EAR-Oracle: On Efficient Indexing for Distance Queries between Arbitrary Points on Terrain Surface

Bo Huang*, Victor Junqiu Wei⁺, Raymond Chi-Wing Wong[^] and Bo Tang^{*}

* Southern University of Science and Technology
† The Hong Kong Polytechnic University
^ The Hong Kong University of Science and Technology

Outline

• Proposed Solution

• Experimental Result

• Conclusion

Basics of Terrain Surface

- Terrain Surface in Real World:
 - Various topographic features:
 - Sand, rock, slope, etc. <

Real terrain surfaces are complex.

Mountains, hills and valleys in rural areas

Basics of Terrain Surface

- Terrain Surface in Digital World:
 - ► 3D geometric object:
 - Consists of *vertices* (*V*), *edges* (*E*) and *faces* (*F*):
 - 18 vertices, 39 edges and 23 faces in the example.
 - Each face is a triangle:
 - Assigned a *floating point value* to represent *topographic features*:
 - The face weight of the red face is 1.1 in the example.

Digital Terrain Surface Example

Basics of Terrain Surface

- Geodesic Path/Distance:
 - The geodesic path between two given points is the shortest path on the terrain surface.
 - *GP* (*red* path) is the geodesic path between *s* and *t*.
 - ▶ The *geodesic distance* (denoted by $d_g(\cdot, \cdot)$) between two given points is the *length* of their geodesic path.
- Arbitrary point-to-arbitrary point distance queries (A2A queries):
 - The geodesic distance queries between two given arbitrary surface points.

Geodesic Path/Distance Example

- Geodesic distances are *essential* to many *high-level applications*:
 - Geographical Information System (GIS):
 - compute the *travel cost* between two places;
 - study travel patterns of animals based on residential sites.

- Geodesic distances are *essential* to many *high-level applications*:
 - Geographical Information System (GIS):
 - compute the travel cost between two places;
 - study travel patterns of animals based on residential sites.
 - Spatial data mining:
 - check spatial co-location patterns;
 - Clustering objects on terrain sufaces.

- Geodesic distances are essential to many high-lev
 - Geographical Information System (GIS):
 - compute the travel cost between two places
 - study travel patterns of animals based on res
 - Spatial data mining:
 - check spatial co-location patterns;
 - Clustering objects on terrain sufaces.
 - Scientific 3D modeling:

- analyse key features based on distances between reference points.
- ► etc.

- Geodesic distances are *essential* to many *high-level applications*:
 - Geographical Information System (GIS):
 - compute the travel cost between two places;
 - study travel patterns of animals based on residential sites.
 - Spatial data mining:
 - check spatial co-location patterns;
 - Clustering objects on terrain sufaces.
 - Scientific 3D modeling:
 - analyse key features based on distances between reference points.
 - ► etc.
- Many of them have *no restriction* on query points:
 - Any surface points can be regarded as query points.

Existing Studies

- There is no efficient algorithm for calculating the exact geodesic distance on weighted terrain surfaces:
 - ► 3D *quadratic programming* model [*SIGSPATIAL*' 2021].

69.71 seconds for distance query passing only 5 faces.

- Follow the existing studies, we focus on finding approximate geodesic distance (denoted by $\tilde{d}_g(\cdot, \cdot)$) with theoretical guarantees:
 - Introduce Steiner points (blue auxiliary points) [Algorithmica' 2001]:
 - Obtain a graph and run shortest path algorithm on it.

Edge weights are calculated based on face weights.

Geodesic Path/Distance Example

Existing Studies

- Approximate Geodesic Distance Algorithms:
 - On-the-fly Algorithms:
 - Fixed Scheme (FS). [Algorithmica' 2001]
 - Unfixed Scheme (US). [J. ACM' 2005]
 - K-Algorithm (K-Algo). [VLDB' 2015]
 - Index-based Algorithms:
 - Steiner-Point Oracle (SP-Oracle). [ESA' 2011]
 - Space-Efficient Oracle (SE-Oracle). [SIGMOD' 2017]

- Approximate Geodesic Distance Algorithms:
 - On-the-fly Algorithms:
 - Fixed Scheme (FS). [Algorithmica' 2001]
 - Unfixed Scheme (US). [J. ACM' 2005]
 - K-Algorithm (K-Algo). [VLDB' 2015]
 - Index-based Algorithms:
 - Steiner-Point Oracle (SP-Oracle). [ESA' 2011]
 - Space-Efficient Oracle (SE-Oracle). [SIGMOD' 2017]

Queries are processed online without any pre-computation.

