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Abstract
Dataflow computation dominates the landscape of big data

processing, in which a program is structured as a directed
acyclic graph (DAG) of operations. As dataflow computa-
tion consumes extensive resources in clusters, making sense
of its performance becomes critically important. This, how-
ever, can be difficult in practice due to the complexity of
DAG execution. In this paper, we propose a new approach
that learns to characterize the performance of dataflow com-
putation based on code analysis. Unlike existing perfor-
mance reasoning techniques, our approach requires no code
instrumentation and applies to a wide variety of dataflow
frameworks. Our key insight is that the source code of an
operation contains learnable syntactic and semantic patterns
that reveal how it uses resources. Our approach establishes
a performance-resource model that, given a dataflow pro-
gram, infers automatically how much time each operation
has spent on each resource (e.g., CPU, network, disk) from
past execution traces and the program source code, using ma-
chine learning techniques. We then use the model to pre-
dict the program runtime under varying resource configu-
rations. We have implemented our solution as a CLI tool
called CrystalPerf. Extensive evaluations in Spark, Flink,
and TensorFlow show that CrystalPerf can predict job per-
formance under configuration changes in multiple resources
with high accuracy. Real-world case studies further demon-
strate that CrystalPerf can accurately detect runtime bottle-
necks of DAG jobs, simplifying performance debugging.

1 Introduction

Dataflow frameworks are deployed widely in the cloud for
distributed machine learning (e.g., TensorFlow [2]), process-
ing data streams (e.g., Flink [11]), and analyzing big data
(e.g., Spark [81]). Dataflow frameworks provide a library
of built-in operations (e.g., map, reduce, and tensor opera-
tors), which programmers use to compose a data processing
pipeline, structured as a directed acyclic graph (DAG) of op-
erations. Data flows between these operations and is thereby

transformed. The framework schedules DAG executions as
parallel tasks on a cluster of machines.

However, dataflow computation routinely faces various
performance issues such as resource contention, inefficient
configuration, and poor scalability. Due to the complexity
of DAG executions, troubleshooting performance issues in
dataflow computation usually demands painstaking efforts
even for skilled programmers [19, 82, 84].

A leading factor that makes performance debugging diffi-
cult is the lack of handy toolchains that can provide useful
performance-resource information with actionable advices.
Existing tools provided by popular frameworks often gener-
ate an overwhelming amount of low-level execution traces,
which inexperienced developers may find difficult to even
make sense of them. Many system solutions have hence
been developed recently to simplify performance reasoning,
but they either are designed for a specific framework (e.g.,
[31, 54, 55]) or require modifying the framework’s source
code with intrusive instrumentation (e.g., [34, 54]). As the
codebases of dataflow frameworks are evolving rapidly, the
instrumentation code itself needs to be updated frequently,
mandating even more, repeated labor.

In this paper, we present CrystalPerf1, a new performance
characterization tool that requires no code instrumentation
while generally applicable to an array of batch dataflow
frameworks. Central to our design is a learning-based
performance-resource model that, for a dataflow job (pro-
gram), infers from the execution traces and the program
source code how much time each operation has spent on dif-
ferent resources (e.g., CPU, network, disk). The model can
then predict the program runtime under varying configura-
tions or identify abnormal resource uses in execution.

CrystalPerf builds the performance-resource model for a
dataflow job in two stages. In the first stage, it constructs a
DAG execution profile (§4.2) from the log traces generated
by the built-in profilers, where each node of the DAG repre-

1Our tool serves as a crystal sphere where users can tell the performance
of their dataflow jobs, either performance issues in the past execution or
performance prediction in what-if scenarios.



sents an operation. For each operation, it extracts the execu-
tion details from the log traces, including the start and finish
time, and the call trace of the executed functions. It then lo-
cates the source code of those functions in the framework’s
codebase for further analysis.

In the second stage, CrystalPerf infers the resource use
of each operation, characterized by the resource-time which
measures the time proportion the operation spends on a re-
source type (e.g., 30% runtime on CPU, 70% on network).
However, many frameworks provide no such information in
the log traces, nor can it be obtained using common profiling
tools. To tackle this challenge, our key insight is that how
an operation uses resources can be largely characterized
by analyzing its source code.2 For example, an operation
containing many routines for data compression (data trans-
fer) is likely CPU-bound (network-bound). In fact, many
dataflow frameworks implement operations using low-level
functions provided by standard open-source toolkits and li-
braries (e.g., Netty [17], Akka [4], Parquet [18]), where ex-
perienced developers can clearly identify the bottleneck re-
sources by just reading the source code of those functions.
Our approach imitates this process with neural network clas-
sifiers that learn the resource use by analyzing the syntactic
and semantic patterns of the function code (§3.2). The clas-
sifiers are trained using the source code of low-level func-
tions (e.g., network and I/O primitives) collected from pop-
ular open-source projects with clear indications of resource
uses. The trained classifiers can then be used in any frame-
work and language.

Combining the DAG execution profile and the inferred
resource-time, CrystalPerf can easily detect the performance
bottleneck or abnormal resource uses. CrystalPerf can also
predict the job performance in what-if scenarios (e.g., “how
would the runtime change if the network is upgraded from
1Gbps to 10Gbps?”) by simulating the DAG execution un-
der the assumed configuration (§5).

We have implemented CrystalPerf as a CLI tool (§6) with
support of batch computations of Spark, TensorFlow, and
limited cases of Flink [11]. To demonstrate its efficacy
(§7), we use CrystalPerf to predict the runtime changes of
dataflow jobs under varying configurations. Across six stan-
dard benchmarking workloads running in three frameworks,
CrystalPerf predicts within an average deviation of 13.47%.
Even compared with Monotasks [54], a meticulously archi-
tected Spark implementation for performance clarity, Crys-
talPerf makes runtime predictions with comparable accu-
racy. We highlight the framework generalizability and per-
formance advantage of CrystalPerf over the existing dataflow
characterization approaches in Figure 1. We further show
through three real-world case studies that CrystalPerf can
help troubleshoot various performance issues that are oth-
erwise difficult to reason about for non-expert programmers.

