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Abstract
Dialogue speech widely exists in scenarios such as chitchat,
meeting and customer service. General-purpose speech recog-
nition systems usually neglect the topic information in the
context of dialogue speech, which has great potential for im-
proving the performance of speech recognition. In this paper,
we propose a transfer learning mechanism to conduct topic-
aware recognition for dialogue speech. We first propose a new
probabilistic topic model named Dialogue Speech Topic Model
(DSTM) that is specialized for modeling the context of dialogue
speech. We further propose a novel transfer learning mecha-
nism for DSTM to significantly reduce its training cost while
preserving its effectiveness for accurate topic inference. The
experiment results demonstrate that proposed techniques in lan-
guage model adaptation effectively improve the performance of
the state-of-the-art Automatic Speech Recognition (ASR) sys-
tem.
Index Terms: automatic speech recognition, topic models, lan-
guage modeling, transfer learning

1. Introduction
In ASR pipeline, the language model plays a vital role of guid-
ing the search for the interpretation of acoustic features and
measuring the overall acceptability of the decoding results.
For many years, back-off n-gram language models have been
prominently used in ASR due to simplicity and reliability [1].
However, they are limited in their ability of modeling long-
range dependencies. In [2, 3], topic models are utilized for
n-gram language model adaptation by introducing long-range
dependencies and demonstrate promising performance in large
vocabulary continuous speech recognition (LVCSR) tasks.

With their merits, existing topic models have severe draw-
backs for being applied in dialogue speech recognition. First,
they were not originally proposed for dialogue speech. Hence,
some important linguistic structures in dialogue speech such
as the utterance boundaries are completely neglected by them.
However, utterance boundaries are effective for identifying la-
tent topics, since each utterance is of limited length and the
words within an utterance usually share the same topic. Sec-
ond, they fail to capture the phenomenon of word burstiness,
which widely exists in dialogue speech. If a word is used once
in a dialogue, the same word and its semantically related words
are much more likely to be used again. For example, if the word
“movie” appears in a dialogue, the same word and semantically
related words such as “actor” are more likely to appear again.
The above characters of dialogue speech have not been properly
modeled in existing topic models so far.
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In this work, we first propose a novel topic model named
Dialogue Speech Topic Model (DSTM) to simultaneously cap-
ture utterance boundaries and word burstiness in dialogue
speech. With superior ability to capture the latent structure
of dialogue speech data, DSTM is effective for improving the
performance of topic-based language model adaptation by pro-
viding long dependencies from the perspective of semantics.
However, the better performance brought by DSTM comes at a
cost - training DSTM is demanding in terms of time consump-
tion and hardware requirements. Meanwhile, although exist-
ing topic models suffer from the aforementioned drawbacks and
have limited capability when applied in dialogue speech recog-
nition, they still contain some high-level knowledge such as the
word distribution for each topic, which can be used to facilitate
topic inference of DSTM. Inspired by recent work in inductive
transfer learning [4], we propose a novel mechanism to transfer
the knowledge carried by Latent Dirichlet Allocation (LDA) to
DSTM. Due to the wide availability of parallel training frame-
works for LDA [5, 6, 7] and the abundance of open-sourced
LDA models [8], the proposed mechanism effectively shifts the
laborious training workload of DSTM to a much cheaper coun-
terpart while preserves DSTM’s superiority in accurate topic in-
ference for dialogue speech. To the best of our knowledge, this
paper is the first one discussing how to conduct transfer learn-
ing on topic models for ASR. Extensive experiments show that
the proposed method outperforms several strong baselines and
effectively improves the performance of ASR systems.

The rest of the paper is organized as follows. In Section
2, we briefly review the related work. In Section 3, we discuss
the technical details of DSTM. In Section 4, we describe the
transfer learning mechanism for topic models. In Section 5, we
discuss how to incorporate DSTM with ASR systems. In Sec-
tion 6, we present the experimental settings and results. Finally,
we conclude this paper in Section 7.

2. Related Work
The present work is related to research fields such as topic-
based language model adaptation and transfer learning. In the
following subsections, we survey the most related works from
the two fields.

2.1. Topic-based Language Model Adaptation

Topic models are known for effectively improving the per-
formance of Automatic Speech Recognition (ASR) systems
through providing richer contextual information for the decod-
ing phrase [2, 3]. LDA [9] and PLSA [10] are widely used
for generating document-specific language models. More re-
cently, Word Vicinity Model (WVM) [2] was proposed to ex-
plore the words co-occurrence phenomenon as well as the la-
tent topical context for ASR. Compared with PLSA and LDA,



which describes the “word-document” co-occurrence, WVM at-
tempts to discover the “word-word” co-occurrence dependence
by latent topics. With the popularity of neural networks, neural
language modeling such as recurrent neural network language
model (RNNLM) was proposed in recent works [11]. Li et al.
[12] further proposed two adaptation models (a cache model
and a DNN-based model) for RNNLM to capture the topic in-
formation and the long-distance triggers in ASR.

