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Abstract
Nowadays, large and complex deep learning 

(DL) models are increasingly trained in a distrib-
uted manner across multiple worker machines, in 
which extensive communications between work-
ers pose serious scaling problems. In this article, 
we present a quantitative survey of communi-
cation optimization techniques for data parallel 
distributed DL. We first identify the major com-
munication challenges and classify the existing 
solutions into three levels, namely the learning 
algorithm, the system architecture, and the net-
work infrastructure. We present the state-of-the-
art communication optimization techniques and 
conduct a comparative study of seven common 
lossless distributed DL methods on a 32-GPU clus-
ter with 100Gb/s InfiniBand (IB). We show that  
the DL models with low model intensity (such as 
BERT and BERT-Large) are difficult to scale out 
even with the best available lossless algorithm 
over 100Gb/s IB; and the system architecture and 
scheduling algorithms have a critical impact on 
the scaling property. We conclude the article with 
discussions of open issues for further investigation.

Introduction
The remarkable technological advances of deep 
learning (DL) have enabled a multitude of practi-
cal AI applications, ranging from computer vision 
to natural language processing and to robotics. In 
a typical DL workflow, deep neural network mod-
els are trained to solve a learning problem (e.g., 
image classification) on a labeled dataset; the 
trained models can then be used to make an infer-
ence given a new input (e.g., predicting the image 
label). Popular DL training algorithms include the 
standard mini-batch stochastic gradient descent 
(SGD) and its variants. These algorithms minimize 
a pre-defined loss function by iteratively updating 
the model parameters with stochastic gradients, 
calculated by sampling a mini-batch of data from 
the training set.

According to a recent study from OpenAI, the 
computational complexity required in DL training 
has doubled every 3.4 months since 2012, out-
pacing Moore’s Law. As the training data and the 
DL models grow exponentially larger (e.g., the 
BDD100K auto-driving dataset has 120 million 
images, and the BERT-xlarge language model has 
over 1 billion parameters), training deep mod-
els on a single GPU or TPU device results in an 
exceedingly long time. A common practice is to 
parallelize DL training across multiple processors1 

that collaboratively update the model parame-
ters. However, such distributed training requires 
iterative communications between processors, 
creating a severe performance bottleneck as the 
improvement of device interconnections lags far 
behind the rapidly increased computing power 
of AI processors. The result is the limited system 
scalability, as suggested by the Amdahl’s law. 
Therefore, how to address the communication 
bottlenecks in distributed DL has attracted great 
attention from both academia and industry in 
recent years.

Model parallelism and data parallelism are 
the two major parallelization schemes [1] that 
enable multiple processors to collaboratively train 
a single model. Model parallelism splits the set 
of model parameters and distributes them to all 
processors, but the high dependency between 
different neurons and the unbalanced parameter 
sizes in deep models make model parallelism dif-
ficult to scale out. Data parallelism, on the other 
hand, distributes the computational workload of 
different data samples to different processors that 
share the same set of model parameters. Com-
pared with model parallelism, data parallelism is 
more appealing due to its improved scalability 
and simpler implementation. In this article, we 
mainly focus on data parallelism.

Figure 1a illustrates the popular synchronized 
SGD algorithm for distributed DL with data par-
allelism, which has the same convergence perfor-
mance (in terms of the number of iterations) as 
SGD on a single worker. In this method, workers 
load different data samples to calculate the gradi-
ents independently; all gradients are aggregated 
to update the model parameters. Data parallel 
synchronous SGD can be modeled by a directed 
acyclic graph (DAG), as shown in Fig. 1b. The 
backpropagation computations of gradients are 
from the last layer to the first (denoted by bP–1, 
…, b1, b0), and the distributed gradients should 
be aggregated (denoted by cP–1, …, c1, c0) before 
going into the feed-forward computations (denot-
ed by f0, f1,…, fP–1) of the next iteration. The dis-
tributed synchronized SGD is also known as bulk 
synchronous parallel (BSP) SGD as it requires 
communication and synchronization in every iter-
ation. The gradients can be aggregated through 
one or more dedicated parameter servers (PS) [2] 
or by all-to-all (A2A) communications [3].

