ← Q′

4: else
5: // Checking Q′-Based Property (specified in Lemma 4.3.2)
6: if there does not exist q ∈ Q′ such that pnew dominates q then
7: Q′

new ← Q′

8: else
9: // need to calculate Q′

new incrementally
10: for each q ∈ Q which is quasi-dominated by pnew do
11: re-compute the standalone profit of q
12: Q′

new ← a set of the k tuples in Q which have the greatest standalone profits
13: return Q′

new

Lemma 4.3.2 (Q′-Based Property) There does not exist q ∈ Q′ such that pnew dom-

inates q if and only if Q′
new = Q′.

According to Lemma 4.3.1 and Lemma 4.3.2, we design an incremental algorithm

as shown in Algorithm 14.

Theorem 4.3.1 Algorithm 14 returns a selection set Q′
new which is equal to the selec-

tion set returned by Greedy1.

The complexity of checking the Pnew-Based Property (Line 2 to Line 3) is O(m).

Otherwise, we can check the Q′-Based Property (Line 6 to Line 7), which takes O(k)

time. If both of the properties are not satisfied, then we need to recompute SP (q)

for each q ∈ Q which is quasi-dominated by pnew. For other q which is not quasi-

dominated by pnew, their standalone profits are the same as before. Similar to the time

complexity analysis in Section 4.2.5, the step (Line 10 to line 11) takes O(u · ((m +

n + N)) time where u is the total number of tuples in Q quasi-dominated by pnew.

Finally, we choose k tuples which have the greatest standalone profits. It can be done

in O(k log n) time. So the total complexity is O(m+ u · ((m+ n+N) + k log n).
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Algorithm 15 Incremental Algorithm for Deletion
1: // Checking Pnew-Based Property (specified in Lemma 4.3.3)
2: if pnew ̸∈ SKY (Pnew) then
3: Q′

new ← Q′

4: else
5: // need to calculate Q′

new incrementally
6: for each q ∈ Q which is quasi-dominated by pnew do
7: re-compute the standalone profit of q
8: Q′

new ← a set of the k tuples in Q which have the greatest standalone profits
9: return Q′

new

4.3.2 Deletion from P

Suppose that tuple p is removed from P . Similarly, we have the following lemma for

a deletion operation and have the corresponding algorithm as shown in Algorithm 15.

Lemma 4.3.3 (Pnew-Based Property) If pi /∈ SKY (P ), then Q′
new = Q′.

Theorem 4.3.2 Algorithm 15 returns a selection set Q′
new which is equal to the selec-

tion set returned by Greedy Algorithm (Version 1).

The complexity of checking the Pnew-Based Property (Line 2 to Line 3) is O(log(m+

n) + N). Otherwise, we need to recompute SP (q) for each q ∈ Q which is quasi-

dominated by pi. Similarly, this step (line 6 to line 8) takes O(u · (log(m+ n) +N) +

k log n) time. So, the total complexity is O(log(m+n)+N +u · (log(m+n)+N)+

k log n).

4.4 Finding Top-k Popular Products

In this subsection, we consider finding popular products when tolerant user prefer-

ences are given, where the popularity of an product is measured by the number of

tolerant user preferences on the product. We focus on the problem of finding top-k

popular products. In the following, Section 4.4.1 introduces the motivation of this
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problem. Section 4.4.2 defines the problem formally. Section 4.4.3 elaborates our

algorithm to solve this problem.

4.4.1 Motivation

As introduced in Chapter 1, we consider tolerant user preferences here. Suppose a

customer would like to choose a package which is not too expensive and the hotel

in the package is not too far away from a beach. For example, s/he gives his/her

preference that the price is at most $450 and the distance to the beach is at most 4.0km.

$450 and 4.0km are said to be the greatest possible acceptable values of attribute price

and attribute distance-to-beach, respectively. Since $450 and 4.0km are the greatest

acceptable values for this customer, they are called tolerant user preferences. We will

define tolerant user preference formally in the next subsection.

The tolerant user preferences can be collected by conducting surveys where cus-

tomers can provide their preferences on products. We can also find tolerant user pref-

erences by extracting customers’ preferences from their past histories [51]. Besides,

tolerant user preferences can also be obtained directly by some online systems such as

“Name Your Own Price” in Priceline.com where customers can provide their prefer-

able prices directly.

Formally, each tolerant user preference cp is represented by a set of l values, name-

ly g1, g2, ..., gl, where l is the total number of attributes and gj is the greatest possible

acceptable value of attribute Aj for j ∈ [1, l]. If a customer does not have any special

preference on a particular attribute Aj , s/he can simply specify the greatest possible

acceptable value of attribute Aj to be∞. In addition, each tolerant user preference cp

is associated with a weight, denoted by w(cp), denoting the total number of customers

who give this tolerant user preference cp. Let CP be a set of tolerant user preferences.

In the following, in order to simplify the discussion, following the spatial database
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literature [53, 57, 83, 98, 99], we assume that each potential tuple can satisfy as many

tolerant user preferences as possible.

Recall that in Section 4.2.1, we can define various utility function F (Q′) on Q′.

Here, we change the utility function in TPP to another utility function that returns the

total number of customers who are interested in some packages in Q′ when tolerant

user preferences are available. It makes sense that when new products come out, some

companies may care more about the popularity of the new products. Therefore, we

have a new problem, called finding top-k popular products.

There are a lot of applications of this problem. Generating popular laptops is an

example since the components in the market for assembling laptops is abundant and

we can assume that a laptop can meet as many tolerant user preferences as possible.

Finding popular delivery services in a new cargo company is another example where a

delivery service can serve a lot of customers. Finally, finding popular cell phone plans

in a new phone company is one example where a plan can be subscribed by a lot of

customers. Considering the capacities of potential packages (i.e., how many units of

potential packages which are available) is left as a future work.

4.4.2 Problem Definition

Given a tuple q in a final selection set Q′, we have to set the price of q. Since

we do not want to lose any money, we should set the price of q at least the cost of

q. Besides, we want to guarantee that q is in the skyline with respect to P ∪ Q′ after

we set the price of q. Given a tuple q ∈ Q, we define the set of all possible prices of

q, denoted by PS(q), which satisfy the above conditions to be {v|v ≥ q.C and q ∈

SKY (P ∪ {q}) if we set q.Al = v}.

Note that Q′ is the selection set. Suppose that for each tuple q ∈ Q′, we set the
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price of q to a positive real number v ∈ PS(q). Given q ∈ Q′ and a tolerant user

preference represented by {g1, g2, ..., gl}, q is said to satisfy cp if for each j ∈ [1, l],

q.Aj ≤ gj .

Given a tuple q ∈ Q and a value v ∈ PS(q), the influence set of q with respect to

v, denoted by IS(q, v), is defined to be the set of tolerant user preferences which are

satisfied by q if we set the price of q to v.

Definition 4.4.1 (Influence Set and Influence Value) Given a tuple q ∈ Q, the influ-

ence set of q, denoted by IS(q), is defined to be ∪v∈PS(q)IS(q, v). Given q ∈ Q, the

influence value of q, denoted by IV (q), is defined to be
∑

cp∈IS(q)w(cp).

Let Q′ be a subset of Q. The influence set of Q′, denoted by IS(Q′), is defined

to be ∪q∈Q′IS(q). The influence value of Q′, denoted by IV (Q′), is defined to be∑
cp∈IS(Q′) w(cp).

Problem 3 (Finding Top-k Popular Products) Let Q be the set of all possible sub-

sets containing k tuples from Q. We want to select a set Q′ of k tuples from Q such that

(1) IV (Q′) = maxQ′′∈Q IV (Q′′) and (2) each tuple in Q′ is in the skyline with respect

to P ∪Q′.

The tuples in the output of the above problem are called top-k popular products.

Note that in the above problem, setting different values of k gives different influence

values of the final selection set. Let IVi be the optimal influence value of the final

selection set of size i. It is easy to verify that IVi is monotonically increasing with i

since more customers are interested in the tuples in the final selection set when more

tuples are included in the final selection set. It is also easy to see that when the final

selection set contains a certain number of tuples, says kmax, the influence value keeps

unchanged even if the selection set contains more tuples. We define the greatest possi-

ble influence value denoted by IVmax to be maxi∈[1,|Q|] IVi. We also define kmax to be
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Algorithm 16 Algorithm for Finding Top-k Popular Products
1: Q′ ← ∅
2: while |Q′| < k do
3: find q ∈ Q such that IV (Q′ ∪ {q}) is the greatest
4: X ← IS(Q′ ∪ {q})− IS(Q′)
5: set the price of q to be optPrice(q,X)
6: Q← Q− {q}
7: Q′ ← Q′ ∪ {q}
8: return Q′

the smallest possible number of tuples in the final selection set such that its influence

value is equal to IVmax. That is, kmax = min{i|IVi = IVmax}. In the following, we

assume k ≤ kmax. If k > kmax, then the additional k − kmax tuples are redundant for

influencing customers.

Theorem 4.4.1 Problem Finding Top-k Popular Products is NP-hard.

4.4.3 Our Method

We propose a greedy approach to find top-k popular products. Before we give the

algorithm, we define the concept of “optimal price” as follows. Given a tuple q ∈

Q and a set X ⊆ IS(q), the optimal price of q satisfying tuples in X , denoted by

optPrice(q,X), is the greatest possible price v ∈ PS(q) we can set such that X ⊆

IS(q, v).

The algorithm is shown in Algorithm 16. In line 3 of Algorithm 16, we find q ∈ Q

such that IV (Q′∪{q}) is the greatest. In some cases, there are ties. That is, there are at

least two tuples q and q′ in Q which give the same greatest values of IV (Q′ ∪ {q})(=

IV (Q′ ∪ {q′})). Let Y be the set of tuples q in Q which give the same greatest values

of IV (Q′ ∪ {q}). In this case, we choose q in Y such that f(q) is the smallest where f

is the function defined in Section 4.2.3.

Note that there are two criteria in Problem 3. The first criterion is to maximize

the influence value of a selection set while the second criterion is to make sure that
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each tuple in the selection set is in the skyline with respect to P ∪ Q′. Interestingly,

although Algorithm 16 finds q iteratively according to the influence value of a selection

set Q ∪ {q} but not the criterion on whether q can be in the skyline with respect to

P ∪Q′, it also returns a set Q′ such that each tuple in Q′ is in the skyline with respect

to P ∪Q′. This result can be found in the following lemma.

Lemma 4.4.1 Let Q′ be the selection set returned by the algorithm for finding top-k

popular products (i.e., Algorithm 16). Each tuple in Q′ is in the skyline with respect to

P ∪Q′.

This algorithm not only can satisfy the second criterion but also can give a theoret-

ical guarantee for the first criterion (even though the problem is NP-hard).

Theorem 4.4.2 The algorithm for finding top-k popular products (i.e., Algorithm 16)

is 0.63-approximate. Let Q′ be the selection set returned by the algorithm and O be the

optimal set (which gives the greatest influence value). We have IV (Q′) ≥ 0.63·IV (O).

4.5 Experimental Settings

We have conducted extensive experiments on a Pentium IV 2.4GHz PC with 4GB

memory, on a Linux platform. The generation of synthetic datasets is elaborated in

Section 4.5.1, while the collection of real datasets is introduced in Section 4.5.2.

4.5.1 Synthetic Datasets

For synthetic datasets, we adapt the dataset generator of [24]. We observe from the real

dataset that some attributes have large cardinalities but some have small cardinalities.

77



For example, in the real dataset, price may have thousands of possible values, but no-

of-stops can have only 2 or 3 possible values. We divide the attributes into two groups

of nearly equal size. Note that P has l attributes only while Q has an additional attribute

C in addition to the l attributes. The first group contains the first half of attributes (or

more specifically, A1, . . . A⌊l/2⌋) each of which has the cardinality of 10. The second

group contains the second half of attributes (or more specifically, A⌊l/2⌋+1, . . . , Al) and

attribute C where each attribute in this group has the cardinality of 10k.

We generate P and Q in the same way except that generating P involves l attributes

but generating Q involves the first l − 1 attributes and attribute C. Note that attribute

Al of Q is not considered because in our problem definition, attribute Al is to be found.

The dataset generation process is described as follows. Firstly, we used the dataset

generator provided by [24] to generate an anti-correlated dataset where each attribute

value is a real number in a range between 0.0 and 1.0. Secondly, we perform a postpro-

cessing step so that each attribute in the first group has the cardinality of 10 and each

attribute in the second group has the cardinality of 10k. For an attribute in the first

group, it can be easily done by multiplying a value in this attribute by 10 and rounding

it to be an integer. We can also do a similar step for an attribute in the second group.

4.5.2 Real Datasets

For the real datasets, same as [90], we obtain real datasets from Priceline.com and

Expedia.com. For the website of Priceline.com, we obtained all packages on Jan 15,

2009 for a round trip traveling from San Francisco to New York for a period from

March 1, 2009 to March 7, 2009. We have 149 packages. These packages form the set

P of existing tuples. Each package has 6 attributes, namely quality-of-room, customer-

hotel-grading, hotel-class, hotel-price, class-of-flight, no-of-stops and price.

For the website of Expedia.com, we obtained all flights and all hotels on the same
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day (i.e., Jan 15, 2009) for the same round trip with the same travel period. We have

1014 hotels and 4394 flights. According to these hotels and these flights, we adopt the

method proposed by [90] to generate all competitive packages. Details can be found in

[90]. These competitive products form set Q. In this dataset, we have 4787 competitive

packages. Similarly, each package in Q has 6 attributes (including attribute price).

Note that each package in Q is associated with an additional cost attribute. In order

to generate the cost attribute, for each package q in this package set, we set q.C to be

the price of this package multiplied by a discount rate d where d is a user parameter.

Note that although there are values in attribute price in this set Q, we discard all these

values in the dataset because our problem is to find these values.

