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Abstract—Image retrieval keeps attracting a lot of attention
from both academic and industry over past years due to its
variety of useful applications. Due to the rapid growth of deep
learning approaches, more better feature vectors of images
could be discovered for improving image retrieval. However,
most (if not all) existing deep learning approaches consider
the similarity between 2 images locally without considering the
similarity among a group of similar images globally, and thus
could not return accurate results. In this paper, we study the
image retrieval with manifold ranking (MR) which considers both
the local similarity and the global similarity, which could give
more accurate results. However, existing best-known algorithms
have one of the following issues: (1) They require a bulky index,
(2) some of them do not have any theoretical bound on the output,
and (3) some of them are time-consuming. Motivated by this, we
propose an algorithm, namely Monte Carlo-based MR (MCMR)
for image retrieval, which does not have the above issues. We are
the first one to propose an index-free manifold ranking-based
image retrieval with the output theoretical bound. Lastly, our
experiments show that MCMR outperforms existing algorithms
by up to 4 orders of magnitude in terms of query time.

I. INTRODUCTION

Image retrieval [2] keeps attracting a lot of attention from
both academic and industry over past years due to its variety
of useful applications. In academic, before the growth of
deep learning studies, most researchers [2, 3, 35] studied how
to “engineer” good image features (manually) such that any
two given images should have a high “pre-defined” similarity
measure if they look similar to human. Recently, due to
the growth of deep learning approaches, researchers focused
on how to use deep learning models [32] like convolutional
neural networks (CNNs) to capture or find the “embedded”
features to get rid of (manual) feature engineering. Besides, it
is found [7, 16, 19, 21, 32] that the embedded features capture
a lot of important and good ingredients in the image, resulting
a good performance of some tasks (e.g., similarity search) in
image retrieval. In industry, giant technology companies in
the world have large research teams for image retrieval due
to their attractive applications. One example is Taobao, the
biggest mobile e-commerce platform in China, with its famous
application of “similar item search” which returns a list of
items which are similar to the photo of an item that a customer
would like to buy [31]. Another example is Google, the world
leading search company hosted in US, with its image search
engine function which returns a list of images similar to an
upload image.

A. Feature Extraction & Similarity Search

Specifically, image retrieval involves 2 phases [3, 6, 7,
10, 16, 17, 21, 23, 32], namely the feature extraction and
the similarity search. The feature extraction is to find a
representation of each image called a feature vector which
is in the form of a d-dimensional vector. The similarity search
is to find a list of images which are “similar” to a given image.

Feature extraction is a very fundamental and important
phase for image retrieval. With good feature extraction, the
similarity search (in the second phase) could be done more
accurately and more effectively. Due to the successful de-
velopment of deep learning approaches, the features found
by these approaches could capture image ingredients well [7,
16, 17, 19, 32]. These deep learning approaches employ the
CNN frameworks to find the features. Some representative
approaches are the basic CNN approaches [7, 16, 19] and the
advanced CNN approach called MAC [16, 17] which exploits
a feature of focusing essential parts of images and could be
regarded as the state-of-the-art in the literature. In [32], it was
found that the features could help to improve the accuracy of
the similarity search by up to 51.3%.

Although feature extraction is well-studied among deep
learning approaches, since most studies [7, 16, 17] directly
adopt a “traditional” Lp-norm-based measure (e.g., the Eu-
clidean Distance) of evaluating the similarity of two images,
the performance of similarity search is not that good because
it is found in [33] that this traditional measure only captures
the similarity between 2 images locally without considering
the similarity among a group of similar images globally.

B. Manifold Ranking: A Better Similarity Search Approach

However, Manifold ranking (MR) [6, 33, 34], one similarity
measure for similarity search, is found to be an effective
measure of capturing the similarity both locally and globally.
Due to this diverse ability, in recent years, MR is applied for
not only image retrieval but also other problems such as per-
son re-identification [1, 12], document similarity search [22],
identifying quantitative chemical relationship [18], saliency
detection [9, 14, 20, 25, 28] and object co-segmentation [15].