Much work has been proposed recently to 
improve the scalability of distributed DL. In this 
article, we develop a taxonomy for describing 
communication-efficient techniques in distributed 
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DL, and present a quantitative survey of commu-
nication optimization techniques for the BSP-style 
training algorithms. We identify the model inten-
sity and batch size as two key factors that aff ect 
the system scalability, and conduct a quantitative 
study to compare seven state-of-the-art distrib-
uted training methods on a 32-GPU cluster with 
100Gb/s IB. Our evaluation method and results 
can serve as a reference for practitioners to 
design their distributed DL platforms. (Our source 
code is publicly available at https://github.com/
HKBU-HPML/ddl-benchmarks). Our main obser-
vations through this study are:
• A model with low model intensity and small 

batch size (thus a high communication-to-com-
putation ratio) is diffi  cult to scale out. 

• The decentralized A2A architecture is more 
latency-sensitive than the centralized PS 
architecture, but the latter requires extra 
servers and network ports to achieve good 
performance. 

• Scheduling algorithms can be useful to hide 
the communication costs in both PS and 
A2A architectures. In particular, tensor fusion 
is suitable for A2A, while tensor partition is 
more suitable for PS.
The remainder of this article is organized as fol-

lows. We fi rst identify the communication issues 
and existing solutions in distributed DL. Then we 
elaborate commonly used communication optimi-
zation techniques, followed by our experimental 
study. Finally, we discuss the challenges and possi-
ble future research directions.

communIcAtIon Issues And solutIons
scoPe, AssumPtIons, And termInologIes

In this article, we mainly discuss the communi-
cation issues in data parallel distributed DL, and 
focus on the data center or HPC environments 
where network speed is high and stable.

In a typical data parallel distributed DL (e.g., 
BSP-SGD), each training iteration consists of sev-
eral steps. First, each worker loads a mini-batch 
of data as the input and performs feed-forward 
calculations to calculate the loss value against the 
corresponding labels. Next, each worker back-
propagates the loss and calculates the fi rst-order 
gradients of model parameters. The local gradi-
ents are aggregated among all workers, and the 
averaged gradients are fi nally used to update the 

model parameters. The algorithm proceeds to the 
next iteration, until a certain convergence condi-
tion is met. In this article, we assume data I/O can 
be overlapped with the computations, and hence 
will not consider the data I/O time.

Consider a training job of a deep model with 
D parameters that uses SGD with a mini-batch 
size of M. Assume the number of arithmetic oper-
ations required for a single data sample in each 
training iteration is C. A data parallelism solution 
with N workers will distribute the MC arithmetic 
operations to the N workers (e.g., each worker 
has a local mini-batch size of M/N). In the simplest 
case where communication tasks do not overlap 
with computing tasks, the speedup achieved by 
N workers is 

ts
ts N + tm

,

where ts is the computing time with a single work-
er, and tm is the communication time of distribut-
ed training with N workers. As N becomes larger, 
the speedup approaches ts/tm, which explains the 
significance of communication optimization in 
distributed DL. To eliminate the impact of com-
puting speed and communication speed on the 
analysis of speedup, we define the communica-
tion-to-computation (C2C) ratio of a distributed 
training job as the total amount of communica-
tion traffic divided by the total amount of com-
putations. Due to the dependency between 
communication tasks and computation tasks (Fig. 
1b), the C2C ratio is the key factor that aff ects the 
system scalability.

In practice, the total amount of communica-
tion traffic is linearly proportional to the model 
size D and also depends on the number of 
workers N. So we can use D · f(N) to model the 
amount of communication2 where f(N) depends 
on the communication scheme. The C2C ratio 
can then be calculated by 

D ⋅ f (N )
M ⋅C

.

We defi ne model intensity 

I = C
D
,

which is the average number of arithmetic oper-
ations in an iteration per data sample per model 
parameter. Here, I is an intrinsic feature of the 

FIGURE 1. Data parallelism of distributed DL: a) data parallelism; b) a DAG example.
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2 For simplicity, the unit of 
communication is the size of 
one model parameter or gra-
dient. But in practice, the size 
of a model parameter could 
be diff erent from the size of 
a gradient.
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model that captures the difficulty of parallelism. 
The C2C ratio can then be simplified as

f (N )
M ⋅ I

.