- Approximate Geodesic Distance Algorithms:
 - On-the-fly Algorithms:
 - Fixed Scheme (FS). [Algorithmica' 2001]
 - Unfixed Scheme (US). [J. ACM' 2005]
 - K-Algorithm (K-Algo). [VLDB' 2015]
 - Index-based Algorithms:
 - Steiner-Point Oracle (SP-Oracle). [ESA' 2011]
 - Space-Efficient Oracle (SE-Oracle). [SIGMOD

Single query needs about 2.13 seconds for a 1-million-face dataset.

On a dataset with only 3,696 vertices (with skinny faces), about 37.48 seconds and 4.32 seconds are required for US and K-Algo, respectively.

- Approximate Geodesic Distance Algorithms:
 - On-the-fly Algorithms:
 - Fixed Scheme (FS). [Algorithmica' 2001]
 - Unfixed Scheme (US). [J. ACM' 2005]
 - K-Algorithm (K-Algo). [VLDB' 2015]
 - Index-based Algorithms:

Steiner-Point Oracle (SP-Oracle). [ESA' 2011]

Space-**E**fficient Oracle (**SE-Oracle**). [SIGMOD' 2017]

Index too many points for A2A queries.

- Approximate Geodesic Distance Algorithms:
 - On-the-fly Algorithms:
 - Fixed Scheme (FS). [Algorithmica' 2001]
 - Unfixed Scheme (US). [J. ACM' 2005]
 - K-Algorithm (K-Algo). [VLDB' 2015]
 - Index-based Algorithms:
 - Steiner-Point Oracle (SP-Oracle). [ESA' 2011]
 - Space-Efficient Oracle (SE-Oracle). [SIGMOD' 2017]

More than 3 hours pre-processing time and 256 GB memory for a terrain with 10,243 vertices (for A2A queries).

Our Contribution

- Propose an index-based algorithm for A2A distance queries:
 - ► Called Efficient Arbitrary Point-to-Arbitrary Point Oracle (EAR-Oracle).
 - Outperforms the state-of-the-art *index-based* algorithm by 2 orders of magnitude in terms of *building time* and *space consumption*;
 - Outperforms the fastest on-the-fly algorithm by 1 order of magnitude in terms of query time.

Our Contribution

- Propose an index-based algorithm for A2A distance queries:
 - ► Called Efficient Arbitrary Point-to-Arbitrary Point Oracle (EAR-Oracle).
 - Outperforms the state-of-the-art *index-based* algorithm by 2 orders of magnitude in terms of *building time* and *space consumption*;
 - Outperforms the fastest on-the-fly algorithm by 1 order of magnitude in terms of query time.
- Thorough *theoretical analysis*:
 - Building time, space consumption, query time and distance error.

Our Contribution

- Propose an index-based algorithm for A2A distance queries:
 - ► Called Efficient Arbitrary Point-to-Arbitrary Point Oracle (EAR-Oracle).
 - Outperforms the state-of-the-art *index-based* algorithm by 2 orders of magnitude in terms of *building time* and *space consumption*;
 - Outperforms the fastest on-the-fly algorithm by 1 order of magnitude in terms of query time.
- Thorough *theoretical analysis*:
 - Building time, space consumption, query time and distance error.
- Extensive *experimental studies*:
 - On several *real* datasets with *different scales*;
 - ► On *factors influencing* the performance of *EAR-Oracle*.

Related Studies Comparison

Algorithm	Туре	Weighted	Index	Query	Scalability	Result
		Terrain	Time	Latency		Quality
FS	On-the-fly	\checkmark	-	×	\checkmark	\checkmark
US	On-the-fly	\checkmark	-	×	×	\checkmark
K-Algo	On-the-fly	×	-	×	×	\checkmark
SP-Oracle	Index	\checkmark	×	\checkmark	×	\checkmark
SE-Oracle	Index	×	×	\checkmark	×	\checkmark
EAR-Oracle	Index	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Our proposed algorithm overcomes the drawbacks of existing studies and has the best overall performance.

Outline

Introduction

• Experimental Result

Conclusion

• Build a *base graph* (denoted by G_B) for *distance metric approximation*:

There is no efficient algorithm for exact solution on weighted terrain surfaces.

- Build a *base graph* (denoted by G_B) for *distance metric approximation*:
 - ► Place *m* Steiner points uniformly on each angle-bisector of each face:
 - Used to approximate the path inside *a single face*.