Next, we would like to give 2 case studies showing how
manifold ranking has better performance compared with some
best-known models. We included 3 deep learning approaches
(which uses the Lp-norm-based measure for similarity search)
for comparison, namely VGG16 [19], ResNet101 [7], and
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Fig. 1: Top-5 Query Results on Dataset Roxford5k returned by different models.

MAC [16, 17], where MAC is considered as the state-of-the-
art in the literature. We also included 2 popular similarity
approaches for comparison, namely Personalized PageRank
(PPR) [27] and Weighted Personalized PageRank (WPPR).
We call the manifold ranking framework as the manifold
ranking image retrieval (MRIR). Note that since the 2 popular
similarity approaches and the manifold ranking framework
requires the feature space, we also adopt the feature space
learnt by the state-of-the-art deep learning approach, MAC,
for this purpose. We denote these 3 models with PPR(MAC),
WPPR(MAC) and MRIR(MAC) where the feature space is
denoted in the bracket of the notation of the model names. The
implementation details of these case studies could be found in
our technical report [11].

Fig. 1 shows the results of the 2 case studies on a benchmark
dataset Roxford5k. In Fig. 1(a), the query image is given on
the left hand side where the object in the red dotted circle
denotes the “special” part/characteristics of the building which
should be found in the “correct” output. On the right hand side,
we could see the result of the top-5 query returned by each
mentioned model. For each model, the result has 2 parts where
the first part contains the 5 images with an ordering from the
most similar image (on the left side) to the least similar image
(on the right side) in the output of this model and the second
part is the precision of this model based on these 5 images.
Besides, in the first part, if the image in the result of each
model is incorrect, it is enclosed with a red border boundary.
In this case study, we found that only the manifold ranking
framework, MRIR(MAC), could obtain 100% precision but all
others returned incorrect images in the result. In Fig. 1(b),
similar results are obtained for another query image.
C. Our Proposed Method: MCMR

Given a querying image, manifold ranking makes use of
both the local similarity and the global similarity to compute
a score called the MR (manifold ranking) score for each image.
In a top-k query, the images with the greatest MR scores are
returned as an output.

Definition 1 (Top-k MR Search). Given an image database, a
query image q and a constant k, Top-k search finds the top-k
images with the highest Manifold Ranking scores w.r.t q.

Method Mogul-E [5] (the
fastest exact one)

Mogul [5] (the fastest
approximate one)

MCMR
(Ours)

Index-free? No No Yes
Output Bound? Yes No Yes

Efficiency? No Yes Yes
TABLE I: Summary of existing methods for MR.

As shown above, manifold ranking is good for accurate
image retrieval. We consider the following 3 requirements for
evaluating a method M for manifold ranking, namely index-
free, output bound and efficiency.

• Index-free: M has no index for computing MR scores.
• Output bound: The MR scores of images returned by M

should have a theoretical quality guarantee.
• Efficiency: M is computationally cheap.

For the first index-free requirement, unfortunately, most (if
not all) existing algorithms about manifold ranking requires to
build an index, which is quite bulky and hinders the flexibility
of any image database update. For example, in the Taobao
platform involving at least 2 billion items (or images) [24], the
existing algorithms are not scalable in this large dataset due
to the bulky index. For the second output bound requirement,
all existing algorithms returning the approximate MR scores
returns answers without any theoretical guarantee. Thus, the
output of the top-k MR search results returned by these
existing algorithms is inaccurate. Although only existing exact
algorithms could return answers with theoretical guarantee
(i.e., the exact answer), they suffer from the bulky index
size problem. For the third efficiency requirement, all exact
algorithms are time-consuming. Though existing approximate
algorithms could return answers in a short time, they still have
no theoretical guarantee on the output.