Our experimental results below verify that a 
model with low intensity I and/or small batch size 
M is difficult to scale. To reduce the C2C ratio of 
a given DL model, we need to design good com-
munication schemes with small f(N) and choose a 
large batch size M.

Communication Issues
We use the BERT-Large language model (with 
336 million parameters) as an example to illus-
trate the communication challenges in distributed 
training. Given a local batch size of 8 (which is 
limited by the available GPU memory size), each 
iteration requires 597  109 floating point oper-
ations (FLOPs) which take 163ms on an Nvid-
ia RTX2080Ti. There are several communication 
challenges that limit the system scalability of dis-
tributed training.

Communication Size: In each training itera-
tion, the whole set of model parameters or their 
gradients should be exchanged across all workers. 
The BERT-Large model has a size of 1.34GB if the 
parameters are stored in a 32-bit format. Given 
N workers, finding the average of N sets of data 
and synchronizing the updated model within a 
short time period can be very challenging. For 
instance, when training BERT-Large on a server 
with 4 RTX2080Ti connected through PCIe 3.0, 
each iteration requires 441ms of communication 
time for the all-reduce operations, resulting in a 
poor speedup of 1.08.

Communication Performance: Deep models 
have a layered structure, and the parameters and 
their corresponding gradients are typically stored 

as tens to hundreds of tensors. First of all, these ten-
sors are calculated layer by layer on the fly, creat-
ing intrinsic time dependency that limits the design 
space of scheduling computing and communica-
tion tasks. Second, the tensor size ranges from kilo-
bytes to mega-bytes. It is difficult to fully utilize the 
high network bandwidth when exchanging small 
messages [3]. For example, in our testbed, transmit-
ting 1MB of message across the 10GbE (TCP/IP), 
100GbE (TCP/IP), and 100GbIB (RDMA) achieves 
an effective throughput of 8.2Gb/s, 16.5Gb/s, and 
83.2Gb/s, respectively, while transmitting a smaller 
message of 16KB across the 10GbE, 100GbE, and 
100GbIB can only achieve much lower throughput 
of 1.2Gb/s, 4.6Gb/s, and 16.7Gb/s, respective-
ly. Optimally exchanging various tensors among 
a set of workers requires a co-design of message 
exchange algorithm and network system architec-
ture that considers both bandwidth and communi-
cation latency.

Solutions
There have been three different directions taken 
to address the above challenges: reducing the 
C2C ratio, overlapping the communication tasks 
with the computation tasks, and improving the 
communication performance by the advanced 
design of system architectures and communica-
tion primitives. In Fig. 2, we develop a three-level 
taxonomy to describe communication-efficient 
distributed DL.

Learning Algorithms: At the top, there are 
high-level learning algorithms with different com-
munication complexity (aiming to reduce the 
C2C ratio), which can be classified into two types: 
increasing the workload of computation (e.g., 
large-batch training [4]), and reducing the commu-
nication complexity by quantization and/or sparsi-
fication. These algorithms are usually lossy in the 
sense that they generate inconsistent results with 
the single-worker SGD. Lossy algorithms may need 
more iterations to achieve the same level of con-
vergence, though each iteration completes faster.

Large-batch training is an immediate way to 
reduce the C2C ratio by enlarging the batch size. 
With proper optimization tricks (e.g., layer-wise 
adaptive rate scaling), large-batch training can 
maintain the same generalization ability as sin-
gle-worker SGD. However, the local batch size is 
limited by the memory size of the AI processor.

We can also relax the synchronization or 
reduce the communication frequency among 
workers (e.g., staled synchronized parallel (SSP) 
[5], local SGD [4], and asynchronous parallel 
(ASP) [6] SGD). SSP SGD allows some workers 
to run more iterations before synchronization, 
which is efficient in a heterogeneous environment 
where different workers have different computing 
horsepower. Local SGD allows all workers to run 
a specific number of local updates independent-
ly before synchronization. ASP SGD enables all 
workers to train the model without waiting for 
any other workers to update the model param-
eters. Compression techniques such as gradient 
quantization [7] and sparsification [8] are another 
thread of lossy algorithms. Gradient quantization 
quantifies each gradient into a few bits with little 
impact on the convergence, while gradient sparsi-
fication selects a small portion of the gradients for 
model updates.