2The source code includes both the program code and the associated
documentation such as Javadoc.
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Figure 1: For performance reasoning, we compare Crys-
talPerf with existing works by answering “On which features
can they predict the performance of what systems within how
much deviation?”

2 Background and Motivation

In this section, we motivate the need of performance charac-
terization for dataflow programs, where the key is to identify
the performance-resource relationship (§2.1). We survey ex-
isting solutions and discuss their limitations, which are also
the challenges we shall address (§2.2).

2.1 Performance Characterization
Performance characterization plays an indispensable role in
the development of dataflow applications. Consider a pro-
grammer following the typical development workflow of
coding, debugging, and optimizing. If the program runs
much slower than expected, she may ask, “Is there any re-
source malfunctioning [28, 36]?” After fixing those issues,
she may want to accelerate its execution, wondering, “What
would happen if I put in use more resources [32,38]?” If the
performance remains unsatisfactory, she has to optimize the
implementation, typically starting with the question, “What
resource is the bottleneck during execution [34]?”

Understanding the performance of dataflow programs also
allows cluster operators to better schedule DAG jobs and
tune their configurations. State-of-the-art cluster schedulers
need to predict how long each task of a DAG job would take
if given a certain amount of resources [26, 27, 51, 71]; when
deploying a user’s job, the operator also wants to tune the
optimal configuration for fast job execution [5, 33].

The key to performance characterization is to identify the
performance-resource relationship. For example, bottleneck
detection and performance debugging can be done by know-
ing how much time the job spends on each resource; what-if
questions, runtime estimation and configuration tuning re-
quires predicting how long a job (or its tasks) would take
under a different resource configuration.

However, characterizing the performance-resource rela-
tionship for dataflow programs is difficult. During execution,
different operations may bottleneck on different resources,
e.g., data compression being CPU-intensive, file writing



disk-intensive. For some operations like map in Spark, the ac-
tual bottleneck resource depends critically on the input (the
map functions applied to an RDD). To make the problem even
more complicated, some operations like join and shuffle
require cross-machine synchronization and data communi-
cation. In practice, even skilled programmers cannot avoid
painstakingly reasoning about and troubleshooting perfor-
mance issues [19, 82, 84].

2.2 Related Work and Challenges

Existing profiling tools provided by popular dataflow frame-
works produce an overwhelming amount of low-level traces,
in which the relevant performance information is easily
drowned out. Take TensorFlow as an example. When train-
ing ResNet50, the profiling traces of a single iteration in-
clude around 9,500 tensors, 3,000 operators, and 5,600 mem-
ory operations [1]. In fact, almost no built-in profilers pro-
vide high-level actionable advices for performance debug-
ging. Many performance characterization tools have hence
been developed recently for dataflow computation. However,
they cannot fully tackle the challenges as summarized below.

Challenge 1: No explicit resource-time information.
Though Linux (and other Unix-like systems) provides built-
in utilities for time accounting and device monitoring, profil-
ing the program’s resource-time (how long the program spent
on each resource type) remains elusive. Linux’s I/O moni-
toring mechanism is mainly used for throughput tracing. For
example, the per-process statistics given in /proc [49] only
report the total amounts of read/written characters/bytes or
sent/received bytes/packets. Without knowing the effective
bandwidth and the data exchange size in execution, the ac-
tual I/O time cannot be estimated correctly. The counter-
based observability tool perf and the industrial toolchains
built on it [63] share the same problem.

The missing resource-time information cannot be uncov-
ered by the recently proposed profiling tools either. No-
tably, SnailTrail [34] finds the critical path in distributed
dataflow, but focuses on coarse-grained activities instead of
fine-grained resource use information; Ernest [74] builds
the performance model for advanced analytics like machine
learning, but only includes input size and cluster scale as pa-
rameters. The lack of resource-time information limits their
ability in addressing the resource-related issues.

Challenge 2: Heterogeneous hardware behavior. Het-
erogeneous hardware further complicates the performance
model as dataflow operations usually have different resource
patterns (e.g., data compression being CPU-intensive, file
writing disk-intensive). Two approaches have been proposed
in the literature. Whitebox approaches such as Starfish [31]
build a detailed performance model for MapReduce execu-
tion, which cannot be applied to other frameworks. Black-
box approaches, such as CherryPick [5] and Ernest [74], con-
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Figure 2: When a node (operation) is executing, attached is
a sampling profiler for periodically sampling the call stacks.
For each node, we build an execution profile to organize its
resource-time information.

struct statistical machine learning models to correlate the re-
source allocations with the job performance, but it has to re-
peat the training process for each job type, making it time-
consuming for ad-hoc or non-recurrent jobs.

Challenge 3: Cross-framework support. As dataflow
computation prevails in a wide range of frameworks and ap-
plication domains [2,11,12,42,47,48,79,81], a general solu-
tion with cross-framework support is highly desirable. How-
ever, many existing works are tailored to a certain frame-
work, e.g., AROMA [43], ARIA [75], Elastisizer [33] and
Starfish [31] building specialized models for MapReduce
programs, and DAC [80] designing an algorithm for tuning
Spark jobs. Their designs are built on the internal details of
the target frameworks and cannot be ported to other systems.

Our Answer In the coming sections, we incrementally
develop our solution CrystalPerf to address the three chal-
lenges. We start to show in §3 that the time an operation
spends on each type of resource can be learned from the
source code and its call trace (addressing Challenge 1), us-
ing neural network classifiers which, once trained, can be ap-
plied to any framework and language (addressing Challenge
3). We then assemble the operation-level resource-time in-
formation into a job-level execution profile in §4. In §5, we
further construct a performance-resource model to capture
the program behaviors with respect to the allocated hardware
resources such as CPU, GPU, memory, I/O and network (ad-
dressing Challenge 2). Our solution is novel as it requires no
code instrumentation and applies to a wide array of dataflow
frameworks.

