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ABSTRACT
Route planning is fundamental in our daily life. However, existing
mapping applications focus on recommending routes by optimiz-
ing one single objective, which is inconsistent with some scenarios
where users prefer the optimal route under a constraint. The con-
strained shortest path (CSP) query matches this requirement, but
the query efficiencies of previous solutions are often low due to
CSP’s NP-hardness. In the era of big data, state-of-the-art indexes
are getting larger to support faster query processing. Recent at-
tempts to preprocess more intermediate results and reduce the
number of table lookups have proved successful in solving the CSP.
However, the best-known algorithm ignores some information in
the CSP queries and tries to solve a more general problem before
tackling the exact CSP. In this paper, we propose by far the fastest
algorithm called QHL, which fully utilizes the pruning power of the
CSP query information. Specifically, we preprocess our index by
generating pruning conditions that can improve query efficiency.
We also conducted extensive experiments on real-world datasets to
demonstrate the superiority of our proposed algorithm. QHL could
answer each CSP query in around 50 `s and run faster than the
best-known algorithm by orders of magnitude.
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1 INTRODUCTION
Route planning plays a critical role in many applications, such
as tourists’ trip planning, ride-hailing platforms, or food delivery
services. Online mapping apps, such as Google Maps [1], offer nav-
igation guidance to meet users’ traveling demands. However, the
recommended routes often optimize one single objective (e.g., the
shortest travel time or distance) and ignore various users’ pref-
erences in different scenarios. For example, during a traffic jam,
drivers may accept some slightly long detours to experience less
congested road segments. Under travelers’ limited budgets, the
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fastest route may be infeasible since it could utilize many high-
ways and bridges with toll charges. Therefore, it is more flexible
to consider the constrained shortest path (CSP) which minimizes an
objective under a constraint.

Given a road network where road segments are represented by
edges and their junctions are vertices, each edge can be character-
ized by two numbers𝑤 and 𝑐 representing two metric values, and
CSP asks for a path between a source vertex 𝑠 and a destination
vertex 𝑡 which minimizes the sum of𝑤 values (of the path’s edges)
under the constraint that the sum of 𝑐 values is no greater than an
upper bound value 𝐶 . For the first example above, we may regard
the congestion degree (as green, yellow, and red lines in the live traf-
fic layer of Google Maps [1]) and the distance of each road segment
as𝑤 and 𝑐 , respectively. Drivers may prefer the smoothest detour
under a distance constraint. For the second one, we can consider
the travel time and the charge of each road segment as 𝑤 and 𝑐 ,
respectively. The optimal route would have the shortest travel time
under a given budget. In all, the two metrics have different mean-
ings under different scenarios. Note that there are similar problems
to CSP. Some studied how to find a set of skyline paths which are
suboptimal in terms of the sum of either 𝑤 or 𝑐 values [12, 24],
but presenting many skyline paths to users makes them confused
about different choices. Others considered multiple objectives or
constraints [9, 10, 16, 30, 32], but they could burden users’ thinking
and formulation process.

The CSP problem has been widely studied in the past decades [11,
15]. Early solutions considered the techniques of dynamic program-
ming, linear programming, and approximation algorithms to solve
the exact or approximate CSP [13, 15, 21, 22, 32]. However, since it
is an NP-hard problem [13], these index-free solutions are unsalable
to large road networks. Recent ones designed specific indexes to
partition the large network [31] or prune the search space [8, 29].
They do run faster than previous index-free solutions for query
processing but still have room for improvement.

As the data volume and the device memory are constantly grow-
ing larger, we may harness the power of larger indexes for faster
solutions. One state-of-the-art fast solution for the shortest distance
query, called H2H, considered the combination between the tree
embedding of the road network and the 2-hop labeling [23], where
the former keeps the structural properties of the road network in a
tree in order to enjoy the fast computation on the tree hierarchy,
and the latter means that each shortest path can be divided into two
subpaths (or two “hops”, one from 𝑠 to an intermediate vertex ℎ and
the other from ℎ to 𝑡 ) with their distances (or “labels”) stored in the
index. In the query processing, the hops are concatenated by some
intermediate vertices (also called “hoplinks”) to form a set of candi-
date paths that contain the shortest one, and H2H compares them
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by necessary distance lookups in the tree. It runs faster than tradi-
tional baselines by several orders of magnitude, which is mainly
due to its few distance (or label) lookups in the tree. [20] extends
the idea of H2H to propose the CSP-2Hop to solve the exact CSP. It
essentially wants to obtain the set of skyline paths between 𝑠 and 𝑡
since the CSP answer must be one of them. Its index, CSP-2Hop,
then stores the skyline path sets of hops (instead of the distances)
as the labels, and obtains the complete skyline path set for 𝑠 and 𝑡
also by some intermediate vertices (or hoplinks). For each hoplink,
it considers joining the two skyline path sets of hops, which could
be viewed as performing many path concatenations. It was demon-
strated that CSP-2Hop outperforms previous solutions by orders of
magnitude in terms of query efficiency [20]. It can also handle the
case where multiple constraints are imposed on the shortest path.

Though CSP-2Hop is currently the fastest solution to CSP, it has
the following two weaknesses. First, it does not fully utilize the
information that each CSP query provide, i.e., the source vertex 𝑠 ,
the destination vertex 𝑡 , and the upper bound value 𝐶 . Utilizing
their pruning power can make the number of label lookups and
path concatenations even smaller. Second, it focuses on generating
the set of skyline paths between 𝑠 and 𝑡 and gets the CSP answer
from them in the last minor step. Therefore, it overlooks some
speedup possibilities since we only need the optimal path under
the constraint instead of the complete set of skyline paths.

Motivated by the above limitations, we propose by far the fastest
algorithm called Query-aware Hop Labeling (QHL) which attaches
importance to the pruning power of the query information and
the answer form. Specifically, we design a new framework with
two ideas: 1) using fewer hoplinks and 2) performing fewer path
concatenations. The first one is achieved by a proposed index, called
pruning condition. It prunes some unnecessary hoplinks when the
paths from 𝑠 (or 𝑡 ) to these hoplinks have been considered. For
the second one, we use the upper bound value 𝐶 to skip each
path concatenation on two path sequences when other performed
concatenations imply that the sum of the two 𝑐 values from the
two sequences is certainly greater than 𝐶 . For query efficiency,
QHL has one fewer term in the time complexity than CSP-2Hop.
The experiments also show that QHL could answer each query in
around 50 `s on New York’s network and outperform CSP-2Hop
by two orders of magnitude on a larger network, and its additional
index space compared with CSP-2Hop is negligible.

We summarize our contributions as follows.

• We propose the QHL algorithm that answers the exact CSP
queries efficiently. Its time complexity has one fewer multi-
plier than that of the best-known algorithm.
• We propose several speedup techniques, such as the pruning
conditions and a new way of path concatenation. They fully
utilize the pruning power of the query information.
• We empirically demonstrate the superiority of our QHL on
real-world data. It could reduce the query processing time
of the baseline by orders of magnitude while consuming a
similar index space.

The remainder of the paper is organized as follows. Section 2
defines the problem. Section 3 presents our query processing al-
gorithm. Section 4 gives the index construction details. Section 5
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Figure 1: An example road network

shows experimental results. Section 6 reviews the related work and
Section 7 concludes our paper.

2 PRELIMINARIES
2.1 Problem Definitions

Definition 1 (Road Network). A road network𝐺 (𝑉 , 𝐸) is rep-
resented by a connected undirected graph, where𝑉 is the set of vertices
and 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges. Each edge 𝑒 ∈ 𝐸 is associated with
a weight𝑤 (𝑒) ∈ R+ and a cost 𝑐 (𝑒) ∈ R+.

Example 1. Figure 1 shows an example road network with 13
nodes. The pair (𝑤 (𝑒), 𝑐 (𝑒)) is shown beside each edge 𝑒 . For example,
𝑤 ((𝑣8, 𝑣3)) = 2 and 𝑐 ((𝑣8, 𝑣3)) = 4.

Definition 2 (Path). A path 𝑝 is a finite sequence of vertices
𝑝 = (𝑣0, 𝑣1, . . . , 𝑣𝑘 ) such that each (𝑣𝑖−1, 𝑣𝑖 ) ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑘 .
A path with its source vertex 𝑠 and destination vertex 𝑡 is called
an s-t path. Abusing notations slightly, we define its weight and
cost as 𝑤 (𝑝) =

∑𝑘
𝑖=1𝑤 ((𝑣𝑖−1, 𝑣𝑖 )) and 𝑐 (𝑝) =

∑𝑘
𝑖=1 𝑐 ((𝑣𝑖−1, 𝑣𝑖 )),

respectively. We denote the concatenation of two paths 𝑝1 and 𝑝2 by
𝑝1 ⊕𝑝2 when 𝑝1’s destination is 𝑝2’s source. We define the weight-cost
pair of a path 𝑝 as (𝑤 (𝑝), 𝑐 (𝑝)).

It can be easily derived that the𝑤 (𝑝1 ⊕ 𝑝2) = 𝑤 (𝑝1) +𝑤 (𝑝2) and
𝑐 (𝑝1 ⊕ 𝑝2) = 𝑐 (𝑝1) + 𝑐 (𝑝2).

Definition 3 (CSP Query). Given a road network 𝐺 , a source
vertex 𝑠 ∈ 𝑉 , a destination vertex 𝑡 ∈ 𝑉 , and a cost budget𝐶 ∈ R+, the
CSP query returns the s-t path 𝑝∗ that attains the minimum𝑤 (𝑝∗)
and satisfies 𝑐 (𝑝∗) ≤ 𝐶 .

Example 2. One CSP query could specify 𝑠 as 𝑣8, 𝑡 as 𝑣4, and 𝐶 =

13. The answer to this query is the path 𝑝∗ = (𝑣8, 𝑣2, 𝑣9, 𝑣10, 𝑣5, 𝑣4)
with (𝑤 (𝑝∗), 𝑐 (𝑝∗)) = (17, 13). Any other path with its cost no larger
than 13 has its weight larger than 17.

2.2 Skyline Paths
Definition 4 (Path Domination). For two paths 𝑝 and 𝑝′, 𝑝

dominates 𝑝′, denoted by 𝑝 ≺ 𝑝′, iff 1) 𝑤 (𝑝) < 𝑤 (𝑝′) and 𝑐 (𝑝) ≤
𝑐 (𝑝′), or 2) 𝑤 (𝑝) ≤ 𝑤 (𝑝′) and 𝑐 (𝑝) < 𝑐 (𝑝′). We also define 𝑝 = 𝑝′

iff (𝑤 (𝑝), 𝑐 (𝑝)) = (𝑤 (𝑝′), 𝑐 (𝑝′)), and 𝑝 ⪯ 𝑝′ iff 𝑝 ≺ 𝑝′ or 𝑝 = 𝑝′.

Example 3. The weight-cost pairs of the path (𝑣8, 𝑣3, 𝑣9) and
(𝑣8, 𝑣1, 𝑣13, 𝑣11, 𝑣10, 𝑣9) are (8, 7) and (14, 18), respectively. As shown
in Figure 2a, if we use weight-cost pairs as coordinates of points and
plot them in a coordinate system, (14, 18) lies in the upper right part
of (8, 7), and hence (𝑣8, 𝑣3, 𝑣9) ≺ (𝑣8, 𝑣1, 𝑣13, 𝑣11, 𝑣10, 𝑣9).
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Figure 2: Skyline path example

Definition 5 (Path Set Domination). For two sets of paths 𝑃
and 𝑃 ′, 𝑃 dominates 𝑃 ′, denoted by 𝑃 ≺ 𝑃 ′, if and only if 1) for any
path 𝑝′ ∈ 𝑃 ′, there exists a path 𝑝 ∈ 𝑃 such that 𝑝 ≺ 𝑝′, and 2) for
any path 𝑝 ∈ 𝑃 , there does not exist a path 𝑝′ ∈ 𝑃 ′ such that 𝑝′ ≺ 𝑝 .