FIGURE 2. A three-level taxonomy of communication-efficient distributed DL.
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System Architectures: The middle level is the 
system architectures that define how the work-
ers exchange the information. Parameter server 
(PS) (e.g., [2]) and all-to-all (A2A) (e.g., [3]) are 
the two most popular system architectures, and 
they can be equipped with different communica-
tion scheduling algorithms that can either overlap 
communication with computation or improve the 
communication performance by tensor fusion/
partition. PS is a centralized architecture that 
requires one or more central servers to manage 
the model parameters, while A2A is a decentral-
ized architecture that exploits message passing 
interface (MPI) or alike to perform data commu-
nication tasks. The optimization techniques in this 
level are usually lossless as they do not change 
the training results of the learning algorithms.

Communication Infrastructure: At the bottom 
level, there are diverse communication infrastruc-
tures offering fundamental data communication 
services, which include communication protocols 
and network topologies. The optimization tech-
niques in this level are also lossless.

Popular communication protocols are TCP/IP, 
RDMA on InfiniBand, and RoCE. TCP/IP is widely 
supported by commodity Ethernet switches. How-
ever, it is inefficient for high-speed data communi-
cations due to the cost of data copy between the 
kernel buffer and the application buffer. RDMA 
can deliver lower latency and higher throughput 
than TCP/IP [9]. RDMA was originally run on 
InfiniBand, while RoCE (RDMA over converged 
Ethernet) enables the cheaper Ethernet to support 
RDMA. Network topology design is also import-
ant to improve the performance of distributed DL. 
For example, Wang et al. [10] showed that BCube 
is more suitable than Fat-tree for distributed DL.

In summary, a distributed training meth-
od may involve six different aspects: � 
Communication Synchronization, �  Communi-
cation Compression, � System Architecture, �  
Scheduling, � Communication Protocol, and � 
Network Topology. This can be described as “it 
exploits � with/without �, running on � with/
without � building on � and �.” In practice, 
BSP SGD with large-batch training is more pop-
ular than the other learning algorithms due to its 

good convergence property. Therefore, given a 
GPU cluster with a fixed communication infra-
structure, the system architecture and schedul-
ing algorithms become the key communication 
optimization techniques to improve the system 
scalability. In the next section, we continue to 
discuss the impact of system architectures and 
scheduling algorithms on the performance of 
distributed DL.

A Popular Communication Optimization Portfolio
In this section, we focus on the communication 
optimization techniques in system architecture 
design and scheduling algorithms. These tech-
niques are lossless, making them particularly 
appealing to industry practitioners because model 
accuracy is the most important for many AI appli-
cations. Figure 3 gives an illustration of the com-
munication optimization techniques.

System Architectures
PS and A2A represent two different design philos-
ophies, with different communication properties.

Parameter Server (PS): In the PS architec-
ture, a PS is logically a central server that aggre-
gates the gradients from the workers, updates 
the model parameters, and sends back the latest 
model to the workers. It provides a simple and 
flexible framework for the system implementation. 
However, since PS needs to receive gradients 
from and send parameters (or averaged gradi-
ents) to all workers, it could easily become the 
system bottleneck in the BSP algorithm where all 
workers communicate with the PS almost simulta-
neously. With a single PS, the communication traf-
fic is 2D for each worker and 2ND for the PS. To 
alleviate the communication pressure on a single 
PS, one can deploy multiple PSes.

Here we introduce a representative PS imple-
mentation called BytePS (https://github.com/
bytedance/byteps), a highly optimized framework 
that supports multiple PSes by partitioning the gra-
dient tensors in a load-balanced manner. Given S 
PSes, the D-dimensional gradient is partitioned 
into D/S parts so that each PS receives ND/S gra-
dients from N workers. The received N gradient 
tensors are averaged on the server side and sent 

FIGURE 3. A communication optimization portfolio in distributed DL.
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back to all N workers. Therefore, the communica-
tion traffic of each PS is reduced to 2ND/S.

