
REDDROID: Android Application Redundancy
Customization Based on Static Analysis

Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, Dinghao Wu
Pennsylvania State University

{yzj107, qub14, szw175, xvl5190, dwu}@ist.psu.edu

Abstract—Smartphone users are installing more and bigger
apps. At the meanwhile, each app carries considerable amount
of unused stuff, called software bloat, in its apk file. As a result,
the resources of a smartphone, such as hard disk and network
bandwidth, has become even more insufficient than ever before.
Therefore, it is critical to investigate existing apps on the market
and apps in development to identify the sources of software bloat
and develop techniques and tools to remove the bloat. In this
paper, we present a comprehensive study of software bloat in An-
droid applications, and categorize them into two types, compile-
time redundancy and install-time redundancy. In addition, we
further propose a static analysis based approach to identifying
and removing software bloat from Android applications. We
implemented our approach in a prototype called REDDROID, and
we evaluated REDDROID on thousands of Android applications
collected from Google Play. Our experimental results not only
validate the effectiveness of our approach, but also report the
bloatware issue in real-world Android applications for the first
time.

Index Terms—software bloat; static analysis; Android; soft-
ware customization;

I. INTRODUCTION

Modern software development paradigms and practice help
developers build more complex software products than ever
before. On the other hand, it brings software bloat into
software. By definition, software bloat is the “results of adding
new features to a program or system to the point where the
benefit of the new features is outweighed by the impact on the
technical resources and complexity of use” [1], which is also
known as “bloatware”. To some extent, bloatware problem can
be seen as a disease of affluence in the software world. Most
software on contemporary markets suffers this problem more
or less.

In this paper, we investigate software bloat that would lead
to the rapid size increase of Android applications. Android
smartphones are widely used in our daily life. A large number
of Android applications that provide versatile functionalities,
as well as CPUs with more computation powers allow and en-
courage users to install more and larger Android applications
in their smart phones. At the meanwhile, as a considerable
amount of software bloat in the apk file of each installed
Android application, the resources of a smart phone, such as
the storage and network bandwidth, has become more and
more insufficient than before. Furthermore, software bloat in
Android applications may also bring in other security concerns
which are challenging to foresee. For example, large code
bases generally contain more (exploitable) vulnerabilities, and

they also provide a considerable amount of code components
that can potentially enable code reusing attacks. Hence, it is
critical to inspect the existing Android applications on the
market and applications in development to identify and trim
off software bloat.

Previous research on reporting and removing Android ap-
plication bloat has either different scopes comparing with our
work or incurs various limitations. Pugh [2] and Bradley et
al. [3] proposed new algorithms and approaches to better
compressing class files into a package. Xu [4] presented an
approach to finding reusable data structures. Specifically, by
identifying those data structures which share the same “shape”
but have disjoint lifetimes, this approach can reuse just one
data structure across all of these data structure reference sites.
Thus, we can reduce the code size by removing other instances
of the same data structure and reduce the performance penalty
by avoiding frequent initializations. Lint [5] is a tool that can
help Android developers remove those registered but unused
resources that located in the “Res” directory in an Android
project. It scans code and other resource files to detect if a
resource file is ever referred by its ID. It cannot optimize
those resources that do not have IDs. Some researchers [6],
[7] raised the approaches to removing unused methods from
Java bytecode. However, these approaches cannot be directly
adopted to Android application due to the unique application
organization and execution patterns of Android systems.

In this paper, we comprehensively inspect the software bloat
issue in Android applications. We categorize the sources of
Android application software bloat into two types, compile-
time redundancy and install-time redundancy. We further pro-
pose a fully automated approach to trimming off both types of
software bloat. Our approach is mainly based on static analysis
and program transformation.

For the compile-time redundancy, we statically construct an
overapproximate call graph for the Android application being
analyzed. Based on this call graph, we can remove the methods
and classes that are never used in this call graph. Our approach
overcomes several unique challenges in Android application
static analysis and call graph construction, including multiple
entries of an Android application, intensive usage of call backs,
and Android component life cycles. Our approach processes
reflections based on static string value analysis without the
aid of other information besides the application code. As
for the install-time redundancy, we discuss the presences and
solutions towards two pervasive redundancy sources, which are

1

multiple Software Development Kits (SDKs), and embedded
Application Binary Interfaces (ABIs).

We have implemented our approach in a prototype called
REDDROID and evaluated REDDROID on more than 500 An-
droid applications from Google Play. We measured the impact
on code sizes, code complexity, reflection call sites, the size of
redundant SDKs, and the size of redundant embedded ABIs.
Our experimental results show that, by removing compile-time
redundancy solely, on average, around 15% of the original
application code can be trimmed off. For the applications
that have install-time redundancy caused by redundant SDKs,
another 20% of its original size can be trimmed off on average.
For applications that have install-time redundancy caused by
redundant embedded ABIs, we can trim off additional 7%
on average. If an application has all types of redundancy
mentioned above, then on average we can expect to reduce
its size by 42%. We report that each Android application in
our test set has on average 14.8 reflection call sites, and our
evaluation also shows that the distribution of usage frequency
of each reflective method is quite biased. Furthermore, we
report that code complexity, measured by a set of well-known
metrics, is also notably reduced.

In summary, we make the following contributions:

• We define and categorize the sources of software bloat in
Android applications.

• We propose an automated static approach to identifying
and removing those software bloats from Android appli-
cations.

• We have implemented our proposed approach into a
prototype called REDDROID. The experimental results
we reported not only validate the effectiveness of our ap-
proach, but also comprehensively depict the landscape of
bloatware issue in the Android application domain for the
first time. These results can help developers gain insights
about their pain points regarding application resource
consumption issue and better plan their optimization in
the future.

The remainder of the paper is organized as follows. Sec-
tion II provides our observations and insights regarding soft-
ware bloat issue in the Android application domain. Section III
describes the details of the our approach and how we imple-
mented it. We present the evaluation results in Section IV.
We discuss some interesting thoughts and future works in
Section V. We then present related work in Section VI and
conclude our paper in Section VII.

II. OBSERVATION AND INSIGHTS

A. Two Types of Redundancy

Android applications contain software bloat due to multiple
reasons. We categorize the software bloat into two basic
types, compilation-time redundancy and installation-time re-
dundancy. This categorization is based on the time when they
can be determined as redundancy.

1) Compile-time Redundancy: Modern software engineer-
ing rarely implements a software product from scratch. Devel-
opers are relying on different kinds of libraries and frameworks
to finish their jobs. Libraries usually are implemented for
a more general purpose, instead of the requirements from a
specific group of developers. For example, an cryptographic
library may contain the implementations of multiple crypto
algorithms. However, developers would mostly stick to only
one of them in their applications. In fact, it is very common
to see only one method from one class in a large library is
used by an application.