4.6 Results for TPP over Static Datasets

We implemented all algorithms we proposed for problem TPP, namely DP, GR1,

GR2. DP corresponds to our dynamic programming approach while GR1 and GR2

correspond to the first version and the second version of the greedy algorithms for

problem TPP. We also implemented a naive (or brute-force) algorithm described in

Section 4.2.2. We name it as BF. All the program are implemented in C++. In the

following, we consider problem TPP with the h-dominance constraint discussed in

Section 4.2.6 since it is more general than problem TPP without the h-dominance

constraint.

We measured the algorithms with four measurements, namely (1) Execution Time,

(2) Preprocessing Time, (3) Memory Cost and (4) Profit. (1) The execution time of

an algorithm corresponds to the time it takes to find the final selection. (2) The pre-

processing of an algorithm corresponds to the time it builds a R*-tree index for quasi-

dominance checking. (3) The memory cost of an algorithm is the memory occupied

by the algorithm. (4) The profit of an algorithm corresponds to the profit returned by
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the algorithm. The experimental results for TPP over small synthetic datasets, large

synthetic datasets and real datasets are shown in Section 4.6.1, Section 4.6.2 and Sec-

tion 4.6.3, respectively.

4.6.1 Results over Small Synethetic Datasets

It is known that a dynamic programming approach is not scalable to large datasets.

Besides, this dynamic programming approach solves problem TPP when l = 2. So,

we conducted some experiments to compare all proposed algorithms over a small two-

dimensional synthetic dataset where |P | = 10, 000 and |Q| = 10, 000. We set the

default parameters as h = 5, d = 0.5 and σ = 200.

We vary k to study the performance of the proposed algorithms. Figures 4.1 and

4.2, Figure 4.3 and Figure 4.4 are the results for execution time, profit and the memory

cost of each algorithm, respectively.

In Figure 4.1, the execution time of BF is very large and is very unscalable. Note

the PREP is the preprocessing time of GR1 and GR2. It is nearly equal to the time

for GR1 and GR2 to find the selection set for problem TPP. In Figure 4.2, we compare

PREP+GR1, PREP+GR2 and DP, in which DP runs faster than the former two. In

Figure 4.3, the profit of DP and BF is the greatest but the profit of GR1 and GR2

is also high. In most cases, GR2 returns higher profit than GR1. In Figure 4.4, as

expected, DP occupies much more memory than other approaches.

Since BF is not scalable, in the following, we do not compare all algorithms with

BF.

4.6.2 Results over Large Synthetic Datasets

We conducted experiments over large synthetic datasets to study the scalability of GR1

and GR2. We varied |P |, |Q|, d, l, k, σ and h in our experiments. The values of each
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Figure 4.1: Execution time of all algorithms (small dataset)
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Figure 4.2: Execution time of GR1, GR2 and DP (small dataset)

Parameter Values
|P | 0.5M, 1M, 1.5M, 2.0M
|Q| 0.5M , 1M 2M, 3M
d 0.25, 0.5, 0.75, 1
l 2, 5, 10,15, 20
k 10, 20, 50, 100
σ 50, 100,150, 200
h 0, 10,20,30

Table 4.5: Experimental settings on large synthetic datasets

parameter used in the experiments are given in Table 4.5 where the default values are

in bold.

Figures 4.5, 4.6, 4.7, 4.8 and 4.9 show some selected results.

Execution time: Figures (a) show the measurement of execution time. In all fig-

ures, GR2 runs slower than GR1. As we discussed in Section 4.2.5, the time complexity

of GR2 is higher than that of GR1. For factor k (Figure 4.7(a), when k increases, the

execution time of GR2 increases exponentially but the execution time of GR1 does not
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Figure 4.4: Memory costs of all algorithms (small dataset)

change much. This is because the time complexity of GR2 is quadratic with respect to

k but the time complexity of GR1 is not.

For factor of l (Figure 4.8(a)), the execution times of GR1 and GR2 increase rapidly

when l increases. This is because when l is larger, the computation cost of finding the

quasi-dominance in the algorithm is higher.

Preprocessing time: Figures (b) show the preprocessing time of the algorithms.

This involves the step of building the index. When |P |, |Q| and l increase, the prepro-

cessing times of GR1 and GR2 increase.

Memory cost: Figures (c) show the memory cost of the algorithms. Since the

memory cost of both GR1 and GR2 is the memory occupied by the spatial index R*-

tree on dataset P∪Q, when |Q| increases and |P | increases, the memory cost increases,

as shown in Figures 4.5.

Profit: Figures (d) show the profit returned by the algorithms. In most cases, GR1

and GR2 gives similar profits. For factor k (Figure 4.7(d)), when k increases, the profits
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Figure 4.5: Effect of |Q| (the number of potential new tuples)
Parameter Values
h 15, 20, 25, 30
σ 1000, 2000, 5000, 10000
d 0.4, 0.6, 0.8, 1.0
k 100, 150, 200, 250

Table 4.6: Experiment settings on real dataset

of GR1 and GR2 increase because more tuples are selected to contribute the profit of

the final selection. For factor h (Figure 4.9(d)), when h increases, the profits of both

algorithms decreases. This is because if h is larger, then the price of each selected

tuple in the final selection should be set lower in order that each of tuples dominates at

least h tuples in the existing market.

4.6.3 Results over real datasets

We show the experimental results for TPP on real datasets. We varied four factors,

namely h, k, d and σ. But here we only show the results with two factors h and k

as shown in Figures 4.10 and 4.11, respectively. The default setting configuration is:

k = 150, h = 20, d = 0.6 and σ = 50. The results for real datasets are similar to those

for synthetic datasets.
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Figure 4.6: Effect of |P | (the number of tuples in the existing market)
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Figure 4.7: Effect of k (the size of the final selection set)

84



 0.01

 1

 100

 10000

 1e+06

 1e+08

2 5 10 15 20

E
xe

cu
tio

n 
T

im
e 

(s
)

l

GR1
GR2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

2 5 10 15 20

P
re

pr
oc

es
si

ng
 T

im
e 

(s
)

l

GR1
GR2

(a) (b)

 0

 50

 100

 150

 200

2 5 10 15 20

M
em

or
y 

C
os

t (
M

B
)

l

GR1
GR2

 10

 100

 1000

 10000

2 5 10 15 20

P
ro

fit
 (

x 
1k

)
l

GR1
GR2

(c) (d)

Figure 4.8: Effect of l (the number of attributes)
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Figure 4.9: Effect of h (the minimum number of tuples dominated by each tuple in the
selection set)
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Figure 4.11: Effect of k (the size of the final selection set)

4.7 Results of TPP over Dynamic Data

We show the performance of our proposed incremental algorithm proposed in Sec-

tion 4.3. We denote this algorithm by IA. We compare it with an algorithm which finds

top-k profitable products from scratch. Since IA is similar to GR1 which finds the

products from scratch, in this experiment, we choose GR1 for comparison. Since IA

and GR1 have the same preprocessing time, in the following, we do not show PREP in

the figure.

We conducted experiments over synthetic datasets and real datasets. The default

values for the experiments over these datasets are the same as in Section 4.5.1 and

Section 4.5.2.

In this dynamic case, we have three types of operations, namely insertion, deletion

and modification. As we discussed before, we focus on the former two operations. In

the experiments, we generate operations in this dynamic case as follows. Consider a

dataset D. If the operation to be generated is an insertion, we randomly generate a
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tuple by the method of generating tuples in P and regard it as the tuple to be inserted.

If the operation to be generated is a deletion, we randomly pick one of the tuples in D

and regard it as the tuple to be removed. In the experiment, for each dataset, we create

a batch O of operations. We did three types of batches for experiments. The first type is

the batch containing all insertion operations, the second type is the batch containing all

deletion operations and the third type is the batch containing 50% insertion operations

and 50% deletion operations. In our experiments, we varied the size of O (denoted by

|O|) from 100k to 400k. We evaluate the algorithms with their execution times. We

show the experimental results over the real dataset as shown in Figure 4.12 when the

third batch type is considered. The execution times of both algorithms increase with

|O|. Besides, IA is much more efficient than GR1.
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Figure 4.12: Effect of |O| (the
size of update operation sets)

 0

 50

 100

 150

 200

 250

 300

 10  20  30  40

E
xe

cu
tio

n 
T

im
e 

(s
)

|CP| (x 1k)

PREP
GA

 0

 50

 100

 150

 200

 250

 300

10% 20% 30% 40%

E
xe

cu
tio

n 
T

im
e 

(s
)

r

PREP
GA

(a) (b)

Figure 4.13: Effect of |CP | and r on large synthetic datasets

4.8 Results for Finding Top-k Popular Products

We study how our proposed algorithm in Section 4.4.3 performs when we want to

find top-k popular products. The preprocessing time of this algorithm (which includes
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Figure 4.14: Effect of |CP | on a real dataset
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Figure 4.15: Effect of r on a real dataset

the time to build an R*-tree) is denoted by PREP while the main processing time of

this algorithm is denoted by GA. We compare it by a brute-force algorithm which

enumerates all possible subsets of size k and finds the subset which gives the greatest

influence value. We denote it by BF.

As before, we conducted experiments over the real dataset. The default values of

parameters except k and h are the same as in Section 4.5.2. Besides, since running BF

is time-consuming, we set k = 3 in our experiments in order that the execution time

of BF is shorter. Since finding top-k popular products does not have any h-dominance

constraint described in Section 4.2.6, h is set to 0.

In the problem of finding top-k popular products, tolerant user preferences are

generated as follows. Suppose that we want to generate a tolerant user preference cp.

Firstly, we generate a tuple c by the method of generating a tuple in P . Secondly, for

each attribute Ai of tuple c where i = 1, 2, ..., l, we set gi to ci + r × C(Ai) where

r is a positive real number and a user parameter (set to 0.1 by default), and C(Ai) is

the cardinality of attribute Ai. We varied the number of tolerant user preferences from

10k (1k) to 40k (4k) where its default value is 10k (1k) in synthetic (real) datasets.
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We evaluate the algorithms with two measurements, namely the execution time of the

algorithms and the influence value of a selection set returned by the algorithms.

Figure 4.13 shows the experiments on large synthetic datasets. Since BF is not

scalable, we do not include it in the figure. In the figures, the execution time of GA

increases with the size of CP and r.

Figures 4.14 and 4.15 show the experimental results on a real dataset. In Fig-

ure 4.14(a), GA runs at least 2 orders of magnitude faster than BF. In Figure 4.14(b),

the influence values of the selection sets returned by GA and BF are nearly the same.

Similar results can be found in Figure 4.15. All the results are consistent with our

theoretical result about the 0.63-approximation.

4.9 Conclusions

In this chapter, we identified and tackled two problems, finding top-k profitable prod-

ucts and finding top-k popular products, which have not been studied before. In finding

top-k profitable products, we considered generalized user preferences. In finding top-

k popular products, we considered both generalized user preferences and tolerant user

preferences. For the problem of finding top-k profitable products, we proposed a dy-

namic programming approach which can find the optimal solution when there are two

attributes to be considered. We showed that this problem is NP-hard when there are

more than two attributes and two greedy algorithms were proposed. We also present-

ed incremental algorithms for finding top-k profitable products when the dataset P

changes. For the problem of finding top-k popular products, we proved that this prob-

lem is NP-hard and proposed a 0.63-approximate algorithm. An extensive performance

study using both synthetic and real datasets was reported to verify the effectiveness and

efficiency of our algorithms.
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CHAPTER 5

FINDING COMPETITIVE PRICE

The previous chapter studied how to launch new products from a pool of potential

products. This chapter presents how to price new products when spatial databases are

considered. Section 5.1 introduces the motivation of finding competitive price. Sec-

tion 5.2 formulates our proposed problems, namely finding simple competitive price

and finding K-dominating competitive price. Section 5.3 proposes a spatial approach.

Section 5.4 discusses some extensions of our problem. Section 5.5 evaluates the pro-

posed technique through extensive experiments with both real and synthetic datasets

and illustrates the process with a real case study. Section 5.6 concludes this chapter.

5.1 Motivation

Dominance analysis is important in many multi-criteria decision making applications.

Recently, dominance analysis [86, 58, 95, 51, 49, 104] has received a lot of interest

from both research and applications.
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Hotel Price($)
h1 100
h2 250
h3 200
h4 220

(a) Spatial layout (b) Price

Figure 5.1: A running example

90



Table 5.1: A decision-making table T
Hotel Distance-to-beach(km) Price($)
h1 3.0 100
h2 1.0 250
h3 4.0 200
h4 2.5 220

a
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h
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h
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h
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h
4

h f

Figure 5.2: Hotels in the map with a new hotel hf

Example 6 (Skyline) Suppose there are 4 hotels, namely h1, h2, ..., h4, which are near

to a beach a1 in Sydney as shown in Figure 5.1. Figure 5.1(a) shows the spatial layout

of these 4 hotels and beach a1, and Figure 5.1(b) shows the price of each hotel.

Consider that a customer wants to look for a hotel in Sydney using two factors/criteria:

distance-to-beach and price. We transform the spatial layout in Figure 5.1(a) and the

price of each hotel in Figure 5.1(b) into a new table T with two attributes, namely

distance-to-beach and price, as shown in Table 5.1. This table is called a decision-

making table. For example, consider hotel h1. In Figure 5.1(a), we find the distance

between h1 and a1, denoted by d(h1, a1), equal to 3.0 kilometers (km). Besides, in

Figure 5.1(b), the price of h1 is $100. Then, we construct a tuple for h1 in table T with

(distance-to-beach, price) equal to (3.0, 100).

According to T , we want to determine the best possible choices for the customer.

Recall the definition of skyline in Chapter 4. It is easy to find out that h1, h2, and h4

are in the skyline set.