3 Mining Resource-Time from Traces

In this section, we characterize the resource-time of an oper-
ation by exploiting the latent information in the call traces
(§3.1). The periodic samples of call stacks can tell how
long each operation (and its called functions) runs. If we
could further obtain the resource use information of each
function, then the resource-time of that operation becomes



available. We show that such information can be inferred
from the function source code and documentation using neu-
ral network classifiers (§3.2–3.3). We validate the feasibility
of this approach with a labeled and verified dataset (§3.4).

3.1 Obtaining Call Traces
Standard libraries provide built-in utilities to sample the
call stacks, e.g., backtrace in GNU C Library and
AsyncGetCallTrace in Java. CrystalPerf uses the sampling
profilers [9] built on these utilities to collect the call traces of
a dataflow job and its operation tasks periodically. Figure 2
shows a sample trace of a running join task in Spark.

In frameworks like TensorFlow and MXNet, CrystalPerf
uses the built-in profiler as it records the start time and the
duration of each operation. For JVM-based frameworks like
Spark, Flink and Heron, CrystalPerf attaches a lightweight,
non-intrusive sampling profiler to the JVM process, and
aligns the trace with the time when an operation begins and
finishes to extract the called functions. CrystalPerf then lo-
cates the implementation of those functions in the frame-
work’s codebase for further analysis. Note that using similar
sampling profilers for C# [25], JavaScript [68] and Go [23],
the call traces can also be obtained in other frameworks.

3.2 Inferring Resource Use Patterns
With the durations of each operation and its called functions,
we derive the resource-time information by analyzing how
those functions use resources. As those functions are usually
low-level routines (e.g., network and I/O primitives), they
have clear resource use patterns which can be identified by
a skilled programmer by simply examining the source code
and its documentation. Following this intuition, we design
two neural network classifiers to infer the resource patterns
from the code and documentation, respectively. This ap-
proach requires no instrumentation and is not limited to a
specific framework. Figure 3 illustrates how it works. We
first embed the source code and documentation into vectors
so that they can be processed by neural networks.

Code Embedding The key to code analysis is the lexical
and syntactic information. The former includes the iden-
tifiers of variables, functions, classes and types; the latter
refers to the abstract syntax tree (AST). CrystalPerf embeds
them with a recursive autoencoder [67] (Figure 3). Follow-
ing the embedding approach in [76], CrystalPerf parses the
function code into an AST and augment it to a binary tree
with some artificial nodes. CrystalPerf then constructs a vec-
tor representation for each AST node using the autoencoder.
It starts by computing a word embedding for each identifier
on a leaf node and recursively computes the embedding vec-
tor of a parent node form its children’s. Formally, let s1 and
s2 be the two sibling nodes. The autoencoder computes their
parents vector as p=W [s1 : s2]+b, where W and b are model
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Figure 3: We design two classifiers that can infer the domi-
nant resources for a function from the source code and doc-
umentation respectively.

parameters refined by training, and [:] means concatenation.
The vector of the root node gives the code embedding.

Documentation Embedding A function may have an as-
sociated documentation explaining its performed task and
usage, written in natural language. To embed a function
documentation, CrystalPerf removes the contained punctu-
ations and hyperlinks and encodes the words into vectors
with Flair [3], a language model with state-of-the-art perfor-
mance. CrystalPerf then encodes the whole document with
gated recurrent unit (GRU) [14] which can take an arbitrarily
long input sequence. GRU has internal states and works in
a recursive manner: it takes an input element, updates state,
produces output and repeats. CrystalPerf sequentially feeds
the word embeddings to GRU and takes the state from the
last iteration as the document embedding.

Inference Procedure With the code and documentation
embeddings calculated, CrystalPerf infers the function’s re-
source uses with two pre-trained neural network models (see
§3.3). Both models output a resource vector, where each el-
ement is the probability of the function using a certain type
of resource (e.g., 0.7 in CPU and 0.3 in network), given by
the code or documentation analysis. CrystalPerf takes the av-
erage of the two predictions as the inferred resource vector3.
Our design currently supports three resource types and the
output is in the form of <CPU, Disk, Network>. We next
describe the neural network design and training.

3.3 Model Design and Training
Critical to our approach are the two neural network mod-
els that learn the resource vector from the function code and
documentation. This problem resembles document classifi-

3§B in the supplemental material [70] provides the justification for aver-
aging.



Table 1: The prediction quality of the classifier on the col-
lected dataset. The higher-than-random accuracies imply the
learnability of resource information from the source code.

Accuracy F1 Score

CPU 77.12%±7.39% 0.869±0.046
Disk 82.46%±5.63% 0.903±0.034
Network 82.90%±5.26% 0.906±0.032
Average 80.83%±4.60% 0.893±0.028

cation [78,83], in which a neural network model is trained to
predict the probability of a document belonging to a certain
class. In our design, we adopt the single-layer neural net-
work (i.e., linear model) because it supports variable lengths
in both input and output, allowing us to adjust the dimension
of embeddings and incorporate new resources.

To train the two classification models, we collect source
code from open-source projects with clean designs and com-
prehensive documentation. In each project, we choose the
source files that have apparent resource uses, such as TCP
and UDP services (network-bound), compression and hash-
ing (CPU-bound), file operations (I/O-bound). We extract
the selected functions together with their documentation and
label their resource patterns. In total, we have collected
around 5,000 low-level functions from five popular open-
source libraries, including FS2 [22], Twitter Util [72], Play
Framework [59], Scalaz [65] and Scala Standard Library.4 It
took two PhD students 5 hours to manually label those func-
tions.5 The labeled resource vectors are in the form of <CPU,
Disk, Network>, with the dominant resource set to 1 and
the others 0 (one-hot vector). Although some functions use
more than one resource, only labeling the dominant one is
still feasible as our training dataset only includes low-level
libraries where most functions rely on just one type of re-
source. Admittedly, such labeling inevitably involves subjec-
tiveness and imprecision, but our sensitivity analysis (§7.4)
shows that CrystalPerf is robust against the labeling errors.