Java language compilation and runtime has neither “static
link” nor “dynamic link” in the terminology of standard
program compilation. After each class of Java source code
is compiled into bytecode, there is no static link process to
include a library into a monolithic executable file. Making a
jar file is simply a process of zipping every single class file in
the working directory into one package. During runtime, each
Java application runs in its own Java virtual machine. So two
Java applications cannot share one copy of a dynamic library
through memory mapping as executable files do. Accordingly,
current development practice is to include each library entirely
in the final software product delivery. Fig. 1a illustrates this
process. Gray box represents the code written by a developer
herself. Green bar and red bar in the gray box indicate two
method invocations from two classes, respectively. Used meth-
ods are highlighted from unused methods. When packaging
this application, the jars that contain the classes we referred
must be put in the build path of the application and packaged
with the application code entirely.

The unused code in the libraries comprises a major part
of software bloat in an application. The implementation of
application code determines which part of the library code
is used or not. Application code can be seen fixed after its
compilation. So we categorize the redundancy, such as unused
code, that can be decided by checking compiled code as
compilation-time redundancy.

2) Install-time Redundancy: The virtual-machine based
Java runtime enables all Java programs to “build once, run
everywhere”. This fact allows Java developers to release a sin-
gle version of their product for those heterogeneous platforms.
Besides bytecode, which is compatible to different platforms,
to run a Java software product also requires many other
files, including configurations, resource files, and binaries.
Developers still need to create multiple versions of those non-
bytecode files to meet the requirements of different platforms.
For example, an Android application may contain multiple
sets of figures to be compatible with different screen sizes
and scales. Another example is that some devices require
some additional SDKs which might be unnecessary on other
platforms.

Developers cannot foresee which platforms the applications
will be installed. However, when an application is installed on
a specific platform, all of those files that are created for plat-
form compatible issue will become redundancy immediately.
So the install-time redundancy refers to those files can be seen

2

Lib 2 Class B

Lib 1 Class AYour Code

... ...

APP
JAR JAR

(a) Modern Software Engineering Paradigm

APP APP

... ...

APP
JAR JAR

(b) Remove Compile-Time Redundancy in Libraries

Fig. 1: Motivation of RedDroid

as redundancy only after the installation platform information
is given.

B. The Focus of This Paper

1) Compile-Time Redundancy from Java Libraries: Fig. 1b
illustrates our focus of compile-time redundancy removing in
this paper. An Android application contains the code written
by developers and libraries whose classes are derived from
several jar files. By analyzing the application code, we want
to distinguish the used library classes from unused library
classes and remove those unused ones. In addition, in those
used classes, we would like to identify and remove unused
methods. Usually, in a real world Android application, all code
is in one monolithic Dalvik code file. We need to split it into
classes first. Please note that in this paper we only remove
redundancies from Java libraries. The potential compile-time
redundancy in native code and Android framework is out of
the scope in this paper.

2) Install-time Redundancy from Application Binary Inter-
face and SDKs: Install-time redundancy contains multiple
SDKs to support different platforms, multiple sets of embed-
ded Application Binary Interface (ABI) is used to support
different CPUs, the components in Android Support Package
is designed to support different levels of APIs, different User
Interface (UI) layout management, figures with different sizes
for being compatible with different screen sizes, as well as
many other types of install-time redundancy. In this paper, we
focus on install-time redundancy caused by embedded ABIs
and SDKs.

Multiple versions of ABIs contribute to the install-time re-
dundancy. In general, ABI bridges an application code with the
operating system on binary level by its definition. In particular,
an ABI in an Android application is usually maintained as
a shared library (.so file) which has been compiled into a
specific kind of Instruction Set Architecture (ISA). Not every
Android application has an ABI; if an Android application is
written in pure Java, its apk file will not have ABIs. However,
since many Android applications depend on native libraries,
each of those applications should bring in ABIs. Furthermore,
considering different Android devices are supported by differ-
ent CPUs with probably different ISAs, it is recommended to
include multiple versions of ABIs in an application’s apk file
to support the cross-architecture execution. Currently, Android
system supports 7 different CPUs. Each type of CPU has its

TABLE I: Android supported CPU architectures and embed-
ded ABIs

CPU Architecture embedded ABI
ARMv5 armeabi
ARMv7 armeabi-v7a
x86 x86
MIPS mips
ARMv8 arm64-v8a
MIPS64 mips64
x86 64 x86 64

own ABI. Table I shows all the supported CPUs and their
corresponding embedded ABIs by the Android system. We
note that once an application is installed, since the architecture
(and the ISA) is uniquely determined, except the matched ABI,
the rest parts become redundant.

Please notice that it is a recommendation to include multiple
ABIs instead of a must. Some applications just included one
type of ABI, which usually is armeabi. Such application is
still compatible with most Android devices because ARM
architecture is backward compatible and most x86 CPUs on
Android devices can emulate ARM instructions at the cost
of performance. However, to present better experience to the
users, many Android applications are likely to include all ded-
icated ABIs for all the CPU architectures. In Section IV, we
will evaluate both the proportion of applications that contain
install-time redundant ABIs and the impact of removing those
redundancies from applications which contain multiple ABIs.

Another type of install-time redundancy comes from multi-
ple SDKs in one Android application. Besides mobile phones,
Android applications can also run on other kinds of com-
puting platforms, such as smart watches, televisions, cars,
and Internet of Things (IOT) devices. To take advantage
of those heterogeneous hardware features, Android provides
different set of Software Development Kits (SDKs) for each
hardware platform. They are Android API for mobile devices,
Android Wear SDK for smart watches, Android TV SDK for
televisions, Android Auto SDK for cars, and Android Things
for Internet of Things (IoT) devices.

In this paper, we focus on Android Wear applications to
study its install-time redundancy. An Android smart watch
cannot connect to the Internet by itself. To connect to the
Internet, an Android smart watch should connect to a mobile
phone first via Bluetooth, WiFi or a USB cable. Then that mo-
bile phone will send or receive data on the behalf of its paired

3

smart watch. Hence, an Android wear application that involves
on-line operations must consist of at least two parts, the mobile
phone components and its smart watch counterparts. A typical
installation process, in the circumstances that a user has a
mobile phone and a smart watch at the same time, will have the
following steps.1 First, a mobile phone will download an apk
file to its hard disk. Second, the installer on the mobile phone
will install the code running on mobile phones. Third, mobile
phone will inject a smaller apk file carried by the original apk,
which is usually named “android wear micro apk.apk”, to the
paired smart watch. However, if a user just has a mobile and
does not have a smart watch, which in fact is a more common
case, the entire apk will still be downloaded and kept on the
mobile phones as a whole, including the code for running on
a smart watch.