The reason why skyline analysis is popular is that we do not need to know any

concrete user preferences, like strict partial order user preferences or tolerant user
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preferences specified by users, and can obtain all possible “best” hotels which will

be selected by users even with their preference functions. This is because it has been

proved in [86, 58, 95, 51, 49, 104] that for any monotonic preference function g on

the factors/criteria, the hotel which has the smallest value of g is in the skyline. For

example, let us denote “Distance-to-beach” by X1 and “Price” by X2. If we set g to be

X1 +X2 where the weight (or coefficient) of X1 and the weight of X2 are equal, then

the hotel with the smallest value of g is h1 which is in the skyline. If we set g to be

100X1 +X2 where the weight of X1 is more important than that of X2, then the hotel

with the smallest value of g is h2 which is also in the skyline. If we set g to be a more

complicated function like g = 2
7−2X1

+ 100
300−X2

1, then h4 (which is in the skyline) is

the hotel with the smallest value of g. So, we call the skyline-related user preferences

generalized user preferences.

Example 7 (Application) Consider that a travel agency wants to open a new hotel hf

at location indicated in Figure 5.2. The travel agency has to find a suitable price for

hf called a competitive price of hf so that hf is competitive in the existing market

(which includes hotels h1, h2, ..., h4). From Figure 5.2, we find that d(hf , a1) = 2.0.

If we set the price of hf to $300, according to the decision-making table T , hf will be

dominated by h2. We say that $300 is not a competitive price of hf . However, if we set

the price of hf to $230, hf will not be dominated by any hotels in the existing market.

We say that $230 is a competitive price of hf .

From the above example, we observe that hf may or may not be in the skyline with

different prices. In this paper, we are studying to find a competitive price of hf such

that hf is competitive in the existing market. This problem is called finding simple

competitive price.

1This function is also monotonic with respect to X1 and X2.
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Finding a competitive price of hf means that, after we set the price of hf , hf is one

of the best choices for the customer to choose (because there may be more than one

hotel in the skyline). In order to make sure that hf will be chosen by a customer in

the market with a higher probability, we would like to set the price of hf such that not

only hf is in the skyline but also hf dominates at least K existing hotels where K is an

input parameter. This problem is called finding K-dominating competitive price. The

above problem makes sense since it is assumed that each hotel in the existing market

must be currently chosen by some customers and thus still exists in the market. If this

assumption does not hold, it is very likely that the hotels do not exist in the market

because no customers choose these hotels. Thus, if hf dominates these existing hotels,

the customers who originally choose these hotels will choose hf finally. We regard the

K-dominating requirement as another kind of generalized user preference.

Example 8 (K-dominating Competitive Price) If we set the price of hf to $230, ac-

cording to T , hf does not dominate any hotels. However, if we set it to $210, hf

dominates one hotel, namely h4. $210 is a price for problem finding 1-dominating

competitive price but $230 is not.

Note that our two problems are not limited to one attraction. Instead, we consider

multiple attractions. In addition to beach, Opera House and Sydney Aquarium are two

other possible attractions in Sydney. In this chapter, we will describe later how we

consider multiple attractions.

Setting a competitive price is common in our daily life applications. One example

is setting the selling price of an apartment for sale or rental where attractions can be

railway stations and shopping malls. Another example is setting a parking fee of a car

park where attractions can be shopping malls and museums.
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5.2 Problem Definition

We have a set H of m objects, namely h1, h2, ..., hm, in the Euclidean space, each

of which represents a service-site (e.g., a hotel in Figure 5.2). We also have another

set A of n objects, namely a1, a2, ..., an, in the same space, each corresponding to an

attraction-site (e.g., a beach). For each service-site h ∈ H , we use h.p to denote its

price2. For each h ∈ H and a ∈ A, the distance between h and a is denoted by d(h, a).

We consider a general situation where each pair of objects in each Cartesian prod-

uct H×{aj} has a distinct distance for each j ∈ [1, n]. That is, for each attraction-site

aj , any 2 service-sites h and h′ have distinct distances to aj (i.e., d(h, aj) ̸= d(h′, aj)).

This assumption allows us to avoid several complicated and uninteresting “boundary

cases”. When the assumption is not satisfied, an infinitesimal perturbation to the posi-

tions of some service-sites or attraction-sites can always be applied, to break the tie of

the distances of two object pairs. Due to the tininess of perturbation, results obtained

from the perturbed datasets should be as useful as those from the original datasets.

In order to analyze which service-site h in H is better than other service-sites in

H , we define a table called a decision-making table T with n + 1 attributes, namely

X1, X2, ..., Xn+1, as follows. For each object h ∈ H , we construct a tuple in form of

(x1, x2, ..., xn+1) where xj is equal to d(h, aj) for each j ∈ [1, n] and xn+1 is equal

to h.p. We denote each value xj by h.Xj for j ∈ [1, n + 1]. Table 5.1 shows an

example of the decision-making table T . In our running example, since there are 4

hotels and one attraction, m = 4 and n = 1. Thus, there are two attributes in T where

X1 =“Distance-to-beach” and X2 =“Price”. In T , there are 4 correspondence tuples.

Let X = {X1, X2, ..., Xn+1}.

Consider two service-sites h and h′ according to table T . Following our definition

2Here, we assume that each service-site is located in the Euclidean space and is associated with only
one attribute, namely price, for the sake of illustration. In general, each service-site can be associated
with more attributes. For example, in our motivating example, hotels can have other attributes like
star-rate. In Section 5.4, we will discuss how we extend our problem to this general scenario.
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of Skyline in Section 4.1, in Table 5.1, it is easy to verify that h1, h2 and h4 are in the

skyline. Besides, D(h1) = {h3}, D(h2) = ∅, D(h3) = ∅ and D(h4) = ∅.

Consider that a company wants to start a new service-site hf and wants to find a

competitive price of hf , denoted by hf .p, such that this new service-site will not be

worse than any existing service-site. Suppose that hf .p is set to a non-negative value.

We say that hf meets the skyline requirement if hf is in the skyline SKY (H ∪ {hf}).

Consider a scenario that the price of each existing service-site is non-zero. A trivial

solution is to set the price of hf equal to $0. However, the company wants to earn as

much profit as possible. In Example 7, we learn that if we set the price of hf too

high (e.g., $300), then hf is dominated by other existing service-sites. Apparently, we

should choose a suitable value for the price of hf which is not too low and too high.

The following monotonicity property helps to determine a suitable value.

Property 2 (Monotonicity for Skyline Requirement) Consider two possible non-negative

real numbers p1 and p2 where p1 ≥ p2. If hf meets the skyline requirement when hf .p

is set to p1, then hf meets the skyline requirement when hf .p is set to p2.

Let ps be a non-negative real number such that hf meets the skyline requirement

when hf .p is set to ps. This monotonicity property suggests that hf meets the skyline

requirement when hf .p is set to any value at most ps. This means that hf .p can be set

to many possible values such that it satisfies the skyline requirement. In this chapter,

we are studying to return a price range of hf (instead of a particular price value) such

that hf satisfies the skyline requirement. Let pmax,s be the maximum possible price

for the skyline requirement. Formally, we define a price range Rs of hf in form of

“0 ≤ hf .p < pmax,s” such that after we set hf .p to be any possible value in this range

Rs, hf satisfies the skyline requirement. Note that, in order to avoid discussing the

complicated and uninteresting boundary case, we assume that hf .p ̸= pmax,s in our

problem setting.
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Problem 4 (Finding Simple Competitive Price) Given a new service-site hf , we want

to find a price range Rs of hf in form of “0 ≤ hf .p < pmax,s” where pmax,s is a

non-negative real number such that (1) pmax,s is maximized and (2) hf is in the skyline

SKY (H ∪ {hf}) if we set hf .p to be any possible value in Rs.

After we set the price of hf to a value within Rs, hf is one of the best choices for the

customer to choose (because there may be more than one service-site in the skyline).

In order that hf becomes more competitive among all the service-sites in SKY (H ∪

{hf}), we want that hf can attract more customers who originally chose other service-

sites. This motivates us to propose another problem in which not only hf is not worse

than any existing service-site but also hf dominates at least K existing service-sites.

Intuitively, if K is larger, then hf dominates more service-sites. Consequently, more

customers will choose hf .

We say that hf meets the K-dominating requirement if hf dominates at least K ex-

isting service-sites (i.e., |D(hf )| ≥ K). Similarly, let pmax,d be the maximum possible

price for the K-dominating requirement. We define the price range Rd of hf in form

of “0 ≤ hf .p < pmax,d” such that after we set hf .p to be any possible value in this

range Rd, hf satisfies the K-dominating requirement.

A service-site hf is said to meet requirement R if hf satisfies both the skyline

requirement and the K-dominating requirement. Note that pmax,s is the maximum

possible price for the skyline requirement and pmax,d is the maximum possible price

for the K-dominating requirement. Thus, it is easy to verify that the maximum pos-

sible price for requirement R, denoted by pmax, is equal to min{pmax,s, pmax,d}. It

can be seen that the requirement R can be regarded as an advanced generalized user

preference, since it is a mix of two kinds of generalized user preferences. Intuitively,

pmax,s should be no more than pmax,d. But in the experiments, it does not always hold.

When K is relatively small, it is possible that there are several hotels in partial order
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relationship, so that pmax,s is higher than pmax,d.

Similarly, requirementR satisfies the monotonicity property.

Property 3 (Monotonicity for R) Consider two possible non-negative real numbers

p1 and p2 where p1 ≥ p2. If hf meets requirement R when hf .p is set to p1, then hf

meets requirementR when hf .p is set to p2.

Problem 5 (Finding K-dominating Competitive Price) Given a non-negative integer

K and a new service-site hf , we want to find a price range R of hf in form of “0 ≤

hf .p < pmax” where pmax is a real number such that (1) pmax is maximized, (2) hf is

in the skyline SKY (H ∪ {hf}) and (3) |D(hf )| ≥ K if we set hf .p to be any possible

value in R.

In the above problem formulation, Condition (2) and Condition (3) correspond

to the skyline requirement and the K-dominating requirement, respectively. In the

above problem, we want to maximize pmax. In the following, when we say the optimal

solution, we refer to this maximized value.

Some alternative problem formulations are using some existing prediction models

such as regression and decision tree models to estimate the price of hf based on the

existing service-sites in H , which are good if we are given some tolerant user prefer-

ences or strict partial order user preferences specified by customers. However, in our

case that we do not know any specified user preferences, the estimated price obtained

by these formulations may not meet the two requirements specified in Problem 5.

Note that problem Finding K-dominating Competitive Price is more general than

problem Finding Simple Competitive Price. This is because when K is equal to 0,

problem Finding K-dominating Competitive Price becomes problem Finding Sim-

ple Competitive Price. In the following, we focus on solving problem Finding K-

dominating Competitive Price.
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A naive approach to this problem is described as follows. For each possible non-

negative real number v, it tries to set the price of hf to be v and test whether hf

satisfies the skyline requirement and the K-dominating requirement. If yes, v is a

possible solution for pmax. Finally, it selects the greatest value such that hf satisfies

the requirements. However, since there are a large (or an infinite) number of possible

values, this approach is infeasible. In the following, we propose an approach which

avoids testing the requirements with a large number of possible values.

5.3 Spatial Approach

In this section, we propose a spatial approach which makes use of some spatial prop-

erties and runs efficiently in large datasets.

Problem Finding K-Dominating Competitive Price has two requirements, namely

the skyline requirement and the K-dominating requirement. We propose a spatial ap-

proach which meets the above two requirements. Specifically, it involves the following

three major phases.

• Phase 1 (for Skyline Requirement): We find the maximum possible price for

the skyline requirement, denoted by pmax,s.

• Phase 2 (for K-Dominating Requirement): We find the maximum possible

price for the K-dominating requirement, denoted by pmax,d.

• Phase 3 (for Requirement R): We compute the maximum possible price for

requirementR (which combines the above two requirements), denoted by pmax,

to be min{pmax,s, pmax,d}.

In the following, we describe how we make use of some spatial properties to per-

form the above three phases efficiently. Section 5.3.1 first describes some notations.
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Then, Section 5.3.2 describes the spatial properties used in our spatial approach. Then,

Section 5.3.3 proposes a spatial method for problem Finding K-Dominating Compet-

itive Price.

5.3.1 Notations

Given an attraction-site aj and a new service-site hf , we define the critical region for

attraction-site aj , denoted by Rj , to be the region occupied by the circle centered at

aj with radius equal to d(hf , aj) (with the boundary included). For example, consider

our running example. In Figure 5.3(a) which has the same objects as Figure 5.2, the

shaded region is R1.

The critical region for attraction-site aj is used to efficiently determine whether

a service-site hi ∈ H is nearer to attraction-site aj compared with hf . Specifically,

if a service-site hi is inside Rj , then we know that hi is nearer to attraction-site aj

compared with hf . Otherwise, we know that hi is farther from aj . For example, in

Figure 5.3(a), since h2 is in R1, h2 is nearer to attraction-site a1 compared with hf . On

the other hand, h3 is farther from a1 since h3 is outside R1.

We also define
∩n

j=1Rj (
∪n

j=1Rj) to be the intersection (union) among all regions

represented by R1, R2, ..., Rn. Let I =
∩n

j=1Rj and U =
∪n

j=1 Rj . For example,

Figure 5.3(b) shows the same objects as Figure 5.3(a) with two additional attraction-

sites, namely a2 and a3. In Figure 5.3(b), the shaded region corresponds to I. In

Figure 5.3(c) showing the same objects as Figure 5.3(b), the shaded region corresponds

to U .

Given a set A of n objects in a Euclidean space, the convex hull of A [41] is a

minimal set of objects in A such that these objects form a convex polygon and all

objects in A are inside the region occupied by this convex polygon. Let the region

occupied by the convex polygon for the convex hull of A be CH(A). For example,
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Figure 5.4: Convex Hull

Figure 5.4(a) shows some objects represented by black dots where A is equal to a set

of all black dots. The convex hull of A is {a1, a2, a3, a4, a5, a6}. The convex polygon in

the figure corresponds to the polygon for the convex hull of those objects. The shaded

region in the figure corresponds to CH(A) (i.e., the region occupied by the polygon).

5.3.2 Properties

In this subsection, we give some spatial properties for problem Finding K-Dominating

Competitive Price which can be used to speed up the computation.

