
IEEE Network • Accepted for Publication1 0890-8044/20/$25.00 © 2020 IEEE

Abstract
Nowadays, large and complex deep learning

(DL) models are increasingly trained in a distrib-
uted manner across multiple worker machines, in
which extensive communications between work-
ers pose serious scaling problems. In this article,
we present a quantitative survey of communi-
cation optimization techniques for data parallel
distributed DL. We first identify the major com-
munication challenges and classify the existing
solutions into three levels, namely the learning
algorithm, the system architecture, and the net-
work infrastructure. We present the state-of-the-
art communication optimization techniques and
conduct a comparative study of seven common
lossless distributed DL methods on a 32-GPU clus-
ter with 100Gb/s InfiniBand (IB). We show that
the DL models with low model intensity (such as
BERT and BERT-Large) are difficult to scale out
even with the best available lossless algorithm
over 100Gb/s IB; and the system architecture and
scheduling algorithms have a critical impact on
the scaling property. We conclude the article with
discussions of open issues for further investigation.

Introduction
The remarkable technological advances of deep
learning (DL) have enabled a multitude of practi-
cal AI applications, ranging from computer vision
to natural language processing and to robotics. In
a typical DL workflow, deep neural network mod-
els are trained to solve a learning problem (e.g.,
image classification) on a labeled dataset; the
trained models can then be used to make an infer-
ence given a new input (e.g., predicting the image
label). Popular DL training algorithms include the
standard mini-batch stochastic gradient descent
(SGD) and its variants. These algorithms minimize
a pre-defined loss function by iteratively updating
the model parameters with stochastic gradients,
calculated by sampling a mini-batch of data from
the training set.

According to a recent study from OpenAI, the
computational complexity required in DL training
has doubled every 3.4 months since 2012, out-
pacing Moore’s Law. As the training data and the
DL models grow exponentially larger (e.g., the
BDD100K auto-driving dataset has 120 million
images, and the BERT-xlarge language model has
over 1 billion parameters), training deep mod-
els on a single GPU or TPU device results in an
exceedingly long time. A common practice is to
parallelize DL training across multiple processors1

that collaboratively update the model parame-
ters. However, such distributed training requires
iterative communications between processors,
creating a severe performance bottleneck as the
improvement of device interconnections lags far
behind the rapidly increased computing power
of AI processors. The result is the limited system
scalability, as suggested by the Amdahl’s law.
Therefore, how to address the communication
bottlenecks in distributed DL has attracted great
attention from both academia and industry in
recent years.

Model parallelism and data parallelism are
the two major parallelization schemes [1] that
enable multiple processors to collaboratively train
a single model. Model parallelism splits the set
of model parameters and distributes them to all
processors, but the high dependency between
different neurons and the unbalanced parameter
sizes in deep models make model parallelism dif-
ficult to scale out. Data parallelism, on the other
hand, distributes the computational workload of
different data samples to different processors that
share the same set of model parameters. Com-
pared with model parallelism, data parallelism is
more appealing due to its improved scalability
and simpler implementation. In this article, we
mainly focus on data parallelism.

Figure 1a illustrates the popular synchronized
SGD algorithm for distributed DL with data par-
allelism, which has the same convergence perfor-
mance (in terms of the number of iterations) as
SGD on a single worker. In this method, workers
load different data samples to calculate the gradi-
ents independently; all gradients are aggregated
to update the model parameters. Data parallel
synchronous SGD can be modeled by a directed
acyclic graph (DAG), as shown in Fig. 1b. The
backpropagation computations of gradients are
from the last layer to the first (denoted by bP–1,
…, b1, b0), and the distributed gradients should
be aggregated (denoted by cP–1, …, c1, c0) before
going into the feed-forward computations (denot-
ed by f0, f1,…, fP–1) of the next iteration. The dis-
tributed synchronized SGD is also known as bulk
synchronous parallel (BSP) SGD as it requires
communication and synchronization in every iter-
ation. The gradients can be aggregated through
one or more dedicated parameter servers (PS) [2]
or by all-to-all (A2A) communications [3].

Much work has been proposed recently to
improve the scalability of distributed DL. In this
article, we develop a taxonomy for describing
communication-efficient techniques in distributed

A Quantitative Survey of Communication Optimizations in Distributed Deep Learning
Shaohuai Shi, Zhenheng Tang, Xiaowen Chu, Chengjian Liu, Wei Wang, and Bo Li

1 Throughout this article,
worker and processor are
used interchangeably.

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.011.2000530

Shaohuai Shi, Wei Wang and Bo Li are with The Hong Kong University of Science and Technology; Zhenheng Tang and
Xiaowen Chu (corresponding author) are with Hong Kong Baptist University; Chengjian Liu is with Shenzhen Technology University.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication 2

DL, and present a quantitative survey of commu-
nication optimization techniques for the BSP-style
training algorithms. We identify the model inten-
sity and batch size as two key factors that aff ect
the system scalability, and conduct a quantitative
study to compare seven state-of-the-art distrib-
uted training methods on a 32-GPU cluster with
100Gb/s IB. Our evaluation method and results
can serve as a reference for practitioners to
design their distributed DL platforms. (Our source
code is publicly available at https://github.com/
HKBU-HPML/ddl-benchmarks). Our main obser-
vations through this study are:
• A model with low model intensity and small

batch size (thus a high communication-to-com-
putation ratio) is diffi cult to scale out.