Definition 6 (Skyline Paths). Given 𝑠 and 𝑡 , an s-t path 𝑝 is
called a skyline path for 𝑠 and 𝑡 if and only if there does not exist an
s-t path 𝑝′ such that 𝑝′ ≺ 𝑝 . The set of all skyline paths for 𝑠 and 𝑡
(which dominates any other s-t path sets) is denoted by 𝑃𝑠𝑡 .

Example 4. Consider the skyline path set 𝑃𝑣8𝑣9 between 𝑣8 and
𝑣9. It can be seen that the weight-cost pairs of the path (𝑣8, 𝑣3, 𝑣9)
and the path (𝑣8, 𝑣2, 𝑣9) are (8, 7) and (7, 8), respectively. Since they
cannot dominate each other and no other paths can dominate them,
𝑃𝑣8𝑣9 = {(𝑣8, 𝑣3, 𝑣9), (𝑣8, 𝑣2, 𝑣9)}. As shown in Figure 2b, if we link
the skyline paths by lines, the points representing any other paths
between 𝑣8 and 𝑣9 lie in the upper right grey area.

It is shown that 𝑃𝑠𝑡 suffices to answer the CSP query with 𝑠 , 𝑡 ,
and any value of 𝐶 and CSP-2Hop derives 𝑃𝑠𝑡 since 𝑝∗ ∈ 𝑃𝑠𝑡 [20].
The proof is as follows. We can sort all the skyline paths in 𝑃𝑠𝑡 in
the increasing order of their costs 𝑐 (𝑝). The path with the largest
𝑐 (𝑝∗) ≤ 𝐶 is the answer 𝑝∗. This is because all the other skyline
paths with 𝑐 (𝑝) ≤ 𝑐 (𝑝∗) must have weights𝑤 (𝑝) > 𝑤 (𝑝∗). Other-
wise, 𝑝 ≺ 𝑝∗ contradicts the skyline path set definition.

Example 5. Back to Example 2, 𝑃𝑠𝑡 has three paths with weight-
cost pairs as follows: (18, 12), (17, 13), (16, 18). The answer 𝑝∗ lies in
(17, 13) since 13 is the largest possible value no larger than 𝐶 .

2.3 CSP-2Hop
A tree decomposition is a rooted tree generated from the network𝐺
and satisfies certain conditions [23, 26]. See [3] for a survey.

Definition 7 (Tree Decomposition [23]). The tree decomposi-
tion of the graph 𝐺 is a rooted tree, denoted by 𝑇 . There is a bijection
from 𝑉 to the set of tree nodes, denoted by 𝑋 . For each 𝑣 ∈ 𝑉 , 𝑋 (𝑣) is
its corresponding tree node. Each tree node 𝑋 (𝑣) is associated with a
subset of 𝑉 of vertices which includes 𝑣 . Abusing notations slightly,
we also use 𝑋 (𝑣) to denote this associated subset in 𝑣 ’s corresponding
tree node. Hence,𝑋 (𝑣) ⊂ 𝑉 and 𝑣 ∈ 𝑋 (𝑣). The tree decomposition sat-
isfies three conditions: 1)

⋃
𝑣∈𝑉 𝑋 (𝑣) = 𝑉 . 2) For each 𝑒 = (𝑢, 𝑣) ∈ 𝐸,

there exists one 𝑋 (𝑣 ′) such that 𝑢, 𝑣 ∈ 𝑋 (𝑣 ′). 3) For each 𝑣 , the set
{𝑋 (𝑣 ′) : 𝑣 ∈ 𝑋 (𝑣 ′)} forms a connected subtree.

A tree decomposition can be generated based onAlgorithm 1 [23].

Algorithm 1: Tree Decomposition Construction [23]
input :The road network 𝐺
output :The tree decomposition 𝑇

1 𝐻 ← 𝐺,𝑇 ← ∅
2 while 𝐻 is not empty do
3 𝑣 ← the vertex in 𝐻 with the smallest degree
4 𝑋 (𝑣) ← {𝑣} ∪ {neighbors of 𝑣}
5 create a tree node 𝑋 (𝑣) in 𝑇
6 remove 𝑣 and its incident edges in 𝐻 and add an edge for

each pair of neighbors of 𝑣 if the edge does not exist
7 foreach tree node 𝑋 (𝑣) with |𝑋 (𝑣) | > 1 do
8 𝑢 ← the vertex in 𝑋 (𝑣)\{𝑣} that is first removed from 𝐻

9 set the parent of 𝑋 (𝑣) as 𝑋 (𝑢)
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Figure 3: An example tree decomposition

Example 6. In the while-loop, suppose that we first process 𝑣1
since its degree is currently the smallest. We create 𝑋 (𝑣1) = {𝑣1} ∪
{𝑣8, 𝑣13} = {𝑣1, 𝑣8, 𝑣13} and its corresponding tree node, then remove
𝑣1 and (𝑣1, 𝑣13) and (𝑣1, 𝑣8), and finally add the edge (𝑣8, 𝑣13). Simi-
larly, we process 𝑣2, 𝑣3, . . . , 𝑣13. In Lines 7-9, for the tree node 𝑋 (𝑣1),
we set its parent as𝑋 (𝑣8) since 𝑣8 is removed before 𝑣13 in𝑋 (𝑣1)\{𝑣1}.

Figure 3 shows the final tree decomposition for the graph in Figure 1.
In each tree node 𝑋 (𝑣) (where 𝑣 is bolded), there is a set of vertices
that includes 𝑣 , e.g., 𝑋 (𝑣8) = {𝑣8, 𝑣9, 𝑣13} and 𝑣8 ∈ 𝑋 (𝑣8).

We will use “vertex” for the graph 𝐺 and “node” for the tree
to distinguish the two concepts. The valuable property of the tree
decomposition is the separator defined below.

Definition 8 (Separator). The separator of two vertices 𝑠 and 𝑡
is a set of vertices such that after the removal of all the vertices in the
separator, 𝑠 and 𝑡 are in two different connected components.

Example 7. In Figure 1, a separator of 𝑣8 and 𝑣4 could be {𝑣10, 𝑣13}
since 𝑣8 is disconnected from 𝑣4 after 𝑣10 and 𝑣13 are removed.

The separator also indicates that any 𝑠-𝑡 path has to visit at least
one of the vertices in the separator of 𝑠 and 𝑡 .

Lemma 1 (Lemma 4 in [4]). Given any two vertices 𝑠 and 𝑡 , suppose
that there is no ancestor-descendant relationship between the two
nodes𝑋 (𝑠) and𝑋 (𝑡) in the tree. Let𝑋 (𝑙) be the least common ancestor
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Algorithm 2: CSP-2Hop
input :The label 𝐿(𝑣) for each 𝑣 ∈ 𝑉 and a CSP query
output :The path 𝑝 with 𝑐 (𝑝) ≤ 𝐶 and the minimum𝑤 (𝑝)

1 𝑋 (𝑙) ← the LCA node of 𝑋 (𝑠) and 𝑋 (𝑡)
2 if 𝑙 = 𝑠 then
3 return the optimal path in 𝑃𝑠𝑡 stored in 𝐿(𝑡)
4 else if 𝑙 = 𝑡 then
5 return the optimal path in 𝑃𝑠𝑡 stored in 𝐿(𝑠)
6 else
7 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 ← 𝑋 (𝑙)
8 return 𝑝∗ in

⋃
ℎ∈𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠ℎ, 𝑝2 ∈ 𝑃ℎ𝑡 }

(LCA) of 𝑋 (𝑠) and 𝑋 (𝑡), and 𝑃 = (𝑋 (𝑠), . . . , 𝑋 (𝑙), . . . , 𝑋 (𝑡)) be the
simple tree path connecting 𝑋 (𝑠) and 𝑋 (𝑡). The set 𝑋 (𝑙) of vertices
is a separator. For each 𝑋 (𝑣) ∈ 𝑃 where 𝑣 ≠ 𝑙 , the set 𝑋 (𝑣)\{𝑣} of
vertices is also a separator.

Example 8. Given 𝑣8 and 𝑣4, since there is no ancestor-descendant
relationship between the two nodes 𝑋 (𝑣8) and 𝑋 (𝑣4), and 𝑋 (𝑣10) is
the LCA, 𝑋 (𝑣10) = {𝑣10, 𝑣11, 𝑣12, 𝑣13} is a separator for 𝑣8 and 𝑣4.

Since the 𝑋 (𝑙) of the LCA is a separator, CSP-2Hop considers
dividing the problem into two parts; that is, each 𝑠-𝑡 path can be
seen as the concatenation of two subpaths: one from 𝑠 to a vertex
ℎ ∈ 𝑋 (𝑙), also called a “hoplink”, and the other from ℎ to 𝑡 . If we
have the two skyline path sets 𝑃𝑠ℎ and 𝑃ℎ𝑡 for each ℎ ∈ 𝑋 (𝑙), we
can get 𝑃𝑠𝑡 by iterating all the vertices in the separator 𝑋 (𝑙) and
concatenating any pair of two paths in 𝑃𝑠ℎ and 𝑃ℎ𝑡 . Formally, for the
separator 𝑋 (𝑙), 𝑝∗ ∈ 𝑃𝑠𝑡 ⊆

⋃
ℎ∈𝑋 (𝑙 ) {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠ℎ, 𝑝2 ∈ 𝑃ℎ𝑡 }.

We can find the optimal answer 𝑝∗ in all the concatenated paths.
Specifically, CSP-2Hop preprocesses its index which stores a

label for each 𝑣 ∈ 𝑉 , denoted by 𝐿(𝑣). Each label 𝐿(𝑣) is a set of
pairs (𝑢, 𝑃𝑣𝑢 ) for any𝑋 (𝑣)’s ancestor𝑋 (𝑢) in the tree. For example,
𝐿(𝑣10) = {(𝑣11, 𝑃𝑣10𝑣11 ), (𝑣12, 𝑃𝑣10𝑣12 ), (𝑣13, 𝑃𝑣10𝑣13 )}. The labels can
be generated by Algorithm 1 in [20]. Given a CSP query with 𝑠 , 𝑡 ,
and 𝐶 , we answer it by using the labels to find 𝑃𝑠𝑡 and further the
optimal answer 𝑝∗. Algorithm 2 summarizes the query procedure.
If 𝑋 (𝑠) and 𝑋 (𝑡) have the ancestor-descendant relationship, we
directly find in the descendant’s label the corresponding 𝑃𝑠𝑡 in
Lines 2-5. Otherwise, since the 𝑋 (𝑙) of the LCA of 𝑋 (𝑠) and 𝑋 (𝑡) is
a separator, we can consider each vertex in 𝑋 (𝑙) as a hoplink ℎ and
let𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 be𝑋 (𝑙) in Line 7. Furthermore, the tree decomposition
has a useful property.

Property 1 (Property 2 in [23]). For any vertex 𝑢 ∈ 𝑋 (𝑣)\{𝑣},
𝑋 (𝑢) is an ancestor of 𝑋 (𝑣).