However, our proposed approach called MCMR satisfies all
these requirements. Table I summarizes the results about these
3 requirements of existing algorithms and our MCMR.

The following shows our contributions. Firstly, we propose
an algorithm, namely MCMR, which adopts the random walk
sampling strategy without pre-computing any index. This
algorithm satisfies the 3 requirements and none of the ex-
isting algorithms satisfies these 3 requirement simultaneously.
Secondly, to the best of our knowledge, we are the first to pro-
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pose index-free algorithms for manifold ranking. All existing
algorithms requires to build an index for efficient computation.
Thirdly, the time complexity of MCMR is O(n log n) where
n is the total number of images in the database. This is
the first best-known time complexity result in the literature
of returning the exact top-k results with quality guarantee.
The existing best-known time complexity in this literature [5]
is O(n2). Fourthly, we conducted experiments on 4 real-
world image datasets. The experimental results show that
MCMR outperforms existing algorithms by up to 4 order of
magnitudes in terms of query time.

The remainder of this paper is organized as follows. We
give the preliminaries of manifold ranking in Section II. Next,
Section III reviews the related work. Then, Section IV presents
our MCMR algorithm. Section V shows the results of our
experiments. Finally, Section VI gives our conclusion.

II. PRELIMINARIES

In this section, we introduce the background of MRIR.
In MRIR, an image database is modelled as a k-NN graph

where each node represents an image. Let G(V,E) denote an
undirected k-NN graph where V and E are the set of nodes
and edges, respectively. Given two nodes u and v, e(u, v) ∈ E
exists only when (i) u is one of the k-nearest neighbours of v
or (ii) v is one of the k-nearest neighbours of u, according to
[5, 6]. Thus, the k-NN graph is undirected. Note that the k-
NN graph is regarded as an off-the-shelf component in MRIR
since it is easy to construct and dynamically maintained [4].

MRIR can be formulated as follows: given a query node q ∈
V , it computes the MR scores of all nodes in the graph w.r.t q.
Let A ⊂ Rn×n be the adjacency matrix of the graph G where
n is the number of nodes. Normally, the edge weight can be
defined by the heat kernel [5]: Aij = exp{−d2(vi, vj)/2σ

2}
if there is an edge linking node vi with vj ; otherwise, Aij = 0,
where function d(vi, vj) is the Euclidean distance between vi
and vj . Node vi and node vj are defined in the Lp-space
(obtained by the feature extraction method), and σ is a hyper-
parameter. Note that the sum of each row/column in A can
be smaller or larger than 1. Let q be an n× 1 column vector
of zeros except that the q-th entry is set to 1, i.e., q(q) = 1.
Let x∗q denote an n× 1 column exact MR scores vector w.r.t
q where x∗q(v) denotes the exact MR score of node v w.r.t q.
Recall that x∗q(v) measures how similar v is to q.

Intuitively, MR can be understood from the perspective of
information spreading from the query node in the whole k-
NN graph. Initially, the query node q owns a fixed number
of information which will be propagated along the edges in
the graph. Then, each node in the graph constantly receives
the information from its neighbours until the total information
held by each node remains unchanged, reaching a stationary
state (or convergence). After the spreading process, the in-
trinsic global structure can be revealed in the form of the
final information hold by each node, which is exactly the
MR score of each node w.r.t q. The larger the MR score
of node v is, the more node v is similar to q. Next, we
introduce how to compute MR scores by the information

spreading process. Firstly, it symmetrically normalizes the
adjacency matrix A and constructs a new matrix W such
that W = C−1/2AC−1/2 where C is the diagonal matrix
of A such that Cii =

∑n
j=1Aij . To be distinguished from

A, W is called the symmetrically normalized matrix. This
normalization is necessary for the convergence of information
spreading later. Next, MR scores are computed by iteratively
using the following equation until the convergence is reached:

x(t+1) = αWx(t) + (1− α)q (1)
where x(t) is the MR score vector obtained in the t-th iteration
and x(0) = 0. In each iteration, each node receives the
information from its neighbours (the first term), and also
retains its initial information (the second term). The parameter
α specifies the relative amount of the information from its
neighbours and itself. This iterative process is denoted as
Power. When it converges, the exact MR scores (i.e., x∗q) are
obtained. Besides, it has been shown in [5, 6, 33] that after
convergence, the vector x∗q holds the following equation:

x∗q = (1− α)(I− αW)−1q. (2)
So, one can obtain x∗q by computing the matrix inversion.