This problem has two requirements. Consider the first requirement, the skyline

requirement. In order to determine pmax,s for the skyline requirement, we have the

following two lemmas.

Lemma 5.3.1 Suppose hf is inside CH(A). hf is in the skyline SKY (H ∪ {hf}) no

matter what value pmax,s is.

Lemma 5.3.2 Suppose hf is not inside CH(A). If we set pmax,s to be minh∈I h.p, then

hf is in the skyline SKY (H ∪ {hf}).
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From Lemma 5.3.1 and Lemma 5.3.2, we learn that, if hf is inside region CH(A),

pmax,s can be set to any value and thus hf is in the skyline SKY (H ∪{hf}). Note that

we do not need to scan any service-sites in this case. If hf is not inside region CH(A),

then pmax,s is set to be minh∈I h.p. In this case, we only need to scan the service-sites

in region I.

Consider the second requirement, the K-dominating requirement. In order to de-

termine pmax,d for the K-dominating requirement, we have the following lemma.

Lemma 5.3.3 Suppose that there are at least K service-sites not in U . If we set pmax,d

to be the K-th greatest price (i.e., h.p) among all service-sites h not in U , then hf

dominates at least K service-sites.

With the above lemmas, in order to meet the K-dominating requirement, we have

to set pmax,d to be the K-th greatest price among all service-sites not in U . There are

two issues related to the above lemma. The first issue is how we set pmax,d when there

are less than K service-sites not in U . In this case, we report to the user that hf cannot

dominate at least K service-sites with the current value of K and suggest the user

should provide a smaller value of K. The second issue is how we set pmax,d when K

is set to 0. In this case, we set pmax,d to∞.

In order to satisfy requirement R (which combines the above two requirements),

the final price is set to pmax = min{pmax,s, pmax,d}.

5.3.3 Algorithm

Algorithm 17 shows the algorithm for finding K-dominating competitive price. With

the lemmas in Section 5.3.2, it is easy to verify the following theorem.

Theorem 5.3.1 (Correctness) Algorithm 17 returns the optimal solution of problem

Finding K-Dominating Competitive Price.
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Algorithm 17 Algorithm for Finding K-Dominating Competitive Price
1: find I and U
2: // Phase 1: To meet the skyline requirement, we find a price pmax,s

3: find CH(A)
4: if hf is inside CH(A) then
5: pmax,s ←∞
6: else
7: pmax,s ← min

h is inside I h.p
8: // Phase 2: To meet the K-dominating requirement, we find a price pmax,d

9: pmax,d ← the K-th greatest price among all service-sites not in U
10: // Phase 3: Finding K-Dominating Competitive Price pmax

11: pmax ← min{pmax,s, pmax,d}
12: return pmax

Some readers may notice that pmax,s can be equal to∞ (which can be found in line

5 of Algorithm 17) when hf is inside CH(A). However, if K is greater than 0, then it

is easy to verify that pmax,d is equal to a value at most the price of one of the service-

sites in H and thus is not equal to ∞. Finally, the competitive price pmax (which is

equal to min{pmax,s, pmax,d}) is not equal to∞. If K is equal to 0, then we set pmax,d

to∞. In this case, it is possible that pmax is∞ (because pmax,s can be equal to∞ and

pmax = min{pmax,s, pmax,d}). Since it is not reasonable to return∞ as the answer for

pmax in real-life applications, in our implementation, we set pf to be the price of the

nearest service-site of hf .

We know that the lemmas in Section 5.3.2 can help us to find the competitive price

efficiently since we do not need to scan all service-sites in H . In the next subsection,

we will introduce some indexing techniques (e.g., R*-tree) to further speed up the

computation. Moreover, we will give a theoretical time complexity analysis.

5.3.4 Detailed Steps and Theoretical Analysis

In Algorithm 17, we need to determine two regions I and U . Besides, we also need

to find the service-sites in I and find the service-sites not in U . In the following,

we describe how we achieve the above steps efficiently by using some spatial index

techniques.
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Now, we give the detailed steps of Algorithm 17 and analyze its complexity. There

are five major steps in the algorithm.

• Step 1 (Finding I and U): Firstly, for each aj ∈ A, we construct Rj which

is a circle centered at aj with radius d(hf , aj). Since the circle construction

takes O(1) time and there are n attraction-sites in A, this step takes O(n) time.

Secondly, we construct I (U) by performing an intersection (union) operation

over all Rj’s. In our implementation, we conceptually represent I (U) by storing

a list L of Rj’s. Note that L contains n elements for Rj . This step takes O(n)

time. Thus, Step 1 takes O(n) time.

• Step 2 (Finding Convex Hull): Step 2 finds the convex hull over set A. Let α(N)

be the running time to find the convex hull over a set of size N . Step 2 takes

O(α(n)) time. We adopt the algorithm from [41] to find the convex hull where

the running time of this algorithm is O(N logN) time. Thus, Step 2 requires

O(n log n) time.

• Step 3 (Checking whether hf is inside CH(A)): It is easy to verify that checking

whether hf is inside CH(A) requires O(n) time. If hf is inside CH(A), then we

assign pmax,s with ∞, which takes O(1) time. Otherwise, we do the following

step. We find all service-sites in region I. This step can be done by performing

range queries over set H . Specifically, for each Rj in L (representing I), we per-

form a range query over set H with a circle centered at aj with radius d(hf , aj).

Let β(N) be the running time of a range query over the dataset of size N . Since

L contains n elements and each range query takes O(β(m)) time, the running

time of this sub-step is O(n · β(m)). Then, we perform intersection operations

among all results obtained from the above range queries. With the bitwise im-

plementation, an intersection operation with two sets can be done in O(1) time.
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Since there are O(n) intersection operations, this step takes O(n) time. Among

all service-sites in region I, we find the smallest price. The overall running time

for Step 3 is O(n + n · β(m) + n) = O(n · β(m)). If I is empty or there is no

service-site in I, then we assign pmax,s with∞ immediately.

In the literature, β(m) is theoretically bounded [29]. Let J be the greatest result

size of a range query (i.e., the greatest number of service-sites in the range). In

our problem setting, since a range query can be executed in O(J + logm) time

[29], Step 3 takes O(n(J + logm)) time.

In our implementation, we adopt an R*-tree [19] to support range queries. It has

been shown that the R*-tree performs efficiently in real cases and is commonly

adopted for range queries although it does not have good worst-case asymptotic

performance. Specifically, we build an R*-tree over all service-sites in H and

then perform a range query over this R*-tree.

• Step 4 (Finding the K-th Greatest Price Among all Service-sites not in U): First-

ly, we find a set R of all service-sites in U . Similar to Step 3, this step can be done

in O(n · β(m)) time. Secondly, we find a set S of all service-sites not in U by

H − R, which takes O(1) with the bitwise implementation. Thirdly, we sort all

service-sites in S in descending order of their prices, which takes O(m logm)

time. Fourthly, we find the service-site h with the K-th greatest price, which

takes O(1) time. This value corresponds to pmax,d. The running time of Step 4

is O(n · β(m) + 1 +m logm+ 1) = O(n · β(m) +m logm) time.

With the method used in [29], Step 4 can be done in O(n(J+logm)+m logm)

time.

• Step 5 (Finding the minimum value from {pmax,s, pmax,d}): We find pmax with

min{pmax,s, pmax,d}, which takes O(1) time.
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Thus, the running time of Algorithm 17 is O(n + α(n) + n · β(m) + n · β(m) +

m logm+ 1) = O(n+ α(n) + n · β(m) +m logm) time.

Theorem 5.3.2 The complexity of Algorithm 17 is O(n+α(n)+n ·β(m)+m logm).

Enhancement:

In Algorithm 17, there are three phases. The first two phases involve the search-

ing process of finding pmax,s and pmax,d. In order to find pmax,s, we need to find all

service-sites in I. Finding all service-sites in I without any index is time-consuming.

Similarly, in order to find pmax,d, we need to find all service-sites not in U (or all

service-sites in U). It is also time-consuming to do this operation without any index.

In this enhancement, we adopt an indexing technique called an aggregate R*-tree [89]

to speed up these two operations.

First of all, we present the indexing structure of an aggregate R*-tree. Then, we

describe how we use this tree to speed up the two operations.

We adopt an aggregate R*-tree [89] which is built on the set of all service-sites.

In this R*-tree, each leaf node corresponds to a service-site and each non-leaf node

corresponds to a rectangular region (usually called a minimum bounding rectangle

(MBR)) that all its descendants lie inside it. Each leaf node is associated with the

price of the corresponding service-site while each non-leaf node is associated with

two aggregate values of the prices of the service-sites which appear in all of its de-

scendent nodes, namely minp and maxp. Given a non-leaf node N , the aggregate

value minp of N , denoted by N.minp, is defined to be the smallest price of the

service-sites which appear in all descendant nodes of node N . That is, N.minp

is defined to be min{hi.p|hi is inside N}. Similarly, given a non-leaf node N ,

the aggregate value maxp of N , denoted by N.maxp, is defined to be the greatest
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price of the service-sites which appear in all descendant nodes of node N . That is,

N.maxp = max{hi.p|hi is inside N}. These two aggregate values of each non-leaf

node can be computed directly when the R*-tree is built. Details can be found in [89].

1 2 3 4 5 6 

6 

5 

4 

3 

2 

1 

(a) MBRs

(b)Aggregated R*-tree

Figure 5.5: R*-tree and the MBRs

Example 9 (Aggregate R*-tree) Consider our running example as shown in Figure 5.1.

According to 4 hotels, we build an aggregate R*-tree as shown in Figure 5.5. Fig-

ure 5.5(a) shows all MBRs in the tree. For example, node N3 contains two hotels,

namely h2 and h3, while node N2 contains two hotels, namely h1 and h4. Besides, a

higher-level node N1 contains two nodes, namely N2 and N3.

Figure 5.5(b) shows the structure of the R*-tree. Each leaf node corresponds to a

hotel and is associated with its price. For example, the leftmost leaf node corresponds

to hotel h1 and is associated with its price equal to 100. Each non-leaf node N is

associated with two aggregate values, namely minp and maxp. We represent this

node in form of (N,minp,maxp) in the figure. For instance, consider node N2 in

form of (N2, 100, 220), which means that the minp value of N2 is equal to 100 (which

is the smallest price value among all of its descendant nodes) and the maxp value
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of N2 is equal to 220 (which is the greatest price value among all of its descendant

nodes).

After we present the indexing structure of the R*-tree, we are ready to describe

how we speed up the two operations related to pmax,s and pmax,d by using the R*-tree.

Before we give the mechanism on how to speed up the operations, we first introduce

two variables, namely p′max,s and p′max,d. Variable p′max,s is the variable storing the

value of pmax,s which is found to be the best during the execution of the algorithm using

the R*-tree. Note that we want to find the smallest price value among all service-sites

in I. Initially, p′max,s is set to∞. During the execution of the algorithm, when we find

a service-site h in I, we update p′max,s with h.p if h.p is smaller than p′max,s. Similarly,

variable p′max,d is the variable storing the value of pmax,d which is found to be the best

during the execution. Note that we want to find the K-th greatest price value among all

the service-sites not in U . Initially, p′max,d is set to 0. When the algorithm is executed,

when we find a service-site h not in U , we update p′max,d with h.p if h.p is larger than

p′max,d.

Now, we describe how we make use of these two variables for speeding up the two

operations. We first present two lemmas related to this speedup. The first lemma is

related to p′max,s while the second lemma is related to p′max,d.

Lemma 5.3.4 (Pruning Rule in Computing p′max,s) If node N in the aggregate R*-tree

satisfies p′max,s ≤ N.minp, then all the descendants of N can be pruned.

Lemma 5.3.5 (Pruning Rule in Computing p′max,d) If node N in the aggregate R*-tree

satisfies p′max,d ≥ N.maxp, then all the descendants of N can be pruned.

Lemma 5.3.4 is used to speed up the computation of pmax,s while Lemma 5.3.5 is

used to speed up the computation of pmax,d.
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In the algorithm to be explained later, we will describe that we process a certain

number of nodes in the R*-tree one by one in order to compute pmax,s and pmax,d. Now,

we first assume that the nodes in the tree are processed in a pre-defined ordering.

Consider that we want to compute pmax,s. Suppose that we process a node N during

the execution of the algorithm. If N satisfies p′max,s ≤ N.minp, then all the descen-

dants of N can be pruned. In other words, we do not need to process all descendant

nodes of N .

Consider that we want to compute pmax,d. Suppose that we process a node N during

the execution of the algorithm. If N satisfies p′max,d ≥ N.maxp, then all the descen-

dants of N can be pruned. In other words, we do not need to process all descendant

nodes of N .

Example 10 (Pruning in the Aggregate R*-tree) We can compute pmax,s with prun-

ing by Lemma 5.3.4. Suppose currently p′max,s = 80 and we process node N1. Note

that N1.minp = 100 and N1.maxp = 250. Since p′max,s < N1.minp, we can prune

the subtree rooted at N1 immediately and continue processing the next node in the

predefined ordering.

Similarly, we can compute pmax,d with pruning by Lemma 5.3.5. Suppose currently

p′max,d = 270 and we process node N1. Since p′max,d > N1.maxp, we can prune

the subtree rooted at N1 immediately and continue processing the next node in the

predefined ordering.

After describing how we can do the pruning operation, we present how we process

the nodes in the R*-tree in a pre-defined order. In the following, we describe how we

can do the pruning operation for computing pmax,s. How we can do the pruning for

computing pmax,d is similar. We do not discuss here. Specifically, we have a variable L

which denotes a list of nodes to be processed in the R*-tree. The nodes in L are sorted
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in the ascending order of their minp values during the execution of the algorithm.

Initially, L is ∅. The algorithm has the following steps.

• Step 1 (Initialization): Insert the root node of the R*-tree into L and p′max,s is

set to∞.

• Step 2 (Iterative Step):

– We remove the first node N (i.e., the node with the smallest minp value in

L) from L.