III. DESIGN AND IMPLEMENTATION

A. Architecture

Fig. 2 illustrates the architecture of REDDROID, which
consists of two major components, compile-time redundancy
remover and install-time redundancy remover. The tool takes
an Android apk file as its input and yields a leaner Android
apk file. Compile-time redundancy remover, as shown in the
middle part of Fig. 2, includes several components, which
are dummy main generator, call graph builder, reflection
solver, and code reducer. The dummy main method generator
generates a single entry point for static analysis. Call graph
builder statically builds a call graph for the whole Android
application. We also use call back information based on
Android framework analysis to enhance the results of call
graph builder. In addition, the reflection solver helps reinstate
some methods which are incorrectly removed due to reflective
calls back to the call graph. Based on a more accurate call
graph, code reducer will remove the methods and classes not
in the call graph. Each component in compile-time redundancy
remover responds to a challenging in Android application
static analysis. We will elaborate on each component in the
following subsections. Then with user information, install-time
redundancy remover will work on the application. We briefly
introduce how we build this component at the end of this
section. At last, we wrap up the leaner files into a new apk
file and sign it. This architecture gives an overall view of our
tool in a temporal order. Two removers are not necessarily to
execute in one run. There might be a time gap between the
running of two removers since installation can happen long
after we compile our program.

B. Call Graph

To obtain the information that which classes and methods
are used, we build a call graph for the given application.
Building an accurate call graph is undecidable, so we over
approximate this problem. In other words, in the context of
our research, we preserve the soundness of the call graph by

1Not all Android wear compatible applications use same way to carry smart
watch code in the same way, but most applications follow the pattern described
here.

ignoring its completeness. Soundness here is defined as all the
methods that are not included in a call graph is guaranteed
not being invoked. By ignoring completeness we mean some
methods that are included in a call graph may also never be
invoked. Considering the sizes of some applications are con-
siderable, we do not use some advanced but more expensive
call graph building algorithms [8], [9]. In our approach, we
use a more intuitive method based on Class Hierarchy Analysis
(CHA) [10] to build it.

More specifically, it first establishes class hierarchical in-
formation by traversing all the classes. All Java classes and
interfaces are inherited from java.lang.object Class.
So all inheritance relationship will converge into a directed
graph.2 To provide a quick service for the query from next
step on if there is a path between two vertexes (if one class
is the ancestor of the other one), we in addition compute the
transitive closure for all vertex pairs in the graph based on
simplified Floyed-Warshall algorithm [11].

Second, we traversed all call sites in an application. During
this process, we can obtain the method signature information
and the static type of the reference at a call site. But we cannot
precisely know what type or subtype of this object can be
at static time. Java subtype polymorphism allows runtime to
dynamically decide which version of method to call based on
the actual type of an object during run time (a.k.a. dynamic
dispatch). We assume that this method can be invoked by
the statically-analyzed static type or all subclasses that inherit
or overwrite this method. Thus we will add edges from the
call site to all versions of this method into the call graph
by querying the information generated in the previous step.
Our analyzed application starts from the DummyMain. So
similarly, all vertexes and edges comprise a directed graph
with a root.

C. Android Standard Lifecycle and Dummy Main

A major difference of Android applications, compared with
normal Java applications, is that Android applications do not
have a main method as its entry point. An android application
has multiple entry points. Due to the nature of mobile com-
puting environments and the design of the Android operating
system, Android application has a very unique execution
model compared with a desktop application with which we
are familiar.

An Android application consists of four types of compo-
nents. They are activities, services, content providers, and
broadcast receivers. Each component has the same standard
lifecycle. To implement a specific component, a developer
must extends a base class of that component and overwrites
a set of Android framework callbacks, such as onCreate,
onStart, onStop, and onDestroy. Then a component
can respond to the events of interested, like memory full, the
launching of a higher-priority application, or user navigation

2This directed graph is not a tree (it does resemble a tree though). In Java, a
class may implements multiple interfaces. This fact implies there are vertexes
having multiple parents in this graph, which contradicts with the definition of
a tree.

4

Android Apk File Dummy Main
Generator

Call Graph Builder

Call Back
Information

Reflection Solver Code Reducer Install-Time
Redundancy Remover

Dalvik Bytecode
Generator and Signer

Android Apk File

Compile-Time
Redundancy Remover

User Information

Fig. 2: REDDROID Architecture

back to the previous activity. In a sense, the Android frame-
work is “scheduling” on the granularity of components and an
application can start from any component which is not disabled
by AndroidManifest.xml.

To use existing static analysis frameworks and algorithms
in analyzing an Android application, we need to generate
a dummy main method to model the Android framework
invocation behavior and the lifecycle of each component.
More specifically, the generated dummy main method will be
connected to all possible system callbacks of each component
on the call graph. This dummy main method serves as the root
of the whole call graph, and our static analysis will start from
this dummy entry point.

D. Callbacks

Asynchronous callbacks are implicit control flow tran-
sitions, which are widely used to receive and handle
User Interface (UI) events in the Android framework.
Code listing 1 shows an example of asynchronous call-
back in a simple Android application. At line 8, a but-
ton instance in MainActivity registers itself to a new
OnClickListener. Method setOnClickListener is
a registration method. This anonymous class implements the
method onClick in the original OnClickListener inter-
face from line 10 to line 12. The method onClick is a call-
back. In this implemented onClick method, another method
(method implementation is omitted) in the MainActivity
is invoked (line 11). We note that method onClick will not
be invoked right after btnOne sets its OnClickListener
(line 8), instead, it will wait until a click event is received,
which is the reason we call it an asynchronous callback.

Our previous call graph construction approach (§ III-B)
cannot handle asynchronous callbacks. For example, since
onClick will be triggered by the Android frame-
work instead of any user-defined method, onClick and
anotherMethodInMainActivity will be reasoned as
not being used. Indeed the actual control flow for this
example will involve multiple layers of method invoca-
tion inside Android framework. Since our customization
is essentially focus on application code, one challenge
is to capture the implicit control flow transfer between
setOnClickListener and onClick and add additional
edge from setOnClickListener to onClick should be
added into the call graph.

To tackle this challenge, we employ a widely-used tool
EdgeMiner [12] to analyze a series of Android frameworks.

EdgeMiner first identifies a set of methods which are de-
fined in the Android framework and can be overridden in
user space. These methods are callback method candidates.
Then it iteratively checks each call site of those methods by
performing backward analysis. If a call back method candidate
P (e.g. onClick method) is defined in an Android framework
class/interface C (e.g. Listener interface), and the type of
argument of method Q (e.g. setListener method) is C,
then method Q and P is recognized as a potential registration-
callback method pair. The method pairs that satisfy these
criteria can overapproximate the real set of actual registration-
callback method pairs in the framework.