A greedy method to solve the top-k MRIR search is to
firstly compute the MR scores of all nodes w.r.t q by Equation
(2), and then return the top-k nodes by sorting the MR
scores in decreasing order. However, this greedy method takes
O(n2.373) time, which is expensive when the graphs (i.e.,
image databases) are large. Thus, a fast solution is essential.

III. RELATED WORK

MRIR. Recently, FMR [8], EMR [29], Mogul [5] and
Mogul-E [5] were proposed to improve the efficiency of
MRIR. However, they all do not satisfy the 3 requirements
simultaneously mentioned in Section I. Among them, Mogul-
E is exact method which compute the exact MR scores, and
others are approximate methods which compute approximate
MR scores. All the methods focus on quickly solving Equa-
tion 2 by using different types of matrix decomposition and by
constructing several pre-computed indices in the preprocessing
phase. Since all types of matrix decomposition used by these
methods except Mogul-E are approximate, the MR scores
computed by them are with errors. None of these approximate
methods satisfy the requirement of “output bound”. Besides,
all the methods including Mogul-E need to construct several
special-purpose indexes in the prepossessing phase, and thus,
they are not index-free. It is worth mentioning that Mogul
and Mogul-E are the state-of-the-art approximate and exact
algorithm, respectively. However, the query time complexities
of Mogul and Mogul-E are O(n) and O(n2), respectively.
Although the time complexity of Mogul is small, it does not
return accurate results due to its inability of returning an output
with an output bound. Refer to [11] for more details.

Single Image Super-Resolution (SISR) problem. SISR
is a classic computer vision problem, which aims to recover
a high-resolution (HR) image from a low-resolution (LR)
image [26]. Recently, a lot of deep-learning-based approaches
have been proposed to solve SISR problem [26]. However, this
problem is very different from MRIR studied in this paper
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from two perspectives. Specifically, the first perspective lies
in their different goals where SISR wants to re-construct the
HR image from a LR image while MRIR aims to return top-k
images similar to the query image from the image database.
The second one is about the input format where SISR requires
a set of pairs of LR images and HR images which could not
be used directly for our problem.

IV. PROPOSED ALGORITHM: MCMR

To address the deficiencies of existing algorithms, we pro-
pose an algorithm called the Monte Carlo-based Manifold
Ranking (MCMR) algorithm, which is efficient without index
and can return the true top-k nodes with accuracy guarantee.
The idea behind MCMR is to utilize the Graph Sampling
approaches [30]. Among various graph sampling approaches,
Random Walk Sampling is the mainstream one due to its
scalability and simplicity of implementation. The general idea
of Simple Random Walk Sampling strategy is as follows. A
single random walk starts at a given node, then repeatedly
jumps to another node by choosing from the current node’s
neighbours uniformly at random. After many steps, the prob-
ability of a node being visited tends to reach a stationary
probability distribution [30]. In addition, we observed that
the MR score of a node v w.r.t the query node q (i.e., x∗q(v))
can be regarded as a stationary probability of v being visited
by a walk starting from q multiplied by a coefficient (which
is decided by the symmetrically normalized matrix W and the
parameter α). It is because x∗q(v) is obtained by repeatedly
receiving the information from its neighbours. Thus, Random
Walk Sampling can be a possible solution for our problem.