We have implemented the two classifiers with Py-
Torch [57].6 The classification models, once trained, are not
restricted to certain frameworks or programming languages.
First, our model design accepts arbitrary words as its input
because the word embedding techniques, such as Flair [3],
work on the level of characters and allow unseen words be-
yond the training corpus. Second, regardless of the frame-
works, their documentation is all written in natural language,

4The collected dataset are released at [69].
5Manual labeling is feasible as long as the project follows modern design

guidelines (e.g., modularity, high cohesion, low coupling). For instance, in
a well modularized project, functionally similar codes tend to appear in the
same module, so it is feasible to “batch process” them.

6The documentation classifier is optimized with stochastic gradient de-
scent (SGD). Its learning rate is set to 0.1 and annealing rate 0.5. For the
more complicated code classifier, we choose a more stable optimization al-
gorithm, Limited-memory BFGS, with its step size as 1×10−6.

Table 2: Top 5 words that make the classifier predict a certain
category. Most of them appear in both code and documenta-
tion, except that the underlined ones only in code.

Category Words

CPU engine, entry, stream, key, certificate
Disk file, error, tar, info, name
Network socket, sock, send, result, address

enabling the reuse of the documentation classifier. Third,
many keywords and syntaxes (e.g., condition and repetition)
are commonly used in different programming languages, a
common ground for our code classifier to exploit. Our eval-
uation confirms the generalizability of our design: the mod-
els trained with Scala code can make accurate predictions in
frameworks written in Java and C++ (§7.1).

3.4 Model Validation

We design a model validation test to verify that both the code
and documentation contain useful resource information that
can be learned correctly by our classifiers. We collect a set of
functions from Python standard library and OpenJDK, man-
ually verify their resource uses with strace, train our clas-
sifiers over them, and compute the prediction accuracy. As
shown in Table 1, the trained models can identify the dom-
inant resource of a code snippet with accuracy over 77%.
The F1 scores7 are higher than 0.86, suggesting no possi-
ble skewness towards any classes. These results show that
our classifiers can accurately identify resource uses from the
source code. We believe this also holds true for other code-
bases as we randomly select the source files from standard
libraries.

We next inspect what features learned by our classifiers
make major contributions to the prediction results. We turn
to LIME [64], a popular framework that can explain what
words are the key to making a certain prediction. Table 2
lists the most frequent words that appear in the explanations.
As one may expect, the computation of “key” or “certifi-
cate” is CPU-intensive and “file” operations involve disk I/O.
They indicate that our models have indeed learned meaning-
ful patterns for resource inference. We further compare the
predictions made separately by the code and documentation
classifiers, and have two major findings: (1) the code and the
documentation classifiers have roughly the same level of pre-
diction ability, and (2) they make more accurate predictions
on longer and more diverse code and documentation. We
defer the detailed analysis to supplemental materials (§A).

Now that we have the function-level resource information,

7F1 score is the harmonic mean of the precision and recall, whose value
is within 0 and 1. The larger the value is, the more accurate and the less
biased the classifier is.



it remains a challenge to build a job-level profile on top of it,
which we address in the next section.

4 Profiling Resource Usage of Job

The previous section infers resource-time for a single func-
tion, yet a performance-resource model requires the infor-
mation about each operation (which may call multiple func-
tions) and the whole job. In this section, we piece together
the function resource-time into a resource vector for each op-
eration (§4.1), which unifies the varied resource patterns and
captures the time proportion spent on each resource. We then
assemble the operation information into a job-level DAG ex-
ecution profile (§4.2), which forms the basis of performance
debugging and prediction.

4.1 Resource Vector

We characterize the resource uses of an operation with
a resource vector, where each component is the propor-
tion of runtime it spent on one resource during execution.
For example, the resource vector R⃗ = (pcpu, pdisk, pnet) =
(0.15,0.03,0.82) indicates that the operation mainly uses
CPU, disk, and network, with each accounting for 15%, 3%
and 82% of the operation execution time. We define resource
vectors with relative time proportions instead of the absolute
scale because the former can be more conveniently handled
in machine learning. As the proportions add up to one, our
definition implicitly assumes sequential resource use during
execution. Though this may not be exactly the case (e.g.,
pipelining in Spark), it serves as a good approximation in
many frameworks because operations are typically low-level
functions performing simple tasks (e.g., math operation in
TensorFlow, primitive operation in Flink). Furthermore, for
those operations spending the vast majority of time on one
resource, which is usually the case, neglecting concurrent
uses on the other resources has a negligible impact to run-
time prediction. One piece of empirical evidence is Mono-
tasks [54], which rearchitects Spark operators to avoid re-
source pipelining and merely incurs 9% increase in runtime.
Our evaluation also confirms the validity of the sequential
resource use model (§7.1).

CrystalPerf infers the resource vector of each operation
from its call traces. A stack typically has some system func-
tion in the bottom (e.g. Thread.run) and the most recently
called function at the top. Since the topmost function can
be some library or native routine, we scan downwards un-
til we find a function whose source code is available (i.e.,
some function in the dataflow framework). We then apply
the classifiers introduced in §3.2 to infer its resource use, and
take the output as its resource vector. As the profiler sam-
ples at fixed intervals, we simply assume that the functions
in a given stack have remained execution in that interval. We
take the average of all the inferred vectors and use it as the

resource vector of the operation in that interval.

4.2 DAG-Based Execution Profile

With the resource vector of operations, we establish the ex-
ecution profile for a dataflow job in two stages. In the first
stage, we organize a DAG to represent the job execution,
with necessary modification for certain frameworks (details
following next). In the second stage, we annotate each node
(operation) with its execution details and the resource-time
inferred from its call traces.