– If N is an internal node, we perform the following operations.

∗ If p′max,s ≤ N.minp or N does not overlap with I, then N is pruned.

∗ Otherwise, we expand all child nodes of N and insert them into L.

– If N is a leaf node, we perform the following operations.

∗ If N is inside I, then we update p′max,s accordingly. (Suppose that

N corresponds to the service-site h. If h.p < p′max,s, then p′max,s is

updated to h.p.)

∗ Otherwise, N is discarded and we continue the process by jumping to

Step 1 for execution.

• Step 3 (Termination): This process terminates when p′max,s ≤ N.minp or L is

empty.

Example 11 (Processing L) Suppose the R*-tree is given in Figure 5.5(b). The pro-

cess of computing pmax,s is as follows. Initially, L =< N1 >, p′max,s =∞.

• Iteration 1, we remove N1 from L. As p′max,s > N1.minp and N1 overlaps with I,

we expand all child nodes of N1 (i.e., N2 and N3) and insert them into L. Since

N2.minp < N3.minp, N2 is inserted before N3. Currently, L =< N2, N3 >.
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• Iteration 2, N2 is removed from L. Similar to N1, N2 is an internal node that sat-

isfies p′max,s > N2.minp and N2 overlaps with I. Thus, N2 is expanded and all

the child nodes are inserted into L where the nodes are sorted in the ascending

order of the minp value (or the price value). Currently, L =< h1, N3, h4 >.

• Iteration 3, h1 is removed from L and h1 is a leaf node inside I. Therefore, p′max,s

is updated to h1.p, which is 100. Currently, L =< N3, h4 >.

• Iteration 4, N3 is removed from L. Note that p′max,s < N3.minp. The process

terminates and pmax,s = 100 finally.

5.4 Discussion

In this section, we focus on three issues related to our problem. The first one is how to

apply our method when multiple non-spatial attributes are considered (Section 5.4.1).

The second one is how to find a reasonable value of K for the K-dominating require-

ment (Section 5.4.2).

5.4.1 Handling Multiple Non-spatial Attributes

In this section, we will extend our problems and our proposed techniques to a gen-

eral scenario when there are multiple non-spatial attributes. In previous sections, we

study one single non-spatial attributes, namely attribute Price, in order to simplify our

discussion. In our running example, each service-site can have multiple non-spatial

attributes. For example, in addition to attribute Price, it can have non-spatial attributes

such as star rate. Under this general scenario, the two problems studied in this paper

are still the same except the definition of dominance relationship among service-sites

for the decision making table.
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Formally, suppose each service-site h has q non-spatial attributes, namely γ1, γ2, ..., γq.

Without loss of generality, let the last attribute γq be attribute Price. For k ∈ [1, q], the

value of each attribute γk for h is represented by h.γj . In this problem, for each existing

service-site h and each non-spatial attribute γj , h.γj is given. For the new service-site

hf , each non-spatial attribute γj other than γq is given. We want to find hf .γq to sat-

isfy the skyline requirement and the K-dominating requirement. That is, we study

Problem 5 but there are multiple non-spatial attributes (instead of a single non-spatial

attribute).

We adapt the construction of the decision-making table with n+ q attributes as fol-

lows. For each object h ∈ H , we construct a tuple in form of (x1, x2, ..., xn, xn+1, xn+2,

..., xn+q) where xj is equal to d(h, aj) for each j ∈ [1, n] and xj is equal to h.γj−n for

each j ∈ [n + 1, n + q]. We denote each value xj by h.Xj by j ∈ [1, n + q]. Let

X ′ = {X1, X2, ..., Xn+q}. The dominance relationship is defined on X ′ instead of X .

With this adapted dominance relationship, we can define the two problems accordingly

under this general scenario.

Our proposed approach (Algorithm 17) can be adapted to this general scenario.

All changes in the algorithm for this scenario are related to the adapted dominance

relationship which involves the additional non-spatial attributes. Specifically, there are

two changes in the algorithm. The first change is related to the skyline requirement.

Let H ′ be a set of service-sites h inside I such that, for each non-spatial attribute γ

other than attribute Price (i.e., γq), h.γ ≤ hf .γ. In Line 7 of Algorithm 17, we modify

it to “pmax,s ← minh∈H′ h.p”. The second change is related to the K-dominating

requirement. Let H ′′ be a set of service-sites h not in U such that, for each non-spatial

attribute γ other than attribute Price (i.e., γq), hf .γ ≤ h.γ. In Line 9 of Algorithm 17,

we modify it to “pmax,d ← the K-th greatest price among all service-sites h in H ′′”. Let

us call the modified algorithm Improved Algorithm. It is easy to verify the following
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Table 5.2: The running example with 2 non-spatial attributes
Service-site Star rate (γ1) Price (γ2)

h1 3 100
h2 4 250
h3 3 200
h4 4 220

Table 5.3: A decision-making table T
Hotel Distance-to-beach(km) Star rate Price($)
h1 3.0 3 100
h2 1.0 4 250
h3 4.0 3 200
h4 2.5 4 220

theorem (Since the Improved Algorithm is similar to Algorithm 17, the correctness of

Theorem 5.4.1 can be directly derived from the proof of Theorem 5.3.1. Therefore, we

omit the proof).

Theorem 5.4.1 Improved Algorithm returns the optimal solution of problem Finding

K-Dominating Competitive Price when there are multiple non-spatial attributes.

Example 12 (Multiple Non-Spatial Attributes) Let us illustrate the algorithm with

our running example. We use the example as shown in Figure 5.1 but the price table is

changed from the table in Figure 5.1 (which contains one non-spatial attribute, namely

“price”) to the table in Table 5.2 (which contains two non-spatial attributes, namely

“star rate” and “price”). Here, attribute “star rate” corresponds to γ1 while attribute

“price” corresponds to γ2. Note that different from attribute “price” in which a small-

er value is more preferable, in attribute “star rate”, a larger value is more preferable.

Similarly, we have the corresponding decision-making table as shown in Table 5.3.

In this example, suppose that we set the star rate of the new hotel hf to 3 and the

location of hf to the location as shown in Figure 5.2. Let K be 2.

In Phase 1, we find all the hotels in I. Only one service-site, h2, locates inside I.

Since h2.γ1 = 4 > 3 = hf .γ1, H ′ = {h2}. Therefore, pmax,s is set to the price of h2,
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$250.

In Phase 2, we find all the hotels not in U . There are three service-sites, h1, h3

and h4, not in U . And all of them have a value on γ1 no less than hf . Thus, H ′′ =

{h1, h3, h4}. The 2-nd greatest price among all the hotels in H ′′ is the price of h3,

$200. Therefore, pmax,d is set to be $200.

In Phase 3, we can compute pmax = min{$250, $200} = $200. Thus, the 2-

dominating price of hf is $200.

5.4.2 How to set K

How to set a proper K is essential for the K-dominating requirement. In some cases,

users have their mind to set the value of K because they want that hf must dominate

at least K service-sites in the existing market. However, in some other cases, users

do not have any idea about how to set the value of K. In this section, we propose a

method to help users to determine the value of K in this case.

As we know, different values of K result in different prices, but which price among

those is more reasonable and thus benefits the new service-site is still not known. In

this subsection, we propose a model to suggest a way to find an appropriate value of

K based on the well-studied field of economy and business [33].

There are some existing models in economical and business research studying cus-

tomer retention/attrition [33]. In this subsection, we borrow the concept of the tradi-

tional demand-and-supply model [33] in the literature to find an appropriate value of

K.

In this model, each service-site h is associated with a demand, denoted by h.d,

representing the total number of customers that would like to choose this service-site.
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In our running example, if there are 50 customers who want to accommodate in hotel

h, the demand of this hotel h.d is 50. In our problem, for each h ∈ H , h.d is given.

However, hf .d is not given. In the following, we propose a model to estimate hf .d.

The demand of each service-site can be obtained from some external sources of

information about the proportion of the usage of the service-sites. In our motivating

example, this information can be the proportion of using the hotels [9]. Similar kinds

of information are also available in other applications like setting a selling price of an

apartment [8] and setting a parking fee of a car park [10].

Definition 5.4.1 (Potential Loser) Given a service-site h in H , h is said to be a po-

tential loser if and only if there exists a non-negative real number p such that when

hf .p is set to p, hf dominates h.

We define the set of all potential losers in H to be PL. Without loss of generality,

we assume that PL contains l service-sites. Note that hf dominates at most l service-

sites if we set hf .p to a particular non-negative real number. Thus, the greatest possible

value of K that we can set is l. Without loss of generality, we assume that PL contains

h1, h2, ..., hl where hi.p ≥ hi+1.p for i = 1, 2, ..., l − 1.

Definition 5.4.2 (Real Loser) Given a potential loser h and a non-negative real num-

ber p, h is said to be a real loser with respect to p if and only if hf .p is set to p and hf

dominates h.

Given a non-negative real number p, we define the set of all real losers with respect

to p to be RL(p). If h is a real loser with respect to p, then we know that hf dominates

h. Similar to PL, we also assume that hi.p ≥ hi+1.p for i = 1, 2, ..., l − 1 without

loss of generality. Thus, we know that some of the current customers choosing h may

change their preference and finally choose hf instead of h. However, in the real-life
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applications, not all customers choosing h are eager to making this change. In order

to capture this, we define an input parameter α which is a real number between 0 and

1 and denotes the transfer rate representing the fraction of customers who originally

want to choose h (before hf is set up) and finally choose hf (after hf is set up). Sim-

ilarly, the transfer rate α can be obtained from some external sources of information

about customers’ behaviors. There are a lot of studies related to customers’ behaviors

in the literature of psychology, sociology, social anthropology and economics. This

information can be found in the studies about customers’ behaviors [78, 66].

Suppose that hf .p is set to p. According to this transfer rate, given a real loser h

with respect to p, there are α× h.d customers who originally want to choose h (before

hf is set up) and finally choose hf (after hf is set up). Thus, by considering all real

losers in RL(p), we deduce that the total number of customers who originally want to

choose some real losers with respect to p and finally choose hf is equal to

∑
h∈RL(p)

α× h.d

Let us denote the above equation by a function f as follows.

f(p) =
∑

h∈RL(p)

α× h.d

Now, we are ready to define a formula for hf .d as follows.

hf .d = f(p)

Next, we describe how to determine the value of K by using a new concept of

utility. Given a non-negative real number p, the utility of hf with respect to p, denoted
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by U(p), is defined as follows.

U(p) = p× f(p)

Note that f(p) corresponds to hf .d. We conclude that p×f(p) corresponds to the total

income for hf .

Let ui = U(hi.p) for i = 1, 2, ..., l. We deduce that

ui = hi.p× f(hi.p)

Note that in both PL and RL(p), hi.p is monotonically decreasing when i increases.

Besides, f(hi.p) is monotonically increasing when i increases. Thus, we do not know

whether ui is larger than ui+1 or not where i = 1, 2, ..., l − 1.

According to u1, u2, ..., ul, we want to determine the value of K as follows. Firstly,

we calculate all values u1, u2, ..., ul. Secondly, we find an integer io which gives the

greatest value of uio among u1, u2, ..., ul (i.e., io = argmaxiui). Thirdly, we set K to

io.

Example 13 (Finding K) In the running example of Figure 5.2, the set of potential

losers is {h1, h3, h4}. Thus, l is 3 and the greatest possible value of K we can set is

3. Suppose that h.d is set to 100 for each h ∈ H and α is set to 0.1. We obtain that

u1 = 2200, u2 = 4000 and u3 = 3000. Thus, the value K is 2 and the maximum utility

is 4000. We will apply this model in the case study described in Section 5.5.

5.5 Empirical Studies

In this section, we verify the scalability of our proposed algorithms. The algorithms

were implemented in C/C++. All the experiments were performed on a 2.4GHz PC

116



Table 5.4: Default values
m 200000
n 20
K 20
x 150
σ 27
q 1

with 4.0GB RAM, on a Linux platform. We ran experiments on both real and synthetic

datasets.

The synthetic datasets were generated as follows. Firstly, we collect the locations

of objects in North American (e.g., roads, populated places and cultural landmarks)

from Digital Chart of the World [11]. Let W be the set of objects. Then, from W ,

we randomly select m objects as service-sites and n objects as attraction-sites. These

service-sites and these attraction-sites form set H and set A, respectively. The location

of a new service-site hf is randomly generated. Since there is no attribute related to

price in set H , we generate the price of each service-site in H as follows. For each

service-site h in H , we find its nearest attraction-site a and set h.p to be a value which

is randomly picked from a normal distribution with mean equal to x/(1+d(h, a)2) and

standard derivation equal to σ, where x and σ are two input parameters. Intuitively, x

is the (expected) greatest possible price of a service-site when we consider the nearest

attraction-site. By default, we adopt x = 150 and σ = 27 since the real dataset (to be

described next) has such a distribution. The default values of some parameters in our

experiment are shown in Table 5.4. In the following, we use the default settings unless

specified otherwise.

The real dataset was obtained from Surfy Hotel [12] which provides information

about hotels in North America, including price and location. We select 20,000 hotels

for our experiment. We chose four attraction-sites, namely Status of Liberty, Em-

pire State Building, Museum of Art and Wall Street. Similarly, the location of a new

service-site hf is randomly generated.
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We implemented four algorithms, namely (a) Blind-Naive, (b) Guided-Naive, (c)

3-Phase(No Index) and (d) 3-Phase(Index). (a) Blind-Naive is the naive algorithm we

described at the end of Section 5.2. In our implementation, Blind-Naive tries to find a

set of possible prices starting from 0 with an incremental count of 0.01 (i.e., 0.00, 0.01,

0.02, ..) such that these prices meet the skyline requirement and the K-dominating re-

quirement. It continues the process until the largest price which meets the requirements

is found. This largest price corresponds to the answer of Blind-Naive. (b) Guided-

Naive is similar to Blind-Naive. Instead of trying all possible prices in an increment

count of 0.01, Guided-Naive tries to find all possible prices of existing service-sites.