Challenge. To perform unbiased general Random Walk
Sampling on the graph, the whole process can be divided into
two phases: (1) the simulation phase (which simulates enough
number of samples, i.e., random walks), and (2) the estimation
phase (which performs an unbiased estimation on simulated
samples). However, it is non-trivial and challenging to apply
Random Walk Sampling to our problem since the scheme of
information propagation in MR is based on the symmetrically
normalized matrix W, which is not a stochastic matrix. Thus,
we cannot simulate the random walks as the general Random
Walk Sampling strategy does, indicating that new simulation
and estimation phases are required for our problem.

A. Overview

The major idea behind MCMR is to simulate weighted
random walks instead of the simple random walks. Given a
query node q, MCMR consists of two phases: the simulation
phase and the estimation phase. In particular, in the simulation
phase, it simulates a specified number of weighted random
walks from q. In the estimation phase, it estimates the MR
scores of all nodes in the graph w.r.t q based on the simulated
weighted random walks.

B. Implementation Details of MCMR
The simulation phase. First of all, we formally introduce

our weighted random walk in Definition 2.

Definition 2 (Weighted Random Walk). Given a parameter
α, and the query node q, a single weighted random walk
is simulated as follows: it starts from node q; and at each
step, it chooses one of the following two options: (i) terminate
with (1 − α) probability; (ii) with α probability, moves to
a neighbour of the current node according to our transition
policy (to be introduced later).

From Definition 2, the expected length of our weighted
random walk is O( 1

1−α ). Next, we introduce our transition
policy. Suppose that the walk is currently at node v. The idea
behind the policy is to choose a neighbour of v with a weighted
probability instead of uniformly at random. Definition 3 gives
the details of our transition policy.

Definition 3 (Transition Policy). At each step, the weighted
random walk jumps to a neighbour u of the current node v with
probability Wv,u

Dvv
, where Dvv =

∑
u∈N (v)Wv,u and N (v) is

the set of neighbours of v.

Here, we say that Dvv is the (v, v)-th entry of the diagonal
matrix D. In this way, it is ensured that sum of the probabilities
that node v moves to one of its neighbours is equal to 1.

The estimation phase. Now, we present how to estimate
the MR scores of all nodes based on our new simulation phase.

By using our transition policy, the information from a node
v to a node u could not be captured appropriately. Specifically,
during the information spreading process, at each iteration,
the information that v transfers to its neighbour u should
be Wv,u, instead of Wv,u

Dvv
in our transition policy. The basic

idea of our estimation phase is to compute u’s information
appropriately at each step of a weighted random walk by
using some derivations involving Wv,u (instead of Wv,u

Dvv
). In

addition, we regard the MR score of a node v w.r.t q as the
“expected” amount of information that node v obtains from
node q (via the weighted random walks). The correctness of
our estimation is proved in Theorem 1.

Let π(q, v) be the estimated MR score of a node v ∈ V
obtained by our MCMR method. Let nr denote the number
of weighted random walks simulated. Suppose that the i-th
weighted random walk {Xl}1≤l≤L of length L starts from
the query node q. First, we define the scalar of the i-th walk
for each v ∈ V , denoted as Si(v), to be the amount of the
information that the i-th walk should transfer to node v as
follows:

Si(v) =

{∏L−1
l=1 DXlXl

, if the i-th walk ends at v,
0, otherwise,

(3)

where i ∈ {1, 2, ..., nr} and Xl is the l-th node in this walk.
Next, we define the total scalars of all walks for each v ∈ V ,
denoted by S(q, v), to be

∑nr

i=1 Si(v). Finally, the estimated
MR score π(q, v) of node v is computed as follows: π(q, v) =
S(q,v)
nr