Then we use the identified registration-callback pairs list
to extend our call graph. To this end, for each registration
method in the list, we first check if it is in our call graph. If
the answer is true, we will analyze all classes that inherit or
implement the class or interface in the Android framework
to check whether they override the methods mapped with
the registration method. In our example, registration method
setOnClickListener is in our call graph. By checking
the list, we found method setOnClickListener maps
to multiple callbacks. One of these callbacks is method
onClick declared in the interface OnClickListener. By
traversing the program we can see that an anonymous class
implements the interface and its method onClick. So an edge
from setOnClickListener to onClick is added to the
call graph. An application may implement multiple versions
of callbacks (e.g. multiple versions of onClick). Then we
will follow the same conservative principle described in the
previous subsection. In other words, in the call graph, we will
connect the registration method to all possible implementa-
tions of a callback based on the class hierarchical information.
Then we check the method invocation happened in the method
body of newly added callbacks to extend the call graph. If
in the callback method body or in the call chain from the
callback, we encounter new registration method invocation,
then we will recursively repeat this process until a fix point
is reached. A fix point is that we do not found any new
registration calls in the call chains from the callbacks we
discovered in the previous round.

E. String Analysis and Reflections

Reflection is a dynamic language feature of Java, which
allows a Java program to inspect itself and change the behavior
during runtime. Investigating reflection invocation targets is
one typical challenging task for static program analysis. The

5

Listing 1: Callback Example
1 public class MainActivity extends AppCompatActivity{
2 private Button btnOne;
3 @Override
4 protected void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState);
6 setContentView(R.layout.activity_main);
7 btnOne = (Button) findViewById(R.id.btnOne);
8 btnOne.setOnClickListener(new OnClickListener() {
9 @Override
10 public void onClick(View v) {
11 anotherMethodInMainActivity();
12 }
13 });
14 }

......
}

Listing 2: Reflection Example
1 public void methodExample(String methodName){
2 Class<?> c = Class.forName("com.package.Demo");
3 Object demoInstance = c.newInstance();
4 Method m = c.getDeclaredMethod(methodName,

new Class<?>[0]);
5 m.invoke(demoInstance);
6 }

call graph construction process (§III-B) cannot capture those
reflective method invocations, hence some methods might be
incorrectly deleted if they are only triggered from call sites of
reflections.

Some previous works have proposed several ways to solve
reflections, including leveraging annotations from developers
and performing test suites. In this research, we tend to use
less information from external resources and take advantage
of the information carried by the program itself. Hence, we
use static analysis to reason the value sets of string variables
in the call sites of reflections. Considering Code listing 2
which contains two reflection call sites (line 2 and line 5), by
statically analyzing potential values of string literals passed to
the reflection call sites as parameters, we can reason callees of
each reflection call site and use this information to replenish
the call graph.

Strings can exist as different forms in a program. For
example, string at line 2 in the Code listing 2 is a constant
literal, and such constant literal is in general easy to handle.
On the other hand, reflection call site at line 5 takes a variable
of string type as the input, which reveals limited information of
potential callees at this call site without further analysis. The
major challenges of analyzing string variable are unwrapping
loops and solving method invocation contexts. In addition,
there exist lots of ways to split, concatenate, and manipulate
the values of strings. Precise string analysis requires us to
faithfully model those string operation semantics.

Our analysis is based on Violist, a general Java program
string static analysis framework [13]. This framework sep-
arates representation and interpretation of string operations,
and it provides an IR to represent string values or the string
operation data flow relationship. The framework will first

perform an intra-procedural analysis to calculate the method
summary for each method. Inside a method body, it will first
generate the string variable representation for all statements
outside loops. Then it treats each nested loop body as a region
and uses region-based analysis to generate string variable
representations. A string variable in a loop may either depend
on the value of a variable, which could be itself, in the previous
round of iteration or the same iteration. The framework will
not stop its recursively regional analysis until all string variable
dependency relationship has reached its fixed point and been
reduced to its simplest form. Then the framework will use the
method summary of each method to perform inter-procedural
analysis to achieve context sensitivity.

Next, interpretation part will parse the results of string
variable representation. For example, the constant literals “A”
and “B” connected by a plus sign can be represented as (+,
“A”, “B”). A function of interpretation component is to model
the semantics of operations like “+” and output result “AB”.
We extended the original interpretation part of the framework
to support the method signatures and semantics of string
operations used in our reflection analysis problem domain.

F. Sign the Customized Application

An Android application must be signed to run on Android
systems. The Android application sign process includes two
steps. First, a message digest is generated for each file in the
apk file of an application. Second, the developers or some
other people on behalf of the developers use the private key
to sign the message digest of every file in the application. If a
program has already been signed before it is customized, then
the program needs to be signed again to be runnable since
REDDROID will modify files in the apk of an application.

G. Implementation

We have implemented our approach in a prototype called
REDDROID. REDDROID is mostly written in Java and Unix
shell scripts. It includes a compile-time redundancy remover
written in Java and a installation-time redundancy remover
written in Unix shell scripts. Regarding compile-time redun-
dancy remover part, we rely on FlowDroid [14] to generate
dummy main method for analyzed Android applications. We
use Soot [15] to convert Dalvik bytecode into the Soot IR
Jimple. Our analysis and code modification is based on Jimple.
We use Apktool to reverse resource files in an apk file from
binary format back to human readable ASCII format.

Android application install-time redundancy remover con-
sists of two components, Android wear application redundancy
remover and redundant embedded ABIs remover. We use Unix
shell scripts to implement Android wear application install-
time redundancy remover. It first calls apktool to unzip the an-
alyzed apk file and decode resource files into its original form.
Then it removes android wear micro apk.apk from direc-
tory res/raw and android wear micro apk.xml from directory
res/xml. We then search all build files to identify and remove
the build targets which rely on android wear micro apk.apk
and android wear micro apk.xml. In addition, we search all

6

resource files that referred to those two files. After these three
steps, we use apktool to rebuild the whole project into a new
apk file. The redundant Android embedded ABIs remover is
implemented in a similar approach. It accepts an ABI name
which we want to preserve as its argument. After unzipping
the analyzed apk file and decoding the resource files by calling
apktool, our tool will search the subdirectories under the
lib directory. All subdirectories except the one we want to
preserve will be deleted. We then rebuild the whole package
into a new apk file and sign it.

IV. EVALUATION

In this section, we evaluate REDDROID on Android appli-
cations downloaded from Google Play. Our experiments were
conducted on a server with an 32-core Intel Xeon CPU E5-
2690 @ 2.90GHz processor and 128G Memory. The operating
system is Ubuntu 12.04.5 LTS. The Linux kernel version is
3.8.0-30-generic. We use Android API level 14 as our Android
application running environment.

To evaluate REDDROID, we want to answer the following
research questions.

Q1: What is the impact of our compile-time redundancy
trimming technique on the size of Android applica-
tions?

Q2: What is the impact of our compile-time redundancy
trimming technique on the code complexity of An-
droid applications?

Q3: How many and what types of reflection calls are used
by Android applications?

Q4: What is the impact of our install-time redundancy
trimming technique on Android wear applications?

