
SpInfer: Leveraging Low-Level Sparsity for Efficient
Large Language Model Inference on GPUs

Ruibo Fan1, Xiangrui Yu1, Peijie Dong1, Zeyu Li1, Gu Gong1, Qiang Wang2, Wei Wang3,
Xiaowen Chu1,3

1The Hong Kong University of Science and Technology (Guangzhou), China
2Harbin Institute of Technology, Shenzhen, China

3The Hong Kong University of Science and Technology, Hong Kong SAR
{ruibo.fan,xyu868,pdong212,zli755,ggong504}@connect.hkust-gz.edu.cn
qiang.wang@hit.edu.cn,weiwa@cse.ust.hk,xwchu@hkust-gz.edu.cn

Abstract
Large Language Models (LLMs) have demonstrated remark-
able capabilities, but their immense scale poses significant
challenges in terms of both memory and computational costs.
While unstructured pruning offers promising solutions by
introducing sparsity to reduce resource requirements, real-
izing its benefits in LLM inference remains elusive. This is
primarily due to the storage overhead of indexing non-zero
elements and the inefficiency of sparse matrix multiplication
(SpMM) kernels at low sparsity levels (around 50%). In this
paper, we present SpInfer, a high-performance framework
tailored for sparsified LLM inference on GPUs. SpInfer in-
troduces Tensor-Core-Aware Bitmap Encoding (TCA-BME),
a novel sparse format that minimizes indexing overhead
by leveraging efficient bitmap-based indexing, optimized
for GPU Tensor Core architectures. Furthermore, SpInfer
integrates an optimized SpMM kernel with Shared Mem-
ory Bitmap Decoding (SMBD) and asynchronous pipeline
design to enhance computational efficiency. Experimental
results show that SpInfer significantly outperforms state-
of-the-art SpMM implementations (up to 2.14× and 2.27×
over Flash-LLM and SparTA, respectively) across a range of
sparsity levels (30% to 70%), with substantial improvements
in both memory efficiency and end-to-end inference speed
(up to 1.58×). SpInfer outperforms highly optimized cuBLAS
at sparsity levels as low as 30%, marking the first effective
translation of unstructured pruning’s theoretical advantages
into practical performance gains for LLM inference.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms.

Keywords: Unstructured Pruning, SpMM, Sparse, LLM In-
ference, GPU, Tensor Core

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.
EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/2025/03
https://doi.org/10.1145/3689031.3717481

ACM Reference Format:
Ruibo Fan1, Xiangrui Yu1, Peijie Dong1, Zeyu Li1, Gu Gong1,
Qiang Wang2, Wei Wang3, Xiaowen Chu1,3. 2025. SpInfer: Lever-
aging Low-Level Sparsity for Efficient Large Language Model In-
ference on GPUs. In Twentieth European Conference on Computer
Systems (EuroSys ’25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3689031.3717481

1 Introduction
Large Language Models (LLMs) [1, 7, 65, 80] have revolu-
tionized AI applications, demonstrating exceptional capa-
bilities across diverse domains including summarization,
instruction following, and question answering. However,
these models’ immense scale, often comprising billions of
parameters, presents significant challenges. The extensive
memory requirements and associated computational costs of
LLMs render their deployment and inference highly resource-
intensive, substantially impeding their widespread imple-
mentation on contemporary hardware platforms [94, 102].

In response to these challenges, model compression tech-
niques have gained significant attention, with weight prun-
ing (or sparsification) emerging as a promising method for
reducing both memory consumption and computational
burden [20, 41, 52, 76, 97]. Weight pruning eliminates less
salient connections in neural networks, introducing sparsity
into the model. Pruning methods are categorized into struc-
tured [5], semi-structured [20], and unstructured [20, 97].
Structured pruning removes entire components but typically
needs costly post-training. Semi-structured, like N:M prun-
ing, balances flexibility and efficiency by controlling sparsity.
Unstructured pruning, which removes individual weights
freely, offers the most flexibility and typically yields better
post-training performance [15, 20, 77], generally surpassing
structured methods in accuracy [5, 52].