Dataflow frameworks expose DAG information through
monitoring APIs or runtime logs. In most dataflow frame-
works, the job DAG provided in the log trace (e.g., Tensor-
Flow computation graphs and Flink dataflows) can be di-
rectly used to represent the internal computation structure,
i.e., the operations and their dependencies. Yet a special
treatment is needed for Spark, in which a job is decom-
posed into multiple stages, each containing multiple parallel
tasks [81]. We therefore turn to a hierarchical DAG repre-
sentation where a node itself can be a smaller DAG. After
constructing the DAG, we associate the profiled execution
details to each node, including the start and end time of the
operation, the functions it called during execution, the source
code of those functions, and the inferred resource vector of
the operation. Figure 2 shows a sample profile attached to a
join operation in Spark.

The DAG execution profile forms the basis for debugging
performance issues. To identify the execution bottleneck,
CrystalPerf follows the operation execution on the critical
path and sums up the time spent on different resources. The
one that takes the longest time is identified as the bottleneck
resource. The execution profile can also be used to trou-
bleshoot configuration problems by displaying the resource-
time breakdown of each operation. For example, in one of
our case studies in §7.5, a machine learning job has spent
a significant portion of time on I/O. Even though I/O is not
the major bottleneck compared with computation, its overuse
still suggests a misconfiguration problem for the training job.

5 Performance-Resource Model

The DAG execution profile established in the previous sec-
tion can be used to characterize the job behaviors in the past
execution. In this section, we take a step forward by pre-
dicting how the job would perform in what-if scenarios with
different resource configurations. We categorize hardware
resources into three classes following the von Neumann ar-
chitecture and model their impacts to the job performance
respectively.

Computing Devices such as CPU, GPU or other emerging
processors [21, 39] can affect job performance in two ways.
(1) Changing the number of devices (e.g., CPU cores) may



Algorithm 1 Predict job runtime under target computing de-
vices.

– N,N′: original and target number of computing devices
– s,s′: original and target computing speed

1: function PREDICTRUNTIME(s,N,s′,N′)
2: Replay tasks in DAG on N′ devices.
3: w← slowdown of the first-wave tasks due to warm-up
4: Scale first-wave task runtime by w ▷ warm-up effect
5: for each task in replayed DAG do
6: vcpu← CPU component of resource vector
7: tcpu← vcpu× task runtime
8: Scale tcpu by s/s′

9: Traverse the DAG and compute the updated job runtime

change the degree of parallelism of tasks. (2) Utilizing de-
vices with different processing speeds may change the task
runtime. Taking both factors into account, Algorithm 1 es-
timates the job runtime under a parallelism change from N
to N′ and a speed change from s to s′. The first part (Line
2-4) reschedules the parallel tasks over N′ devices and sim-
ulates their executions to estimate the runtime.8 During the
simulation, we distinguish the sequential execution from the
parallel, following the insight of Amdahl’s law [6]. As a
concrete example, some Spark tasks are executed in a single
thread despite the existence of multiple cores, so we keep it
sequential in the simulation. We also consider the warm-up
effect. That is, the first wave of tasks take longer time to
complete than the rest, due to various forms of cache (e.g.,
the instruction cache of CPU, the data cache in distributed
storage systems [10, 24] the code cache in JVM [46], etc.).
Therefore, if a non-first-wave task is rescheduled to the be-
ginning, we adjust it by a warm-up factor w and vice versa.
After the adjustment, the second part (Line 5-8) of the algo-
rithm rescales the compute time of each task by s/s′ as CPU
time is inversely proportional to the speed [30].9

Memory plays a passive role in job execution. Once a job is
allocated sufficient memory, more allocation will not make
it run faster. Conversely, when a job runs short of memory,
frequent garbage collections or paging prolongs its execu-
tion. We characterize the relationship between memory and
runtime with a reversed roofline model [77]—a linearly de-
creasing function followed by a constant lower limit, where
the turning point is chosen by summing up the data size used
in the program (e.g., RDD blocks in Spark, tensors in Ten-
sorFlow, network buffers in Flink) and the slope is the ratio
between the I/O speed of in-memory and on-disk data access.
The intuition behind is that the memory is sufficient as long
as it can accommodate all data and the delay is primarily

8Currently, the replay simulation does not consider the task scheduling
but follows the original task order. It is feasible for users to provide a cus-
tomized scheduler as a plugin (§6).

9Approximating speed as a constant follows the precedents in Paleo [62]
and Starfish [31].

Algorithm 2 Predict job runtime under target I/O devices.

– B,B′: original and target I/O bandwidth
– SB: buffer size
– o: overhead of processing buffer for one time

1: function PREDICTRUNTIME(B,B′)
2: for each task in job DAG do
3: vI/O← I/O component of resource vector
4: tI/O← vI/O× task runtime
5: D← tI/O ·B ▷ estimated data size
6: tp← (D/SB) ·o ▷ processing overhead
7: tc← tI/O− tp ▷ communication time
8: Scale tc by B/B′.
9: Traverse the DAG and compute the updated job runtime.

caused by data transfer between memory and disk. We ad-
mit that other factors, such as garbage collection, may also
affect the runtime, but our evaluation shows that such a sim-
plified model is sufficient to predict the runtime accurately
under a wide range of memory changes (§7). We leave it as
a future work to model more complicated memory effects on
dataflow jobs.

I/O and Network Devices We adopt a buffered I/O
model [56] where the data is first placed inside a buffer
and then transferred. While other I/O variants do exist, the
buffered I/O model remains the most common practice used
in Linux API [50] and Java Standard Library [37]. In Al-
gorithm 2, we divide the I/O time into the buffer process-
ing time and the data communication time. We assume that
data are sequentially placed into a buffer and processing a
buffer incurs a fixed overhead. The total processing over-
head is hence estimated as the number of buffers times the
overhead (Line 6). As for the parameters, we set the over-
head o the same as the measurement result reported in [58],
and buffer size SB the default values in Linux. The commu-
nication time is then rescaled by B/B′ to simulate the change
in bandwidth.10

Putting It All Together CrystalPerf combines the execu-
tion profile with resource-runtime model to characterize job
performance. Figure 4 illustrates the main use cases. For de-
bugging, CrystalPerf generates a detailed report of the time
spent on each resource to help users understand the poten-
tial issues of the program. For prediction, we consider the
scenario where a user profiles a job under a given configura-
tion and wonders how the job completion time would change
with a different configuration. CrystalPerf makes the predic-
tion by constructing the DAG execution profile and comput-
ing the operation runtime in the new configuration follow-
ing the aforementioned device models. In both use cases,
CrystalPerf requires no code instrumentation nor restricts to
a certain framework.