Q5: What is the proportion of applications that include
multiple sets of embedded ABIs in their .apk files?

Q6: What is the impact of our install-time redundancy
trimming technique on Android applications that
have redundant embedded ABIs?

A. Code Size

In this section, we present experiments to answer the
research question Q1, the impact of trimming off compile-time
redundancy from Android applications. We first show the data
distribution on all of our 553 Android application samples.
Then we present some data from some selected applications
to give a glimpse of the details of our results.

1) Results of Tested Android Applications: We first report
the overall results of the tested Android applications. We apply
REDDROID towards 553 Android applications to remove their
unused methods and classes. By dividing the application orig-
inal size by its size after customization, we get the percentage
of the remaining size of an lean apk file. Fig. 3 presents all
553 data points we yielded. The vertical axis is the percentage
of a lean application size. The horizontal axis is the original
size of an application. The maximum reduced-original ratio is
close to 100% and we report the minimum reduced-original
ratio is 43.11%. On average, the reduced-original jar size ratio
is 85.59%. The median percentage is 86.44%.

3MB 5MB 7MB 9MB 11MB

20%

40%

60%

80%

100%

Fig. 3: Reduced Size Distributions

TABLE II: 10 Selected Android Application Code Size Before
and After Unused Code Trimming Comparison

Benchmark Original Reduced Reduced/Original
(Byte) (Byte) (%)

IFTTT 7,416,304 6,026,077 81.25
Evernote Widget 1,201,311 1,131,289 94.17
Motorola Migrate 4,542,461 3,260,831 71.79
Baidu Browser 5,009,942 4,103,846 81.91
Yahoo Messenger 3,865,985 3,279,559 84.83
OpenTable 3,919,118 2,546,431 64.97
Flashlight 4,767,339 4,091,859 85.83
Marvel Comics 5,503,831 4,475,991 81.33
Papa Johns 5,206,893 3,753,546 72.09
Instagram 10,365,650 9,406,437 90.75

2) Detailed Data of Selected Android Applications: We
randomly selected 10 Android applications from our data sam-
ples to demonstrate some detailed results. The experimental
results are shown in Table II. Among 10 benchmark programs,
the lowest reduced-original apk size ratio is 64.97% which is
from OpenTable (line 7 in the table). Evernote Widget (line
3) has the highest reduced-original apk size ratio which is
94.17%. Please note that, these percentage numbers present the
overall impact on an application apk file as a whole. Besides
bytecode, an application also has many other files, including
native libraries and resource files. If the proportion of resource
file size among overall size is small, then the trimming on the
bytecode part is more likely to have bigger impact. In next
subsection, our evaluation focuses on the sole bytecode part.

B. Code Complexity

In this subsection, we present the experimental results to
answer the research question Q2: the impact of REDDROID
on the code complexity of Android applications by removing
compile-time redundancy. By using Chidamber and Kemerer
object-oriented metrics (CK metrics) and two other software
engineering metrics, we can exclude the factors from other
parts of an application and dedicatedly evaluate the impact of
our approach on the bytecode part of an application.

CK metrics is a set of metrics to measure Object-
Oriented(OO) software complexity, which is proposed by

7

Chidamber and Kemerer [16], [17]. We use the following
measurements from CK metrics, Weighted Methods Per Class
(WMC), Depth of Inheritance Tree (DIT), Coupling Between
Objects (CBO), Response For a Class (RFC), and Lack of
Cohesion in Methods (LCOM). All of these metrics are
calculated based on a single class. We sum up the results of
all classes of an application to profile the bytecode complexity
of an application as a whole.

Each measurement depicts different aspects of bytecode.
WMC is the sum of weight of each method. In our eval-
uation, the weight of all methods is 1. So the number of
WMC equals to the total number of methods in an Android
application. The number of DIT is the levels from given
class to java.lang.Object which is the root in the Java
inheritance tree. A deeper inheritance tree sometimes can help
developers to better model problems and design solutions.
However, it may also involve more complexities into code
base and runtime. CBO counts the number of classes that are
“coupled” to a given class. We define that if class A calls
the methods or accesses the variables of class B, then class
A is coupled to class B and class B is coupled to class A. A
high CBO indicates that the software design violates many OO
principles, which can cause many problems. First, modifying
the implementation of one high CBO class will risk affecting
many other parts of the software. In addition, it will make
a software less modular and harder to be reused. At last, it
is difficult to test a class with high CBO independently [18].
RFC is the number of response set of a class. Response set,
according to the paper of Chidamber and Kemerer [16], is “a
set of methods that can potentially be executed in response
to a message received by an object of that class”. A class
with higher RFC tends to have higher complexity. If a great
number of methods are involved in responding a message,
then the developers need to understand more pieces of code
to construct the event handling logic, which raises more
challenges in development and test. LCOM is calculated based
on the following steps. Every pair of methods in a given class
is checked. If a pair of methods both access to at least one the
same reference or variable, then the number of LCOM minus
1. If a pair of methods does not share any reference or variable,
then the number of LCOM plus 1. A high LCOM implies some
code in a class should be moved out. The other two metrics
are Number of Public Methods (NPM) and Afferent Coupling
(Ca). Ca counts how many other classes refer to the class we
are measuring.

Fig. 4 shows the results of code complexity evaluation. We
use the data of each metric we collected in the lean version
of an application to divide the data from the original version
of an application. We collected code complexity data from the
553 Android application data samples. The vertical axis is the
reduced-original ratio. The horizontal axis lists every metric.
For the 553 data points of every metric, we use a boxplot to
depict the distribution of the results. The position of top and
bottom of a box represent third (Q3) and first (Q1) quartiles of
a group of data. Interquartile Range (IQR) is defined as Q3−
Q1. The highest bar and lowest bar indicates the maximum

WMC DIT CBO RFC LCOM Ca NPM0

20%

40%

60%

80%

100%

0.23

0.76

0.37

0.21

0.12

0.28

0.20

Fig. 4: Code Complexity Results

value and minimum value respectively. The maximum value
and minimum value are defined as Q3 + 1.5IQR and Q1 −
1.5IQR in a boxplot. The data out of maximum value and
minimum value is seen as “outliers” in a boxplot. The position
of red line indicates the median of the data.

C. Reflection Call Sites

In this section, we present the results to answer research
question Q3. Table III presents the results of our reflection
analysis. We inspect all Java and Android reflective methods
in the 553 Android application samples. We listed the name of
methods which are used at least once by those applications in
column “method name”. A method name we listed consists of
three parts. From left to right, they are the class to which the
method belongs, the type of return value, and method name.
We merged the data of overloaded methods into one entry of
the table, so we did not list the parameters of each method. In
the second column, we listed the average number of call sites
of each method in the Android applications that used reflec-
tions from higher frequency to lower frequency. In addition,
we also calculate the average number that how many string
parameters at reflection call sites are string literal constants or
variables. We report them in the third and fourth column. In the
last row of Table III, we can see that, each Android application
has 14.825 reflection call sites. Among this number, 8.330 call
sites directly use a constant literal as their string parameters,
while the other 6.495 call sites use a variable as their string
parameters. Though Java language provides many reflection
methods, in real programs, the distribution of their usage is
quite biased. Top 4 entries in the table have more than 97%
of all reflective call sites.