• The decentralized A2A architecture is more
latency-sensitive than the centralized PS
architecture, but the latter requires extra
servers and network ports to achieve good
performance.

• Scheduling algorithms can be useful to hide
the communication costs in both PS and
A2A architectures. In particular, tensor fusion
is suitable for A2A, while tensor partition is
more suitable for PS.
The remainder of this article is organized as fol-

lows. We fi rst identify the communication issues
and existing solutions in distributed DL. Then we
elaborate commonly used communication optimi-
zation techniques, followed by our experimental
study. Finally, we discuss the challenges and possi-
ble future research directions.

communIcAtIon Issues And solutIons
scoPe, AssumPtIons, And termInologIes

In this article, we mainly discuss the communi-
cation issues in data parallel distributed DL, and
focus on the data center or HPC environments
where network speed is high and stable.

In a typical data parallel distributed DL (e.g.,
BSP-SGD), each training iteration consists of sev-
eral steps. First, each worker loads a mini-batch
of data as the input and performs feed-forward
calculations to calculate the loss value against the
corresponding labels. Next, each worker back-
propagates the loss and calculates the fi rst-order
gradients of model parameters. The local gradi-
ents are aggregated among all workers, and the
averaged gradients are fi nally used to update the

model parameters. The algorithm proceeds to the
next iteration, until a certain convergence condi-
tion is met. In this article, we assume data I/O can
be overlapped with the computations, and hence
will not consider the data I/O time.

Consider a training job of a deep model with
D parameters that uses SGD with a mini-batch
size of M. Assume the number of arithmetic oper-
ations required for a single data sample in each
training iteration is C. A data parallelism solution
with N workers will distribute the MC arithmetic
operations to the N workers (e.g., each worker
has a local mini-batch size of M/N). In the simplest
case where communication tasks do not overlap
with computing tasks, the speedup achieved by
N workers is

ts
ts N + tm

,

where ts is the computing time with a single work-
er, and tm is the communication time of distribut-
ed training with N workers. As N becomes larger,
the speedup approaches ts/tm, which explains the
significance of communication optimization in
distributed DL. To eliminate the impact of com-
puting speed and communication speed on the
analysis of speedup, we define the communica-
tion-to-computation (C2C) ratio of a distributed
training job as the total amount of communica-
tion traffic divided by the total amount of com-
putations. Due to the dependency between
communication tasks and computation tasks (Fig.
1b), the C2C ratio is the key factor that aff ects the
system scalability.

In practice, the total amount of communica-
tion traffic is linearly proportional to the model
size D and also depends on the number of
workers N. So we can use D · f(N) to model the
amount of communication2 where f(N) depends
on the communication scheme. The C2C ratio
can then be calculated by

D ⋅ f (N)
M ⋅C

.

We defi ne model intensity

I = C
D
,

which is the average number of arithmetic oper-
ations in an iteration per data sample per model
parameter. Here, I is an intrinsic feature of the

FIGURE 1. Data parallelism of distributed DL: a) data parallelism; b) a DAG example.

Da
ta

Ag
gr

eg
ati

on

Da
ta

Da
ta

Da
ta

bP-1 b1 b0 f0 f1 fP-1

cP-1

c1

c0
...

... ...

...

Backpropagation
computing task

Communication task Precedence constraint

Feed-forward
computing taskbi

ci

fi

(a) (b)

2 For simplicity, the unit of
communication is the size of
one model parameter or gra-
dient. But in practice, the size
of a model parameter could
be diff erent from the size of
a gradient.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication3

model that captures the difficulty of parallelism.
The C2C ratio can then be simplified as

f (N)
M ⋅ I

.

Our experimental results below verify that a
model with low intensity I and/or small batch size
M is difficult to scale. To reduce the C2C ratio of
a given DL model, we need to design good com-
munication schemes with small f(N) and choose a
large batch size M.

Communication Issues
We use the BERT-Large language model (with
336 million parameters) as an example to illus-
trate the communication challenges in distributed
training. Given a local batch size of 8 (which is
limited by the available GPU memory size), each
iteration requires 597  109 floating point oper-
ations (FLOPs) which take 163ms on an Nvid-
ia RTX2080Ti. There are several communication
challenges that limit the system scalability of dis-
tributed training.

Communication Size: In each training itera-
tion, the whole set of model parameters or their
gradients should be exchanged across all workers.
The BERT-Large model has a size of 1.34GB if the
parameters are stored in a 32-bit format. Given
N workers, finding the average of N sets of data
and synchronizing the updated model within a
short time period can be very challenging. For
instance, when training BERT-Large on a server
with 4 RTX2080Ti connected through PCIe 3.0,
each iteration requires 441ms of communication
time for the all-reduce operations, resulting in a
poor speedup of 1.08.