However, leveraging unstructured sparsity for performance
gains and memory savings in LLM inference remains par-
ticularly challenging. Unlike smaller models, where higher
sparsity ratios can be achieved, LLMs exhibit a far lower
tolerance for sparsity. For instance, models like Vision Trans-
former (LPViT) [88] and ResNet-50 [27] can achieve 70%

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3689031.3717481
https://doi.org/10.1145/3689031.3717481
https://doi.org/10.1145/3689031.3717481

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

Figure 1. Execution time comparison of unstructured
SpMM implementations against cuBLAS on Nvidia RTX4090
(M/K/N=28K/8K/16, typical in LLM inference).

to 95% sparsity without significant accuracy loss, thanks
to the feasibility of extensive post-training [24]. However,
for extremely large language models, such post-training is
often prohibitively expensive due to the high computational
and time costs associated with retraining. From an algorith-
mic perspective, achieving similarly high sparsity levels in
LLMs without severe performance degradation is imprac-
tical. Current state-of-the-art pruning techniques, such as
SparseGPT [20], Wanda [77], GBLM-Pruner [13] and Pruner-
Zero [15], typically attain around 50% sparsity before the
adverse effects on model accuracy become unacceptable.

This low sparsity level poses two key challenges for real-
izing the benefits of unstructured pruning in LLM inference.
First, reducing weight storage at this level of sparsity be-
comes difficult due to the indexing overhead (i.e., storing in-
dices for non-zero elements). Sparse formats like traditional
CSR and Tiled-CSL from Flash-LLM [86], state-of-the-art
sparse LLM inference framework, result in increased mem-
ory usage at around 50% sparsity, as the need to store both
non-zero values and their indices can negate thememory sav-
ings from pruning. Second, achieving practical accelera-
tion remains a significant hurdle, especially on GPUs, which
dominate LLM deployment. While CPU-based sparse acceler-
ation solutions like Neural Magic’s DeepSparse [38, 39] have
shown promise, GPU acceleration faces unique challenges
due to their SIMT execution model and complex memory
hierarchy [57]. State-of-the-art sparse matrix multiplication
(SpMM) kernels, which provide the foundational support
for pruning, struggle to outperform their dense counter-
parts (cuBLAS [59]). Figure 1 illustrates this performance
gap. Despite being specifically designed for LLM pruning,
even Flash-LLM struggles to achieve speedup at sparsities
of 50% or lower. As a result, LLM sparsification has yet to
fully achieve its theoretical potential in real-world systems,
leaving a significant gap between theoretical acceleration
and practical speedup in LLM inference.

To bridge these gaps, we propose SpInfer, a high-perform-
ance framework specifically designed to accelerate LLM in-
ference by leveraging low-level unstructured sparsity on
GPUs. At the core of SpInfer is the Tensor-Core-Aware Bitmap
Encoding (TCA-BME), a novel sparse matrix storage for-
mat that minimizes indexing overhead by employing effi-
cient bitmap-based indexing. TCA-BME is carefully designed
to align with GPU Tensor Core architecture, ensuring that
SpMM operations can fully exploit the computational power
of these cores, even in the presence of unstructured sparsity.
By reducing the memory footprint of sparse matrices and op-
timizing data access patterns, TCA-BME enables SpInfer to
achieve substantial improvements in both memory efficiency
and computational throughput.

Building upon the TCA-BME format, SpInfer integrates a
highly optimized SpMM kernel that further enhances perfor-
mance. The kernel implements a well-optimized data move-
ment path and introduces Shared Memory Bitmap Decoding
(SMBD), which enables sparsematrices to be decoded directly
within shared memory, significantly reducing the decoding
overhead. Additionally, the kernel features an asynchronous
pipeline design that overlaps memory transfers with compu-
tations, enhancing the utilization of GPU resources.
We evaluate the performance of SpInfer from both the

kernel level and the end-to-end framework level. At the ker-
nel level, SpInfer is compared with state-of-the-art SpMM
implementations, including both Tensor-Core-based Flash-
LLM [86], SparTA [100], SMaT [64] and CUDA-core-based
Sputnik [24] and cuSPARSE [60]. SpInfer achieves significant
speedups over these methods across different sparsity levels,
ranging from low (30%) to moderate (70%). At the framework
level, SpInfer is compared with Flash-LLM [86], FasterTrans-
former [56], and DeepSpeed [4], achieving substantial im-
provements in generation latency and reductions in memory
usage during inference, demonstrating its effectiveness for
deployment in resource-constrained environments.

The main contributions of our paper include:

• We conduct detailed analysis and identify indexing
overhead as the key bottleneck in realizing benefits
from unstructured pruning, highlighting the need to
address it for both memory efficiency and computa-
tional acceleration.
• We present SpInfer, a high-performance sparse LLM
inference framework. At its core, we introduce Tensor-
Core-Aware Bitmap Encoding format, which mitigates
indexing overhead and efficiently compresses sparse
matrices. We also devise a specialized SpMM kernel
with tailored optimizations, allowing SpInfer to signif-
icantly accelerate sparse matrix computations.
• We demonstrate that SpInfer delivers substantial im-
provements in both inference speed and memory ef-
ficiency at the kernel and framework levels, outper-
forming previous state-of-the-art solutions across a

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

wide range of sparsity levels, from low (30%) to moder-
ate (70%). To the best of our knowledge, SpInfer is the
first to successfully translate Sparse LLM theoretical
speedups into real-world performance benefits.