All-to-all (A2A): The average of the distributed 
gradient or parameter tensors can be calculated 
by an A2A operation, for example, the all-reduce 
primitive in MPI. The ring-based all-reduce collec-
tive is commonly used in distributed DL, which 
is bandwidth optimal by dividing the tensors into 
small messages and exchanging those messages 
simultaneously in a pipelined manner. However, 
ring-based all-reduce has a latency term that is lin-
ear to the number of workers, which becomes 
inefficient for large clusters. In the high-perfor-
mance communication library (NCCL (https://
developer.nvidia.com/nccl)), the double binary 
trees algorithm [11] is integrated for dense-GPU 
clusters, which delivers a logarithmic latency while 
preserving the bandwidth optimality. For some het-
erogeneous networking environments, using the 
hierarchy of communication bandwidths could fur-
ther improve the communication efficiency [12].

Horovod (https://github.com/horovod/hor-
ovod) is a popular distributed DL framework 
built for the A2A architecture and supports many 
state-of-the-art distributed communication libraries 
(e.g., MPI, NCCL, and Gloo (https://github.com/
facebookincubator/gloo)).

Scheduling
During the training process of distributed DL, 
the computing and communication tasks can 
be described by a DAG. The layer-wise (or ten-
sor-wise) structure of deep models makes it possi-
ble to schedule different tasks intelligently so that 
part of the communication cost can be hidden, as 
shown in Fig.3 �.

Layer-Wise Pipelining and Tensor Fusion: A 
deep model consists of a stack of layers, and the 
learnable parameters of each layer are generally 
represented by one or two tensors. During the 
backpropagation, if the gradients of layer P have 
been computed, then they can be immediately 
communicated so that the communication task 
can be pipelined with the computing task of layer 
P – 1. The naive pipelining between communica-
tions and computations during backpropagation 
is also called wait-free backpropagation (WFBP) 
[13], which can be applied to both PS and A2A 
architectures.

In A2A with pipelining, an all-reduce operation 
is required for each tensor, which usually divides 
the tensor into multiple small messages. Consid-
ering that transmitting two small messages togeth-
er is generally faster than transmitting the two 
messages separately (e.g., in our 100Gb/s Infini-
Band cluster, transmitting a 16KiB message takes 
7.85us, while transmitting a 32KiB message takes 
10.1us), the MG-WFBP algorithm adopts the idea 
of tensor fusion by optimally merging the gradi-
ents of several consecutive layers to minimize the 
iteration time [3]. Tensor fusion can effectively 
alleviate the negative impact of transmitting small 
messages.

Tensor Partitioning and Priority Scheduling: 
In the PS architecture, the communication hap-
pens between a worker and a PS and a tensor 
can be transmitted as a single message, making 
tensor fusion less beneficial than in A2A. Other 
than pipelining, there is another opportunity for 
performance improvement by priority scheduling. 
In PS, there are two directions of communica-
tions: push of gradients and pull of parameters. 
For each layer, the pull of parameters is common-
ly followed by the push of gradients. If the current 
layer has a large tensor, it would block other lay-
ers with small tensors. ByteScheduler [14] is the 
efficient scheduling strategy that partitions a large 
tensor into multiple smaller ones and allows the 
lower layers to be scheduled ahead of the higher 
layers. By using the priority scheduling, it is possi-
ble to overlap the communication tasks with both 
feed-forward and backpropagation computing 
tasks [14, 15].

Comparative Study
To demonstrate the key factors that affect the 
scalability of the optimization portfolio present-
ed above, we evaluate and compare the system 
performance of seven representative distribut-
ed training methods listed in Table 1, which are 
widely used in practice and serve as good exam-
ples to quantitatively study different optimization 
techniques. BSP-PS and BSP-A2A are the base-
line cases without special optimization, which 
are used to compare the efficiency of PS and 
A2A. WFBP-PS and WFBP-A2A are with WFBP 
scheduling, which can evaluate the effectiveness 
of WFBP on different architectures. MG-WFBP 

TABLE 1. Experimental settings for evaluation. For BytePS, as suggested by the official release, we use multi-
ple PSes whose amount is the same as the number of worker servers. Each worker server has multiple 
workers (i.e., GPUs).