Communication Performance: Deep models
have a layered structure, and the parameters and
their corresponding gradients are typically stored

as tens to hundreds of tensors. First of all, these ten-
sors are calculated layer by layer on the fly, creat-
ing intrinsic time dependency that limits the design
space of scheduling computing and communica-
tion tasks. Second, the tensor size ranges from kilo-
bytes to mega-bytes. It is difficult to fully utilize the
high network bandwidth when exchanging small
messages [3]. For example, in our testbed, transmit-
ting 1MB of message across the 10GbE (TCP/IP),
100GbE (TCP/IP), and 100GbIB (RDMA) achieves
an effective throughput of 8.2Gb/s, 16.5Gb/s, and
83.2Gb/s, respectively, while transmitting a smaller
message of 16KB across the 10GbE, 100GbE, and
100GbIB can only achieve much lower throughput
of 1.2Gb/s, 4.6Gb/s, and 16.7Gb/s, respective-
ly. Optimally exchanging various tensors among
a set of workers requires a co-design of message
exchange algorithm and network system architec-
ture that considers both bandwidth and communi-
cation latency.

Solutions
There have been three different directions taken
to address the above challenges: reducing the
C2C ratio, overlapping the communication tasks
with the computation tasks, and improving the
communication performance by the advanced
design of system architectures and communica-
tion primitives. In Fig. 2, we develop a three-level
taxonomy to describe communication-efficient
distributed DL.

Learning Algorithms: At the top, there are
high-level learning algorithms with different com-
munication complexity (aiming to reduce the
C2C ratio), which can be classified into two types:
increasing the workload of computation (e.g.,
large-batch training [4]), and reducing the commu-
nication complexity by quantization and/or sparsi-
fication. These algorithms are usually lossy in the
sense that they generate inconsistent results with
the single-worker SGD. Lossy algorithms may need
more iterations to achieve the same level of con-
vergence, though each iteration completes faster.

Large-batch training is an immediate way to
reduce the C2C ratio by enlarging the batch size.
With proper optimization tricks (e.g., layer-wise
adaptive rate scaling), large-batch training can
maintain the same generalization ability as sin-
gle-worker SGD. However, the local batch size is
limited by the memory size of the AI processor.

We can also relax the synchronization or
reduce the communication frequency among
workers (e.g., staled synchronized parallel (SSP)
[5], local SGD [4], and asynchronous parallel
(ASP) [6] SGD). SSP SGD allows some workers
to run more iterations before synchronization,
which is efficient in a heterogeneous environment
where different workers have different computing
horsepower. Local SGD allows all workers to run
a specific number of local updates independent-
ly before synchronization. ASP SGD enables all
workers to train the model without waiting for
any other workers to update the model param-
eters. Compression techniques such as gradient
quantization [7] and sparsification [8] are another
thread of lossy algorithms. Gradient quantization
quantifies each gradient into a few bits with little
impact on the convergence, while gradient sparsi-
fication selects a small portion of the gradients for
model updates.

FIGURE 2. A three-level taxonomy of communication-efficient distributed DL.

Fat Tree Torus

TCP/IP (Ethernet) RDMA (InfiniBand)RoCE (Ethernet)

Quantization Sparsification

BSP SSP Local SGD ASP

Parameter Server

All-to-all

Learning Algorithm

③ System Architecture

 Communication Infrastructure
⑤ Communication Protocol

⑥ Network Topology

① Communication Synchronization

② Communication Compression

④ Scheduling

BCubeTree

Tensor Fusion

Pipelining

Tensor Partition

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication 4

System Architectures: The middle level is the
system architectures that define how the work-
ers exchange the information. Parameter server
(PS) (e.g., [2]) and all-to-all (A2A) (e.g., [3]) are
the two most popular system architectures, and
they can be equipped with different communica-
tion scheduling algorithms that can either overlap
communication with computation or improve the
communication performance by tensor fusion/
partition. PS is a centralized architecture that
requires one or more central servers to manage
the model parameters, while A2A is a decentral-
ized architecture that exploits message passing
interface (MPI) or alike to perform data commu-
nication tasks. The optimization techniques in this
level are usually lossless as they do not change
the training results of the learning algorithms.

Communication Infrastructure: At the bottom
level, there are diverse communication infrastruc-
tures offering fundamental data communication
services, which include communication protocols
and network topologies. The optimization tech-
niques in this level are also lossless.

Popular communication protocols are TCP/IP,
RDMA on InfiniBand, and RoCE. TCP/IP is widely
supported by commodity Ethernet switches. How-
ever, it is inefficient for high-speed data communi-
cations due to the cost of data copy between the
kernel buffer and the application buffer. RDMA
can deliver lower latency and higher throughput
than TCP/IP [9]. RDMA was originally run on
InfiniBand, while RoCE (RDMA over converged
Ethernet) enables the cheaper Ethernet to support
RDMA. Network topology design is also import-
ant to improve the performance of distributed DL.
For example, Wang et al. [10] showed that BCube
is more suitable than Fat-tree for distributed DL.

In summary, a distributed training meth-
od may involve six different aspects: �
Communication Synchronization, � Communi-
cation Compression, � System Architecture, �
Scheduling, � Communication Protocol, and �
Network Topology. This can be described as “it
exploits � with/without �, running on � with/
without � building on � and �.” In practice,
BSP SGD with large-batch training is more pop-
ular than the other learning algorithms due to its

good convergence property. Therefore, given a
GPU cluster with a fixed communication infra-
structure, the system architecture and schedul-
ing algorithms become the key communication
optimization techniques to improve the system
scalability. In the next section, we continue to
discuss the impact of system architectures and
scheduling algorithms on the performance of
distributed DL.