D. Installation Time Redundancy

1) Install-Time Redundancy from Android Wear Applica-
tions: In this section, we answer the research question Q4.
We did experiments to compare the reduced size and orig-
inal size of Android wear applications. At this moment,
the number of applications that support Android watch is

8

TABLE III: Reflection Call Sites

Method Name Call Sites Constants Variables
java.lang.Class: java.lang.Class forName 8.579 3.779 4.800
java.lang.ClassLoader: java.lang.Class loadClass 2.611 1,846 0.765
java.lang.Class: java.lang.reflect.Field getField 2.168 1.786 0.382
java.lang.Class: java.lang.reflect.Field getDeclaredField 1.077 0.828 0.249
dalvik.system.DexClassLoader: java.lang.Class loadClass 0.302 0.035 0.267
java.util.concurrent.atomic.AtomicIntegerFieldUpdater: java.util.concurrent.atomic.AtomicIntegerFieldUpdater newUpdater 0.042 0.042 0
java.util.concurrent.atomic.AtomicLongFieldUpdater: java.util.concurrent.atomic.AtomicLongFieldUpdater newUpdater 0.014 0.014 0
net.sourceforge.pmd.typeresolution.PMDASMClassLoader: java.lang.Class loadClass 0.014 0 0.014
org.codehaus.jackson.mrbean.AbstractTypeMaterializer$MyClassLoader: java.lang.Class defineClass 0.007 0 0.007
org.codehaus.jackson.mrbean.AbstractTypeMaterializer$MyClassLoader: java.lang.Class findLoadedClass 0.007 0 0.007
java.lang.ClassLoader: java.lang.Class findClass 0.004 0 0.004
Total 14.825 8.330 6.495

still limited. We downloaded all applications in the cate-
gory of ”Android Wear”. We analyzed those Applications
and identified 17 applications that explicitly contain an ”an-
droid wear micro apk.apk” in their apk files. We applied our
tool to all of those 17 applications. Table IV presents our
experimental results. Among all 17 applications, the lowest
reduced-original ratio is 49.42% which is from Wear Tip
Calculator. The application Weather Live Free has the highest
reduced-original rate, 95.18%. On average, after removing
android install-time SDK redundancy, the size of a customized
application will be 80.67% of its original size.

2) Install-Time Redundancy from Android Application em-
bedded ABIs: In this paragraph, we answer the research ques-
tions Q5 and Q6. We did experiments to compare the reduced
sizes and original sizes of Android applications that contain
redundant ABI. ARM architectures dominate mobile devices.
Among ARM architectures, ARMv7 is most pervasive. So in
our evaluation settings, we always try to keep ARMv7 ABI if
multiple ABIs are present. If ARMv7 ABI does not exist, we
turn to keep ARMv5 while we are deleting the rest.

Table V presents the proportions of applications that contain
redundant ABIs by different size groups. In total, we analyzed
4779 Android applications, among which 2041 applications
contain more than one type of ABIs. That is to say 42.71%
applications in our samples can be additionally customized.
We also calculated the data by application size groups. For
example, the applications that are in 3M group are larger than
2M and less than or equal to 3M. The applications that are
smaller than 1M has the highest proportion of application
containing redundant ABIs, which is 61.51%. We can also
observe a trend that larger applications have less redundant
ABIs.

Fig. 5 shows the size distribution of all 2041 applications
that can be customized. The vertical axis is the percentage of
the customized size divided by the original size. The horizontal
axis is the original size of an application. On average, after
customization, the reduced size is 93.37% of the original size.

V. DISCUSSION AND FUTURE WORK

A. Issues caused by multiple Android API levels

Android systems have different levels of APIs, from level
1 which is the oldest one to 25 which is the most recent one.
Those APIs are not always backward compatible. Some fea-
tures are only available on some higher level APIs. Compared

with iOS, Android ecosystem is more fragmented. Android
users are using many different Android systems which support
different levels of API. To bring a unified experience to all
users, developers can include some packages provided by
Google in the apk file. Those packages provide the implemen-
tation of some features that originally only available in some
versions of Android systems. If an application is installed on a
new version of Android system, those packages will be redun-
dant. Including these packages are not transparent to develop-
ers. For example, class android.app.Fragment is only
available to API levels higher than 22. If developers decide
they also want to support those old systems, they must explic-
itly use android.support.v4.app.Fragment which
is located in the package can be brought by the application
itself, instead of android.app.Fragment which is only
in Android framework. To optimize this case, we not only
need to remove the package, but also need to rewrite the class
declarations and package importing in application code. We
leave this part as one further work. The other issue we want
to call out is that our evaluation was not conducted on the
most recent Android application running environment. We will
iterate our tool to synchronize with the pace of Android API
update in the future.

B. Feature based Customization

Another future work is to perform feature based customiza-
tion towards an application. Jiang et al. [19], [20] discuss an
approach of feature-based customization over a Java program.
The approach is based on analyzing the call sites of some
framework APIs. The permissions in Android systems which
map to some specific Android framework APIs provide an
ideal handler to conduct feature optimization on Android ap-
plications. For example, by customizing application features,
we can abandon existing “all-or-nothing” permission protocols
with users. It is possible for users to only select part of
the permissions they allowed and still enjoy (part of) the
applications. It is also useful to enforce some policies for
some special groups like minors, military personnel, and the
employees working in the enterprise where some features (e.g.
video streaming) are disallowed.

C. Relationship with Other Android Application Compaction
Approach

There are a plenty of Android application code size re-
ducing approach based on packing and compressing. More

9

TABLE IV: Size and Percentage of Installation Redundency in Wear Applications

Application Name Original Size (Byte) Reduced Size (Byte) Reduced/Original (%)
Mobills: Budget Planner 15,725,488 14,023,717 89.18
AccuWeather 33,442,700 30,437,691 91.01
Wear Tip Calculator 4,070,793 2,011,661 49.42
App in the Air: Flight Tracker 14,826,753 10,847,048 73.16
Weather Live Free 32,659,948 31,086,561 95.18
ViewRanger - Trails and Maps 14,537,273 12,374,449 85.12
Keeper: Free Password Manager 15,905,430 11,531,725 72.50
Instant - Quantified Self 10,038,765 9,544,534 95.08
Google Play Music 17,961,307 15,678,474 87.29
Microsoft Outlook 30,348,958 26,821,576 88.38
Nest 41,391,891 35,063,279 84.71
Robinhood - Free Stock Trading 13,858,114 9,777,723 70.56
Strava Running and Cycling GPS 28,164,055 24,944,648 88.57
Viber Messenger 31,555,265 30,305,049 96.04
Wear Face Collection 27,476,581 17,154,939 62.43
Komoot — Cycling and Hiking Maps 12,150,268 9,573,000 78.79
WatchMaker Premium Watch Face 13,864,136 8,879,229 64.04
Average N/A N/A 80.67