Example 9. For 𝑣11, 𝑣12, 𝑣13 ∈ 𝑋 (𝑣10), 𝑋 (𝑣11), 𝑋 (𝑣12), 𝑋 (𝑣13) are
ancestors of 𝑋 (𝑣10).

This property further indicates that for any ℎ ∈ 𝑋 (𝑙), we can
find 𝑃𝑠ℎ in the label 𝐿(𝑠) and 𝑃ℎ𝑡 in 𝐿(𝑡) since 𝑋 (ℎ) is the ancestor
of both 𝑋 (𝑠) and 𝑋 (𝑡) and we store the two sets 𝑃𝑠ℎ and 𝑃ℎ𝑡 by the
label definition. We can then obtain a super set of 𝑃𝑠𝑡 that is the set
of all concatenated paths

⋃
ℎ∈𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 {𝑝1⊕𝑝2 : 𝑝1 ∈ 𝑃𝑠ℎ, 𝑝2 ∈ 𝑃ℎ𝑡 }

and get 𝑝∗ from it in Line 8.

𝑣8 𝑣4

𝑣11𝑣10 𝑣13𝑣12

Figure 4: Path concatenation in CSP-2Hop

The query processing time complexity is O(|𝑋 (𝑙) | |𝑃𝑠ℎ | |𝑃ℎ𝑡 |)
whichmainly lies in the last step of path concatenation. It is efficient
in practice because |𝑋 (𝑙) | is bounded by max𝑣 |𝑋 (𝑣) | (also called
the “treewidth”) which is smaller than 1000 for nearly all road
networks [20, 23]. The correctness of Algorithm 2 and the separator
can be found in [20].

Note that the last line of Algorithm 2 can be done by updating
the optimal path 𝑝∗ while using 𝐶 to filter out those concatenated
paths with 𝑐 (𝑝) > 𝐶 without deriving the real 𝑃𝑠𝑡 . Also note that
the extension to the directed graph and the path retrieval (since
the labels store the weight-cost pairs for efficiency) can be found
in [20], and ours are the same.

Example 10. We still use Example 2. Since 𝑋 (𝑣8) and 𝑋 (𝑣4) have
no ancestor-descendant relationship, we find its LCA node 𝑋 (𝑣10).
We will use 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 = 𝑋 (𝑣10) = {𝑣10, 𝑣11, 𝑣12, 𝑣13}. Figure 4 shows
all the paths to be concatenated with their details omitted for sim-
plicity. Take 𝑣10 as the first hoplink for example. Since |𝑃𝑣8𝑣10 | = 2
and |𝑃𝑣10𝑣4 | = 2, we have to do 4 concatenations. For 𝑣11, 𝑣12, and
𝑣13, we need to perform 4, 2, and 6 concatenations, respectively. Af-
ter performing all the 16 concatenations, we get the final answer
𝑝∗ = (𝑣8, 𝑣2, 𝑣9, 𝑣10, 𝑣5, 𝑣4) with the minimum weight of 17. Note that
through our later examples, we will show that our proposed QHL only
needs to do 3 concatenations.

3 QUERY PROCESSING
We will start with the overview of the query processing of QHL
and give details of each step in later sections.

3.1 Overview
CSP-2Hop’s query processing time complexity isO(|𝑋 (𝑙) | |𝑃𝑠ℎ | |𝑃ℎ𝑡 |).
It consists of two parts: one is the size of the hoplinks and the other
is the product of two sizes of the skyline path sets. To speed it up,
we utilize the power of the query information (which includes 𝑠 , 𝑡 ,
and 𝐶) to reduce the size of the hoplinks and the time cost of path
concatenation in the query processing. Note that in the following,
we will use 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 to represent the set of intermediate vertices
in the final path concatenation as in Algorithm 2. Any separator is
sufficient but probably redundant to be used as𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 . Our Algo-
rithm 3 runs in O(|𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | ( |𝑃𝑠ℎ | + |𝑃ℎ𝑡 |)) time, where 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠
is always no greater than |𝑋 (𝑙) |.

Algorithm 3 gives an overview of the query processing. We start
with the same labels 𝐿(𝑣) for any 𝑣 as in CSP-2Hop. In Lines 1-5,
we use the same way to handle the case where 𝑋 (𝑠) and 𝑋 (𝑡) have
an ancestor-descendant relationship.

When 𝑋 (𝑠) and 𝑋 (𝑡) have no ancestor-descendant relationship,
which is also the most time-consuming part of the query processing,
we propose our speed-up techniques. Note that the steps from Lines
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Figure 5: Querying processing overview

Algorithm 3: Query Processing Overview
input :The QHL index and a CSP query with 𝑠 , 𝑡 , and 𝐶
output :The path 𝑝 with 𝑐 (𝑝) ≤ 𝐶 and the minimum𝑤 (𝑝)

1 𝑋 (𝑙) ← the LCA node of 𝑋 (𝑠) and 𝑋 (𝑡)
2 if 𝑙 = 𝑠 then
3 return the optimal path in 𝑃𝑠𝑡 stored in 𝐿(𝑡)
4 else if 𝑙 = 𝑡 then
5 return the optimal path in 𝑃𝑠𝑡 stored in 𝐿(𝑠)
6 else
7 initialize two separators 𝐻 (𝑠) and 𝐻 (𝑡) (Section 3.2)
8 H ← the set of pruned separators if 𝑠 , 𝑡 , 𝐶 , and 𝐻 (𝑠) or

𝐻 (𝑡) satisfy certain pruning conditions (Section 3.3)
9 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 ← argmin𝐻 ∈H 𝑇 (𝐻 )

10 foreach ℎ ∈ 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 do
11 use 𝐶 to find the suboptimal path

𝑝∗
ℎ
∈ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠ℎ, 𝑝2 ∈ 𝑃ℎ𝑡 } (Section 3.4)

12 return 𝑝∗ ← argmin𝑝∈{𝑝∗
ℎ
:ℎ∈𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 } 𝑤 (𝑝∗ℎ)

7-11 are also shown in Figure 5 for reference. Given 𝑠 and 𝑡 , CSP-
2Hop directly uses the set𝑋 (𝑙) in the LCA node of𝑋 (𝑠) and𝑋 (𝑡) as
𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 . However, our algorithm in Line 7 initializes two different
separators 𝐻 (𝑠) and 𝐻 (𝑡), corresponding to the two child nodes
of 𝑋 (𝑙) in the same branches of 𝑋 (𝑠) and 𝑋 (𝑡) in the first step
of Figure 5. Since using either of them as the final 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 can
invoke a different execution plan of the final path concatenation
with a different time cost, they are just candidate separators. Next,
utilizing the information of 𝑠, 𝑡 , and𝐶 in Line 8, we may prune𝐻 (𝑠)
(or 𝐻 (𝑡)) based on some preprocessed pruning conditions to get one
or two pruned separators which are better candidates. If 𝐻 (𝑠) (or
𝐻 (𝑡)) cannot be pruned, we stick to the original 𝐻 (𝑠) (or 𝐻 (𝑡)). Let
H denote the set of candidate separators and |H | could be 2,3,4.
Since using any separator𝐻 ∈ H as the final𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 may incur a
different time cost, we will decide which one is better based on the
cost estimation in Line 9. The estimated time cost of a separator𝐻 is
defined as𝑇 (𝐻 ) = ∑

ℎ∈𝐻 ( |𝑃𝑠ℎ |+ |𝑃ℎ𝑡 |), which is because we adopt a
fast method for path concatenation within O(|𝑃𝑠ℎ | + |𝑃ℎ𝑡 |) time for

each hoplink ℎ in Line 11. Since we are answering a CSP query with
the cost budget 𝐶 , we do not have to obtain the complete skyline
path set 𝑃𝑠𝑡 as in CSP-2Hop. Instead, we can use𝐶 to efficiently find
the suboptimal path for each hoplink and then compare them to
obtain the optimal one 𝑝∗. Specifically, let 𝑝∗

ℎ
denote the suboptimal

path that has the minimum weight𝑤 (𝑝∗
ℎ
) and 𝑐 (𝑝∗

ℎ
) ≤ 𝐶 among all

the paths in {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠ℎ, 𝑝2 ∈ 𝑃ℎ𝑡 } by using the hoplink ℎ.
It can be found in O(|𝑃𝑠ℎ | + |𝑃ℎ𝑡 |) time since we adopt a new way
of path concatenation. The final answer 𝑝∗ will be one of the paths
𝑝∗
ℎ
for ℎ ∈ 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 with the minimum weight.
The time complexity of Algorithm 3 is O(|𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | ( |𝑃𝑠ℎ | +

|𝑃ℎ𝑡 |)), where the main cost is still from path concatenation in
Lines 10-11. Each section later contains its corresponding detailed
complexity analysis. Note that our additional index contains only
the pruning conditions in Line 8 (discussed in Section 4). We pre-
process the same tree decomposition and labels as in CSP-2Hop.

3.2 Separator Initialization
In Line 7 of Algorithm 3, we need to initialize the two separators
𝐻 (𝑠) and 𝐻 (𝑡) as two temporary candidates for 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 .

When 𝑋 (𝑠) and 𝑋 (𝑡) have no ancestor-descendant relationship,
Lemma 1 tells us that each set 𝑋 (𝑣)\{𝑣} for each node along the
simple tree path connecting𝑋 (𝑠) and𝑋 (𝑡), except for the LCA node
𝑋 (𝑙), could be a separator. We may simply want to choose the one
with the minimum size along the tree path. However, our selected
separators are required to be “feasible”. By saying a separator is
feasible, we mean that when we use it as 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 , we could find
for each hoplink ℎ the sets 𝑃𝑠ℎ and 𝑃ℎ𝑡 in the labels 𝐿(𝑠) and 𝐿(𝑡),
respectively, for the final path concatenation. In other words, for
any𝑢 to be a hoplink,𝑋 (𝑢) should be the ancestor of both𝑋 (𝑠) and
𝑋 (𝑡). Let 𝑋 (𝑐𝑠 ) and 𝑋 (𝑐𝑡 ) be the two child nodes of the LCA node
𝑋 (𝑙) in the two branches containing 𝑋 (𝑠) and 𝑋 (𝑡), respectively.
Only the two separators 𝑋 (𝑐𝑠 )\{𝑐𝑠 } and 𝑋 (𝑐𝑡 )\{𝑐𝑡 } are feasible
due to the following property.

Property 2 (Lemma 2 in [5]). For any child node 𝑋 (𝑐) of 𝑋 (𝑣),
𝑋 (𝑐)\{𝑐} ⊂ 𝑋 (𝑣).

By the above property, we know that for any 𝑢 ∈ 𝑋 (𝑐𝑠 )\{𝑐𝑠 },
𝑢 ∈ 𝑋 (𝑙) since 𝑋 (𝑐𝑠 ) is the child node of the LCA 𝑋 (𝑙). Using
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Property 1 for the same 𝑢, we know that 𝑋 (𝑢) is either an ancestor
of 𝑋 (𝑙) when 𝑢 ≠ 𝑙 or 𝑋 (𝑙) when 𝑢 = 𝑙 . In both cases, 𝑋 (𝑢) is the
ancestor of both 𝑋 (𝑠) and 𝑋 (𝑡), which makes 𝑋 (𝑐𝑠 )\{𝑐𝑠 } a feasible
separator. The same is true for 𝑋 (𝑐𝑡 )\{𝑐𝑡 }. We then define the two
separators 𝐻 (𝑠) = 𝑋 (𝑐𝑠 )\{𝑐𝑠 } and 𝐻 (𝑡) = 𝑋 (𝑐𝑡 )\{𝑐𝑡 }. They will
be our two initial candidates for the final 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 .