A Popular Communication Optimization Portfolio
In this section, we focus on the communication
optimization techniques in system architecture
design and scheduling algorithms. These tech-
niques are lossless, making them particularly
appealing to industry practitioners because model
accuracy is the most important for many AI appli-
cations. Figure 3 gives an illustration of the com-
munication optimization techniques.

System Architectures
PS and A2A represent two different design philos-
ophies, with different communication properties.

Parameter Server (PS): In the PS architec-
ture, a PS is logically a central server that aggre-
gates the gradients from the workers, updates
the model parameters, and sends back the latest
model to the workers. It provides a simple and
flexible framework for the system implementation.
However, since PS needs to receive gradients
from and send parameters (or averaged gradi-
ents) to all workers, it could easily become the
system bottleneck in the BSP algorithm where all
workers communicate with the PS almost simulta-
neously. With a single PS, the communication traf-
fic is 2D for each worker and 2ND for the PS. To
alleviate the communication pressure on a single
PS, one can deploy multiple PSes.

Here we introduce a representative PS imple-
mentation called BytePS (https://github.com/
bytedance/byteps), a highly optimized framework
that supports multiple PSes by partitioning the gra-
dient tensors in a load-balanced manner. Given S
PSes, the D-dimensional gradient is partitioned
into D/S parts so that each PS receives ND/S gra-
dients from N workers. The received N gradient
tensors are averaged on the server side and sent

FIGURE 3. A communication optimization portfolio in distributed DL.

t

c2
WFBP

MG-WFBP

c1

④ Scheduling

...

...

Parameter
Server

...
...

Centralized: Parameter Server

Decentralized: All-to-all

③ System Architecture

f1 f2 f3

c1

f1 f2 f3

c3 c2c2 c2 c1 c1

f1

c2 c3

f2 f3 Priority Scheduling
+ Tensor Partitioning

BytePS Core

MPI/Socket NCCL

ZeroMQ-TCP/IP RDMA

Shared
Memory

BytePS

MPI

MPI Collectives NCCL

TCP/IP RDMA

Horovod

Gloo

Data Feed-
Forward

Backward
Propagation UpdateGradient/Model

Aggregation
...

① BSP SGD: Iterative Learning

t

t

b3 b2 b1

b3 b2 b1

c3

c3,c2

c3

b3 b2 b1

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication5

back to all N workers. Therefore, the communica-
tion traffic of each PS is reduced to 2ND/S.

All-to-all (A2A): The average of the distributed
gradient or parameter tensors can be calculated
by an A2A operation, for example, the all-reduce
primitive in MPI. The ring-based all-reduce collec-
tive is commonly used in distributed DL, which
is bandwidth optimal by dividing the tensors into
small messages and exchanging those messages
simultaneously in a pipelined manner. However,
ring-based all-reduce has a latency term that is lin-
ear to the number of workers, which becomes
inefficient for large clusters. In the high-perfor-
mance communication library (NCCL (https://
developer.nvidia.com/nccl)), the double binary
trees algorithm [11] is integrated for dense-GPU
clusters, which delivers a logarithmic latency while
preserving the bandwidth optimality. For some het-
erogeneous networking environments, using the
hierarchy of communication bandwidths could fur-
ther improve the communication efficiency [12].

Horovod (https://github.com/horovod/hor-
ovod) is a popular distributed DL framework
built for the A2A architecture and supports many
state-of-the-art distributed communication libraries
(e.g., MPI, NCCL, and Gloo (https://github.com/
facebookincubator/gloo)).

Scheduling
During the training process of distributed DL,
the computing and communication tasks can
be described by a DAG. The layer-wise (or ten-
sor-wise) structure of deep models makes it possi-
ble to schedule different tasks intelligently so that
part of the communication cost can be hidden, as
shown in Fig.3 �.

Layer-Wise Pipelining and Tensor Fusion: A
deep model consists of a stack of layers, and the
learnable parameters of each layer are generally
represented by one or two tensors. During the
backpropagation, if the gradients of layer P have
been computed, then they can be immediately
communicated so that the communication task
can be pipelined with the computing task of layer
P – 1. The naive pipelining between communica-
tions and computations during backpropagation
is also called wait-free backpropagation (WFBP)
[13], which can be applied to both PS and A2A
architectures.

In A2A with pipelining, an all-reduce operation
is required for each tensor, which usually divides
the tensor into multiple small messages. Consid-
ering that transmitting two small messages togeth-
er is generally faster than transmitting the two
messages separately (e.g., in our 100Gb/s Infini-
Band cluster, transmitting a 16KiB message takes
7.85us, while transmitting a 32KiB message takes
10.1us), the MG-WFBP algorithm adopts the idea
of tensor fusion by optimally merging the gradi-
ents of several consecutive layers to minimize the
iteration time [3]. Tensor fusion can effectively
alleviate the negative impact of transmitting small
messages.