- Build a *base graph* (denoted by G_B) for *distance metric approximation*:
 - Connect edges between Steiner points on adjacent faces; The weighted geodesic paths are calculated based on the Snell's Law;

Also known as the law of reflection. It could be used to calculate the exact geodesic path for adjacent faces [J.ACM'2005].

- *Partition* the terrain surface into several *boxes in 2D* (*x*-*y* plane):
 - ► The terrain surface is a *planar graph*;

- *Partition* the terrain surface into several *boxes in 2D* (*x*-*y* plane):
 - When the query source and the query destination are *close* (in the same box), they have *spatial locality*;

On-the-fly algorithms have good performance.

- *Partition* the terrain surface into several *boxes in 2D* (*x*-*y* plane):
 - When the query source and the query destination are *distant* (in different boxes), their *geodesic path* will *go through* certain *boundaries of some boxes*.

We only need to focus on a few points near boundaries.

- *Select* several terrain *vertices close to* the box *boundaries*:
 - Previous studies index a lot of Steiner points for theoretical guarantee;

On a small terrain with 1,440 vertices, 43,407 Steiner points are introduced.

- *Select* several terrain *vertices close to* the box *boundaries*:
 - Previous studies index a lot of Steiner points for theoretical guarantee;

On a small terrain with 1,440 vertices, 43,407 Steiner points are introduced.

If we index the Steiner points near the box boundaries, we still need a lot of pre-processing time and space consumption.

- *Select* several terrain *vertices close to* the box *boundaries*:
 - We slightly move the Steiner points to terrain vertices (on the same face) near the boundaries:

- The two paths are very similar.

Example of moving Steiner points

- *Select* several terrain *vertices close to* the box *boundaries*:
 - These terrain vertices near the boundaries are called highway nodes;

A subset of terrain vertices (The amount of highway nodes is small).

- Construct a *highway network* to index distances between highway nodes:
 - Generate edges between highway nodes according to geometric property:
 - Use center distance as approximation.

 c_1, c_2 are two *highway nodes* and they are *centers* of two surface disks. p_1 and p_2 are two arbitrary *points* in the two disks, respectively.

- Construct a *highway network* to index distances between highway nodes:
 - Obtain a *lightweight* highway *network* with *distance guarantee*.

- Build a distance map to index distances between highway nodes and Steiner points:
 - For each box, *index* the distance between each *highway node* on its boundaries and Steiner points on the faces inside it;

- Build a distance map to index distances between highway nodes and Steiner points:
 - For each box, *index* the distance between each *highway node* on its boundaries and Steiner points on the faces inside it;

Any surface point can reach the highway network via a single Steiner point.

EAR-Oracle Query Phase

- We are given two *arbitrary* surface points *s* and *t*. The geodesic distance query Q(s, t) taken *s* as the *source* and *t* as the *destination* is called *A2A query*.
- Based on the partition, the queries could be divided into two types:
 - The *inner-box* query ($Q(s_1, t_1)$ in the example);
 - The *inter-box* query ($Q(s_2, t_2)$ in the example).

Determine two different query processing routines.

EAR-Oracle Query Phase

- The *inner-box* query $(Q(s_1, t_1))$:
 - Adopt *Dijkstra's algorithm* on base graph G_B .

Inner-box query example
EAR-Oracle Query Phase

- The *inter-box* query ($Q(s_2, t_2)$):
 - ► it is *three-fold*:
 - From s₂ to *highway node* (distance map);
 - From *highway node* to *highway node* (highway network);
 - From *highway node* to t_2 (distance map).

Inter-box query example

EAR-Oracle Query Phase

- The *inter-box* query ($Q(s_2, t_2)$):
 - Construct a query graph G_Q by adding edges (from the distance map) to the highway network;
 - Perform *Dijkstra's algorithm* on query graph G_0 .

Efficient since G_Q is lightweight.

Inter-box query example

- Let N be the amount of terrain faces and ϵ be the user-defined error bound:
 - ► The *building time* of *EAR-Oracle* is *linearithmic* to *N*;
 - ► The *space consumption* of *EAR-Oracle* is *linear* to *N*;
 - The query time of EAR-Oracle is linearithmic to the amount of highway nodes;
 The amount of highway nodes

is much less than N.