2.2. Transfer Learning

In the past decade, transfer learning, as defined in [4], has been
extensively studied to leverage the knowledge gained from one
task (or domain) and apply it to help another. There are ba-
sically four kinds of transfer learning methods based on what
part of the data and model is transferred: instance-based trans-
fer learning [13, 14], feature-based transfer learning [15, 16],
model-based transfer learning [17, 18] and relation-based trans-
fer learning [19, 20]. Specifically, deep neural network-based
model was recently applied to transfer learning [21, 22] to trans-
fer knowledge from a well-tuned network. In the topic mod-
eling area, the authors in [23] proposed to mine prior knowl-
edge dynamically in the modeling process, and then a new topic
model to use the knowledge to guide the model inference. Our
work is related to model-based unsupervised transfer learning,
and also inspired by recent work in inductive transfer learning
[4], which usually shares parameters or prior distributions of hy-
perparameters between different models. We first train a LDA
model using the corpus as a source model that is computation-
ally efficient, and then some parameters in the LDA model is
transferred to the DSTM model in order to circumvent the labo-
rious training of DSTM.

3. Dialogue Speech Topic Model
In order to facilitate the discussion thereafter, we clarify some
concepts in DSTM. Dialogue transcript refers to the transcript
of a dialogue speech. Utterance transcript refers to the the tran-
script of an utterance and the utterance boundaries are obtained
by speaker diarization [24]. We assume that the training cor-
pus is composed of some dialogue transcripts and each dialogue
transcript contains several utterance transcripts.

In the subsequent discussion, α and β are used to repre-
sent the Dirichlet hyperparameters. Specifically, we use α· to
emphasize that α is a vector and β·· to emphasize that β is a
two-dimensional matrix. The generative process of DSTM is
presented in Algorithm 1. For each dialogue transcript d in the
corpus D, DSTM draws a topic distribution θd from a Dirich-
let prior parametrized by α (Line 3). Then, for each topic k
in the topic set K and each d, a Multinomial distribution ϕdk

is drawn from a Dirichlet prior with parameter βk (Line 4 ∼
6). This assumption models word burstiness by allowing for
variations in the probability of each word in the same topic in
different dialogue speeches. For each utterance transcript s in
the utterance transcript set Sd belonging to d, DSTM draws a
topic zds from θd (Line 8). Each word w in the word set Ws

is drawn from the distribution ϕdzds (Line 10), where Ws com-
poses of all the words in transcript s. By constraining that the
words in s should share the same topic, DSTM has the ability to
capture utterance boundary information in dialogue speech. We
proceed to discuss how to estimate the parameters of interest.
The joint likelihood of w and z can be factored as follows:

P (w, z|α, β) = P (w|z, β)P (z|α) (1)

ALGORITHM 1: Generative Process of Dialogue
Speech Topic Model

1 begin
2 for each dialogue transcript d ∈ D do
3 draw topic distribution θd ∼ Dirichlet(α)
4 for each topic k ∈ K do
5 draw a word distribution

ϕdk ∼ Dirichlet(βk)
6 end
7 for each utterance transcript s ∈ Sd in d do
8 draw a topic zds ∼ θd
9 for each position in utterance transcript s

do
10 draw a word

w ∼Multinomial(ϕdzds)
11 end
12 end
13 end
14 end

The first component P (w|z, β) is an average over all pos-
sible ϕ:

P (w|z, β) =
∫
ϕ

P (ϕ|β)P (w|ϕ)dϕ

=
∏
d∈D

∏
k∈K

B(ndk· + βk·)

B(βk·)

(2)

where B(·) is the multidimensional Beta function, and ndkw

refers to the times that wordw is assigned to topic k in dialogue
d. The second component P (z|α) is the topic assignment of
the dialogue, which follows the Dirichlet distribution with hy-
perparameter α:

P (z|α) =
∏
d∈D

B(nd·· + α·)

B(α·)
(3)

Combining Equation (2) and (3) together yields the complete
likelihood:

P (w, z|α, β) =
∏
d∈D

[
B(nd·· + α)

B(α·)

∏
k∈K

B(ndk· + βk·)

B(βk·)

]
(4)

To perform Gibbs sampling, we further calculate p(zs|z−s,w),
where z−s is the set of topic assignment to all utterance tran-
scripts except s. The conditional probability for Gibbs sampling
is as follows,