2 Background and Related Work
2.1 LLM Architecture and Inference Process
LLMs are built on the transformer architecture [81], which
uses stacked layers of self-attention and feed-forward net-
works (FFNs). The self-attention mechanism enables LLMs to
model relationships between all tokens in a sequence. Input
tokens are transformed into Query (Q), Key (K), and Value
(V) vectors through linear projections. The attention pro-
cess involves multiplying the Q and K matrices, producing
attention scores that weight the V matrix. Additionally, each
transformer layer includes an FFN that refines token embed-
dings through two linear transformations with a non-linear
activation in between. LLM inference consists of two phases:
the prefill and decode phases. In the prefill phase, the entire
input prompt is processed in parallel, while the decode phase
generates tokens sequentially in an autoregressive manner,
processing one token at a time.

The efficiency of LLM inference relies on matrix multipli-
cations, particularly in self-attention and FFNs. We denote
the weight matrix as𝑊 ∈ R𝑀×𝐾 and the token embeddings
as𝑋 ∈ R𝐾×𝑁 , where𝑀 is the output dimension, 𝐾 is the hid-
den dimension, and 𝑁 is the number of tokens. The matrix
multiplication𝑊 × 𝑋 yields the transformed token repre-
sentations. In the prefill phase, 𝑁 is the sequence length
multiplied by the batch size (seq_len × 𝐵𝑆). During the de-
code phase, 𝑁 = 𝐵𝑆 × 1, as tokens are processed one at a
time in an autoregressive manner.

2.2 NVIDIA GPU and Tensor Core
NVIDIA GPUs feature multiple streaming multiprocessors
(SMs) with CUDA cores, Tensor Cores (TCs), and a hierar-
chical memory structure. Thread blocks are scheduled onto
SMs, with 32 threads in a warp executing instructions simul-
taneously in SIMT mode. The memory hierarchy includes
high-latency global memory accessible by all threads, faster
shared memory within each SM for thread block access,
and fast but limited registers private to each thread. The
caching system includes an L1 cache per SM, configurable
with shared memory, and a unified L2 cache that optimizes
bandwidth and latency between processing cores and global
memory [57]. TCs are specialized units for accelerating dense
matrix multiplication [51, 54, 78]. TCs perform the computa-
tion 𝐷 𝑓 𝑟𝑎𝑔 = 𝐴𝑓 𝑟𝑎𝑔 ×𝐵𝑓 𝑟𝑎𝑔 +𝐶𝑓 𝑟𝑎𝑔 , where𝐴𝑓 𝑟𝑎𝑔 ∈ R𝑚×𝑘 and
𝐵𝑓 𝑟𝑎𝑔 ∈ R𝑘×𝑛 are inputs,𝐶𝑓 𝑟𝑎𝑔 is the accumulator, and 𝐷 𝑓 𝑟𝑎𝑔
is the output. We denote the matrix shape as𝑚×𝑘×𝑛. For our
implementation, we utilize the low-level mma instructions
at the PTX level [58], which offers greater flexibility in man-
aging registers. With FP16 precision, the mma instructions

require matrix shapes of 16 × 16 × 8 or 16 × 8 × 8. Listing 1
provides an example of an FP16mma instruction. While TCs
excel at accelerating dense matrix multiplication, leveraging
them to accelerate unstructured SpMM remains challenging.

Listing 1. FP16 Tensor Core mma instructions: This instruc-
tion performs a 16×16×8 matrix multiplication using FP16
inputs stored in .f16x2 registers (Ra, Rb) and accumulates the
result into FP32 registers (Rd, with Rc as the accumulator).