These prices can be considered as candidates for the competitive price. Similarly, it

tries to find the largest price among these prices which meet the requirements as the

final answer. (c) 3-Phase(No Index) corresponds to Algorithm 17 (which is a three-

phase algorithm) but it is not equipped with any index. Specifically, it has to find I

and U without using any index in order to determine pmax,s, pmax,d and pmax. (d) 3-

Phase(Index) corresponds to Algorithm 17 and it is equipped with an index, namely

an aggregate R*-tree [89], for computation. We adopted an aggregate R*-tree [89] for

the range query in 3-Phase(Index) where the maximum number of entries in a node is

equal to 20 and the minimum number of entries in a node is equal to 10.

In the following, for clarity, we simply denote Blind-Naive and Guided-Naive as

Blind and Guided, respectively.

Since problem Finding K-Dominating Competitive Price is a more general prob-

lem than Finding Simple Competitive Price, in the following experimental results, we

study the former problem only. In Section 5.4, we described how we extend our algo-

rithm for the general scenario which involves q non-spatial attributes. In the experi-

ment, we also conducted experiments by varying q from 1 to 4.

Section 5.5.1 studies the scalability of our proposed technique, Section 5.5.2 gives
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a case study of our problem and Section 5.5.3 gives some results on how to find an

appropriate value of K.

5.5.1 Scalability

We evaluate the algorithms with four measurements: (1) Price, (2) Query Time, (3)

Storage and (4) Proportion of Pruned Points. (1) Price corresponds to three different

types of prices, denoted by pmax,s, pmax,d and pmax, respectively. Since pmax,s may

be equal to ∞ in some cases, in our experiment, we only report any value not equal

to ∞ for pmax,s. Besides, note that pmax = min{pmax,s, pmax,d}. (2) Query time

refers to the time of executing the algorithm to find the price. (3) Storage is the total

memory consumption used for the algorithm. The storage of 3-Phase(Index) is the

memory occupied by the aggregate R*-tree. The storage of other three algorithms is

the memory occupied by the decision-making table. (4) Proportion of pruned points is

the ratio of points (or objects) that the algorithm does not need to read. Specifically,

since 3-Phase(Index) has an indexing structure, some objects need not be read. For

each measurement, each experiment was conducted 1,000 times and the average of the

results was reported. We studied the effects of K,n,m and q as follows.

Effect of K: Figure 5.6(a) shows when K increases, pmax,d decreases and pmax,s

remains the same. pmax,s is not affected by the number of dominated service-sites,

while pmax,d decreases since the K-th greatest price of the service-sites outside U de-

creases when K increases. In Figure 5.6(b), the query time of each algorithm increased

slightly except Guided when K increases. This is because each algorithm has to find

more existing service-sites which are dominated by hf when K increases. Note that

the query time of 3-Phase(Index) is two orders of magnitude less than 3-Phase(No In-

dex), and much less than the other two algorithms. Besides, the query times of the four

algorithms decrease in the order of Blind, Guided, 3-Phase(No Index), 3-Phase(Index).
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Figure 5.6: Effect of K (the size of the final selection set)

This order also appears in all other figures of query time measurement (which will be

shown later). Figure 5.6(c) shows the storage of the algorithms does not change signif-

icantly when K increases. However, in Figure 5.6(d), as K increases, the proportion of

pruned points of 3-Phase(Index) decreases slightly. This is because when K increases,

there are more service-sites which should be dominated by hf . Thus, more service-

sites should be considered and thus fewer service-sites (or points) are pruned when K

increases.

Effect of n: In Figure 5.7(a), when n increases, pmax,s increases. This is because,

if the total number of attraction-sites increases, then it is less likely that a service-

site dominates the new service-site hf . However, pmax,d decreases slightly when n

increases. This is because, if there are more attraction-sites, then similarly, it is also

less likely that the new service-site hf dominates other service-sites. However, in Fig-

ure 5.7(b), the query time of 3-Phase(Index) remains nearly the same when n increases,

but the query time of other three algorithms increases as n increases. Figure 5.7(c) and

5.7(d) shows that n does not affect the storage and the proportion of pruned points of

3-Phase(Index). In Figure 5.7(c), the storage of the other three algorithms increases
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Figure 5.7: Effect of n (the number of attraction-sites)
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Figure 5.8: Effect of m (the number of service-sites)

with n, because the decision-making table used by the three algorithms becomes larger

when n increases.

Effect of m: Figure 5.8(a) shows that, when the number of service-sites increases,

pmax,s decreases. This is because, if there are more service-sites, then it is more likely

that a service-site dominates the new service-site hf . However, in the figure, pmax,d

increases with the number of service-sites because it is more likely that hf can domi-

nate other service-sites. Thus, pmax,d can be higher. In Figure 5.8(b), the query times
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Figure 5.9: Effect of q (the number of non-spatial attributes)

of both all algorithms increase with m. The storage of all the algorithms increases

with m, as shown in Figure 5.8(c). In Figure 5.8(d), the proportion of pruned points of

3-Phase(Index) increases slightly when m increases.

Effect of q: We considered four non-spatial attributes, namely Price, Star Rate, No.

of Transportation Types, and Customer Confidence. In the experiments, the number

of non-spatial attributes, denoted by q, increased from 1 to 4 according to the above-

mentioned order. Figure 5.9(a) shows that pmax,s increases and pmax,d decreases when

q increases. The explanation is similar to the one described in “Effect of n” because,

when q increases, it is less likely that a server-site dominates a new service-site hf and

it is less likely that hf dominates other service-sites. Figures 5.9(b) and (c) shows that

the query times and the storage of all algorithms increases with q. In Figure 5.9(d),

the proportion of pruned points for 3-Phase(Index) remains nearly unchanged when q

changes.

Effect of K on Real Dataset: We conducted experiments on real datasets, and the

experimental results with the variation of K are shown in Figure 5.10. The trends are
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Figure 5.10: Effect of K (the number of final selection set)

similar to those for the synthetic dataset.

5.5.2 Case Study

In order to illustrate the practicality of our algorithm, we use a real dataset with Man-

hattan hotels to show how it can be used in reality. In this dataset, hotels correspond to

service-sites and attractions correspond to attraction-sites in our problem setting. We

choose two attractions, namely Empire State Building and Bull Sculpture in the Wall

Street, denoted by two black triangles as shown in Figure 5.11. Besides, suppose the

new location where we want to set up a new hotel hf is denoted by the black square

box near Empire State Building as shown in Figure 5.11. In this dataset, there are

154 hotels. For the sake of illustration, 30 hotels out of 154 hotels are shown in Fig-

ure 5.11. In the dataset, the prices of these 154 hotels ranges from $70 to $463. The

average price and the standard deviation of these 157 hotels are $153 and $67, respec-

tively. There are 13 1-star hotels, 65 2-star hotels, 48 3-star hotels, 27 4-star hotels and

1 5-star hotel. We conducted two sets of experiments for the case study. The first set

is that each hotel (or service-site) is associated with its location and its price only. The

second set is that each hotel is associated with its star-rate (one additional non-spatial
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Table 5.5: Value of pmax under different star rates
Star Rate of hf K = 1 K = 2

1 81 81
2 81 80
3 99 96
4 149 141
5 284 209

attribute) in addition to its location and its price.

For the first set, we find that pmax,s = $81. If we set K = 1, then pmax,d = $126.

Thus, pmax = min{pmax,s, pmax,d} = $81. Similarly, if we set K = 2, we have

pmax,s = $81 and pmax,d = $119. Thus, we have pmax = $81. For the second set,

pmax has different values if we set the star rate of the new hotel to different star rates.

Table 5.5 shows the results of pmax with different star rates of the new hotel hf . In

general, if the star rate of hf is higher, then pmax is higher. This is because usually,

an existing hotel with a higher star rate has a higher price. When K is higher, pmax

decreases. This is because in order that hf can dominate more hotels, pmax is set to a

smaller value.

Figure 5.11: Attractions and hotels in Manhattan
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5.5.3 Experiments for Determining An Appropriate Value of K

In the following, the objective is to determine the value of K by using the method

introduced in Section 5.4.2. Here, we also use the real dataset in Section 5.5.2. There

are the following three major steps. The first step is to obtain the demands of all the

hotels in the existing market. The second step is to obtain the transfer rate α. The final

step is to find an appropriate value of K according to the information obtained in the

previous steps.

The first step can be done by gathering the information about the hotel occupation

rate (which corresponds to the proportion of the number of rooms occupied by cus-

tomers). According to the NYC statistical report [7], on average, the occupation rate

of a hotel in New York City is around 80%. With this occupation rate, we can calculate

the demand of each hotel by multiplying the total number of rooms in the hotel with

this occupation rate.

The second step can be done similarly by gathering the information about cus-

tomers’ behaviors. We derive the transfer rate α from two sources of information.

According to the first source, a statistical report from The Harvard Business Review,

a company loses 50% of their customers every five years on average [78]. In other

words, 10% of customers are lost every year. According to the second source, the

report from the U.S. Small Business Administration and the U.S. Chamber of Com-

merce [66], about 82% of the customers who do not continue choosing the original

company choose the other better companies finally because they are upset with the

treatment they have received from the original company. By combining the above two

sources, we conclude that about 8.2% of all customers who originally choose a par-

ticular company will probably choose other better companies finally. Thus, we obtain

α = 0.082.

The third step is to find an appropriate value of K according to the information
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obtained in the previous steps. In this experiment, we find that the set of potential

losers contain 36 hotels. Suppose that we set the star rate of the new hotel to be 2.

According to the method introduced in Section 5.4.2, we first find u1, u2, ..., u36. In this

experiment, u1 = 894.26 and u2 = 3345.34. We also compute ui for i = 3, 4, ..., 36.

Finally, we find that u35 has the highest value among all values u1, u2, ..., u36 and it is

equal to 26834.46. Thus, we find the appropriate value of K as 35. After we set K to

be 35, we can find the corresponding competitive price of hf as $79, which is really

competitive compared to other prices.

5.5.4 Summary

We find that 3-Phase(Index) finds the competitive price of a new service-site more

efficiently compared with algorithms Blind, Guided and 3-Phase(No Index). Generally,

3-Phase(Index) performs faster than other algorithms at least two orders of magnitude.

5.6 Conclusions

In this chapter, we identified and tackled two interesting data mining problems, finding

simple competitive price and finding K-dominating competitive price, considering the

skyline concept as generalized user preferences, the same as the previous chapter. A

spatial approach was proposed to the problem of finding K-dominating competitive

price by using the spatial properties. The problem of finding simple competitive price

can also be solved by this approach with proper parameter settings. We conducted

experiments to show the efficiency of our proposed approach and illustrated the process

with a real case study.
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CHAPTER 6

CONCLUSIONS AND FUTURE PLANS

In this thesis, we report our work with two problems in the context of user preference

analysis. One is understanding user preferences when temporal user preferences are

considered. The other is utilizing user preferences when generalized user preferences

and tolerant use preferences are considered.

Consider the first problem of understanding user preferences. We proposed a new

problem called Attribute-based Subsequence Matching Problem which has many ap-

plications. This problem considers customer preferences related to the property table

which has not been studied extensively in the literature. We propose an efficient algo-

rithm for this problem using Chinese Remainder Theorem to compress each sequence

into a triplet of numbers. We also illustrate how this problem can be used for mining

frequent attribute-based subsequences. Finally, we conduct experiments to show that

our algorithm is very efficient, nearly two orders of magnitude better than the straight-

forward method. We also apply the proposed MA algorithm into Frequent Attribute-

based Subsequence Mining Problem. The experimental results show some unexpected

interesting frequent subsequences.

Consider the second problem of utilizing user preferences. In this problem, we

study two kinds of preferences, namely generalized user preferences and tolerant us-

er preferences. Firstly, we identify an interesting sub-problem when generalized user

preferences are considered, finding top-k profitable products, which has not been s-

tudied before. Given a set of products in the existing market, we want to find a set

of k “best” possible products such that these new products are not dominated by the

127



products in the existing market. We need to set the prices of these products such that

the total profit is maximized, and we assume that the user preferences are based on

the skyline concept which is related to generalized user preferences. We refer such

products as top-k profitable products. Secondly, we consider additionally tolerant us-

er preferences. We want to find k products such that these k products can attract the

greatest number of customers. That is, we assume that the popularity of a product can

be measured as the number of tolerant user preferences satisfied by this product. We

refer these products as top-k popular products. So, the second sub-problem we focused

on is finding top-k popular products. In above two problems, a straightforward solu-

tion is to enumerate all possible subsets of size k and find the subset which gives the

greatest profit (for the first sub-problem) or attracts the greatest number of customers

(for the second sub-problem). However, there are an exponential number of possible

subsets. In this thesis, we report our solutions to find the top-k profitable products

and the top-k popular products efficiently. An extensive performance study using both

synthetic and real datasets is reported to verify the effectiveness and the efficiency of

proposed algorithms.

In the third sub-problem, we also utilize generalized user preferences to find the

competitive price for a new service when spatial databases are considered. We identify

and tackle an interesting problem, finding K-dominating competitive price by con-

sidering the skyline concept related to generalized user preferences. Although setting

price comes naturally in many real life applications, we are the first to propose to find

the price of a new service-site with the skyline concept.

For the future plans, we are extending our work in the first problem when the hier-

archical taxonomy of attributes are given. Meanwhile, we want to take more practical

factors into consideration when delivering new products to the market. For example,

we are now working on combining both profit and popularity as a goal in our problem.
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Besides, we plan to formalize new problems for other underlying factors which may

affect our problem setting according to real scenarios.
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itive products. Proc. of VLDB Conference, 2(1):898–909, August 2009.

[91] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable products. In

Proc. of IEEE ICDE Conference, pages 1055–1066, 2011.

[92] Q. Wan, R. C.-W. Wong, and Y. Peng. Find-

ing top-k profitable products (technical report). In

http://www.cse.ust.hk/∼raywong/paper/createTopKProfitableProduct-

technical.pdf, 2011.