P (zs = k|z−s,w) =
P (w, z)

P (w, z−s)

≈ (n′dk· + α·)
∏

w∈Ws

n′dkw + βk,w − 1∑
v∈V n

′
dkv + βk,v − 1

(5)

where n′dkw is the number of the times word w is assigned
to topic k in dialogue d without s. After the Gibbs sampling
reaches steady-state, we can estimate each dialogue transcript
d’s topic distribution θdk and kth topic’s word distributionϕdkw

by:

θdk =
n′dk· + αk∑

k∈K(n′dk· + αk)
, (6)



ϕdkw =
n′dkw + βkw∑

v∈V (n′dkv + βkv)
(7)

Since β in DSTM carries the prior information of topic-
word distribution which varies according to topics, it should be
non-uniform and need to be optimized throughout the corpus.
Specifically, we utilized Monte Carlo EM [25] to optimize α
and β. In the E-step, we choose the topic assignment for each
word by running the Gibbs sampling according to Equation (5)
until it reaches steady-state. In the the M-step, given the current
topic assignments, we find the optimal α and β by maximizing
the likelihood P (w, z|α, β) in Equation (4). The E-step and
M-steps repeat until α and β converge.

4. Transfer Learning for DSTM Topic
Inference

Based upon the discussion in Section 3, it is easy to see that
training DSTM is costly in terms of both time and mem-
ory consumption. The time complexity of training DSTM is
O(IEIM |N ||K|), where IE is the number of EM iterations and
IM is the number of Markov Chain Monte Carlo iterations. |N |
is the number of words in the corpus and |K| is the number of
topics. The memory consumption of storing a DSTM model is
O(|D||K||V |), where |D| is the number of dialogue transcripts
in the corpus and |V | is the size of the vocabulary. In contrast,
with the state-of-the-art LDA training framework such as [5, 8],
the time complexity of training a LDA model can be reduced to
O(IM |N |). The memory consumption of storing a LDA model
is only O(|K||V |).

Figure 1: Schematic diagram of transfer learning for DSTM

Due to the great discrepancy of the training cost of LDA and
DSTM, we discuss how to employ inductive transfer learning
to circumvent the heavy burden of training a DSTM model. As
shown in Figure 1, the hyperparameter βDSTM

k· in DSTM is
transferred from the parameter φLDA

k· in LDA. After transfer
learning, the Gibbs sampling formula P (zs = k|z−s,w) is
updated to:

P (zs = k|z−s,w) ≈ (n′dk· + α·)

×
∏

w∈Ws

n′dkw + φLDA
k,w − 1∑

v∈V n
′
dkv + φLDA

k,v − 1

(8)

When applying DSTM to the candidate transcript d of a
new dialogue speech, we sample topics for the words in the

Figure 2: Topic-Aware ASR with DSTM

candidate transcript according to Equation (8). The above pro-
cedure uses updated document-topic count n′dk and topic-word
count n′dkw and fixed βDSTM

k· . Based on the sampling re-
sults, we can apply Equation (6) to estimate parameters such as
θdk and ϕdkw, which are further utilized for n-gram language
model adaptation.

5. Topic-Aware ASR
Figure 2 shows the pipeline of topic-aware ASR. The topics
discovered by DSTM are utilized to complement the n-gram
language model by interpolation. For each dialogue speech, the
transcript in the lattice of the first-pass decoding is considered
as a dialogue transcript d. We further infer the topic distribution
θd and ϕdkw according to Equations (8) and (7). Based on these
parameters, we compute a document-specific unigram model
by PDSTM (w|θd) =

∑
k∈K ϕdkwθdk and adapt the n-gram

language model as follows:

pd(w|C) = λPDSTM (w|θd) + (1− λ)PLM (w|C) (9)

where C is the context information on previous words, λ is a
trade-off coefficient and PLM (w|C) is the probability given by
n-gram language model. The adapted language model is further
utilized for rescoring the lattice.

6. Experiments
In Section 6.1, we describe the experimental setup. In Sec-
tion 6.2, we present experimental results in terms of perplexity,
Word Error Rate (WER) and efficiency.

6.1. Experimental Setup

The corpus used for our experiments consists of about 1000
hours of dialogue speech collected from real-life customer ser-
vice in Mandarin Chinese. We utilized 80% of the data for
training a ASR system with the Kaldi Toolkit1 and reserved the
rest 20% for development (10%) and testing (10%). Specif-
ically, we trained a Kaldi “chain” model based on the training
data. The baseline n-gram language model is trained by the SRI
Language Modeling Toolkit (SRILM) [26]. Parameters such as
topic number |K| and coefficient λ are tuned on the develop-
ment dataset. All experiments were conducted on a machine
with 314GB memory, 72 Intel Core Processor (Xeon), Tesla
K80 GPU and CentOS.