For the time complexity, since we can find the LCA node of
𝑋 (𝑠) and 𝑋 (𝑡 ) quickly [2], we just need O(|𝐻 (𝑠) | + |𝐻 (𝑡) |) time to
retrieve the two sets of vertices.

Example 11. Given 𝑠 = 𝑣8 and 𝑡 = 𝑣4, the LCA node is 𝑋 (𝑣10).
𝐻 (𝑠) = 𝑋 (𝑣9)\{𝑣9} = {𝑣10, 𝑣13} and𝐻 (𝑡) = 𝑋 (𝑣5)\{𝑣5} = {𝑣10, 𝑣12}.
Both 𝐻 (𝑠) and 𝐻 (𝑡) have sizes smaller than |𝑋 (𝑣10) |.

3.3 Separator Pruning
Given a separator 𝐻 , which could be either 𝐻 (𝑠) or 𝐻 (𝑡) in Line 8
of Algorithm 3, we will generate one or two pruned separators
by the pruning conditions. We will first give the definition and the
usage of the pruning condition and then introduce a theorem to
justify its correctness.

Definition 9 (Pruning Conditions of a Separator). For one
separator 𝐻 , there is a set of pruning conditions, each in the form
of (𝑣𝑒𝑛𝑑 ,𝐶𝑢𝑏 ) where 𝑣𝑒𝑛𝑑 ∈ 𝑉 is called an end vertex and 𝐶𝑢𝑏 =

{𝐶𝑢𝑏
ℎ
∈ R+0 : ℎ ∈ 𝐻 } is a set of values as upper bounds. A pruning

condition is satisfied if either 𝑠 or 𝑡 is 𝑣𝑒𝑛𝑑 . It is then used to prune
any vertex ℎ ∈ 𝐻 such that 𝐶𝑢𝑏

ℎ
> 𝐶 .

Example 12. For a separator 𝐻 = {𝑣10, 𝑣13}, suppose that one of
its pruning conditions specifies 𝑣𝑒𝑛𝑑 = 𝑣8, 𝐶𝑢𝑏

𝑣10 = 0, and 𝐶𝑢𝑏
𝑣13 = 14.

Using the CSP query in Example 2, since 𝑠 = 𝑣8 = 𝑣𝑒𝑛𝑑 satisfies this
pruning condition, we then prune 𝑣13 because 𝐶𝑢𝑏

𝑣13 = 14 > 𝐶 = 13.
We cannot prune 𝑣10 because 𝐶𝑢𝑏

𝑣10 = 0 ≤ 𝐶 . After using this pruning
condition, we have one fewer hoplink than the original |𝑋 (𝑙) |. Note
that 𝑡 = 𝑣4 does not satisfy this pruning condition because 𝑣𝑒𝑛𝑑 ≠ 𝑣4.

The pruning conditions are obtained during preprocessing. In
the query processing, the set of pruned separatorsH = ∅ initially.
We then apply Algorithm 4 for both 𝐻 (𝑠) and 𝐻 (𝑡) to get pruned
separators to expandH . If the separator has a pruning condition
whose 𝑣𝑒𝑛𝑑 is 𝑠 in Lines 2-3, we then prune anyℎ ∈ 𝐻 with𝐶𝑢𝑏

ℎ
> 𝐶

by using the pruning condition. Similarly, we can do this if some
𝑣𝑒𝑛𝑑 is 𝑡 in Lines 4-5. The finalH will contain 2, 3, or 4 separators
after we call Algorithm 4 twice for 𝐻 (𝑠) and 𝐻 (𝑡). In all, the time
complexity of Line 8 isO(|𝐻 (𝑠) |+|𝐻 (𝑡) |). Checking the satisfiability
of 𝑣𝑒𝑛𝑑 can be fast in O(1) by hashing.

Example 13. Suppose that we only have one pruning condition
for 𝐻 = {𝑣10, 𝑣13} as in the previous example. Initially, H = {𝐻 }.
For 𝐻 = {𝑣10, 𝑣13}, we update H = {{𝑣10}} since 𝑠 matches the
𝑣𝑒𝑛𝑑 of the pruning condition. There is no pruning condition whose
𝑣𝑒𝑛𝑑 matches 𝑡 = 𝑣4. For the separator 𝐻 = {𝑣10, 𝑣12}, we do noth-
ing because there is no pruning condition for it. The final H =

{{𝑣10}, {𝑣10, 𝑣12}}.

Let \ ∈ R+ and 𝑃 be a set of paths. Let 𝑃\ = {𝑝 ∈ 𝑃 : 𝑐 (𝑝) <
\ }. We will next justify the pruning conditions by the following
theorem for any CSP queries with fixed 𝑠 and𝐶 , and any 𝑡 . Its proof
is deferred.

Algorithm 4: Pruned Separators
input :The CSP query, the set of pruned separatorH , a

separator 𝐻 and its set of pruning conditions
{(𝑣𝑒𝑛𝑑 ,𝐶𝑢𝑏 )}

output :The set of pruned separatorH
1 H ← H ∪ {𝐻 }
2 if 𝑠 matches some 𝑣𝑒𝑛𝑑 of (𝑣𝑒𝑛𝑑 ,𝐶𝑢𝑏 ) then
3 H ← H\{𝐻 } ∪ {{ℎ ∈ 𝐻 : 𝐶 ≥ 𝐶𝑢𝑏

ℎ
}}

4 if 𝑡 matches some 𝑣𝑒𝑛𝑑 of (𝑣𝑒𝑛𝑑 ,𝐶𝑢𝑏 ) then
5 H ← H\{𝐻 } ∪ {{ℎ ∈ 𝐻 : 𝐶 ≥ 𝐶𝑢𝑏

ℎ
}}

6 returnH

Theorem 1. Given a CSP query with 𝑠 , 𝐶 , and any 𝑡 , for a fixed
ℎ ∈ 𝐻 , it can be safely pruned if there exists a value \ ∈ R+ and a

vertex 𝑢 ∈ 𝐻 other than ℎ such that 𝐶 < \ and 𝑃𝑠ℎ
\ ⊆ {𝑝1 ⊕ 𝑝2 :

𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}\ . If the latter two conditions hold, we simply say
that ℎ is pruned by 𝑢 under \ for 𝑠 .

By the symmetry of 𝑠 and 𝑡 , the theorem is also true for a CSP
query with fixed 𝑡 and 𝐶 , and any 𝑠 .

Example 14. Consider the previous CSP query with 𝑠 = 𝑣8, 𝑡 = 𝑣4,
and 𝐶 = 13. Supposet that 𝐻 = {𝑣10, 𝑣13} and ℎ = 𝑣13. For ease
of notations, we will use the weight-cost pair to represent different
paths. Since 𝑢 could only be 𝑣10, 𝑃𝑠ℎ = {(12, 11), (11, 12), (10, 14)},
𝑃𝑠𝑢 = {(9, 8), (8, 9)}, and 𝑃𝑢ℎ = {(3, 3)}. Thus, {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈
𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ} = {(12, 11), (11, 12)}. It can be seen that any value
\ ∈ (13, 14] can all make the latter two condition hold and 𝑣13 is
pruned by 𝑣10 under \ ∈ (13, 14] for 𝑠 = 𝑣8.

For a fixed ℎ, suppose that we have found some 𝑢 and \ such
that ℎ is pruned by 𝑢 under \ for 𝑠 . We can directly build a pruning
condition by setting 𝑣𝑒𝑛𝑑 = 𝑠 and𝐶𝑢𝑏

ℎ
= \ because safely pruning ℎ

for 𝑠 requires that 𝑣𝑒𝑛𝑑 = 𝑠 and 𝐶 < \ = 𝐶𝑢𝑏
ℎ

by Theorem 1, which
is consistent with the usage of the pruning condition. When many
values of \ satisfy Theorem 1, we can set 𝐶𝑢𝑏

ℎ
to be the largest

one to make more CSP queries with different 𝐶 fit the condition.
Some intuition of Theorem 1 is that if 𝐶 < \ , we can derive the
condition of interest for the CSP query with𝐶 , i.e., 𝑃𝑠ℎ

𝐶 ⊆ {𝑝1⊕𝑝2 :
𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}𝐶 since 𝐶 < \ should be more strict. When
𝑃𝑠ℎ

𝐶 ⊆ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}𝐶 holds, it means that all the
skyline paths between 𝑠 and ℎ could be replaced by the paths from
𝑠 to ℎ via 𝑢, and it is sufficient to use 𝑢 as the hoplink to find the
answer. An efficient way of finding such relationships is described
in Section 4.1.

Before proving Theorem 1, we first show some lemmas.

Lemma 2. If 𝑃1 ⊆ 𝑃2, 𝑃\1 ⊆ 𝑃\2 .

Proof. If 𝑝 ∈ 𝑃\1 , 𝑝 ∈ 𝑃1 ⊆ 𝑃2 and 𝑐 (𝑝) ≤ \ . Thus, 𝑝 ∈ 𝑃\2 . □

Lemma 3. {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}\ = {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈
𝑃𝑠𝑢

\
, 𝑝2 ∈ 𝑃𝑢ℎ}\ .

Proof. RHS ⊆ LHS because for any path 𝑝1⊕𝑝2 ∈ RHS, we know
that 𝑝1 ∈ 𝑃𝑠𝑢

\ ⊆ 𝑃𝑠𝑢 , which implies 𝑝1 ⊕ 𝑝2 ∈ LHS. LHS ⊆ RHS
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because for any path 𝑝1 ⊕ 𝑝2 ∈ LHS, we have 𝑐 (𝑝1) < \ . Otherwise,
\ ≤ 𝑐 (𝑝1) < 𝑐 (𝑝1 ⊕ 𝑝2), contradicting the fact 𝑝1 ⊕ 𝑝2 ∈ 𝑃\ where
𝑃 = {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}. Since 𝑐 (𝑝1) < \ , it implies
𝑝1 ∈ 𝑃𝑠𝑢

\ and 𝑝1 ⊕ 𝑝2 ∈ RHS. □

Lemma 4. For the same 𝑠 and \ , if ℎ is pruned by 𝑢, 𝑃𝑠𝑢
\ ≺ 𝑃𝑠ℎ

\
.

Proof. We prove it by following Definition 5. By Lemma 3, we
have 𝑃𝑠ℎ

\ ⊆ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢
\
, 𝑝2 ∈ 𝑃𝑢ℎ}\ . For any path 𝑝 ∈

𝑃𝑠ℎ
\ , there exist 𝑝1 ∈ 𝑃𝑠𝑢

\ and 𝑝2 ∈ 𝑃𝑢ℎ such that 𝑝 = 𝑝1⊕𝑝2. Since
𝑤 (𝑝2) > 0 and 𝑐 (𝑝2) > 0, we have 𝑝1 ≺ 𝑝 . For any path 𝑝1 ∈ 𝑃𝑠𝑢

\ ,
if there exists a path 𝑝 ∈ 𝑃𝑠ℎ

\ such that 𝑝 ≺ 𝑝1, the path 𝑝 can be
made up by 𝑝3 ⊕ 𝑝4 where 𝑝3 ∈ 𝑃𝑠𝑢

\ and 𝑝4 ∈ 𝑃𝑢ℎ . However, since
𝑤 (𝑝4) > 0 and 𝑐 (𝑝4) > 0, this indicates that 𝑝3 ≺ 𝑝 ≺ 𝑝1 where
both 𝑝1 and 𝑝3 are in 𝑃𝑠𝑢

\ , which contradicts the definition of a
skyline path set. □

Lemma 5. For the same 𝑠 and \ , suppose that there is a finite
sequence of vertices (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) such that each 𝑣𝑖 is pruned by
𝑣𝑖+1 for 𝑖 = 1, 2, . . . , 𝑘 − 1. These vertices are distinct from each other.