10Following prior works [31, 62], we assume constant bandwidth in our
modelling.
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6 Implementation

We have implemented CrystalPerf as a CLI tool in around
4,000 lines of Python and Scala code, which is open-sourced
at [69]. Our implementation currently supports three frame-
works, Spark, Flink, and TensorFlow.

Pluggable Architecture As a framework-independent tool,
CrystalPerf sets to provide a general support for various
frameworks, even the future ones. So it has to accommo-
date different logging conventions, trace formats, DAG rep-
resentations, etc. We provide plugin mechanisms wherever
possible to maximize the usability and generalizability. Our
implementation consists of three modules for parsing run-
time logs and traces, annotating DAG with resource vectors,
and predicting performance based on the given models. The
parser accepts plugins that can update with the changing log
formats. The annotator supports plugins for locating source
code with different directory structure or naming convention.
The predictor allows plugins for customized performance
models, such as Starfish [31] and Paleo [62]. In our imple-
mentation, the supported frameworks (i.e., Spark, Flink and
TensorFlow) share the same base modules but all have their
specific plugins.

Usage Instructions To use CrystalPerf, users need to en-
able logging and profiling when executing dataflow jobs. For
most JVM-based systems, this can be done by just adding
a configuration line and attaching a jar package of an off-
the-self profiler.11 Users simply specify the location of the
logs and traces in the CLI, and let CrystalPerf extract the
runtime information and construct the DAG profile automat-
ically. CrystalPerf provides two modes. (1) For debugging,
CrystalPerf outputs the time spent on each resource. (2) To
predict the performance under a certain resource configura-
tion, users have to pass that configuration to the CLI, together
with the original one. CrystalPerf applies the performance
models and outputs the predicted runtime.

11For frameworks such as TensorFlow and MXNet, the log traces already
contain the operator names, and there is no need to specify a profiler.

7 Evaluation

In this section, we evaluate CrystalPerf in various scenarios.
The highlights of our evaluation are summarized as follows:
• CrystalPerf can predict the job runtime of three frame-

works under multiple types of resource variations
within an average deviation of 13.47% (§7.1).

• CrystalPerf can predict the performance of a Spark
benchmark with accuracy comparable to Mono-
tasks [54], the heavily intrusive state-of-the-art operat-
ing on a version of Spark that simplifies performance
reasoning (§7.2).

• The neural network classifiers are resistant to the inac-
curacy in the labels of training dataset and generalizable
to different frameworks (§7.4).

• CrystalPerf can effectively help users identify bottle-
neck resources and address performance issues (§7.5).

7.1 Performance Prediction
Methodology We evaluate CrystalPerf against six work-
loads in Spark, Flink, and TensorFlow with different re-
source variations, as summarized in Table 3. For each work-
load, we first run it under a baseline configuration and mea-
sure its runtime. We then change the resource configuration
and use CrystalPerf to predict the new runtime. To measure
the accuracy, we rerun the job on a real cluster with the same
configuration as in prediction. We report the predicted and
the actual runtime in the experimental results. We use de-
viation as a metric to measure accuracy, defined as |p−a|/a,
where a is the actual runtime and p the prediction.

Spark Figure 5 shows the runtime predictions given by
CrystalPerf for two TPC-H queries (see Table 3) under vari-
ous configurations, where the second bar group in the central
graph shows the baseline execution. The average deviation
of the predictions is 13.49% ± 8.57%, demonstrating the ef-
fectiveness of CrystalPerf for Spark applications. Note that
such deviations are evenly distributed around the actual run-
time, an indication that our approach shows no systematic
over- or underestimation but mainly suffers from random er-
rors.

Flink For stream processing, we choose two widely used
benchmarks [34, 73]. As CrystalPerf does not natively sup-
port long-running jobs, we define the latency of a streaming
application as its runtime because it measures the time of a
data batch (i.e., a data buffer in Flink) traversing through the
DAG. Therefore, throughout the experimentation of Flink,
we run the application for 10 minutes and report the average
latency as its runtime. The resource variation includes the
change of CPU share and network bandwidth, where CPU
share determines the fraction of CPU time granted to a given
program.

Figure 6 presents the prediction results of Flink applica-
tions, where the average deviation is 12.70% ± 10.11%.



Table 3: Summary of the workloads used in performance prediction (§7.1).

Framework Workload # Instances Instance Type Varied Resources

Spark
v2.4.3

TPC-H [60] query 6 (short) and 9
(long) with scale factor 100

16 AWS m5.xlarge (4 cores, 16GB
mem, 10Gbps)

# cores, memory,
network bandwidth

Flink
v1.7.2

Yahoo Streaming Benchmark [13]
and Dhalion Benchmark [20]

11 (1 master and 10
workers)

AWS m5.xlarge CPU share, network
bandwidth

TensorFlow
v1.13

ResNet [29] and VGG [66] on a
flower image dataset

8 (1 master, 4 work-
ers and 3 servers)

GCP n1-16-standard (16
CPUs, 60GB mem, Tesla P100
GPU)

computing devices,
# cores, memory
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Figure 5: Given the baseline execution (located at the center) of two TPC-H queries, CrystalPerf predicts their runtime under
the rest 26 resource configurations. Each bar pair shows one prediction and its corresponding actual runtime ( : Prediction,

: Actual).

Again, the deviations are evenly distributed instead of bi-
asing towards over- or underestimation. Moreover, as our
classifiers are trained with Scala code (§3.3) whereas Flink
is mainly written in Java, the results demonstrate the gen-
eralizability of the classification models to other program-
ming languages. Such desirable property results from the
fact that programmers tend to use meaningful names [35]
and hence those resource-related terminologies are used in
different languages.