1http://kaldi-asr.org/



6.2. Experimental Result

6.2.1. Perplexity

Table 1 compares the perplexity (PPL) of different language
models. The n-gram language model, LDA, WVM and DSTM,
are all trained on the transcript of the training data. We adapt
the n-gram language model by RNNLM [27], LDA, Cache
[12], WVM and DSTM by interpolation, which results in the
following language models: n-gram+RNNLM, n-gram+LDA,
n-gram+Cache, n-gram+WVM, n-gram + DSTM-S, n-gram +
DSTM-TL and n-gram + DSTM-TL-E. Specifically, DSTM-S
means DSTM trained from scratch, DSTM-TL means DSTM
trained with transfer learning by training a LDA model from
scratch and DSTM-TL-E means DSTM trained with transfer
learning from an existing LDA model.

As we can see from Table 1, the methods based on DSTM
achieve much lower perplexities than the other methods. This
confirms our assumptions that the topics discovered by DSTM
provides valuable long-range dependency information of words.
The superiority of DSTM over LDA and Cache shows that
DSTM provides better fit for the dialogue data. What’s more,
by comparing different DSTM-based methods, we observe that
DSTM-TL and DSTM-TL-E obtain similar performance as
DSTM-S, indicating that transfer learning only causes mild per-
formance degrade in perplexity.

Table 1: Perplexity of Different Language Models

Model PPL

n-gram 59.10
n-gram + RNNLM 48.01
n-gram + LDA 50.54
n-gram + WVM 55.03
n-gram + Cache 50.35
n-gram + DSTM-S 46.62
n-gram + DSTM-TL 47.41
n-gram + DSTM-TL-E 47.41

6.2.2. Lattice-rescoring

Since our ultimate goal is to improve ASR, we further examine
the effectiveness of DSTM in term of WER. Table 2 lists WER
of different language model adaptation methods. RNNLM,
LDA, WVM, Cache, DSTM-S, DSTM-TL and DSTM-TL-E
have respectively 1.28%, 1.24%, 0.65%, 0.79%, 1.48%, 1.35%,
1.35% improvement over the baseline n-gram language model.
The methods based on DSTM achieve lower WER than the
other methods. Furthermore, we observe that the performances
of DSTM-TL, DSTM-TL-E and DSTM-S are quite close. This
result indicates that the information loss caused by transferring
from LDA to DSTM is little and validates the effectiveness of
the proposed transfer learning mechanism. What’s more, com-
pared with LDA, DSTM produces more accurate topic inference
results, which further help to reduce the WER.

6.2.3. Efficiency Analysis

We empirically examine the efficiency of DSTM and the results
are shown in Table 3. We can see that DSTM-S suffers from low
efficiency since training DSTM from scratch involves multiple
iterations of Monte Carlo EM, which is quite time-consuming.
Comparing DSTM-S and DSTM-TL, we observe that the pro-
posed transfer learning mechanism reduces the training time

Table 2: WER of Different Language Models

Model WER

n-gram 29.98%
n-gram + RNNLM 28.70%
n-gram + LDA 28.74%
n-gram + WVM 29.33%
n-gram + Cache 29.19%
n-gram + DSTM-S 28.50%
n-gram + DSTM-TL 28.63%
n-gram + DSTM-TL-E 28.63%

of DSTM to a level similar to LDA. The time consumption of
DSTM-TL-E indicates that the cost of transferring knowledge
from an existing LDA model to DSTM is negligible. These
property of DSTM is of great value in practice and we can ap-
ply it to improve ASR with little compromise on efficiency.

Table 3: Time Consumption (In seconds) of the Model Training
and Inference for Different Topic Models

#Topic LDA DSTM-S DSTM-TL DSTM-TL-E

50 407.18 4512.19 406.72 0.89
100 449.77 10717.36 449.41 0.94
200 498.65 18364.31 498.18 1.03
300 536.74 34482.59 536.36 1.12
400 550.03 49730.21 550.17 1.18

7. Conclusions
In this paper, we propose a new framework for topic-based
language model adaptation in dialogue speech ASR. We first
propose a novel topic model named DSTM which simultane-
ously captures the utterance boundaries and word burstiness in
natural dialogue speech. To relieve the heavy burden of train-
ing DSTM, we further design a transfer learning mechanism to
transfer the knowledge carried by LDA to DSTM. Experimental
results show that the proposed approach is able to improve the
performance of the state-of-the-art ASR system. In the future
work, we plan to investigate more about the intrinsic structures
of dialogue speech and explore new topic models for language
model adaptation.
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