Proof. By Lemma 4, we have 𝑃𝑠𝑣𝑖+1
\ ≺ 𝑃𝑠𝑣𝑖

\ for 𝑖 = 1, 2, . . . , 𝑘−
1 since 𝑣𝑖 is pruned by 𝑣𝑖+1. Suppose that 𝑣𝑖 = 𝑣 𝑗 holds for 𝑖 < 𝑗 .
We could take the subsequence between 𝑣𝑖 and 𝑣 𝑗 . By applying
Lemma 4 repeatedly, we can derive that 𝑃𝑠𝑣𝑖

\ ≺ 𝑃𝑠𝑣𝑗
\
= 𝑃𝑠𝑣𝑖

\ ,
which contradicts Definition 5. □

For a separator 𝐻 , let 𝐻 ′ be the separator after we prune it.

Corollary 1. For the sequence above, there must exist the last
vertex 𝑣𝑘 that cannot be pruned by any one, and hence 𝑣𝑘 ∈ 𝐻 ′.

Proof. By Lemma 5, the length 𝑘 of the sequence is at most |𝐻 |.
There exists no vertex to prune the last vertex 𝑣𝑘 . □

Since 𝑝∗ must pass through some vertex ℎ ∈ 𝐻 . Let 𝑝∗
𝑠ℎ

and 𝑝∗
ℎ𝑡

be the two sub-path with the vertex ℎ ∈ 𝐻 as the destination and
the source, respectively, and 𝑝∗

𝑠ℎ
⊕ 𝑝∗

ℎ𝑡
= 𝑝∗.

Proof of Theorem 1. Given a CSP query with 𝑠,𝐶 , and any 𝑡 ,
we will show that we can still find the final answer 𝑝∗ by using 𝐻 ′
as 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 . We consider two cases of 𝑝∗. If 𝑝∗ passes through any
vertex ℎ ∈ 𝐻 ′, the correctness is guaranteed since we will consider
ℎ as a hoplink for the path concatenation. Otherwise, 𝑝∗ passes
through some vertex ℎ ∈ 𝐻\𝐻 ′ that is pruned by some vertex𝑢. We
will first show that if ℎ is pruned by 𝑢 and 𝑝∗ passes through ℎ, 𝑝∗

must pass through 𝑢. Since 𝑃𝑠ℎ
\ ⊆ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}\

and 𝐶 < \ , we have 𝑃𝑠ℎ
𝐶 ⊆ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}𝐶 by

Lemma 2. Since 𝑝∗
𝑠ℎ
∈ 𝑃𝑠ℎ

𝐶 , there exists 𝑝1 ⊕ 𝑝2 = 𝑝∗
𝑠ℎ

such that
𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ . It further implies that 𝑝∗ passes through 𝑢.
Since 𝑢 could also be pruned by another vertex, there is a sequence
(𝑣1, 𝑣2, . . . , 𝑣𝑘 ) such that 𝑣1 = ℎ, 𝑣2 = 𝑢, and 𝑣𝑖 is pruned by 𝑣𝑖+1
for 𝑖 = 1, 2, . . . , 𝑘 − 1 and 𝑘 ≥ 2. If 𝑝∗ passes through some 𝑣𝑖 and
𝑣𝑖 is pruned by 𝑣𝑖+1, 𝑝∗ must pass through 𝑣𝑖+1. Using the above
statement repeatedly, 𝑝∗ must pass through 𝑣𝑘 ∈ 𝐻 ′ which will be
a hoplink. In all, we can find 𝑝∗ by using 𝐻 ′. □

Algorithm 5: Path Concatenation

input :The CSP query, the hoplink ℎ, sorted 𝑃𝑠ℎ and 𝑃ℎ𝑡
output :The path 𝑝∗

ℎ

1 𝑖 ← 1, 𝑗 ← |𝑃ℎ𝑡 |
2 while 𝑖 ≠ |𝑃𝑠ℎ | + 1 and 𝑗 ≠ 0 do
3 if 𝑐 (𝑝 (𝑖 )

𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
) ≤ 𝐶 then

4 if 𝑤 (𝑝 (𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
) < 𝑤 (𝑝∗

ℎ
) then

5 𝑝∗
ℎ
← 𝑝

(𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡

6 𝑖 ← 𝑖 + 1
7 else
8 𝑗 ← 𝑗 − 1

9 return 𝑝∗
ℎ

3.4 Path Concatenation
Given a hoplink ℎ ∈ 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 , in Line 11 of Algorithm 3, we
propose to first find the path 𝑝∗

ℎ
such that it has the minimum

weight𝑤 (𝑝∗
ℎ
) and 𝑐 (𝑝∗

ℎ
) ≤ 𝐶 among all the paths in {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈

𝑃𝑠ℎ, 𝑝2 ∈ 𝑃ℎ𝑡 }. The main idea is that if 𝑃𝑠ℎ and 𝑃ℎ𝑡 are sorted in the
increasing order of the cost in advance, we can use 𝐶 to skip some
unnecessary path concatenations on the two sorted path sequences.

Let 𝑝 (𝑖 )
𝑠ℎ

and 𝑝 ( 𝑗 )
ℎ𝑡

denote the path with the 𝑖-th smallest cost in
𝑃𝑠ℎ and the path with the 𝑗-th smallest cost in 𝑃ℎ𝑡 , respectively.
Algorithm 5 summarizes the whole procedure. We set two pointers
𝑖 and 𝑗 which represent the two paths 𝑝 (𝑖 )

𝑠ℎ
and 𝑝

( 𝑗 )
ℎ𝑡

that we are
about to concatenate. Initially, in Line 1, we set 𝑖 = 1 and 𝑗 = |𝑃ℎ𝑡 |,
which indicates that we will first concatenate the path with the
smallest cost in 𝑃𝑠ℎ and the path with the largest cost in 𝑃ℎ𝑡 . In each
iteration, if the concatenated path 𝑝 (𝑖 )

𝑠ℎ
⊕𝑝 ( 𝑗 )

ℎ𝑡
has its cost no greater

than𝐶 (in Line 3), we will update the answer 𝑝∗
ℎ
if the concatenated

path has a smaller weight than 𝑝∗
ℎ
’s current one in Lines 4-5. We

next increment 𝑖 by 1 in Line 6 due to the following lemma.

Lemma 6. If the concatenated path 𝑝
(𝑖 )
𝑠ℎ
⊕ 𝑝
( 𝑗 )
ℎ𝑡

has its cost no

greater than 𝐶 , each 𝑝 (𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗

′ )
ℎ𝑡

with 1 ≤ 𝑗 ′ < 𝑗 could be skipped.

Proof. By the increasing order of the cost in 𝑃ℎ𝑡 , each path 𝑝
( 𝑗 ′ )
ℎ𝑡

with 1 ≤ 𝑗 ′ < 𝑗 could only have smaller costs than 𝑝
( 𝑗 )
ℎ𝑡

and hence

a larger weight (by the skyline definition). Thus, each 𝑝
(𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗

′ )
ℎ𝑡

could only have larger weights than that of 𝑝 (𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
. □

If the concatenated path 𝑝
(𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
has its cost greater than 𝐶

(in Line 7), we decrement 𝑗 by 1 in Line 8 due to the lemma below.

Lemma 7. If the concatenated path 𝑝 (𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
has its cost greater

than 𝐶 , each 𝑝 (𝑖
′ )

𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
for 𝑖 < 𝑖′ ≤ |𝑃𝑠ℎ | could be skipped.

Proof. By the increasing order of the cost in 𝑃𝑠ℎ , each path
𝑝
(𝑖′ )
ℎ𝑡

with 𝑖 < 𝑖′ ≤ |𝑃𝑠ℎ | could only have larger costs than 𝑝
(𝑖 )
ℎ𝑡

.

Since 𝑝 (𝑖 )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
violates the constraint of𝐶 , each 𝑝 (𝑖

′ )
𝑠ℎ
⊕ 𝑝 ( 𝑗 )

ℎ𝑡
with

𝑖 < 𝑖′ ≤ |𝑃𝑠ℎ | has a greater cost violating the constraint of 𝐶 . □
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The loop stops when 𝑖 = |𝑃𝑠ℎ | + 1 or 𝑗 = 0, which indicates that
there is no more path concatenation that we need to check.

Imagine a matrix with |𝑃𝑠ℎ | |𝑃ℎ𝑡 | elements. The one at the 𝑖-th
row and 𝑗-th column represents the path 𝑝 (𝑖 )

𝑠ℎ
⊕𝑝 ( 𝑗 )

ℎ𝑡
. The algorithm

starts with the right-top element, in each iteration skips one row or
one column by the two lemmas above, and finds the next right-top
element again. Each element is either skipped or inspected.

Note that𝑤 (𝑝∗
ℎ
) can be initialized to +∞ at first. Algorithm 5’s

time complexity is O(|𝑃𝑠ℎ | + |𝑃ℎ𝑡 |) because 𝑖 is increased by |𝑃𝑠ℎ |
and 𝑗 is decreased by |𝑃ℎ𝑡 | in the worst case.

Example 15. Consider 𝑠 = 𝑣8, 𝑡 = 𝑣4, 𝐶 = 13, and ℎ = 𝑣10.
𝑃𝑠ℎ = {(9, 8), (8, 9)} and 𝑃ℎ𝑡 = {(9, 4), (8, 9)} sorted in the increasing
order of costs. In the beginning, 𝑖 = 1 and 𝑗 = |𝑃ℎ𝑡 | = 2, indicating
that we first concatenate the path with (9, 8) ∈ 𝑃𝑠ℎ and (8, 9) ∈ 𝑃ℎ𝑡 .
Since its cost 8+9 > 𝐶 , we will set 𝑗 = 1 and next consider (9, 4) ∈ 𝑃ℎ𝑡
and get (9+9, 8+4) = (18, 12) with its cost of 12 ≤ 𝐶 . We will update
the answer 𝑝∗

ℎ
to this path with its weight of 18 and set 𝑖 = 2. Next, we

consider (8, 9) ∈ 𝑃𝑠ℎ and get (8 + 9, 9 + 4) = (17, 13) with its cost of
13 ≤ 𝐶 . We will further set 𝑖 = 3 and update 𝑝∗

ℎ
since its weight of 17

is smaller than the current weight of 18. We finally stop the algorithm
since 𝑖 = 3 and return 𝑝∗

ℎ
.

4 INDEX CONSTRUCTION
Our index consists of two parts. One is the tree and label indexes as
in CSP-2Hop [20], and the other is the pruning conditions. We will
first explain how to find a pruning condition for a separator 𝐻 and
a given end vertex 𝑣𝑒𝑛𝑑 . However, it is costly to find all pruning
conditions for all separators and all end vertices. We will then
propose an efficient strategy for selecting appropriate combinations
of separators and end vertices. Finally, we will discuss the feasibility
of other forms of pruning conditions by combining 𝑠, 𝑡 , and 𝐶 .