[93] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In

Proc. of IEEE ICDE Conference, pages 79–90, 2004.

138



[94] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu. Efficient

skyline querying with variable user preferences on nominal attributes. In Proc.

of VLDB Conference, 2008.

[95] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang. Mining favorable facets. In

Proc. of ACM SIGKDD Conference, 2007.

[96] C. Wu, M. Berry, S. Shivakumar, and J. McLarty. Neural networks for full-

scale protein sequence classification: Sequence encoding with singular value

decomposition. In Machine Learning, 1995.

[97] T. Xia and D. Zhang. Refreshing the sky: The compressed skycube with ef-

ficient support for frequent updates. In Proc. of ACM SIGMOD Conference,

2006.

[98] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-k most influential

spatial sites. In Proc. of VLDB Conference, 2005.

[99] C. Yang and K.-I. Lin. An index structure for improving nearest closest pairs

and related join queries in spatial databases. In Proc. of IEEE IDEAS Confer-

ence, 2002.

[100] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computa-

tion of the skyline cube. In Proc. of VLDB Conference, 2005.

[101] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. In

Journal of Machine Learning, volume 42, pages 31–60, January 2001.

[102] M. Zhang, B. Kao, D. Cheung, and K. Yip. Mining periodic patterns with gap

requirement from sequences. In Proc. of ACM SIGMOD Conference, 2005.

[103] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu. Probabilistic skyline op-

erator over sliding windows. In Proc. of IEEE ICDE Conference, pages 1060–

139



1071, 2009.

[104] Z. Zhang, L. Lakshmanan, and A. K. Tung. On domination game analysis for

microeconomic data mining. In TKDD, 2009.

140



APPENDIX A

PROOFS OF LEMMAS/THEOREMS

Proof of Lemma 3.3.1: We prove it by contradiction. Suppose s is in form of “u1, u2,

· · · , ul”. Assume that (Vs mod P (vi)) = 0 for each i ∈ [1, k], but there exists an

integer j ∈ [1, k] such that vj in q that does not match any values in s. Since vj does

not match any values in s, we deduce that vj ̸∈ α(ux) for each x ∈ [1, l]. Note that

Vs =
∏l

i=1

∏
u∈α(ui)

P (u). Vs is a product of the labels of all values in ∪l
x=1α(ux).

Since vj ̸∈ α(ux), we deduce that (Vs mod P (vj)) ̸= 0. It contradicts to our premise

that Vs mod P (vi) = 0 for any i ∈ [1, k].

Proof of Lemma 3.3.2: 1) If the query-aware lifespan of s with respect to q is non-

overlapping, then we can select an arbitrary integer pi inside △i, for each i ∈ [1, k].

In other words, for each i ∈ [1, k], we can find that vi matches the value in s at

the temporal position equal to pi. Thus, q matches s. 2) We prove by contradiction.

Suppose that q matches s. If the query-aware lifespan of s with respect to q is invalid,

then there exist two integers i, j ∈ [1, k] such that i < j and △i appears after △j .

Since △i appears after △j , we deduce that the smallest temporal position of a value

in s which is matched by vi is larger than the largest temporal position of a value in

s which is matched by vj . We derive that vi appears after vj in q. We conclude that

i > j. This leads to a contradiction that i < j.

Proof of Lemma 3.3.3: By definition of Ls and Us, l = (Ls mod P (v)) = LSv,s.l

and u = (Us mod P (v)) = LSv,s.u. So, the lifespan of v in s is equal to (l, u).

Proof of Lemma 4.2.1: If p dominates qi, and p ̸∈ γ(X, qi), then p does not quasi-

dominate qi. So, there exists at least one attribute on which qi is better than p according
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to the quasi-dominance definition. This conflicts with our premise that p dominates qi.

Proof of Lemma 4.2.2: If p quasi-dominates p′, according to the definition of f ,

this indicates that (1) p dominates p′ with respect to the first l − 1 attributes, namely

A1, A2, ..., Al−1, or (2) p has the same l− 1 attribute values as p′. In case 1, obviously,

f(p) < f(p′). In case 2, f(p) = f(p′). Thus, f(p) ≤ f(p′)

Proof of Lemma 4.2.3: Suppose that we have a better assignment vector v′ of Qi in

form of (v′1, v
′
2, . . . v

′
n) such that Profit(Qi,v

′) > Profit(Qi,vi).

Consider two cases. Case 1: v′i ≤ vi. In this case, v′i − qi.C ≤ vi − qi.C. In

other words,△(qi, v
′
i) ≤ △(qi, vi). In addition, we know that vi−1 is the optimal price

assignment vector of Qi−1, which means Profit(Qi−1,v
′) ≤ Profit(Qi−1,vi−1).

Thus, we have

Profit(Qi,v
′) = Profit(Qi−1,v

′) +△(qi, v
′
i)

≤ Profit(Qi−1,vi−1) +△(qi, vi)

= Profit(Qi,vi)

Thus, Profit(Qi,v
′) ≤ Profit(Qi,vi). This leads to a contradiction.

Case 2: v′i > vi. It is easy to verify that v′ is not a feasible price assignment vector.

So, we do not include the details.

Proof of Theorem 4.2.1: According to Lemma 4.2.3, in each call of Algorithm 10

in Algorithm 9, the optimal price assignment vector v of Q′′ is returned. Thus, when

iteration step ends, that is Q′′ = Q′, the returned v is the optimal price assignment

vector of Q′.

Proof of Theorem 4.2.2: We prove it by contradiction. Let v′ be the optimal as-

signment vector and v′ ̸= v. Without loss of generality, assume qi is the first tuple
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that is selected in the optimal solution but not selected in Q′ returned by Algorith-

m Dynamic Programming. That is v′
i > 0 and vi = 0. Since v′

i > 0, T (i, k) >

T (i − 1, k − 1) + α(qi, S(i − 1, k − 1),v(i − 1, k − 1). However, since vi = 0,

T (i, k) < T (i − 1, k − 1) + α(qi, S(i − 1, k − 1),v(i − 1, k − 1). Therefore, it is a

contradiction. Therefore, Q′ must contain all the tuples of the optimal solution. Thus,

the solution returned by Algorithm Dynamic Programming is the optimal solution.

Proof of Theorem 4.2.3: Note that problem TPP is a maximization problem. In order

to show the NP-hardness of the problem we are studying, we first give a decision

problem for problem TPP called DTPP: Given a non-negative real number X , does

there exist a set Q′ of k tuples from Q such that Profito(Q
′) ≥ X?

The NP-hardness proof can be achieved by transforming an NP-complete problem,

the d-coverage problem [92], to the DTPP problem.

d-Coverage Problem: Given a set U of elements, a collection J of sets containing

elements in U , a positive integer d and a positive integer t where 1 < d ≤ |J | and

t ≤ |U |, does there exist a subset I ⊆ J such that |I| = d and | ∪C∈I C| ≤ t?

Given an instance of the d-coverage problem. We want to construct an instance of

the DTPP problem from the above instance. We define two positive real numbers, M

and m, where M >> m and M
2

> m. We construct the instance as follows. We set

σ = M
2

, k = d + |U |, l = |U | + |J | + 1 and X = d ·m + |U | ·M − t · M
2

. Next, we

set P and Q according to U and J . Specifically, we set P to be the set containing only

one tuple p, and Q to be the set containing |U |+ |J | tuples.

Note that tuple p is associated with l attributes, namely A1, A2, ..., Al, where the

last attribute Al corresponds to attribute Price. All l attribute values of p are to be set.

Besides, each tuple in Q is also associated with the same l attributes together with

an additional cost attribute C where only the first l − 1 attribute values and the cost

attribute value of each tuple in Q is to be set for the problem instance construction.
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Now, we describe in detail how we generate |U |+ |J | tuples in Q. Initially, Q is an

empty set. Then, for each set S in J , we create a tuple qS and insert it into Q. There

are |J | tuples generated from J and these tuples are called type I tuples. Each of these

tuples is arbitrarily given a unique label which is a positive integer ∈ [1, |J |]. For each

element e in U , we create a tuple qe and insert it into Q. There are |U | tuples generated

from U and these tuples are called type II tuples. Similarly, each of these tuples is

arbitrarily given a unique label which is a positive integer ∈ [|J | + 1, |U | + |J |]. For

each set S in J and each element e in S, we say that tuple qS (of type I) is a parent of

tuple qe (of type II).

Next, we set the attribute values of the tuples in P and Q. Consider tuple p in P .

For each j ∈ [1, l − 1], we set p.Aj to m. We set p.Al to M +m+ σ. Consider tuples

in Q. For each qi ∈ Q, we set qi.C to M if qi is a type I tuple and set it to m if qi is a

type II tuple. Then, we set the first l−1 attribute values with the following three major

steps. For Step 1, we initialize a variable i to 1. Let the tuple with label equal to i in

Q be qi. We set qi.Ai to any real number b such that m < b < M . Note that qi.Aj is

not set in this step and will be set in later steps for j ∈ [i + 1, l − 1]. For Step 2, we

increment the variable i by 1. Tuple qi is another tuple with label equal to an updated

value i. We execute three sub-steps. Step 2a: We set qi.Aj to be M for j ∈ [1, i − 1].

Step 2b: We set qi.Ai to be any real number b such that m < b < M . Similarly, note

that qi.Aj is not set and will be set in later steps for j ∈ [i + 1, l − 1]. Step 2c: For

y ∈ [1, i − 1], we set qy.Ai to m if qy is a parent of qi, and we set it to M otherwise.

Step 3: We repeat Step 2 until i is equal to |U |+ |J |. After this construction of Q, we

know that a tuple q′ is a parent of another tuple q if and only if q′ quasi-dominates q.

We have just defined the constructed problem instance for DTPP. Next, we analyze

some properties from the final solution of this constructed problem instance. Note that

in the final solution of DTPP, we have to set the attribute Al value of each tuple q in
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Q′. In the following, we determine how to set the Al value of each tuple in Q′.

It is easy to verify that for each tuple q ∈ Q, q is quasi-dominated by tuple p. Now,

we consider how to set the Al value of a tuple q in Q′. Consider two cases: Case 1:

q is a type I tuple. q.Al must be set to M + m so that the profit of q is the greatest

and q is in the skyline with respect to P ∪ Q′ (no matter what Q′ is). This is because

if q.Al is set to a value greater than M + m, then q is dominated by p. Besides, q is

not dominated by any other tuples in Q′ no matter what the Al values of these tuples

in Q′ are set. In Case 1, the profit of q is equal to (M + m) −M = m. Case 2: q

is a type II tuple. q.Al is set to different values according to two different sub-cases.

Case 2a: There does not exist any type I tuple in Q′ which quasi-dominates tuple q.

This case is similar to Case 1. q.Al must be set to M + m so that the profit of q is

the greatest and q is in the skyline with respect to P ∪ Q′ (no matter what Q′ is). In

Case 2a, the profit of q is equal to (M + m) − m = M . Case 2b: There exists a

type I tuple q′ in Q′ which quasi-dominates tuple q. Note that q′ must be a parent of q.

Besides, according to Lemma 4.2.1, since q′ quasi-dominates q, the value of q′.Al can

be determined before q.Al is to be set. According to Case 1, q′.Al is set to M +m. On

the other hand, q.Al must be set to M + m − σ so that the profit of q is the greatest

and q is in the skyline with respect to P ∪ Q′ (no matter what Q′ is). This is because

if q.Al is set to a value greater than M +m − σ, says M +m (in Case 2a), then q is

dominated by q′. Besides, q is not dominated by any other tuples in Q′ no matter what

the Al values of the tuples in Q′ other than q′ are set. In Case 2b, the profit of q is equal

to (M +m− σ)−m = M − σ = M
2

.

According to the above strategy to set the Al value of each tuple in Q′ and M
2
> m,

we conclude that the profit of each type II tuple in Q′ is greater than the profit of

each type I tuple in Q′ (no matter what Q′ is). Since k = d + |U | and k is the total

number of tuples in Q′, the final selection set Q′ must contain all |U | type II tuples and
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exactly d type I tuples. The total profit of all the type I tuples in Q′ is equal to d ·m.

Let f be the total number of type II tuples in Q′ each of which is quasi-dominated

by at least one type I tuple in Q′. The total profit of all |U | type II tuples is equal to

(|U |−f)·M+f ·M
2
= |U |·M−f ·M

2
. Thus, the profit of Q′, denoted by Profito(Q

′),

is d ·m+ |U | ·M − f · M
2
.

It is easy to verify that there exists a set Q′ of k tuples from Q such that Profito(Q
′) ≥

d ·m+ |U | ·M − t · M
2

(and thus f ≤ t) if and only if there exists a set I ⊆ J such that

|I| = d and | ∪C∈I C| ≤ t. Since the d-coverage problem is NP-complete, the DTPP

problem is NP-hard.

Proof of Theorem 4.2.4: Let P be the set of existing tuples, and Q be the set of the

newly created tuples. Let O be the optimal selection and Q′ be the selection returned

by Algorithm 12. Given Q′ ⊆ Q and qi ∈ Q′, we define ∆o(qi, Q
′) = ∆(qi, vi)

where vi is the i-th entry of the optimal price assignment vector v of Q′. Suppose

O = {o1, o2, . . . ok} and Q′ = {q1, q2, . . . qk}, where oi and qi are sorted in ascending

order of the f values described in Section 4.2.3.