Tensor Partitioning and Priority Scheduling:
In the PS architecture, the communication hap-
pens between a worker and a PS and a tensor
can be transmitted as a single message, making
tensor fusion less beneficial than in A2A. Other
than pipelining, there is another opportunity for
performance improvement by priority scheduling.
In PS, there are two directions of communica-
tions: push of gradients and pull of parameters.
For each layer, the pull of parameters is common-
ly followed by the push of gradients. If the current
layer has a large tensor, it would block other lay-
ers with small tensors. ByteScheduler [14] is the
efficient scheduling strategy that partitions a large
tensor into multiple smaller ones and allows the
lower layers to be scheduled ahead of the higher
layers. By using the priority scheduling, it is possi-
ble to overlap the communication tasks with both
feed-forward and backpropagation computing
tasks [14, 15].

Comparative Study
To demonstrate the key factors that affect the
scalability of the optimization portfolio present-
ed above, we evaluate and compare the system
performance of seven representative distribut-
ed training methods listed in Table 1, which are
widely used in practice and serve as good exam-
ples to quantitatively study different optimization
techniques. BSP-PS and BSP-A2A are the base-
line cases without special optimization, which
are used to compare the efficiency of PS and
A2A. WFBP-PS and WFBP-A2A are with WFBP
scheduling, which can evaluate the effectiveness
of WFBP on different architectures. MG-WFBP

TABLE 1. Experimental settings for evaluation. For BytePS, as suggested by the official release, we use multi-
ple PSes whose amount is the same as the number of worker servers. Each worker server has multiple
workers (i.e., GPUs).

Method
System architecture

PS/All-to-all

Scheduling Distributed
software

Common
librariesPipelining Tensor fusion Tensor partition

BSP-PS [13] PS û û û BytePS

PyTorch-1.4
CUDA-10.1
NCCL-2.4.8

BSP-A2A [3, 11] All-to-all û û û Horovod

WFBP-PS [13] PS ü û û BytePS

WFBP-A2A [3, 11] All-to-all ü û û Horovod

MG-WFBP [3] All-to-all ü ü û Horovod

ByteScheduler-
PS [14]

PS ü û ü BytePS

ByteScheduler-
A2A [14]

All-to-all ü û ü Horovod

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication 6

uses tensor fusion to address the latency prob-
lem of WFBP-A2A. ByteScheduler-PS and Byte-
Scheduler-A2A are with both pipelining and
tensor partition under PS and A2A architectures,
respectively, which can show the performance
of tensor partition.

We choose three representative deep models
for evaluation, namely ResNet-50, BERT-Base,
and BERT-Large, which are commonly used in
image classification and natural language pro-
cessing. Their model intensities are 470, 249,
and 248, respectively. On RTX2080Ti, ResNet-50
and BERT-Base can support a local batch size of
64, while BERT-Large can only support 8. These
three models can well illustrate the impact of
model intensity and batch size on the system
scalability.

eXPerImentAl settIngs
Hardware: We conduct experiments on a

GPU cluster with RDMA over 100Gb/s IB. The
cluster consists of eight nodes (or worker serv-
ers). Each node has four Nvidia RTX2080Ti GPUs
(11GB RAM) interconnected by PCIe3.0 x16, two
Intel(R) Xeon(R) Gold 6230 CPUs, and 512GB
memory.

Software: We exploit PyTorch-1.4 (https://
pytorch.org/) as the backbone framework with
GPU libraries of CUDA-10.1, cuDNN-7.6 and
NCCL-2.4.8. We use the highly optimized libraries
of BytePS-0.2.0 and Horovod-0.19.2 for PS and
A2A architectures, respectively.

Measurements: We use the metric of system
throughput (i.e., samples per second) in pro-
cessing the data samples to evaluate the perfor-
mance. For ResNet-50, a sample is an image with
a resolution of 224  224  3; for BERT-Base and
BERT-Large, a sample is a sentence with a length
of 64 words. We use the SGD training with a sin-
gle RTX2080Ti as the baseline to calculate the
speedup. Note that when comparing the results
between diff erent number of workers, they have
different effective batch sizes and their conver-
gence might be diff erent.

eXPerImentAl results
Figure 4 depicts the experimental results, aver-
aged over five independent experiments. For
each run, we conduct 10 training iterations for
warm-up, and another 100 iterations for measur-
ing the average throughput. We summarize our
major fi ndings in Table 2.

Impact of Model Intensity and Batch Size:
ResNet-50 vs. BERT-Base: As the model inten-

sity of ResNet-50 is about twice as large as BERT-
Base, and their local batch sizes are both 64, the
C2C ratio of ResNet-50 is around half of BERT-
Base. Comparing Fig. 4a with Fig. 4b, we see that
ResNet-50 has much better scalability than BERT-
Base. For example, on the intra-node training with
four GPUs, we can achieve an optimal speedup
of 4 on ResNet-50, but only 3.1 on BERT-
Base; with 32 GPUs, ResNet-50 has a speedup
of 31.6, while BERT-Base has only 23.2. The
results confi rm that a model with higher intensity
is easier to be parallelized.