.
The MCMR algorithm. Algorithm 1 gives the pseudocode

of our MCMR algorithm. It firstly initializes the estimated MR
score π(q, v) and the sum of scalars S(q, v) to 0 for each
node v ∈ V (Line 1). Then, it generates nr random walks as
follows: for the i-th walk, it initializes the scalar of this walk
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Algorithm 1 MCMR
Input: Graph G = (V,E), query node q, matrices W and D, constant parameter α,

number of random walks nr

Output: Estimated MR score π(q, v) for each v ∈ V
1: π(q, v)← 0,S(q, v)← 0 for each v ∈ V ;
2: for i from 1 to nr do
3: Si ← 1; v ← q;
4: while rand() > 1− α do
5: Pick one neighbor u of v with the probability

Wv,u
Dvv

;
6: Si ← Si ·Dvv ; v ← u;
7: S(q, v)← S(q, v) + Si;
8: π(q, v)← S(q, v)/nr for each v ∈ V ;

Si as 1 (Line 3); at each step, it uniformly generates a random
value; if the value is greater than 1−α, it picks up an neighbour
u of current node v with probability Wv,u

Dvv
and multiplies Si

by Dvv (Lines 4-6); otherwise, the walk terminates at v, it
adds the scalar of this walk Si to S(q, v) (Line 7). After the
simulation phase finishes, the estimated MR score π(q, v) is
computed as S(q,v)

nr
for each node v ∈ V (Line 8).

C. Theoretical analysis

In this section, we first prove that the estimated MR scores
obtained from MCMR are unbiased as shown in Theorem 1
and then give a time complexity analysis of MCMR. Please
refer to our technical report [11] for the step-by-step proofs
of all theorems and lemmas in this paper.
Theorem 1. Let π(q, v) be the estimated MR score obtained
by Algorithm 1. We have E[π(q, v)] = x∗q(v).

Proof. The proof sketch is given here. Firstly, we have
E[π(q, v)] = E[S(q,v)nr

] =
E[

∑nr
i=1 Si(v)]

nr
= E[Si(v)]. Next, we

prove that E[Si(v)] is the expected amount of the information
of a weighted random walk from q propagating to node v by
considering all possible walks from q, which is exactly x∗q(v).

Time complexity. We give the time complexity of MCMR
for solving the top-k search. The straightforward way is to
use Algorithm 1 to compute the estimated MR scores π(q, v)
of each node v, and then returns the top-k nodes with the
highest estimated scores. By using Bernstein Inequality [13],
Theorem 2 shows that Algorithm 1 returns the exact top-k
set with high probability. Theorem 2 indicates that MCMR
satisfies the output-bound requirement.

Theorem 2. Given a k-NN graph G(V,E), a query node q,
failure probability pfail and nr =

10 ln(1/pfail)

3·
√
2k·(gapk)2

, Algorithm 1
returns the top-k set Vk such that for any node u in Vk, if
x∗q(u)−x∗q(vk+1) ≥ gapk, with probability at least (1−pfail),
the following holds: π(q, u)− π(q, vk+1) > 0, where vk+1 is
the node whose exact MR score is the (k + 1)-th largest and
gapk = x∗q(vk)− x∗q(vk+1).

Since the expected length of a single walk is 1
1−α , we have

the time complexity as shown in Theorem 3.

Theorem 3. Let nr ≥ 10 ln(1/pfail)

3·
√
2k·(gapk)2

and pfail =
1
n , MCMR

returns the top-k set in O( ln(n)

(1−α)
√
2k(gapk)2

) time on expecta-
tion.

Dataset Name k-NN n m T (Power)

COIL

C5 5

7.2K

58.5K

50C10 10 111.1K
C15 15 164.9K
C20 20 216.7K

NUS-WIDE

P5 5

269.7K

2.2M

1000P10 10 4.3M
P15 15 6.4M
P20 20 8.5M

Flickr

F5 5

503.5K

4.0M

1000F10 10 7.9M
F15 15 11.7M
F20 20 15.3M

TABLE II: Datasets. (K = 103, M=106.)