Let ni be the greatest possible number of tuples in Q′ quasi-dominating qi. It is

easy to verify that ∆o(qi, Q
′) ≥ SP (qi)−niσ. Note that

∑k
i=1 ni ≤ k(k−1)

2
. We derive

that

∑
qi∈Q′

∆o(qi, Q
′) ≥

∑
qi∈Q′

(SP (qi)− niσ)

=
∑
qi∈Q′

SP (qi)−
∑
qi∈Q′

niσ

≥
∑
qi∈Q′

SP (qi)−
k(k − 1)

2
σ

Note that
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∑
oi∈O

∆o(oi, O) ≤
∑
oi∈O

SP (oi)

≤
∑
qi∈Q′

SP (qi)

Therefore, we have

Profito(O)− ϵadd =
∑
oi∈O

∆o(oi, O)− k(k − 1)

2
σ

≤
∑
qi∈Q′

SP (qi)−
k(k − 1)

2
σ

≤
∑
qi∈Q′

∆o(qi, Q
′)

= Profito(Q
′)

Proof of Theorem 4.2.5: According to Theorem 4.2.4, we have that ∆ − k(k−1)
2

σ ≤

Profito(Q
′). By the nature of optimality, we also have Profito(Q

′) ≤ Profito(O).

For any tuple q ∈ Q′, the real profit cannot be larger than the standalone profit. Thus,

∆− k(k−1)
2

σ ≤ Profito(Q
′) ≤ Profito(O) ≤ ∆.

Therefore, if Profito(Q
′) > 0, we have

Profito(Q
′)

Profito(O)
≥

∆− k(k−1)σ
2

∆

= 1− k(k − 1)σ

2∆

Therefore,

Profito(Q
′) ≥ (1− ϵmult)Profito(O)
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Proof of Lemma 4.3.1: Since pnew ̸∈ SKY (Pnew), we have SKY (Pnew) = SKY (P ).

It is easy to verify Q′
new = Q′.

Proof of Lemma 4.3.2: Suppose Q′
new = Q′. Since Q′

new is the answer of the problem,

each tuple in Q′
new is in SKY (Pnew ∪ Q′

new). Since Q′
new = Q′, we deduce that each

tuple in Q′ is in SKY (Pnew ∪ Q′). Note that pnew ∈ Pnew. We conclude that there

does not exist q ∈ Q′ such that pnew dominates q.

Suppose that there does not exist q ∈ Q′ such that pnew dominates q. We want to

show that Q′
new = Q′ by dividing the proof into three parts.

Firstly, we show that each tuple q in Q′ is in SKY (Pnew ∪ Q′). Before pnew is

inserted into P , we know that each tuple q in Q′ is in SKY (P ∪Q′). Consider a tuple

q in Q′. We know that no tuples in P ∪Q′ dominate q. Since there does not exist q ∈ Q′

such that pnew dominates q, we deduce that no tuples in P ∪Q′∪{pnew}(= Pnew ∪Q′)

dominate q. We conclude that q is in SKY (Pnew ∪Q′).

Secondly, we show that Q′ is the set of k tuples from Q such that Profito(Q
′) =

maxQ′′∈Q Profito(Q
′′) where Q is the set of all possible subsets containing k tu-

ples from Q. Let Profito(Q
′, P ) be the optimal profit of Q′ based on datasets Q

and P . Thus, Profito(Q
′) = Profito(Q

′, P ) before pnew is inserted into P while

Profito(Q
′) = Profito(Q

′, P ∪ {pnew}) after pnew is inserted into P . Before pnew is

inserted into P , we know that for each Q′′ ∈ Q, we have

Profito(Q
′, P ) ≥ Profito(Q

′′, P ) (A.1)

Since there does not exist q ∈ Q′ such that pnew dominates q, we deduce that

Profito(Q
′, P ∪ {pnew}) = Profito(Q

′, P ) (A.2)
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Besides, for each Q′′ ∈ Q, we know that

Profito(Q
′′, P ) ≥ Profito(Q

′′, P ∪ {pnew}) (A.3)

From (A.1), (A.2) and (A.3), we conclude that for each Q′′ ∈ Q, Profito(Q
′, Pnew) ≥

Profito(Q
′′, Pnew).

Lastly, since each tuple q in Q′ is in SKY (Pnew ∪ Q′) and Q′ is the set of k

tuples from Q such that Profito(Q
′) = maxQ′′∈Q Profito(Q

′′), we conclude that

Q′
new = Q′.

Proof of Theorem 4.3.1: Let SPbefore(q) be the standalone profit of tuple q ∈ Q

calculated before pnew is inserted into P . Let SPafter(q) be the standalone profit of

tuple q ∈ Q calculated after pnew is inserted into P . It is easy to verify that for each

q ∈ Q, SPafter(q) is smaller than or equal to SPbefore(q). Consider three cases. Case

1: pnew ̸∈ SKY (Pnew). We know that for each q ∈ Q, SPbefore(q) = SPafter(q).

Thus, the k tuples in Q which have the greatest standalone price after pnew is inserted

are exactly the same as the tuples in Q′. Thus, since Q′
new = Q′, the selection set

returned by Algorithm 14 is the selection set returned by Greedy Algorithm (Version

1). Case 2: There does not exist q ∈ Q′ such that pnew dominates q. By using the

techniques used in the proof of Lemma 4.3.2, we also derive that the k tuples in Q

which have the greatest standalone price after pnew is inserted are exactly the same

as the tuples in Q′ (because for each q ∈ Q, SPafter(q) ≤ SPbefore(q) and for each

q ∈ Q′, SPafter(q) = SPbefore(q)). Case 3: pnew ∈ SKY (Pnew) and there exists

q ∈ Q′ such that pnew dominates q. All the tuples in Q which standalone prices are

changed are updated in Lines 10-11. The output of Algorithm 14 (i.e., the k tuples in

Q which have the greatest (updated) standalone price (Line 13)) are the selection set

returned by Greedy1.

Proof of Lemma 4.3.3: The proof is similar to that of Lemma 4.3.1. Similar tech-
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niques can be used in the proof of this lemma.

Proof of Theorem 4.3.2: The proof is similar to that of Theorem 4.3.1. Similar tech-

niques can be used in the proof of this theorem.

Proof of Theorem 4.4.1: Note that Problem 3 is a maximization problem. We give a

decision problem: Given a non-negative real number X , does there exist a set Q′ of k

tuples from Q such that (1) IV (Q′) ≥ X and (2) each tuple in Q′ is in the skyline with

respect to P ∪Q′.

The NP-hardness proof can be achieved by transforming an NP-complete problem,

the maximum coverage problem, to our decision problem.

Maximum Coverage: Given a positive integer d, another positive integer t, a set U of

elements and a collection J of sets each of which is a subset of U , does there exist a

set I ⊆ J such that |I| ≤ d and | ∪s∈I s| ≥ t?

Given an instance of the maximum coverage problem. We want to construct an

instance of our decision problem from the above instance. Recall that in the proof of

Theorem 4.2.3, we construct an instance of the DTPP problem from a given instance

of the d-coverage problem, by creating tuples of type I and type II (for the tuples in

Q). Note that these tuples are created with their attribute values for attribute Ai where

i = 1, 2, ..., l − 1 and their attribute value for attribute Cost C. In this proof, we

construct tuples for Q and customer preferences for CP similarly. Let M be a very

large positive real number. For each set S in J , we create a type I tuple u and then

create a customer preference cpS in form of {g1, g2, ..., gl} by setting gi to be u.Ai for

i ∈ [1, l − 1] and setting gl to M . All customer preferences generated form set CP .

For each customer preference cp in CP , we set w(cp) to 1. For each element e in U ,
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we create a type II tuple u and create a tuple q which is exactly equal to u. All tuples

generated from U form set Q. We set P, k and X to ∅, d and t, respectively.

It is easy to see that this transformation can be constructed in polynomial time.

It is also easy to verify that when the problem is solved in the transformed decision

problem, the original maximum coverage problem is also solved. Since the maximum

coverage problem is an NP-complete problem, our decision problem is NP-hard.

Proof of Lemma 4.4.1: We prove by contradiction. Suppose there exists a tuple q in

Q′ which is not in the skyline with respect to P ∪ Q′. This means that there exists a

tuple in P ∪Q′ which dominates q. Consider two cases.

Case 1: The tuple dominating q is a tuple from P . Since PS(q) = {v|v ≥

q.C and q ∈ SKY (P ∪ {q}) if we set q.Al = v}, we know that q ∈ SKY (P ∪ {q}).

Thus, there does not exist any tuple in P dominating q. This leads to a contradiction.

Case 2: The tuple in P ∪ Q′ dominating q is a tuple in Q′ other than q. Let this

tuple be q′. Note that q′ dominates q. We have q′.Ai ≤ q.Ai for each i ∈ [1, l]. Thus,

IS(q) ⊆ IS(q′). Let Qi be the selection set Q′ maintained by Algorithm 16 at the end

of the i-th iteration for i = 1, 2, .., k. We define Q0 = ∅. Since IS(q) ⊆ IS(q′), we

deduce that IV (Qi ∪ {q}) ≤ IV (Qi ∪ {q′}) for each i ∈ [1, k]. We further consider

two sub-cases. Case 2(a): IV (Qi ∪ {q}) < IV (Qi ∪ {q′}). We deduce that q′ is

selected and inserted into the selection set maintained by Algorithm 16 before q is

selected and inserted. Consider the iteration of selecting q′, says the j-th iteration. We

have Qj = Qj−1 ∪ {q′}. We conclude that for the l-th iteration where l ∈ [j + 1, k],

IV (Ql ∪ {q}) = 0. This leads to the contradiction that IV (Ql ∪ {q}) > 0 for each

l ∈ [1, k] (This is because if k ≤ kmax, we have IV (Ql ∪ {q}) > 0 for each l ∈ [1, k]).

Case 2(b): IV (Qi ∪ {q}) = IV (Qi ∪ {q′}). Since q′ dominates q, we deduce that

f(q′) < f(q). Thus, q′ is selected and inserted into the selection set maintained by

Algorithm 16 before q is selected and inserted. We have a similar conclusion as Case
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2(a).

Proof of Theorem 4.4.2: We can transform our problem to the maximum coverage

problem by mapping each customer preference and the influence set of each tuple

in Q for our problem to an element and a set of elements in the maximum cover-

age problem, respectively. Note that the greedy algorithm for the maximum coverage

problem which chooses the set containing the largest number of uncovered elements is

0.63-approximate [46]. Since Algorithm 16 follows the same framework as the above

greedy algorithm, it is 0.63-approximate.

Proof of Lemma 5.3.1: We prove by contradiction. Suppose hf .p is set to a non-

negative value such that hf is not in the skyline SKY (H ∪ {hf}). That is, there exists

a service-site hi dominating hf .

Since hi dominates hf , we deduce that, for all attribute X ∈ X , hi.X ≤ hf .X and

there exists an attribute X ′ ∈ X such that hi.X
′ < hf .X

′.

Consider that we draw a perpendicular bisector of a line segment joining hi and

hf . Figure 5.4(b) shows an example that (1) hf is inside CH(A) and (2) there exists

a service-site hi and an attraction-site aj where d(hi, aj) < d(hf , aj). The dashed line

corresponds to the perpendicular bisector of a line segment joining hi and hf .

The bisector cuts the Euclidean space into two sides: one side Sf containing hf and

the opposite side Sf not containing hf . It is easy to verify that, for each attraction-site

a which is inside Sf ,

d(hf , a) < d(hi, a) (A.4)

Since hf is inside CH(A), we deduce that Sf contains a service-site ak other than

aj in the convex hull of A. Since ak is inside Sf , by Inequality (A.4), we deduce that

d(hf , ak) < d(hi, ak). That is, hf .Xk < hi.Xk, which leads to a contradiction that, for
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all attribute X ∈ X , hi.X ≤ hf .X .

Proof of Lemma 5.3.2: Note that hi is nearer to all attraction-sites compared with

hf if and only if hi is inside I. With notation I, Lemma 5.3.2 can be re-written as

follows: “hi dominates hf if and only if (1) hi is inside I and (2) hf .p ≥ hi.p”. If we

set pmax,s to be minh∈I h.p, since hf .p < pmax,s, it is easy to verify that hf is in the

skyline SKY (H ∪ {hf}).

Proof of Lemma 5.3.3: Note that hi is farther from all attraction-sites compared with

hf if and only if hi is not inside U . With notation U , we re-write Lemma 5.3.3 as

follows “hf dominates hi if and only if (1) hi is not inside U and (2) hf .p ≤ hi.p.” If

we set pmax,d to be the K-th greatest price (i.e., h.p) among all service-sites h not in

U , since hf .p < pmax,d, it is easy to verify that hf dominates at least K service-sites.

Proof of Theorem 5.3.1: According to the proofs of Lemma 5.3.1, Lemma 5.3.2 and

Lemma 5.3.3, Algorithm 17 returns the optimal solution. .

Proof of Theorem 5.3.2: By using the methods used in [41] and [29], Algorithm 17

takes O(n+n log n+n(J+logm)+m logm) = O(n log n+n(J+logm)+m logm)

time.

Proof of Lemma 5.3.4: According to the definition of N.minp, any leaf node that is

a descendant of N must have a price no less than N.minp. Without loss of generality,

suppose t is the service-site corresponding to a random selected leaf node which is a

descendant of N . If the current value p′max,s is equal or smaller than N.minp, then

p′max,s ≤ t.p. As p′max,s is the current best value of pmax,s, there must exist a service-

site ĥ in I that p′max,s = ĥ.p. Therefore, if we set pmax,s to t.p, then hf will be

dominated by ĥ since ĥ ∈ I and ĥ.p = p′max,s ≤ t.p. So p′max,s should not be updated

to t.p. According to the generality of t, p′max,s should not be updated to the price of
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any service-site that is a descendant of N . So all the descendants of N can be pruned

without checking.

Proof of Lemma 5.3.5: The proof is similar to the proof of Lemma 5.3.4. According

to the definition of N.maxp, any leaf node that is a descendant of N must have a

price no more than N.maxp. Without loss of generality, suppose t is the service-site

corresponding to a random selected leaf node which is a descendant of N . If the current

value p′max,d is equal or greater than N.maxp, then p′max,d ≥ t.p. According to the

definition of pmax,d, the best value of pmax,d should be at least p′max,d. So p′max,d should

not be updated to t.p. According to the generality of t, p′max,d should not be updated to

the price of any service-site that is a descendant of N . So all the descendants of N can

be pruned without checking.
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