Method
System architecture 

PS/All-to-all

Scheduling Distributed 
software

Common 
librariesPipelining Tensor fusion Tensor partition

BSP-PS [13] PS û û û BytePS 

PyTorch-1.4 
CUDA-10.1 
NCCL-2.4.8

BSP-A2A [3, 11] All-to-all û û û Horovod

WFBP-PS [13] PS ü û û BytePS 

WFBP-A2A [3, 11] All-to-all ü û û Horovod

MG-WFBP [3] All-to-all ü ü û Horovod

ByteScheduler-
PS [14]

PS ü û ü BytePS

ByteScheduler-
A2A [14]

All-to-all ü û ü Horovod

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • Accepted for Publication 6

uses tensor fusion to address the latency prob-
lem of WFBP-A2A. ByteScheduler-PS and Byte-
Scheduler-A2A are with both pipelining and 
tensor partition under PS and A2A architectures, 
respectively, which can show the performance 
of tensor partition.

We choose three representative deep models 
for evaluation, namely ResNet-50, BERT-Base, 
and BERT-Large, which are commonly used in 
image classification and natural language pro-
cessing. Their model intensities are 470, 249, 
and 248, respectively. On RTX2080Ti, ResNet-50 
and BERT-Base can support a local batch size of 
64, while BERT-Large can only support 8. These 
three models can well illustrate the impact of 
model intensity and batch size on the system 
scalability.

eXPerImentAl settIngs
Hardware: We conduct experiments on a 

GPU cluster with RDMA over 100Gb/s IB. The 
cluster consists of eight nodes (or worker serv-
ers). Each node has four Nvidia RTX2080Ti GPUs 
(11GB RAM) interconnected by PCIe3.0 x16, two 
Intel(R) Xeon(R) Gold 6230 CPUs, and 512GB 
memory.

Software: We exploit PyTorch-1.4 (https://
pytorch.org/) as the backbone framework with 
GPU libraries of CUDA-10.1, cuDNN-7.6 and 
NCCL-2.4.8. We use the highly optimized libraries 
of BytePS-0.2.0 and Horovod-0.19.2 for PS and 
A2A architectures, respectively.

Measurements: We use the metric of system 
throughput (i.e., samples per second) in pro-
cessing the data samples to evaluate the perfor-
mance. For ResNet-50, a sample is an image with 
a resolution of 224  224  3; for BERT-Base and 
BERT-Large, a sample is a sentence with a length 
of 64 words. We use the SGD training with a sin-
gle RTX2080Ti as the baseline to calculate the 
speedup. Note that when comparing the results 
between diff erent number of workers, they have 
different effective batch sizes and their conver-
gence might be diff erent.

eXPerImentAl results
Figure 4 depicts the experimental results, aver-
aged over five independent experiments. For 
each run, we conduct 10 training iterations for 
warm-up, and another 100 iterations for measur-
ing the average throughput. We summarize our 
major fi ndings in Table 2.

Impact of Model Intensity and Batch Size:
ResNet-50 vs. BERT-Base: As the model inten-

sity of ResNet-50 is about twice as large as BERT-
Base, and their local batch sizes are both 64, the 
C2C ratio of ResNet-50 is around half of BERT-
Base. Comparing Fig. 4a with Fig. 4b, we see that 
ResNet-50 has much better scalability than BERT-
Base. For example, on the intra-node training with 
four GPUs, we can achieve an optimal speedup 
of 4  on ResNet-50, but only 3.1 on BERT-
Base; with 32 GPUs, ResNet-50 has a speedup 
of 31.6, while BERT-Base has only 23.2. The 
results confi rm that a model with higher intensity 
is easier to be parallelized.