TensorFlow As for distributed machine learning, we use a
managed version of TensorFlow (v1.13) provided by AI Plat-
form [15] in Google Cloud. The training programs adopt the
parameter server architecture [45] with asynchronous paral-
lel (ASP) scheme. Because the runtime characteristics of
parallel machine learning are highly repetitive across itera-
tions, we report the average iteration time as the job com-
pletion time. As the iterations in ASP may not be temporally
aligned, we take the average of each worker’s iteration time.
The resource variation in learning applications include up-
grading CPU to GPU, using a different number of virtual
CPUs and changing the memory size. Figure 7 shows the
prediction results given by CrystalPerf. The average devia-
tion is 14.22% ± 11.77%. This again confirms the satisfac-
tory prediction accuracy of our approach and the generaliz-
ability of our classification models.

7.2 Comparison with Monotasks

As summarized in Figure 1, Monotasks [54] is the most
closely related to our work, so we make a comparison to
it by predicting the performance of Big Data Benchmark
(BDB) [7]. Note that Monotasks has devised its own variant
of Spark for performance clarity called MonoSpark, which
decomposes the pipelined usage of multiple resources so that
each compute task only uses one resource. Following the de-
scription in §6.2 in [54], we reproduce the experiment in the
same settings: first run the BDB workloads on MonoSpark
with two disks and let CrystalPerf predict the runtime un-
der the configuration of one disk. As most of MonoSpark’s
implementation relies on Spark (including logging), Crys-
talPerf can reuse its Spark interface.

Figure 8 plots the actual and the predicted runtimes of all
queries in the benchmark. CrystalPerf achieves an average
deviation of 12.53%± 5.10%, while Monotasks reports most
errors within 9% and an exception as high as 28% (cf. Fig-
ure 12 in [54]). It is worth mentioning that Monotasks uses
a whitebox performance model that is specifically tailored
to the decomposed design of MonoSpark. In comparison,
CrystalPerf requires no such tailoring but still can capture
the resource pattern of MonoSpark. This once again con-
firms that (1) CrystalPerf has comparable prediction ability
with the intrusive state of the art, and (2) its effectiveness is
not restricted to a particular framework.
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7.3 Microbenchmarking Performance Models

Having shown the predicting ability of CrystalPerf, we need
to confirm that the constructed performance models match
the real execution. We scrutinize the Dhalion Benchmark
running with 100% CPU share (baseline) and 25% (predic-
tion). We choose this case because Flink does not have com-
plicated pipelining so that we could easily check the real
resource usage based on the profiling traces. It is worth
mentioning that the traces also include the warm-up period
(i.e., Java JIT compilation), so we exclude them from the
traces and only take samples after the system enters a stable
state. The benchmark mainly has two operators, FlatMap
and Window. From the latency measurements, we find that
they respectively incur 1583.63ms and 2322.50ms latency in
the 100% case, and 2961.75ms and 7181.63ms in 25%.

Resource Vector We first verify the CPU entries in the re-
source vectors of both operators, because they are the key
components in prediction. CrystalPerf infers that FlatMap
and Window respectively spend 15.13% and 85.05% of the
operation time on computation, with an average percent-
age of 56.70%.12 We manually examine the profiling traces
of the baseline case and find the most dominant com-
putation functions are StreamFlatMap.processElement
and WindowOperator.processElement. They appear in
65.46% of the call stack samples, which is close to the in-
ferred percentage of CPU usage.

Performance Model Following our resource-time mod-
els (§5), CrystalPerf predicts that FlatMap and Window will
take 2296.26ms and 8244.88ms, respectively, if running
with 25% CPU share. Again, they are within a tolera-
ble error range when compared with the measured dura-
tions. Furthermore, we observe that the occurrences of
NioEventLoop.run, a network-related function, increases

12It is computed as a weighted average: (15.13%×1583.63+85.05%×
2322.50)÷ (1583.63+2322.50) = 56.70%

from 3.20% of the samples to 4.10%. This shows how the
slowdown of CPU could prolong the processing time of net-
work I/O, confirming our intuition used in modeling resource
changes.

7.4 Classifier Sensitivity and Generalizability

Sensitivity to Labeling Quality Recall in §6 that the re-
source vectors of the low-level functions we collected in the
training dataset are manually labeled, and it is difficult to
check their accuracy due to the lack of the ground truth.
Henceforth, we instead evaluate the robustness of CrystalPerf
with respect to the labeling quality. We reuse the training
dataset and perturb the labels of 10%/20% data samples. For
instance, for the data samples originally labeled as CPU-
dominant, we change 1.67% of them to disk and another
1.67% to network, and repeat the process for other two re-
sources to reach the 10% fraction. As shown in Figure 9, the
resource classifiers used in CrystalPerf are robust against the
labeling errors.

Generalizability Apart from robustness, generalizability is
another desirable property because the users don’t want to
retrain the classifiers for each single framework. Although
§7.1 confirms that CrystalPerf can work on different systems
with the same classifiers, here we zoom in on the predictions
they make on various programming languages. For the test
set, we collect 105 low-level functions from Spark (Scala),
194 from Flink (Java), 302 from TensorFlow (Python), and
label them in the same way as in §3.3. The prediction re-
sults shown in Table 4 indicates that our classifiers, trained
on low-level Scala code, predict similarly well across three
frameworks, which partially explains the generalizability of
CrystalPerf. One noteworthy detail is that sometimes Tensor-
Flow has even higher accuracy than Spark. This is because
the tested TensorFlow functions include some example code
where they are lengthily documented and thus appear more



Table 4: The classifiers trained with
Scala code perform similarly on the
chosen systems, implying the generaliz-
ability of our approach. (Accuracy/F1
Score)

Code Cls. Doc. Cls.

Spark 81.0%/.797 76.5%/.673
Flink 73.3%/.664 74.8%/.589
TensorFlow 79.9%/.752 77.8%/.652
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informative to the classifier model.