BERT-Base vs. BERT-Large: The model intensi-
ties of BERT-Base and BERT-Large are very close,
but the local batch size for BERT-Base is 8
larger than BERT-Large due to the smaller GPU
memory footprint. Therefore, the C2C ratio of
BERT-Large is about 8 higher than BERT-Base,
which makes BERT-Large much more diffi cult to
be parallelized, as confi rmed by comparing Fig.
4c with Fig. 4b. The smaller speedups of BERT-
Large are mainly due to the small batch size
and limited bandwidth of PCIe3.0. For example,
4-GPU training on BERT-Large has a maximum
of 1.2 speedup, while it is 3.1 for BERT-Base.
The small GPU memory size of RTX2080Ti and
the limited bandwidth of PCIe3.0 are not suit-
able for distributed training of BERT-Large. For
comparison, when training BERT-Large on a
much more expensive server with four Nvidia
V100 GPUs (with 32GB memory) interconnect-

FIGURE 4. System throughput comparison. I: model intensity. LBS: local batch size. The numbers on the top of the bars are the best
speedups among the seven evaluated methods over the single-GPU SGD algorithm: a) ResNet-50 (I = 470, LBS = 64); b) BERT-Base
(I = 249, LBS = 64); c) BERT-Large (I = 248, LBS = 8).

(a) ResNet-50 (I = 470, LBS = 64) (b) BERT-Base (I = 249, LBS = 64) (c) BERT-Large (I = 248, LBS = 8)

TABLE 2. Major fi ndings of experimental results.

Related factors Major fi ndings

Model intensity
and batch size

1) The model with higher model intensity is easier to be parallelized.
2) Increasing the batch size to reduce the C2C ratio makes the parallelism easier,
 but the maximum local batch size is limited by GPU memory.

PS vs. A2A
3) There is no single winner in PS and A2A. Both can achieve comparable
 performance when enhanced with different optimization algorithms. But PS
 needs extra servers and network switch ports to be competitive with A2A.

Scheduling

4) Wait-free backpropagation (WFBP) can generally hide some communication
 costs. Scheduling is helpful when the communication time is comparable to
 the computing time per worker.
5) Tensor fusion (e.g., MG-WFBP) is suitable for A2A because it addresses the
 ineffi ciency of transmitting small messages in A2A.
6) Tensor partition (e.g., ByteScheduler) is suitable for PS, which makes
 communications better overlapped with computations.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication7

ed by NVLink (with more than 10 higher band-
width than PCIe3.0), the local batch size can be
as large as 128, and we achieved a speedup of
3.82.

System Architecture–PS vs. A2A: It is well
known that the PS architecture with a single PS
does not scale well. In our evaluation on the PS
architecture, we use the same number of PSes
and worker servers [14]. Notice that in this set-
ting, the PS architecture consumes more network
switch ports and more total network bandwidth
than A2A.

Regarding BSP-PS and BSP-A2A without pipe-
lining, BSP-A2A outperforms BSP-PS in all cases.
However, when exploiting WFBP [13] to pipeline
communications with computations, WFBP-PS
outperforms WFBP-A2A, especially on 32 work-
ers. This is because the A2A architecture has a
non-negligible latency term that is logarithmic/lin-
ear to the number of workers with tree/ring-based
algorithms, and WFBP requires the gradients
aggregated tensor-wisely, resulting in noticeable
startup overheads [3]. The tensor fusion technique
[3] can well address this startup problem. As we
observe from Fig. 4, MG-WFBP achieves the best
speedup on BERT-Base (except with the case of
eight workers) and BERT-Large. But for ResNet-50
with higher model intensity, ByteScheduler-PS per-
forms slightly better than MG-WFBP. In summary,
there is no clear winner between PS and A2A.
Both architectures can achieve comparable per-
formance when equipped with suitable optimiza-
tion techniques. However, PS needs extra servers
and switch ports to keep the competitive edge
with A2A.

Scheduling: The idea of scheduling is to
overlap communication tasks with computing
tasks. Regarding the WFBP algorithm, in most
cases WFBP-PS and WFBP-A2A both run fast-
er than BSP-PS and BSP-A2A, respectively. But
WFBP-A2A sometimes suffers from the startup
latency problem as many small messages need
to be transferred, for example, under the case
of BERT-Base and BERT-Large with 32 workers.
MG-WFBP significantly improves the scalabili-
ty of WFBP-A2A, especially with a large num-
ber of workers. ByteScheduler-A2A schedules
the communications in the opposite direction
with MG-WFBP by partitioning tensors instead of
merging tensors, and its performance is not very
promising. However, with the PS architecture,
ByteScheduler-PS slightly outperforms WFBP-PS
in ResNet-50. This indicates that without bringing
extra heavy latency by partitioning tensors, com-
munications of partitioned tensors can be better
scheduled to overlap with backpropagation and
feed-forward computations [14]. In summary,
scheduling algorithms can improve the system
scalability by hiding the communication over-
head. However, when the communication time
dominates the training time (e.g., BERT-Large),
the overall speedup becomes rather limited and
we need to either improve the network speed or
consider lossy algorithms.

Challenges and Future Directions
Even though many techniques are proposed to
address the communication problem in distribut-
ed DL, some technical challenges remain open
to answer.