0MB 50MB 100MB 150MB 200MB

20%

40%

60%

80%

100%

Fig. 5: ABI details

TABLE V: Proportions of applications that contain redundant
ABIs by different size groups

Size (MB) All Analyzed Apps Modified Apps Modified/All (%)
1 717 411 61.51
2 416 244 58.65
3 303 168 55.45
5 495 209 42.22

10 908 445 49.01
20 1,029 391 38.00
30 240 13 5.42
50 604 148 24.50

200 67 12 17.91
Total 4,779 2,041 42.71

specifically, developers can compress the images music, and
animation with or without losing their original resolutions.
They can also transform all the string literals in .csv or
.plist files into binary-based representation. We note that these
approaches are orthogonal to our technique. REDDROID can
be boosted with other code size reducing approach mentioned
above towards Android applications. Our analysis is conducted
on off-the-shelf Android applications, and it is reasonable to
assume they should have already been optimized by existing
trimming approaches. In other words, our evaluation results

indicate that our work is still notably effect given the presence
of other related techniques.

D. Reflections, obfuscation and Soundness

Soundness is important to program transformation. Theo-
retically, reflections cannot be statically decided. However, the
usage patterns of reflections in real world applications allow
us to walk around many challenges caused by reflections. Let’s
review Table III again. From the table we can see that, 553
applications only use 11 reflection methods in total. None of
the return types of these methods is java.lang.reflect.method,
which means no methods are invoked in a reflective manner in
our data samples. We can see that developers only use reflec-
tions to get a Class, a Classloader, a Field, or a Fieldupdater.
Table VI lists our strategies to each refection pattern. If a class,
a method, or a field is referred statically, or referred

We have a case cannot handle, that is if some one initialize
a class but not never use it. Or say it only uses its constructor,
then that is unknownClass.unknownMethod case. If this case
is rare, then my argument is valid. Otherwise, I cannot argue
in this way. I need to do more experiments on this.

Software obfuscation may increase the cost of analysis on
redundancy and reflections. To overcome this difficulty, some

10

software deobfuscation technologies [21], [22] can be applied.
Detailed investigation on software deobfuscation is out of the
scope of this paper.

VI. RELATED WORK

A. Static Analysis on Android Applications and Frameworks

Cao et al. [12] proposed a comprehensive approach to
analyzing all implicit control flow transitions (a.k.a callbacks)
through the Android framework. More specifically, by per-
forming backward data flow analysis starting from all methods
that can be overridden in user space on an overapproximated
call graph, a superset of all call backs and their registrations
can be reached. They implement this method into a tool
called EdgeMiner to augment the precision of existing static
analysis tools. FlowDroid [14] is a state-of-the-art static taint
analysis tool on Android applications. The on-demand analysis
algorithm allows their approach to achieve high precision
(context, flow, field, and object sensitive) with relatively low
cost. Octeau et al. [23] implemented Dare, a tool to retarget
Android Dalvik bytecode to Java bytecode. They present an
inference algorithm to investigate the lost information (e.g.
type information) during the process of transforming Java
bytecode to Dalvik code. Their approach is based on the Tyde
IR and 9 basic transformation rules. Dex2jar [24] is the other
widely used open-source tool to transform Dalvik code into
Java bytecode. Nimbledroid is a online tool to quickly profile
an Android application. It is capable of being integrated with
Continuous Integration (CI) process of an industry-strength
Android application development. PScout [25] and Stow-
away [26] are two static analyzers that map Android frame-
work APIs to Android permissions. PScout first checks per-
mission check points. Then it performs backward reachability
analysis to the Android framework APIs that triggered those
permissions checking. Intents sending and content providers
accessing are considered as two types of implicit permission
checking points. Undocumented Android framework APIs are
also included in their results. Apktool [27] is a tool to conduct
reverse engineering on Android applications. It can transform
the Dalvik code to classes in smali representation. In addition,
it can decode binary-based resource files back to its original
human-readable form. FernFlower [28] is a state-of-the-art
Java decompiler. It has rich command line options which
makes it easy to be embedded into scripts and existing tool
chains. FernFlower is the default Java decompiler of IntelliJ
integrated development environment.

B. String and Reflection Analysis

An approach to solving reflections in Java programs is to
extract the string values in call sites of reflective calls. Several
previous works proposed some methods to conduct string
analysis. Java String Analyzer (JSA) [29] is a static analyzer to
find the upper approximation values of given string variables
in a program. Its first step is to transform Java program into a
flow graph. An edge of this flow graph is a “def-use” chain in
the program. In second step, JSA works on the flow graph to
generate a regular expression to over approximate the values of

a given string. Li et al. [13] proposed a new general framework
to analyze string values in Java and Android program and im-
plement a tool called Violist. They introduced a new IR which
can be used to model string operations. By performing context-
sensitive interprocedural analysis, Violist better solves the
challenges, including scalability and string operations across
procedures. Shannon et al. [30] introduces an approach to
using symbolic execution to conduct string analysis. They take
advantage of automaton to represent abstract string symbols
in the symbolic execution. Bodden et al. [31] presents another
approach to taming reflections without depending on string
analysis. They implemented their approach into a tool chain
called TamiFlex. It first logs all reflection calls recorded during
runtime. Then it uses direct method call to “materialize” those
indirect reflective calls. Thus, those enriched Java programs
can be soundly processed by static analyzers. In the case that
a program needs to be transformed, TamiFlex can also help
dynamically reinsert off-line transformed classes back to the
running program.

C. Code and File Compaction Techniques

Pugh [2] proposes a better way to compress a group of Java
class files to reduce the total size of a package, such as a jar file
or an apk file. His optimization consists of three parts. First,
each class file is reorganized into a more compact format.
Second, he improved the compression algorithm. Third, he
made some information is shared across class files in a
package. Wagner et al. [32] takes a more aggressive step to
remove code from those “always-connected” devices. They
split code into a frequently used part known as hot code,
and an infrequently used part known as cold code. A running
device will only receive the hot code at the very beginning,
while the cold code still remains on a remote server. The
specific part of cold code will be transmitted to a running
device only when it is necessary. Several previous works [6],
[7] proposed some approaches to reducing sizes of Java
applications by removing its unused methods and classes. But
their approaches cannot be applied to Android applications.
Lint [5] is a tool to remove redundant registered resources from
an Android project. Registered resources are located in “Res”
directory of an Android project. Each registered resource has
a global unique ID, which can be directly referred by a static
field of class R. However, a large number of resources, such
as music, sprite-sheet-based images, animations, and movies
that are located in directory “Asset”, cannot be optimized by
this tool, since they are referred in the program by using their
relative path which is a string literal. The optimization for
these parts of resources will also depend on the string analysis
techniques discussed in this paper, which can be done in our
future work.