7.5 CrystalPerf in Action: Case Studies

We further conduct three real-world case studies to demon-
strate how CrystalPerf could help users identify resource bot-
tleneck and address performance issues with ease.

Diagnosing Slow Operation A user implemented a Spark
program to process a dataset stored in HDFS [8]. How-
ever, the program took much longer time then she had ex-
pected. We investigated the case by reproducing it with the
same configuration as original. We launched a six-node clus-
ter on AWS EC2 with m5.4xlarge instances (16 cores, 64
GB memory, 10 Gbps network), generated dummy data with
Sqoop and MySQL, and allocated 5 Spark executors with 3
cores and 15 GB memory each to run the job.

We analyzed the runtime logs using CrystalPerf, and it
suggests that CPU is the bottleneck resource. We looked into
the DAG execution profile and discovered that most CPU
entries in the task resource vectors were around 0.785, in-
dicating that CPU had taken the majority of runtime. For
further validation, we inspected the profiling traces and the
two most frequently called functions were Text.decode and
BuiltinGzipDecompressor.decompress, which appeared
in 41.18% and 35.29% of sample stacks. Knowing the CPU
dominance of the program, the user could simply allocate
more CPUs to accelerate it. According to our measurement,
doubling the number of CPU cores reduces the job runtime
from 25.89s to 14.76s.

Diagnosing Slow Iteration We then turn to an issue [52]
from TensorFlow community, where a user trained a neural
network over the MNIST [44] dataset. The user already de-
ployed GPUs but still found the iteration time much longer
than she had expected. We reproduced the problem on AWS
EC2 using a p2.16xlarge instance (16 NVIDIA K80 GPUs,
64 vCPUs, and 732 GB of memory). After taking in the
runtime traces, CrystalPerf suggests that I/O sustains for the
longest in the application. We verified the conclusion by
manually examining the profiling traces and observed that
an operator named QueueDequeueManyV2 (managing queued

data in I/O) occupied the majority of iteration time. Such I/O
dominance is rare in model training because computation is
usually the most time-consuming part, which indicates that
the data transfer into and from GPU could be problematic.
So we changed GPU to CPU and reran the program. This
time, the iteration time dropped from 2 seconds to 80 mil-
liseconds, and the QueueDequeueManyV2 no longer domi-
nated the traces.

Diagnosing Poor Scalability Next we turn to a ques-
tion [61] raised in StackOverflow, where a user trained a
neural network over the CIFAR-10 [41] dataset. When she
increased the number of GPUs, she noticed that the scal-
ability of TensorFlow in the multi-GPU setting was rather
poor. We reproduced the user’s problem on AWS EC2, us-
ing p3.16xlarge instances (8 Tesla V100 GPUs, 64 vCPUs
and 488 GB of memory). After analyzing the traces, Crys-
talPerf reports that the program is actually I/O bound. Again,
we verified this conclusion by checking the traces and notic-
ing that operation MEMCPYHtoD (copying data from CPU to
GPU) took a significant portion of time. As a remedy, we
enabled NCCL [53], an optimized library for inter-GPU I/O,
and reran the program. Figure 10 shows the increased scal-
ability from the original setting to improved, demonstrating
the effectiveness of CrystalPerf in addressing performance
issues.

8 Discussion

Profiling Overhead As runtime logs are enabled by default
in many frameworks, the overhead of CrystalPerf mainly
comes from the sampling profiler, which we set to sam-
ple once per 100ms. We measure Spark applications with
and without the profiler and their runtimes differ within 2%,
lower than the overhead of instrumentation in SnailTrail [34]
(10%). Furthermore, if the framework provides the called
functions (e.g., the built-in profiler in TensorFlow), Crys-
talPerf does not even require profiling.

Extending to New Frameworks In §6 we have introduced
the pluggable architecture of our CLI tool, where multiple
frameworks can share some common modules such as re-



source inference and basic performance models. When ex-
tending it to a new framework, the user has to provide the
plugins that parse the generated runtime logs and construct
the execution profile. From our experience, it does not in-
volve much labor work. For instance, after implementing the
prototype for Spark and TensorFlow, we extend CrystalPerf
to Flink with only 172 lines of code.

Advantage over Existing Works As a major improve-
ment, CrystalPerf models dataflow jobs as general DAGs in-
stead of domain-specific structures. For instance, Paleo [62],
a performance model for deep learning, is derived from
the layer operations of GPUs; Ernest [74] models machine
learning pipelines with the common communication patterns
specific to machine learning; the stage-by-stage model in
Starfish [31] exactly matches the execution of MapReduce
jobs. Whereas their model structures limit their applicability
scope, CrystalPerf targets a broader array of dataflow com-
putations (e.g., data analytics, stream processing, ML) and
exploits commonly available information such as the source
code, the execution trace, and the job DAG.

Limitations in Streaming Scenarios Although CrystalPerf
is applicable to Flink (§7.1), its ability is restricted by several
properties of streaming applications. First, the operators in
stream processing can scale up or down as the incoming data
fluctuates [40]. Such dynamic parallelism changes the un-
derlying computation graph and thus requires CrystalPerf to
update its model accordingly. Second, the processing latency
varies with the arrival rate of data [16] as a larger data batch
takes a longer time to process. CrystalPerf does not include
the rate information for generality. If the users would like
to monitor the performance more precisely, we recommend
them to record the input rate of data streams and augment the
analysis given by CrystalPerf.

9 Conclusion

In this paper, we have presented CrystalPerf, an
instrumentation-free, framework-independent approach
to performance debugging and reasoning for dataflow
computations. For each job, CrystalPerf constructs a DAG
execution profile, and infers the resource usage of each
operation node from its code and documentation with
two machine learning classifiers. We have implemented
CrystalPerf as a CLI tool supporting three mainstream
frameworks and evaluated it with multiple workloads and
use cases. The results show that CrystalPerf can accurately
predict the job runtimes under various resource changes and
effectively address performance issues.
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