► The *relative distance error* of *EAR-Oracle* is very *close to ε*.

$$\boxed{ \frac{|\tilde{d}_g(s,t) - d_g(s,t)|}{d_g(s,t)} \approx \epsilon}$$

Outline

Introduction

• Proposed Solution

• Conclusion

- Tested Algorithms:
 - On-the-fly algorithms:
 - FS [Algorithmica' 2001]
 - Fastest on-the-fly algorithm.
 - *US* [J. ACM' 2005]
 - Snell's law applied, *e-bounded* distance error.
 - *K-Algo* [VLDB' 2015]
 - *c*-bounded distance error.
 - Index-based algorithms:
 - *SE-Oracle* [SIGMOD' 2017, TODS' 2022]
 - State-of-the-art index-based algorithm.
 - EAR-Oracle [Proposed]

• Datasets:

► We adopt several *real* terrain surfaces:

Dataset	No. of Faces	Region Covered
HorseMountain (HM)	1,488	15 km ²
BigMountain (BM)	2,772	29 km ²
HeadLightMountain (HL)	4,771	49 km ²
RobinsonMountain (RM)	7,200	71 km ²
GunnisonForest (GF)	199,998	10,038 km ²
LaramieMountain (LM)	199,996	12,400 km ²
BearHead (BH)	292,914	140 km ²
EaglePeak (EP)	325,713	150 km ²

- Measures:
 - Building Time, Space Consumption, Query Time and Relative Error.

- Result on *unweighted* terrain datasets (under default parameter setting):
 - EAR-Oracle outperforms SE-Oracle by 2 orders of magnitude in terms of building time and space consumption.
 - EAR-Oracle outperforms other tested algorithms by more than 1 order of magnitude in terms of query time.
 - ► All tested algorithms have *small relative error*.

- Result on weighted terrain datasets (under default parameter setting):
 - Fixed Scheme (FS) is selected as the pivot for error comparison (exact distance is expensive to compute);
 - Similar results as the unweighted datasets.

- *Scalability* test on high resolution EP dataset (w.r.t number of faces):
 - SE-Oracle exceeds memory budget for a dataset with only 200,000 faces;
 - EAR-Oracle can scale up to dataset with 1 million faces;
 - EAR-Oracle outperforms all on-the-fly algorithms by more than 1 order of magnitude in terms of query time.

Outline

Introduction

• Proposed Solution

Conclusion

 The geodesic distance problem is both *fundamental* and *important* for many high-level applications;

- We propose *EAR-Oracle*:
 - No assumption on query points;
 - Outperforms the state-of-the-art algorithms;
 - Can scale up to terrain surfaces with millions of faces;
 - Quality guarantee on result.

Thanks for your attention!

Support materials

- Let O^* be the O notation hiding terrain related constants:
 - ► The *building time* of *EAR-Oracle* is:

$$O^*(\zeta mN \log(mN) + \frac{N \log N}{\epsilon^2} + N \log N + \frac{N}{\epsilon^2}):$$

- For N: *larger* terrain dataset yields *longer* building time;
- For *c*: *tighter* (*smaller*) error bound yields *longer* building time;
- For *m*: *more* auxiliary points yields *longer* building time;
- For ζ : *more* highway nodes yields *longer* building time;

- Let O^* be the O notation hiding terrain related constants:
 - ► The *space consumption* of *EAR-Oracle* is:

$$O^*(\frac{mN}{\zeta} + \frac{N}{\epsilon^2}):$$

- For N: *larger* terrain dataset yields *more* space;
- For ϵ : *tighter* (*smaller*) error bound yields *more* space;
- For *m*: *more* auxiliary points yields *more* space;
- For ζ : *more* highway nodes yields *less* space;

- Let O^* be the O notation hiding terrain related constants:
 - The *query time* of *EAR-Oracle* is: $O^*(\zeta \log \zeta)$
 - *Only* related to number of highway nodes;
 - ζ : *more* highway nodes yields *more* query time.

- Let δ be the distance error of **FS**:
 - ► The *distance error* of *EAR-Oracle*:

$$\tilde{d}_g(s,t) \le (1+\epsilon)(d_g(s,t)+2\delta)$$

- *Effect of* ϵ on BM dataset:
 - ► Larger *c* (looser error bound) yields better performance of EAR-Oracle.

- *Effect of* ζ on BM dataset:
 - Larger ζ (more boundary vertices) yields more building time, query time and less space of EAR-Oracle.

- *Effect of m* on BM dataset:
 - Larger m (more Steiner points) yields more building time, query time, space consumption and higher result quality of EAR-Oracle.