VII. CONCLUSION

In this paper, we present an approach to trimming compile-
time redundancy and install-time redundancy from Android
applications. We have implemented a fully automated tool
called REDDROID. Our experimental results show that

11

TABLE VI: reflection patterns and our strategies

Reflection Pattern Strategy
unknownClass.knownMethod Keep all methods that have the name “knownMethodName” in any class.
unknownClass.knownField Keep all fields that have name the name “knownField” in any class.
knownClass.unknownMethod Do not change this class.
knownClass.unknownField Do not change this class.
unknownClass.unknownField (no such case in our data samples) Delete methods only, do not delete classes.
unknownClass.unknownMethod (no such case in our data samples) End alert to developers, our approach is unsound to this application.

REDDROID can reduce Android application size by around
15% on average via removing unused bytecode. Code
complexity, measured by a set of well-known metrics, is
also reduced significantly. REDDROID can also identify and
remove redundant Android wear SDKs, which can reduce the
size of related applications by another 20% on average. By
removing redundant embedded ABIs, the size of applications
can be reduced by additional 7% on average. If an application
has all three kinds of software bloat, in sum its size can be
reduced by around 42%. Overall, our evaluation results show
that our approach is effective on reducing both compile-time
redundancy and install-time redundancy. In addition, our
results depict the landscape of bloatware issue in the Android
application domain for the first time. The results we reported
can help developers better identify their pain point regarding
application resource consumption issue and better plan their
development and build process.

VIII. ACKNOWLEDGMENTS

This research was supported in part by the Office of
Naval Research (ONR) grants N00014-13-1-0175, N00014-
16-1-2265, N00014-16-1-2912, and N00014-17-1-2894, and
the National Science Foundation (NSF) grant CNS-1652790.

REFERENCES

[1] J. McGrenere, ““bloat”: The objective and subject dimensions,” in CHI
’00 Extended Abstracts on Human Factors in Computing Systems, ser.
CHI EA ’00. New York, NY, USA: ACM, 2000, pp. 337–338.

[2] W. Pugh, “Compressing Java class files,” in Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and
Implementation, ser. PLDI ’99. New York, NY, USA: ACM, 1999,
pp. 247–258.

[3] Q. Bradley, R. N. Horspool, and J. Vitek, “JAZZ: An efficient com-
pressed format for Java archive files,” in Conf. Centre for Adv. Studies
on Collaborative Research. IBM Press, 1998.

[4] G. Xu, “Finding reusable data structures,” in Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’12. New York, NY, USA:
ACM, 2012, pp. 1017–1034.

[5] I. Google, “Improve your code with Lint,” 2017. [Online]. Available:
https://developer.android.com/studio/write/lint.html#overview

[6] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter, “Practical experience
with an application extractor for Java,” in Proceedings of the 14th
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’99. New York, NY, USA:
ACM, 1999, pp. 292–305.

[7] Y. Jiang, D. Wu, and P. Liu, “JRed: Program customization and
bloatware mitigation based on static analysis,” in Proceedings of the
40th IEEE Computer Society International Conference on Computers,
Software and Applications (COMPSAC). IEEE, 2016, pp. 12–21.

[8] D. F. Bacon and P. F. Sweeney, “Fast static analysis of C++ virtual
function calls,” in Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’96, 1996.

[9] F. Tip and J. Palsberg, “Scalable propagation-based call graph construc-
tion algorithms,” in Proceedings of the 15th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applica-
tions, ser. OOPSLA ’00. New York, NY, USA: ACM, 2000, pp. 281–
293.

[10] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in European Conference
on Object-Oriented Programming. Springer, 1995, pp. 77–101.

[11] T. H. Cormen, Introduction to Algorithms. MIT Press, 2009.
[12] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,

and Y. Chen, “EdgeMiner: Automatically detecting implicit control flow
transitions through the Android framework.” in Network and Distributed
System Security Symposium (NDSS), 2015.

[13] D. Li, Y. Lyu, M. Wan, and W. G. Halfond, “String analysis for Java
and Android applications,” in Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015. ACM,
2015, pp. 661–672.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594299

[15] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot—a Java bytecode optimization framework,” in Conf. Centre for
Adv. Studies on Collaborative Research. IBM Press, 1999.

[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, Jun. 1994.

[17] D. D. Spinellis, “ckjm chidamber and kemerer metrics software v1.9,”
2005, http://www.spinellis.gr/sw/ckjm/.

[18] Virtual Machinery, “WMC, CBO, RFC, LCOM, DIT, NOC -
the Chidamber and Kemerer metrics,” 2017. [Online]. Available:
http://www.virtualmachinery.com/sidebar3.htm

[19] Y. Jiang, C. Zhang, D. Wu, and P. Liu, “A preliminary analysis and
case study of feature-based software customization (extended abstract),”
in Proceedings of the 2015 IEEE International Conference on Software
Quality, Reliability and Security (QRS), 2015.

[20] ——, “Feature-based software customization: Preliminary analysis, for-
malization, and methods,” in Proceedings of the 17th IEEE International
Symposium on High Assurance Systems Engineering (HASE), 2016, pp.
122–131.

[21] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 674–691.

[22] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security.
ACM, 2011, pp. 275–284.

[23] D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android applications to
Java bytecode,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE). ACM,
2012.

[24] B. Pan, “dex2jar,” 2017. [Online]. Available: https://github.com/
pxb1988/dex2jar

[25] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security. ACM, 2012,
pp. 217–228.

12

[26] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New York,
NY, USA: ACM, 2011, pp. 627–638.

[27] R. W. Connor Tumbleson, “Apktool: A tool for reverse engineering
android apk files,” 2017. [Online]. Available: https://ibotpeaches.github.
io/Apktool/

[28] “FernFlower,” 2017. [Online]. Available: https://github.com/JetBrains/
intellij-community/tree/master/plugins/java-decompiler/engine

[29] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in Proceedings of the 10th International Confer-
ence on Static Analysis, ser. SAS’03, 2003, pp. 1–18.

[30] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid, “Abstracting
symbolic execution with string analysis,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, ser. TAICPART-MUTATION ’07. IEEE Computer
Society, 2007, pp. 13–22.

[31] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming
reflection: Aiding static analysis in the presence of reflection and custom
class loaders,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 241–250.

[32] G. Wagner, A. Gal, and M. Franz, ““Slimming” a Java virtual machine
by way of cold code removal and optimistic partial program loading,”
Science of Computer Programming, vol. 76, no. 11, 2011.

13