4.1 Fixed Separator and End Vertex
Given a separator 𝐻 and an end vertex 𝑣𝑒𝑛𝑑 , we need to find the
corresponding 𝐶𝑢𝑏

ℎ
for each ℎ ∈ 𝐻 by Theorem 1. Initially, we can

set 𝐶𝑢𝑏
ℎ

= 0 for any ℎ ∈ 𝐻 to represent that no vertex ℎ could be
pruned currently since𝐶𝑢𝑏

ℎ
= 0 < 𝐶 for any𝐶 . We will first describe

how to find 𝐶𝑢𝑏
ℎ

for fixed ℎ and 𝑢 and then show how to find 𝐶𝑢𝑏
ℎ

for all ℎ ∈ 𝐻 .

4.1.1 Fixed ℎ and 𝑢. By Theorem 1, for fixed ℎ, 𝑣𝑒𝑛𝑑 , and 𝑢, we
need to find some \ ∈ R+ such that 𝑃𝑠ℎ

\ ⊆ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈
𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}\ . We will then set𝐶𝑢𝑏

ℎ
as the largest \ which makes

the condition holds since this pruning condition could be applied
to more CSP queries with different 𝐶 .

We directly compute the two sets 𝑃 ′ = 𝑃𝑣𝑒𝑛𝑑ℎ and 𝑃 ′′ = {𝑝1⊕𝑝2 :
𝑝1 ∈ 𝑃𝑣𝑒𝑛𝑑𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ} first. Suppose that the two sets have been
sorted in the increasing order of the cost, and let 𝑝′(𝑖 ) and 𝑝′′( 𝑗 )

denote the path with the 𝑖-th smallest cost in 𝑃 ′ and the path with
the 𝑗-th smallest cost in 𝑃 ′′, respectively. We then have to check if
each 𝑝′(𝑖 ) is in 𝑃 ′′ until some 𝑖 and determine 𝐶𝑢𝑏

ℎ
.

Algorithm 6 illustrates the main procedure. We initialize𝐶𝑢𝑏
ℎ

= 0,
𝑗 = 1 as a pointer for the path in 𝑃 ′′, and the two sets 𝑃 ′ and 𝑃 ′′. We
have to sort 𝑃 ′′ in Line 2 because it was just obtained by the path

Algorithm 6: Setting 𝐶𝑢𝑏
ℎ

input :The three sorted sets 𝑃𝑣𝑒𝑛𝑑ℎ , 𝑃𝑣𝑒𝑛𝑑𝑢 , and 𝑃𝑢ℎ
output :The upper bound 𝐶𝑢𝑏

ℎ

1 𝐶𝑢𝑏
ℎ
← 0, 𝑗 ← 1,

𝑃 ′ ← 𝑃𝑣𝑒𝑛𝑑ℎ, 𝑃
′′ ← {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑣𝑒𝑛𝑑𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ}

2 sort 𝑃 ′′ in the increasing order of the cost
3 for 𝑖 = 1, . . . , |𝑃 ′ | do
4 while 𝑗 ≤ |𝑃 ′′ | do
5 if 𝑝′(𝑖 ) = 𝑝′′( 𝑗 ) then
6 break
7 else
8 𝑗 ← 𝑗 + 1

9 if 𝑗 = |𝑃 ′′ | + 1 then
10 return 𝐶𝑢𝑏

ℎ
← 𝑐 (𝑝′(𝑖 ) )

11 return 𝐶𝑢𝑏
ℎ
← +∞

concatenation in Line 1. Then, for each 𝑝′(𝑖 ) , we have to check if
there exists 𝑝′′( 𝑗 ) equal to it in Lines 3-10. We will check 𝑝′′( 𝑗 ) by
increasing 𝑗 in Lines 4-8. If 𝑝′(𝑖 ) = 𝑝′′( 𝑗 ) , we know that 𝑝′(𝑖 ) is in
𝑃 ′′ and break the loop in Lines 5-6. Otherwise, we just increment 𝑗
by 1 in Lines 7-8. If there is no such 𝑗 , in Line 9, we set𝐶𝑢𝑏

ℎ
= 𝑐 (𝑝′(𝑖 ) )

in Line 10 since we have checked that previous paths are all in 𝑃 ′′.
When 𝑖 > |𝑃 ′ | and 𝑃 ′ ⊆ 𝑃 ′′, we can set 𝐶𝑢𝑏

ℎ
= +∞, indicating that

any 𝐶 can make the condition hold by Lemma 2.
Its time complexity is O(|𝑃 ′′ | log |𝑃 ′′ | +max( |𝑃 ′ |, |𝑃 ′′ |)), where

the first term is from Line 2 and the second one is because either 𝑖
is increased to 𝑃 ′ or 𝑗 is increased to 𝑃 ′′.

Example 16. Consider 𝑣𝑒𝑛𝑑 = 𝑣8,ℎ = 𝑣13, and𝑢 = 𝑣10. 𝑃 ′ = 𝑃𝑠ℎ =

{(12, 11), (11, 12), (10, 14)}, 𝑃𝑠𝑢 = {(9, 8), (8, 9)}, and 𝑃𝑢ℎ = {(3, 3)}.
𝐶𝑢𝑏
𝑣13 = 0 at first. 𝑃 ′′ = {(12, 11), (11, 12)}. For 𝑖 = 1 and 𝑖 = 2, we

can easily find 𝑝′(1) = 𝑝′′(1) and 𝑝′(2) = 𝑝′′(2) , respectively, and 𝑗

is also increased to 2. When 𝑖 = 3 and 𝑝′(3) ≠ 𝑝′′(2) , 𝑗 is increased to
3 = |𝑃 ′′ | + 1. We can then return 𝐶𝑢𝑏

𝑣13 = 𝑐 (𝑝′(3) ) = 14.

4.1.2 Finding 𝐶𝑢𝑏
ℎ

for ℎ ∈ 𝐻 . A straightforward idea is to apply
Algorithm 6 on all the combinations of 𝑢,ℎ ∈ 𝐻 where 𝑢 ≠ ℎ.
If ℎ can be pruned by two or more vertices of 𝑢 under different
values of \ , we just use the one which gives us a larger𝐶𝑢𝑏

ℎ
since it

could make more CSP queries fit the pruning condition. However,
it is time-consuming to call Algorithm 6 O(|𝐻 |2) times and using
different 𝑢 to prune the same ℎ only makes 𝐶𝑢𝑏

ℎ
slightly larger.

Therefore, for each ℎ, we will set its 𝐶𝑢𝑏
ℎ

by trying to use only one
𝑢. Besides, the following lemma can help us to find those 𝑢 that can
be used to prune each ℎ.

Lemma 8. If ℎ is pruned by 𝑢 for 𝑣𝑒𝑛𝑑 , 𝑐 (𝑝
(1)
𝑣𝑒𝑛𝑑ℎ

) > 𝑐 (𝑝 (1)𝑣𝑒𝑛𝑑𝑢
).

Proof. There exist 𝑝1 ∈ 𝑃𝑣𝑒𝑛𝑑𝑢 and 𝑝2 ∈ 𝑃𝑢ℎ such that 𝑝 (1)
𝑣𝑒𝑛𝑑ℎ

=

𝑝1 ⊕ 𝑝2. Since 𝑐 (𝑝1) ≥ 𝑐 (𝑝 (1)𝑣𝑒𝑛𝑑𝑢
), 𝑐 (𝑝 (1)

𝑣𝑒𝑛𝑑ℎ
) > 𝑐 (𝑝1) ≥ 𝑐 (𝑝 (1)𝑣𝑒𝑛𝑑𝑢

).
□
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Algorithm 7: Finding 𝐶𝑢𝑏
ℎ

for all ℎ ∈ 𝐻
input :The separator 𝐻 and the end vertex 𝑣𝑒𝑛𝑑
output :The upper bounds 𝐶𝑢𝑏

ℎ
for all ℎ ∈ 𝐻

1 for 𝑖 ← 2, 3, . . . |𝐻 | do
2 𝑗 ← randomly chosen from {1, . . . , 𝑖 − 1}
3 Applying Algorithm 6 on 𝑃𝑣𝑒𝑛𝑑ℎ (𝑖 )

, 𝑃𝑣𝑒𝑛𝑑ℎ ( 𝑗 ) , and
𝑃ℎ (𝑖 )ℎ ( 𝑗 ) to update 𝐶𝑢𝑏

ℎ (𝑖 )

4 return 𝐶𝑢𝑏
ℎ

for all ℎ ∈ 𝐻

We can then sort 𝑃𝑣𝑒𝑛𝑑ℎ for all ℎ in the increasing order of
𝑐 (𝑝 (1)

𝑣𝑒𝑛𝑑ℎ
). Let ℎ (𝑖 ) be the hoplink whose 𝑐 (𝑝 (1)

𝑣𝑒𝑛𝑑ℎ
(𝑖 ) ) is the 𝑖-th

smallest one for all ℎ (𝑖 ) . For ℎ (𝑖 ) , we only need to consider one 𝑗

such that 1 ≤ 𝑗 < 𝑖 as 𝑢 by the above lemma.
Algorithm 7 illustrates the main procedure. In Line 1, we do not

consider ℎ (1) because no vertex can prune it. In Line 2, we consider
a random 𝑗 ∈ {1, . . . , 𝑖 − 1} as 𝑢. In Line 3, we use Algorithm 6 to
check if ℎ (𝑖 ) could be pruned by ℎ ( 𝑗 ) under some value for 𝑣𝑒𝑛𝑑 , If
so, we update the corresponding 𝐶𝑢𝑏

ℎ (𝑖 )
.

Algorithm 7’s time complexity isO(|𝐻 | (max( |𝑃 ′′ | log |𝑃 ′′ |, |𝑃 ′ |))),
where the second part is from Algorithm 6. The space complexity
is simply O(|𝐻 |) for each separator 𝐻 and 𝑣𝑒𝑛𝑑 .

Example 17. For the separator 𝐻 = {𝑣10, 𝑣13} and 𝑣𝑒𝑛𝑑 = 𝑣8, we
first sort them by using the two smallest costs in 𝑃𝑣8𝑣10 and 𝑃𝑣8𝑣13 and
get ℎ (1) = 𝑣10 and ℎ (2) = 𝑣13. We will then use the procedure in the
previous example to update 𝐶𝑢𝑏

𝑣13 as 14.

4.2 Finding Separators and End Vertices
It is time-consuming to build pruning conditions for all the combina-
tions of separators and end vertices. First, the number of separators
is large because there are many branching nodes (i.e., the LCA
nodes) in the tree with many child nodes as our initial separators.
Second, for each of these child nodes as a separator, the number of
possible end vertices (which are descendants of the child node) is
also large. Therefore, we do not build pruning conditions for all the
combinations. We will use a set of random CSP queries, denoted by
𝑄index, to help us find those combinations of separators and end
vertices that are frequently visited in the tree and give us more
chance of pruning separators and time cost reduction. It can be
generated by uniformly sampling from past workloads. For each
𝑞 ∈ 𝑄index, we simply try to build pruning conditions for the four
combinations where the separator could be 𝐻 (𝑠) and 𝐻 (𝑡) and the
end vertex could be 𝑠 or 𝑡 . Note that the space complexity of each
combination of the separator and the end vertex is only O(|𝐻 |),
which is negligible compared to the size of the labels.