Since gapk is not pre-known, in our experiments, we set a
parameter c for tuning the number of walks to be simulated,
i.e., nr = c × 10 ln(1/pfail)

3 . Obviously, the more random
walks are simulated, the longer query time of MCMR and
the higher the precision of top-k results. Besides, if Chernoff
Inequality [13] is applied, it is easy to show that the time
complexity of MCMR is O(n log n) which is independent
of gapk (see [11] for details). Thus, MCMR satisfies the
efficiency requirement.

V. EXPERIMENT

(A) Experimental Setting
Machine setting. All experiments were conducted on a

machine with Intel(R) Xeon(R) E5-2650 @ 2.2GHz CPU and
500GB memory. We implemented our algorithms in C++.

Methods. We compared MCMR with three algorithms:
Mogul [5], Mogul-E [5] and Power [34]. Note that we do not
include other approximate algorithms, i.e., EMR and FMR,
since Mogul outperforms them in terms of both efficiency and
accuracy as shown in [5]. Because the source codes of Mogul
and Mogul-E are not publicly available, we implement them
strictly following the pseudocode in [5]. All of our source
codes are publicly published. We set α = 0.99, following
previous work [6, 33, 34]. For MCMR, we set c to be 1000
for each dataset. The effect of constant c in MCMR is evaluated
and the results can be found in our technical report [11] due
to space limit.

Datasets. We used the four images datasets following [5]:
(1) COIL, (2) NUS-WIDE, (3) Flickr, and (4) Pub-Fig. Due
to space limit, more details about dataset and all experimental
results on dataset Pub-Fig can be found in [11]. Among
all existing studies mentioned in this paper, only [5] has
image datasets of size larger than 100,000 images. Thus, we
followed [5] to include all image datasets in [5]. Table II shows
the statistics of each dataset. Besides, following [5], we used
k from the set of {5, 10, 15, 20}.

Accuracy metric. For each dataset, we randomly selected
50 query nodes. The ground truth for each dataset was
obtained by using Power which stops when the absolute error
|x(t+1) − x(t)| dropped below 10−10 (see Table II for the
number of iterations T required). Note that we could not
directly compute the matrix inverse to obtain the ground truth
since it ran out of memory for the large datasets. We evaluated
the accuracy of the top-k search results of each method by
using the classic metrics: Precision P@k, which is defined as
|Vk∩V ′

k|
k , where Vk is the true top-k set and V ′k is the top-k set
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Fig. 2: Query time vs k on different datasets.
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Fig. 3: Precision vs k on different datasets.

returned by each method.

(B) Efficiency of MCMR: In this section, we evaluated the
efficiency of our proposed methods in the query phase. For
each dataset, the average query time of each method was
plotted in Fig. 2. We can see that MCMR are faster than Mogul
and Mogul-E by 1 to 4 orders of magnitude, satisfying the
efficiency requirement. Note that we did not include Mogul-E
in Fig. 2(b) and Fig. 2(c) because the query time of Mogul-E
on both datasets is very large (i.e., more than 4 days).

(C) Precision of MCMR: In this section, we evaluated the
quality of the top-k results obtained by each method. Over
50 queries, the average precision of each method is shown in
Fig. 3. Although Mogul-E can return the exact top-k results,
its query time is slower than MCMR by up to 4 orders of
magnitude. In addition, the precision of MCMR outperforms
Mogul on all datasets. Especially on the largest dataset Flickr,
the precision of Mogul is below 0.3 varying k. Because Mogul
directly sets some entries in the factorized matrices to zero for
achieving high efficiency, resulting in that the estimated MR
scores are approximate with high errors.

VI. CONCLUSION

To efficiently address the top-k MRIR search, we propose a
novel approach based on Random Walk Sampling. We prove
the correctness of our new Random Walk Sampling strategy
and its time complexity. There are possible future directions.
One possible direction is to consider pruning some nodes
which do not have high estimated MR scores in the algorithm
for efficiency. Another possible direction is to consider how
to perform MRIR on dynamic datasets.
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