Communication Compression
As the model size increases, the communication
cost grows, which could result in a very high C2C
ratio. Lossless optimization algorithms in system
architecture design and scheduling can only
achieve marginal improvement since the com-
munication cost dominates the training time. The
communication compression techniques would
be useful to significantly reduce the communica-
tion traffic in such cases. The primary challenge
is how to maintain the model accuracy while
keeping the convergence performance. Existing
methods have proven that communication com-
pression can achieve the same asymptotic con-
vergence speed as vanilla SGD. Yet in practice,
with a very high compression ratio, it generally
requires more iterations to achieve the target loss
value. One possible direction is to set different
compression ratios for different layers to maximize
the exchanged information. Another possibility is
to dynamically set appropriate compression ratios
at different training iterations.

Automatically Selected System Architecture
The PS and A2A architectures are widely
deployed for the BSP algorithm in both industry
and academia. Intuitively, the A2A architecture
is more efficient than PS as it requires no central
servers, but A2A is more latency-sensitive than
PS. Furthermore, one can use multiple PSes to
reduce the central server’s network footprint.
More uncertainly, with different hardware config-
urations, model properties, and scheduling algo-
rithms, no solution is always better in all cases.
An interesting yet challenging problem is to build
mathematical performance models for both PS
and A2A according to the training environments
(e.g., the number of GPUs, network topology, link
bandwidth and latency, model properties, and so
on), so that a better architecture can be automati-
cally chosen for training the target model.

Generic Scheduling
According to the characteristics of distributed DL,
various scheduling algorithms try to maximize the
parallelism of computing tasks and communica-
tion tasks. However, these algorithms were built
upon the DAG of BSP with three types of tasks
(i.e., feed-forward, backpropagation, and gradi-
ent communication). The scheduling algorithm
only brings marginal improvement if the commu-
nication time is much longer than the computing
time. Although communication compression can
reduce the communication cost, current schedul-
ing methods are not directly applicable to the BSP
with gradient compression because compression
introduces extra non-negligible computational
costs and smaller communication traffic, which
makes the scheduling more difficult. One possi-
ble solution is to design a generic scheduler for
configured DAGs. The DAG would be changed
due to tensor partition or fusion. For the config-
ured DAG, the scheduler can use some heuristic
algorithms to search for the configuration with
better performance. Furthermore, current sched-
uling techniques such as MG-WFBP [3] and Byte-
Scheduler [14] take two opposite directions (i.e.,
tensor fusion and tensor partition) for schedul-
ing. In practice, no one is always better. An intel-
ligent scheduler should be adaptive to the training

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • Accepted for Publication 8

environment and dynamically determine whether
the tensors should be merged or partitioned to
achieve higher performance.

Conclusion
In this article, we gave an overview of the tech-
niques to address the communication challenges
in distributed deep learning. We first analyzed the
communication problems in distributed training
of deep learning models, and then presented a
taxonomy and survey of the existing state-of-the-
art technologies. We particularly focused on the
commonly used lossless methods and provided a
quantitative analysis to these methods based on
real-world experiments. Finally, we discussed the
challenges and possible future research directions
in this area.

Acknowledgments
The research was supported in part by Hong
Kong RGC GRF grants under the contracts HKBU
12200418, HKUST 16206417 and 16207818,
and in part by the National Natural Science Foun-
dation of China under Grant 62002240.

References
[1] J. Dean et al., “Large Scale Distributed Deep Networks,”

Advances in Neural Information Processing Systems, 2012,
pp. 1223–31.

[2] C. Chen, W. Wang, and B. Li, “Round-Robin Synchroniza-
tion: Mitigating Communication Bottlenecks in Parameter
Servers,” Proc. IEEE INFOCOM 2019-IEEE Conf. Computer
Commun., IEEE, 2019, pp. 532–40.

[3] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient Data Com-
munication for Distributed Synchronous SGD Algorithms,”
Proc. IEEE INFOCOM 2019-IEEE Conf. Computer Commun.,
IEEE, 2019, pp. 172–80.

[4] T. Lin et al., “Don’t Use Large Minibatches, Use Local SGD,”
Proc. Int’l. Conf. Learning Representations, 2020.

[5] X. Zhao et al., “Dynamic Stale Synchronous Parallel Distrib-
uted Training for Deep Learning,” Proc. 2019 IEEE 39th Int’l.
Conf. Distributed Computing Systems (ICDCS), IEEE, 2019,
pp. 1507–17.

[6] B. Recht et al., “Hogwild: A Lock-Free Approach to Paral-
lelizing Stochastic Gradient Descent,” Advances in Neural
Information Processing Systems, 2011, pp. 693–701.

[7] J. Bernstein et al., “signSGD: Compressed Optimisation for
Non-Convex Problems,” Proc. Int’l. Conf. Machine Learning,
2018, pp. 560–69.

[8] S. Shi et al., “A Distributed Synchronous SGD Algorithm with
Global Top-K Sparsification for Low Bandwidth Networks,”
Proc. 2019 IEEE 39th Int’l. Conf. Distributed Computing Sys-
tems (ICDCS), IEEE, 2019, pp. 2238–47.

[9] J. Xue et al., “Fast Distributed Deep Learning over RDMA,”
Proc. Fourteenth EuroSys Conf. 2019, 2019, pp. 1–14.

[10] S. Wang et al., “Impact of Network Topology on the Perfor-
mance of DML: Theoretical Analysis and Practical Factors,”
Proc. IEEE INFOCOM 2019-IEEE Conf. Computer Commun.,
IEEE, 2019, pp. 1729–37.