One speedup technique for building pruning conditions is that
if we have established that for a separator 𝐻 , ℎ ∈ 𝐻 is pruned by
𝑢 ∈ 𝐻 and 𝑢 ≠ ℎ under 𝐶𝑢𝑏

ℎ
for 𝑣𝑒𝑛𝑑 , this relationship between ℎ

and 𝑢 also holds for any other separator as long as both ℎ and 𝑢 are
all in it. This is because the second condition in Theorem 1 holds,
and we only need to ensure that𝑢 is available in the separator when
it prunes ℎ to make it unavailable. Therefore, we can maintain such

Table 1: Real dataset description

Name Region |𝑉 | |𝐸 | 𝑑𝑚𝑎𝑥 ≈
NY New York City 264,346 733,846 154 km
BAY San Francisco Bay Area 321,270 800,172 320 km
COL Colorado 435,666 1,057,066 832 km

relationships which help us save the number of calls for Algorithm 6
in Line 3 of Algorithm 7.

The total space cost is made up of 1) all the skyline path sets
from each node and its ancestors, the same as CSP-2Hop, and 2) the
space for the pruning conditions. Consider the first part. For each
vertex 𝑣 (and its corresponding tree node 𝑋 (𝑣)), we store a skyline
path set 𝑃𝑣𝑢 whenever𝑋 (𝑢) is an ancestor of𝑋 (𝑣). Since each node
has at most O([) ancestors, where [ is the treeheight, the space
complexity of the first part is O([ |𝑉 | |𝑃 |) and |𝑃 | is the average size
of a skyline path set (which is typically equal to at most 1500 in our
experiments). Consider the second part. This part is our additional
index (compared with CSP-2Hop) which is the space for storing the
pruning conditions. For each of the conditions, it is required to store
an upper bound value for each hoplink in a separator and there are
at most O(𝜔) hoplinks and thus O(𝜔) upper bound values, where
𝜔 is the treewidth (which is also the maximum number of hoplinks
of a separator and smaller than 1000 in all existing networks [23]).
Since the number of pruning conditions is O(|𝑉 |), the additional
space cost, compared with CSP-2Hop, is O(𝜔 |𝑉 |). Finally, the space
cost is O([ |𝑉 | |𝑃 | + 𝜔 |𝑉 |).

4.3 Other Forms of Pruning Conditions
Each CSP query specifies its 𝑠 , 𝑡 , and 𝐶 which could be used for
acceleration. Our proposed pruning conditions are based on the
combinations of (𝑠,𝐶) and (𝑡,𝐶). Only considering 𝑠 (or 𝑡 ) means
that the pruning conditions should be applicable for a given 𝑠 and
any 𝑡 and 𝐶 (or vice versa). It is actually a special case of our form
since it requires that 𝑃𝑠ℎ ⊆ {𝑝1 ⊕ 𝑝2 : 𝑝1 ∈ 𝑃𝑠𝑢 , 𝑝2 ∈ 𝑃𝑢ℎ} without
the constraint of \ (or \ = +∞) in Theorem 1. Only considering
𝐶 means that we prune any hoplink ℎ such that any path passing
through ℎ has its cost larger than 𝐶 . This pruning idea is reflected
in Algorithm 5 which uses the power of 𝐶 . For the two more com-
plicated combinations (𝑠, 𝑡) and (𝑠, 𝑡,𝐶), the pruning condition is
required to match both 𝑠 and 𝑡 , which is a small probability event
with its probability around 1/|𝑉 |2. Though one may store some
information for frequent pairs of (𝑠, 𝑡), it is impractical when we
handle any possible CSP queries.

5 EXPERIMENTS
5.1 Experimental Setup
In our experiments, all algorithms were implemented in C++ and
compiled by the GNU C++ compiler with the O3 optimization. The
programs were performed in a machine with two Intel Xeon Gold
5220R 2.2GHz processors and 512GB RAM installed with CentOS 7
Linux distribution.

Datasets. Following existing work [20], we used three publicly
available road networks from DIMACS 1, including NY, BAY, and
1http://www.dis.uniroma1.it/challenge9/download.shtml

http://www.dis.uniroma1.it/challenge9/download.shtml
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COL. Their details can be found in Table 1. The last column of
Table 1 shows the diameter of the network, defined as the maximum
shortest distance of any 𝑠-𝑡 paths and denoted by 𝑑𝑚𝑎𝑥 . It was used
to generate the query sets explained below. Since DIMACS provided
both the travel time and the distance of each edge, we used the
travel time as the weight𝑤 and the distance as the cost 𝑐 . Following
existing work on path queries [20, 23], we generated 10 query sets
with each size of 1000 by varying two factors: the shortest distance,
denoted by 𝑑 , and the cost budget 𝐶 . Specifically, for the former
one, each query set 𝑄𝑖 , where 𝑖 = 1, 2, 3, 4, 5, consists of random
queries with their shortest distances lie in [𝑑𝑚𝑎𝑥/26−𝑖 , 𝑑𝑚𝑎𝑥/25−𝑖 ].
Each query in 𝑄𝑖 uses 𝐶 = 0.5𝐶𝑚𝑎𝑥 + 0.5𝐶𝑚𝑖𝑛 , where 𝐶𝑚𝑎𝑥 =

𝑑𝑚𝑎𝑥/25−𝑖 and𝐶𝑚𝑖𝑛 is its shortest distance 𝑑 (since there is no CSP
answer for 𝐶 < 𝑑). For the latter one, each query set 𝑅𝑖 , where
𝑖 = 1, 2, 3, 4, 5, consists of the same queries as in 𝑄3 with each
𝐶 = 𝑟𝐶𝑚𝑎𝑥 + (1− 𝑟 )𝐶𝑚𝑖𝑛 , where 𝑟 = (2𝑖 − 1) × 0.1,𝐶𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥/4
and 𝐶𝑚𝑖𝑛 is the shortest distance 𝑑 . The ratio 𝑟 is used to vary 𝐶 .

Compared algorithms. Since we focused on query efficiency,
we compared ourQHLwith the index-based solutions, CSP-2Hop [20]
and COLA [31]. COLA aims to tackle the approximate CSP by di-
viding the network into small ones and combining the answers.
We set its approximation ratio as 1 to get the exact answer. We did
not compare the other CSP solutions because they are slower than
CSP-2Hop by orders of magnitude as shown in [20]. For the default
settings, we used a set 𝑄index of 50,000 random queries to build the
pruning conditions, which is sufficient to produce desirable results.
We will explore the effects of random queries in Section 5.2.2.

5.2 Experiment Results
5.2.1 Query Performance.

Figure 6 shows the average query times of 1000 queries with
different𝑄 and 𝑟 on three networks. The results of varying𝑄 and 𝑟
are shown in the first and second columns of Figure 6, respectively.

Query time of varying 𝑄 . For any of the three figures in the
first column, it can be observed that when we vary the query set
𝑄𝑖 by increasing 𝑖 , the query times of the algorithms on all datasets
become larger, though the increases for QHL are hard to see. Recall
that the average shortest distance of the queries in 𝑄𝑖 increases
with 𝑖 . Since a long distance between 𝑠 and 𝑡 indicates that there
are many path choices between 𝑠 and 𝑡 , the size of the skyline path
set between 𝑠 and 𝑡 also increases quickly. It further means that the
algorithms have to deal with more skyline paths and hence incur
more time costs.

For the three algorithms, in any dataset, QHL always runs the
fastest, and CSP-2Hop is faster than COLA. In Figure 6e, QHL could
reduce the query time of CSP-2Hop by two orders of magnitude in
COL’s network. The difference is significant on 𝑄5 since the long
distance means more skyline paths as explained above, and CSP-
2Hop utilizes less query information and handles the large skyline
path sets directly. When |𝑉 | and |𝐸 | get much larger for COL, CSP-
2Hop is not scalable to such large data and runs inefficiently with
its nonlinear increase of time costs. However, our QHL still takes a
very short query time and runs fast on large data. This is because
QHL uses the query information to prune redundant operations.

For different road networks, it can be seen that the query times
are similar on NY and BAY for the same 𝑄𝑖 and algorithm, though
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Figure 6: Query time of varying the query set𝑄 and the ratio
𝑟 for setting 𝐶 on NY, BAY, and COL datasets

both |𝑉 | and |𝐸 | of BAY are slightly larger than those of NY. It
is worth noting that the network of NY has its dense grid-like
structure where there are many paths between any 𝑠 and 𝑡 , whereas
the network of BAY circles around some bays, suggesting that the
number of skyline paths between some 𝑠 and 𝑡 on Bay’s network
may not be as many as the one in NY’s dense network. For COL,
its network could be even denser around Denver with more edges.
With larger skyline path sets, CSP-2Hop needs to perform a huge
number of path concatenations to find all skyline paths.

Query time of varying 𝑟 . In the second column of Figure 6, we
study the query time of varying 𝑟 . Recall that 𝑟 is used to vary the
cost budget𝐶 , and a large 𝑟 means a large𝐶 since𝐶 = 𝑟𝐶𝑚𝑎𝑥 + (1−
𝑟 )𝐶𝑚𝑖𝑛 . For all three figures, the three algorithms are all insensitive
to the change of 𝑟 . The main reason is that the distance between
the origin and the destination mainly determines the number of
possible skyline paths. For CSP-2Hop, it essentially computes the
skyline path set of 𝑠 and 𝑡 and uses𝐶 to prune this set. The procedure
of computing the skyline path set is independent of 𝐶 . For QHL,
in Algorithm 5, the two pointers still need to go through all the
elements in the two path sets in the worst case. Besides, the slight
increase of 𝐶 (determined by 𝐶𝑚𝑎𝑥 ) could only allow few pruning
conditions to satisfy the requirements, which slightly increases the
number of the remaining hoplinks and affect the query processing
time less.
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Figure 7: The numbers of hoplinks and path concatenations
of varying the set 𝑄 on NY, BAY, and COL datasets

For the three algorithms, similarly, we can still find that QHL
runs the fastest with a significant improvement, which is mainly
due to its use of the pruning power of the query information. It
can also be found that the query processing times on the largest
network of COL are greater than those on the other two networks,
and those on the networks of NY and BAY are similar.

Number of hoplinks. The first column of Figure 7 presents
the average numbers of hoplinks (per query) of varying 𝑄 . We
omit COLA because it does not use hoplinks. It can be found that
QHL always uses fewer hoplinks than CSP-2Hop because QHL uses
the pruning conditions. From the three figures, we can derive that
|𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | are independent of the distance owing to the properties
of the tree decomposition. Specifically, |𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | are bounded
by the treewidth, denoted by 𝜔 = max𝑣 |𝑋 (𝑣) |. The treewidth is
determined by the tree decomposition algorithm [23] which only
uses 𝑉 and 𝐸 but not𝑤 and 𝑐 . Therefore, |𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | depends only
on the 𝑠 and 𝑡 of queries in 𝑄𝑖 but not their shortest distances.
As shown in Figure 7, the average number of hoplinks per query
is around 100. Besides, nearly all treewidths of road networks are
smaller than 1000, also demonstrated in Table 2. Then, we can know
that for each 𝑄𝑖 , the total number of hoplinks should be smaller
than 𝜔 |𝑄𝑖 |. For example, it is smaller than 148000 for NY since the
treewidth is 148 and each |𝑄𝑖 | = 1000. However, we should notice
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Figure 8: Ablation study on NY

that the skyline path set sizes (e.g., |𝑃𝑠ℎ |) could be large for large
networks and queries of long distances. Pruning the hoplinks is still
helpful since we could avoid some large skyline path sets associated
with the hoplinks. Besides, since we estimate the time cost by the
function𝑇 (𝐻 ) and use it to choose the separator with the minimum
𝑇 (𝐻 ), we can correctly identify those hoplinks with large skyline
path sets and avoid using them.