BERT-Base vs. BERT-Large: The model intensi-
ties of BERT-Base and BERT-Large are very close, 
but the local batch size for BERT-Base is 8
larger than BERT-Large due to the smaller GPU 
memory footprint. Therefore, the C2C ratio of 
BERT-Large is about 8 higher than BERT-Base, 
which makes BERT-Large much more diffi  cult to 
be parallelized, as confi rmed by comparing Fig. 
4c with Fig. 4b. The smaller speedups of BERT-
Large are mainly due to the small batch size 
and limited bandwidth of PCIe3.0. For example, 
4-GPU training on BERT-Large has a maximum 
of 1.2 speedup, while it is 3.1 for BERT-Base. 
The small GPU memory size of RTX2080Ti and 
the limited bandwidth of PCIe3.0 are not suit-
able for distributed training of BERT-Large. For 
comparison, when training BERT-Large on a 
much more expensive server with four Nvidia 
V100 GPUs (with 32GB memory) interconnect-

FIGURE 4. System throughput comparison. I: model intensity. LBS: local batch size. The numbers on the top of the bars are the best 
speedups among the seven evaluated methods over the single-GPU SGD algorithm: a) ResNet-50 (I = 470, LBS = 64); b) BERT-Base 
(I = 249, LBS = 64); c) BERT-Large (I = 248, LBS = 8).

(a) ResNet-50 ( I = 470, LBS = 64) (b) BERT-Base (I = 249, LBS = 64) (c) BERT-Large ( I = 248, LBS = 8)

TABLE 2. Major fi ndings of experimental results.

Related factors Major fi ndings

Model intensity 
and batch size

1) The model with higher model intensity is easier to be parallelized. 
2) Increasing the batch size to reduce the C2C ratio makes the parallelism easier,
     but the maximum local batch size is limited by GPU memory.

PS vs. A2A
3) There is no single winner in PS and A2A. Both can achieve comparable
     performance when enhanced with different optimization algorithms. But PS
     needs extra servers and network switch ports to be competitive with A2A.

Scheduling

4) Wait-free backpropagation (WFBP) can generally hide some communication
     costs. Scheduling is helpful when the communication time is comparable to
     the computing time per worker. 
5) Tensor fusion (e.g., MG-WFBP) is suitable for A2A because it addresses the
     ineffi ciency of transmitting small messages in A2A. 
6) Tensor partition (e.g., ByteScheduler) is suitable for PS, which makes
     communications better overlapped with computations.
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ed by NVLink (with more than 10 higher band-
width than PCIe3.0), the local batch size can be 
as large as 128, and we achieved a speedup of 
3.82.

System Architecture–PS vs. A2A: It is well 
known that the PS architecture with a single PS 
does not scale well. In our evaluation on the PS 
architecture, we use the same number of PSes 
and worker servers [14]. Notice that in this set-
ting, the PS architecture consumes more network 
switch ports and more total network bandwidth 
than A2A.

Regarding BSP-PS and BSP-A2A without pipe-
lining, BSP-A2A outperforms BSP-PS in all cases. 
However, when exploiting WFBP [13] to pipeline 
communications with computations, WFBP-PS 
outperforms WFBP-A2A, especially on 32 work-
ers. This is because the A2A architecture has a 
non-negligible latency term that is logarithmic/lin-
ear to the number of workers with tree/ring-based 
algorithms, and WFBP requires the gradients 
aggregated tensor-wisely, resulting in noticeable 
startup overheads [3]. The tensor fusion technique 
[3] can well address this startup problem. As we 
observe from Fig. 4, MG-WFBP achieves the best 
speedup on BERT-Base (except with the case of 
eight workers) and BERT-Large. But for ResNet-50 
with higher model intensity, ByteScheduler-PS per-
forms slightly better than MG-WFBP. In summary, 
there is no clear winner between PS and A2A. 
Both architectures can achieve comparable per-
formance when equipped with suitable optimiza-
tion techniques. However, PS needs extra servers 
and switch ports to keep the competitive edge 
with A2A.