[11] P. Sanders, J. Speck, and J. L. Träff, “Two-Tree Algorithms
for Full Bandwidth Broadcast, Reduction and Scan,” Parallel
Computing, vol. 35, no. 12, 2009, pp. 581–94.

[12] M. Cho et al., “BlueConnect: Decomposing All-Reduce
for Deep Learning on Heterogeneous Network Hierarchy,”
Proc. Machine Learning and Systems 2019, MLSys 2019,
Stanford, CA, USA, Mar. 31–Apr. 2, 2019, 2019.

[13] H. Zhang et al., “Poseidon: An Efficient Communication
Architecture for Distributed Deep Learning on GPU Clus-
ters,” Proc. 2017 USENIX Annual Technical Conference (USE-
NIX ATC 17), 2017, pp. 181–93.

[14] Y. Peng et al., “A Generic Communication Scheduler for
Distributed DNN Training Acceleration,” Proc. 27th ACM
Symposium on Operating Systems Principles, ACM, 2019,
pp. 16–29.

[15] A. Jayarajan et al., “Priority-Based Parameter Propagation
for Distributed DNN Training,” Proc. Machine Learning and
Systems 2019, MLSys 2019, Stanford, CA, USA, Mar. 31–
Apr. 2, 2019, 2019.

Biographies
Shaohuai Shi (shaohuais@cse.ust.hk) received a B.E. degree in
software engineering from South China University of Technol-
ogy, P.R. China, in 2010, an M.S. degree in computer science
from Harbin Institute of Technology, P.R. China in 2013, and
a Ph.D. degree in computer science from Hong Kong Baptist
University in 2020. He is currently a research assistant professor
in the Department of Computer Science and Engineering at the
Hong Kong University of Science and Technology. His research
interests include GPU computing and machine learning systems.
He is a member of the IEEE.

Zhenheng Tang (zhtang@comp.hkbu.edu.hk) received a B.E.
degree in communication engineering from Huazhong Universi-
ty of Science and Technology, P.R. China, in 2018. He is a Ph.D.
student at Hong Kong Baptist University. His research interests
include GPU computing and distributed deep learning.

Xiaowen Chu (chxw@comp.hkbu.edu.hk) received a B.E.
degree in computer science from Tsinghua University, P.R.
China, in 1999, and a Ph.D. degree in computer science from
The Hong Kong University of Science and Technology in 2003.
Currently, he is a full professor in the Department of Computer
Science, Hong Kong Baptist University. His research interests
include parallel and distributed computing, cloud computing
and wireless networks. He is serving as an associate editor of
IEEE Access and IEEE Internet of Things Journal. He is a senior
member of the IEEE.

Chengjian Liu (liuchengjian@sztu.edu.cn) received his M.S.
degree from the College of Computer Science and Software
Engineering, Shenzhen University, P.R. China, in 2013, and his
Ph.D. degree in computer science from the Hong Kong Bap-
tist University in 2018. Currently, he is an assistant professor
in the College of Big Data and Internet, Shenzhen Technology
University. His research interests include distributed storage,
blockchain, and general-purpose GPU computing.

Wei Wang (weiwa@cse.ust.hk) received his B.Eng. (Hons.)
and M.Eng. degrees from Shanghai Jiao Tong University, and
a Ph.D. degree from the University of Toronto in 2015, all in
the Department of Electrical and Computer Engineering. He is
an assistant professor in the Department of Computer Science
and Engineering at the Hong Kong University of Science and
Technology (HKUST). He is also affiliated with the HKUST
Big Data Institute. His research interests cover the broad area
of distributed systems, with special emphasis on big data and
machine learning systems, cloud computing, and computer
networks in general.

Bo Li (bli@cse.ust.hk) received a B.Eng. in computer science
from Tsinghua University, Beijing and a Ph.D. degree in elec-
trical and computer engineering from the University of Mas-
sachusetts at Amherst. He is a professor in the Department of
Computer Science and Engineering, Hong Kong University of
Science and Technology. He was the chief technical advisor of
ChinaCache Corp. (NASDAQ CCIH), the largest CDN oper-
ator in China. He was a Cheung Kong visiting chair professor
with Shanghai Jiao Tong University (2010-2013) and an adjunct
researcher with Microsoft Research Asia (1999-2007) and with
Microsoft Advance Technology Center (2007-2009). His current
research interests include multimedia communications, Internet
content distribution, datacenter networking, cloud computing,
and wireless sensor networks. He made pioneering contribu-
tions in Internet video broadcast with the system Coolstreaming,
which was credited as the world first large-scale peer-to-peer live
video streaming system. The work appeared in IEEE INFOCOM
(2005) and received the IEEE INFOCOM 2015 Test-of-Time
Award. He has been an editor or a guest editor of more than
a dozen IEEE journals and magazines. He was the co-TPC chair
of IEEE INFOCOM 2004. He received five Best Paper Awards
from the IEEE. He received the Young Investigator Award from
Natural Science Foundation of China (NFSC) in 2005, and the
State Natural Science Award (2nd Class) from China in 2011.
He is a fellow of the IEEE.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore. Restrictions apply.