Number of path concatenations. The second column of Fig-
ure 7 gives the average numbers of path concatenations (per query)
of varying 𝑄 . We omit COLA because it does not perform path
concatenation. It determines the query efficiency since QHL’s time
complexity is O(|𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | ( |𝑃𝑠ℎ | + |𝑃ℎ𝑡 |)). By the discussion above,
we know that |𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | is bounded and the two skyline path sets
could be large. Hence, for the three figures, we can observe that
all lines have similar trends as their counterparts in the first col-
umn of Figure 6 about query processing times. Moreover, we can
obtain similar conclusions that QHL is superior to CSP-2Hop in
terms of query efficiency, and for Figure 7f, CSP-2Hop could have
a nonlinear increase in the number of path concatenations because
the distances of queries become longer and the network is so dense
that the skyline path sets become very large.

Ablation study.We tested the module effects of QHL by con-
sidering two variants. The first one, called “QHL-w/o Alg. 3”, is
the algorithm that uses no pruning conditions (or equivalently, all
𝐶𝑢𝑏
ℎ

= 0). It then directly chooses the one between 𝐻 (𝑠) and 𝐻 (𝑡)
with a smaller estimated cost 𝑇 (𝐻 ). The second one, called “QHL-
w/o Alg. 4”, uses the Cartesian product of the two skyline path sets
as in CSP-2Hop, instead of Algorithm 5. We compare the number of
path concatenations because the differences between the variants
and QHL are more obvious. The results are shown in Figure 8.

Figure 8a reports the number of path concatenations without
Algorithm 4. It can be seen that the number of path concatenations is
larger. Algorithm 4 could reduce the number of path concatenations
by 50% for 𝑄1 and 𝑄2. When 𝑖 grows, the difference between the
variant and QHL gets smaller because some𝐶𝑢𝑏

ℎ
are no longer larger

than 𝐶 (which increases with 𝑖 since 𝐶𝑚𝑖𝑛 is at least the shortest
distance) and cannot prune the hoplinks. This coincides with the
intuition that we have to check more paths for queries of long
distances. Figure 8b gives the results without Algorithm 5. We can
find that the variant has dramatic increases in the numbers. The
differences are very large because the time complexity becomes
O(|𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 | |𝑃𝑠ℎ | |𝑃ℎ𝑡 |) with one more multiplier. In summary, the
differences between Algorithm 4 and Algorithm 5 all demonstrate
the effectiveness of the proposed techniques.
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Figure 9: Effects of the correlation

Correlation betweenWeights and CostsWe further explored
the case where weights and costs are weakly correlated and showed
the results in Figure 9. We simulated the scenario where the number
of traversed traffic signals and the travel distance are the weight
and the cost, respectively. To assign edge weights, we first selected
some vertices of high degrees at least 8 as the positions of traffic
signals, and then set the edge weights as 1 if the edges are incident
to traffic signal vertices (since using those edges will traverse the
traffic signals) and 0 otherwise. There are 58986 traffic signals for
NY data. The query times are all shown in Figure 9. We could obtain
similar results to previous ones. QHL runs faster than the other
two by orders of magnitude.

5.2.2 Index Cost.
We consider the time and space consumption during the index

construction. Since our index consists of two parts, including the
tree index with the labels as in CSP-2Hop and the pruning con-
ditions, we will discuss them separately. Note that our additional
space consumption is from only the pruning conditions.

Tree index cost. There are two steps. The first one is to generate
a tree decomposition based on the network structure 𝐺 = (𝑉 , 𝐸),
and the second one is to assign labels 𝐿(𝑣) for each 𝑣 , which re-
quires finding the skyline path sets (𝑢, 𝑃𝑣𝑢 ) for all 𝑋 (𝑣)’s ancestors
𝑋 (𝑢) [20]. We show the statistics of the tree and label index costs
for three networks in Table 2. The first and second columns give the

Table 2: Tree and label index costs

Name 𝜔 [ Avg. [ Tree time Label time Label size
NY 148 330 269 120s 1533s 26.7GB
BAY 100 238 193 41s 706s 22.6GB
COL 143 423 276 756s 5419s 149GB
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Figure 10: Index cost of varying 𝑄 for pruning conditions

treewidths and the treeheights, denoted by 𝜔 and [, respectively.
Each label size |𝐿(𝑣) | is bounded by [ since each 𝑣 can only have [
ancestors. The third column shows the average treeheights over all
tree nodes which reflects the number of stored large skyline path
sets. The fourth and fifth columns give the time cost in seconds to
build the tree and generate the labels, respectively. The last column
lists the label sizes in terms of gigabytes. It is proportional to the
sum of the sizes of all skyline path sets.

It can be seen that NY and BAY have similar statistics, and COL
has its tree decomposition with its moderate treewidth and tree-
height but needs large index time and space. The reason is that the
network is dense with many edges concentrated in the center of
Denver, as stated before. A heuristic idea may divide the large net-
work into small sub-networks and combine the resulting sub-paths.
Though the index size and construction cost are high, the upside is
that the query processing time is significantly smaller.

Pruning conditions. Figure 10 depicts the time and space con-
sumption of constructing the pruning conditions when we use the
random query sets 𝑄index with different sizes. For the index time,
in Figure 10a, it can be seen that the time increases linearly with
|𝑄index | on all three networks. For the fixed |𝑄index |, the index times
of the three networks are actually proportional to the label sizes
of the three tree indexes. This is because the label construction
covers similar work to Algorithm 7 that builds pruning conditions.
Recall that the time complexity is O(|𝐻 | |𝑃𝑣𝑒𝑛𝑑ℎ |). Each 𝑋 (ℎ) for
ℎ ∈ 𝐻 is 𝑋 (𝑣𝑒𝑛𝑑 )’s ancestor which is also processed in the label
construction to get 𝑃𝑣𝑒𝑛𝑑ℎ . Hence, building a small tree index will
definitely decrease the time cost of building pruning conditions.
However, reducing the index size is out of the scope of this paper.
Besides, parallelization is also feasible since each pruning condition
is independent of others.

For the index size, in Figure 10b, it can be observed that the
space cost grows linearly with |𝑄index | on all the three networks
because the space complexity for each 𝑄index is O(|𝑄index | |𝐻 |). It
can be smaller than 200 MB on NY and BAY, and 450 MB on COL,
all within 1% of the label index size.
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It is worth noting that more random queries and pruning condi-
tions can surely improve the query performance. However, there is
a trade-off between processing more random queries and gaining
more acceleration. Besides, we also found that most random queries
basically visit less than 10 frequent separators, which is determined
by the tree structure. It further means that there is a bottleneck
where more queries produce no improvement, just after nearly all
𝑣 ∈ 𝑉 build pruning conditions on the frequent separators.

5.3 Summary
(i) Our proposed QHL that uses the pruning power of the query

information runs faster than the best-known solution for the exact
CSP by orders of magnitude with 1% more index space.

(ii) Our QHL is scalable to large networks in terms of time and
space efficiencies. It runs within 50 `s for one single CSP query
on standard networks of cities. Its additional index has negligible
space consumption compared with the whole index.

(iii) The proposed pruning techniques are all useful in accelerat-
ing query processing.

6 RELATEDWORK
In this section, we review related work for two categories, including
the 2-hop labeling and CSP queries.

6.1 2-Hop Labeling
2-Hop labeling refers to the approach of using a set of hoplinks to
concatenate two paths (or “hops”) with their related information
stored in the labels. The seminal work directly finds a set of paths,
also called a 2-hop cover, such that any path with some properties
(such as shortest paths) can be covered by the concatenation of two
paths (or hops) in the 2-hop cover [7]. However, the size of the 2-hop
cover can be very large and hence inefficient. To control the size of
the hoplinks and also the label size, [23] proposed H2H which uses
the tree decomposition to efficiently answer shortest path distance
queries. Later work considered its further optimization [5, 18, 19]
or dynamic maintenance [34–36]. It was also studied that 2-hop
labeling could be used to answer different types of queries, such
as reachability [6, 14, 37], shortest path counting [25], keyword
search [28], or constrained shortest path search [20]. However, ex-
cept for the last one, they consider different problems. Our solution
is specific to the CSP query and hence tackles different challenges.

6.2 Constrained Shortest Path
6.2.1 Approximate CSP. Since CSP is known as an NP-Hard prob-
lem, early work studied the optimization on the full polynomial ap-
proximation schemes (FPAS) which compute the path with its cost
no greater than (1 + 𝜖) times the cost of the optimal path and with
its running time polynomial in O(1/𝜖) and input size [13, 21, 32].
Their solutions were based on the technique of rounding costs in
order to better check the feasibility. One later solution CP-CSP con-
sidered the extension of Dijkstra’s idea which allows each vertex is
visited multiple times and prunes some paths |𝑉 |√1 + 𝜖-dominated
by others (where 𝛼-dominance extends the definition of path domi-
nation) [30]. However, they could still run slower than some exact
methods [17], and they are all index-free algorithms. The recent

index-based solution, COLA [31], partitions the graph into sub-
graphs and indexes some selected paths between boundary vertices
for combining on-the-fly results from subgraphs. However, it builds
no index when searching the subgraphs and gives approximate
answers. Besides, some approximate algorithms were also designed
for a different problem about the CSP on the time-dependent graph
where costs and weights follow time-dependent functions [33].

6.2.2 Exact CSP. The first work used dynamic programming to
solve the exact CSP [15]. The problem is then formulated by integer
linear programming and solved by Lagrangian relaxation to get rid
of some constraints [11]. Linear relaxation is also used to get upper
and lower bounds of the weights to prune the search space [22].
A more efficient solution that extends Dijkstra’s idea was also
proposed [12]. It searches the path incrementally while allowing
vertices to be visited many times and pruning paths that are domi-
nated by others. Another solution considered using the 𝑘 shortest
paths (in terms of costs) to incrementally find the final answer [27].
However, they are all incapable of handling large graphs because
they do not build any index. Since computing skyline paths can
be also used to solve CSP queries, some work adapted the indexes
of answering shortest distances to find skyline paths [8, 20, 29].
Among them, it was shown that CSP-2Hop runs faster than the
others by several orders of magnitude [20]. It can also handle the
case where multiple constraints are imposed on the paths. To re-
duce the index size and construction time, it further proposed the
forest labeling which basically partitions the graph and also the
tree decomposition, but it sacrifices the query efficiency. In all, our
proposed QHL outperforms CSP-2Hop in terms of query efficiency
while incurring similar space costs.

7 CONCLUSION
This paper considers the problem of the exact constrained shortest
path search on road networks. The state-of-the-art algorithm, called
CSP-2Hop, beats previous ones with a dramatic improvement on
query efficiency. Its success is mainly due to the use of the tree
hierarchy and few table lookups. However, it overlooks the prun-
ing power of the CSP query information and hence the chance of
further acceleration. We propose by far the fastest algorithm, called
QHL, which builds pruning conditions based on the query infor-
mation and concatenate paths in an economic way. Our QHL runs
faster than CSP-2Hop by orders or magnitude with a similar space
consumption. It uses much fewer table lookups than CSP-2Hop and
has one fewer multiplier in its time complexity. The experimental
results demonstrate the superiority of the proposed QHL in query
efficiency. For future work, one may consider similar constrained
queries, such as those with multiple objectives or constraints. The
other interesting topic is about reducing the index cost in terms of
both time and space. One may explore how to divide the network
into sub-networks and combine the intermediate results since the
index costs on the sub-networks should be limited.
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