Scheduling: The idea of scheduling is to 
overlap communication tasks with computing 
tasks. Regarding the WFBP algorithm, in most 
cases WFBP-PS and WFBP-A2A both run fast-
er than BSP-PS and BSP-A2A, respectively. But 
WFBP-A2A sometimes suffers from the startup 
latency problem as many small messages need 
to be transferred, for example, under the case 
of BERT-Base and BERT-Large with 32 workers. 
MG-WFBP significantly improves the scalabili-
ty of WFBP-A2A, especially with a large num-
ber of workers. ByteScheduler-A2A schedules 
the communications in the opposite direction 
with MG-WFBP by partitioning tensors instead of 
merging tensors, and its performance is not very 
promising. However, with the PS architecture, 
ByteScheduler-PS slightly outperforms WFBP-PS 
in ResNet-50. This indicates that without bringing 
extra heavy latency by partitioning tensors, com-
munications of partitioned tensors can be better 
scheduled to overlap with backpropagation and 
feed-forward computations [14]. In summary, 
scheduling algorithms can improve the system 
scalability by hiding the communication over-
head. However, when the communication time 
dominates the training time (e.g., BERT-Large), 
the overall speedup becomes rather limited and 
we need to either improve the network speed or 
consider lossy algorithms.

Challenges and Future Directions
Even though many techniques are proposed to 
address the communication problem in distribut-
ed DL, some technical challenges remain open 
to answer.

Communication Compression
As the model size increases, the communication 
cost grows, which could result in a very high C2C 
ratio. Lossless optimization algorithms in system 
architecture design and scheduling can only 
achieve marginal improvement since the com-
munication cost dominates the training time. The 
communication compression techniques would 
be useful to significantly reduce the communica-
tion traffic in such cases. The primary challenge 
is how to maintain the model accuracy while 
keeping the convergence performance. Existing 
methods have proven that communication com-
pression can achieve the same asymptotic con-
vergence speed as vanilla SGD. Yet in practice, 
with a very high compression ratio, it generally 
requires more iterations to achieve the target loss 
value. One possible direction is to set different 
compression ratios for different layers to maximize 
the exchanged information. Another possibility is 
to dynamically set appropriate compression ratios 
at different training iterations.

Automatically Selected System Architecture
The PS and A2A architectures are widely 
deployed for the BSP algorithm in both industry 
and academia. Intuitively, the A2A architecture 
is more efficient than PS as it requires no central 
servers, but A2A is more latency-sensitive than 
PS. Furthermore, one can use multiple PSes to 
reduce the central server’s network footprint. 
More uncertainly, with different hardware config-
urations, model properties, and scheduling algo-
rithms, no solution is always better in all cases. 
An interesting yet challenging problem is to build 
mathematical performance models for both PS 
and A2A according to the training environments 
(e.g., the number of GPUs, network topology, link 
bandwidth and latency, model properties, and so 
on), so that a better architecture can be automati-
cally chosen for training the target model.

Generic Scheduling
According to the characteristics of distributed DL, 
various scheduling algorithms try to maximize the 
parallelism of computing tasks and communica-
tion tasks. However, these algorithms were built 
upon the DAG of BSP with three types of tasks 
(i.e., feed-forward, backpropagation, and gradi-
ent communication). The scheduling algorithm 
only brings marginal improvement if the commu-
nication time is much longer than the computing 
time. Although communication compression can 
reduce the communication cost, current schedul-
ing methods are not directly applicable to the BSP 
with gradient compression because compression 
introduces extra non-negligible computational 
costs and smaller communication traffic, which 
makes the scheduling more difficult. One possi-
ble solution is to design a generic scheduler for 
configured DAGs. The DAG would be changed 
due to tensor partition or fusion. For the config-
ured DAG, the scheduler can use some heuristic 
algorithms to search for the configuration with 
better performance. Furthermore, current sched-
uling techniques such as MG-WFBP [3] and Byte-
Scheduler [14] take two opposite directions (i.e., 
tensor fusion and tensor partition) for schedul-
ing. In practice, no one is always better. An intel-
ligent scheduler should be adaptive to the training 

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 13:08:02 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • Accepted for Publication 8

environment and dynamically determine whether 
the tensors should be merged or partitioned to 
achieve higher performance.

Conclusion
In this article, we gave an overview of the tech-
niques to address the communication challenges 
in distributed deep learning. We first analyzed the 
communication problems in distributed training 
of deep learning models, and then presented a 
taxonomy and survey of the existing state-of-the-
art technologies. We particularly focused on the 
commonly used lossless methods and provided a 
quantitative analysis to these methods based on 
real-world experiments. Finally, we discussed the 
challenges and possible future research directions 
in this area.
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