1 .reg .f16x2 %Ra <4>, %Rb <2>;
2 .reg .f32 %Rc <4>, %Rd <4>;
3 mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32
4 {%Rd0 , %Rd1 , %Rd2 , %Rd3},
5 {%Ra0 , %Ra1 , %Ra2 , %Ra3},
6 {%Rb0 , %Rb1},
7 {%Rc0 , %Rc1 , %Rc2 , %Rc3};

2.3 Related work

Quantization and Sparsification. Quantization and spar-
sification are keymodel compression techniques for reducing
the computational and memory demands of LLMs. Quan-
tization leverages low-precision representations, with nu-
merous works improving algorithms, such as post-training
quantization (PTQ) [6, 14, 21, 45, 49, 87, 98] and quantization-
aware training (QAT) [16, 48], and system-level support, such
as MARLIN [22], LADDER [82], and Qserve [46], making it
widely applicable in practice. Sparsification, on the other
hand, reduces the number of non-zero weights through vari-
ous pruning strategies, including structured pruning [5, 52]
and unstructured pruning [13, 15, 20, 77, 89, 97], typically
targeting around 50% sparsity while maintaining accuracy.
Although unstructured pruning achieves better precision, its
reliance on sparse matrix kernels limits its efficiency on cur-
rent hardware. Our SpInfer provides practical system-level
support for low-level sparsity pruning, while also comple-
menting these quantization techniques. Recent works have
also explored dynamic activation sparsity to enhance effi-
ciency, such as Deja Vu [50], PIT [99], and PowerInfer [75].
These methods leverage the sparsity induced by ReLU acti-
vation functions rather than weight sparsity. However, they
require models to either use sparse activation functions like
ReLU or undergo retraining. Our approach targets weight
sparsity, eliminating the need for retraining and operating
in a different scope from these methods.
Sparse Matrix-Matrix Multiplication. SpMM computes
𝑂𝑀×𝑁 = 𝑊𝑠𝑀×𝐾 × 𝑋𝐾×𝑁 , where 𝑊𝑠 , 𝑋 , and 𝑂 are the
sparse weight matrix, input embedding, and output ma-
trix, respectively. We denote 𝑁𝑁𝑍 as the number of non-
zero elements in𝑊𝑠 . Many works have aimed to accelerate
SpMM for highly sparse scientific and GNN workloads [10,
18, 19, 30, 31, 33, 34, 53, 64, 66, 74, 83, 91]. While less effec-
tive for low-sparsity LLM inference, their designs provide
valuable insights. For DL workloads, works have focused
on structured sparsity at various granularities, including

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

block sparsity [26], vector sparsity [8, 9, 43], and N:M semi-
structured pruning [44]. However, these methods’ reliance
on structured pruning limits their applicability to unstruc-
tured sparsity. Recent research has focused on the more
challenging issue of unstructured pruning at low sparsity
levels. Sputnik [24] applies one-dimensional tiling and re-
verse offset memory alignment to efficiently utilize CUDA
cores. SparTA [100] partitions matrices into 2:4 structured
sparse and unstructured sparse components, leveraging both
sparse Tensor Cores and CUDA cores. Flash-LLM [86] em-
ploys the Load-as-Sparse-Compute-as-Dense approach to
reduce memory footprint. While effective at higher spar-
sity levels (70%-90%), our analysis (Section 3) reveals that
the above approaches overlook the indexing overhead, a
key bottleneck in low-sparsity scenarios. Consequently, they
struggle to reduce storage or enhance performance at spar-
sity levels of below 50%.
System-level Optimization. System-level optimizations
involve enhancing both the inference engine and online
serving systems. Inference engines primarily aim to accel-
erate the forward pass through graph and kernel optimiza-
tions and offloading techniques. These optimizations focus
on refining attention mechanisms (e.g., FlashAttention [11,
12, 71]), restructuring computation graphs (e.g., ByteTrans-
former [95] and DeepSpeed [4, 29]), and optimizing linear op-
erations (e.g., TensorRT-LLM, MegaBlocks [23], and FlashDe-
coding++ [32]). Offloading methods, such as those imple-
mented by FlexGen [73] and llama.cpp [25], optimize mem-
ory usage by distributing model components across various
hardware resources. Our SpInfer, targeting weight pruning,
can be combined with these methods to further enhance
performance. Moreover, many works focus on optimizing
online serving systems to efficiently handle requests from
multiple users. Key areas of improvement include memory
management [40], continuous batching [29, 40, 93], sched-
uling strategies [72, 85], and distributed serving [63, 101].
Our work is orthogonal to these serving systems and can
complement and improve their performance.

3 Gaps and Opportunities
3.1 Bottleneck of LLM Inference
LLM inference faces significant computational and storage
challenges. Figure 2 shows the runtime and memory break-
down for OPT-13B on 2 RTX4090 GPUs using FasterTrans-
former, with a batch size of 16 and an output length of 256.
Model weight storage occupies 87.6% of memory, and asso-
ciated matrix multiplication operations (GEMM) consume
61.6% of execution time, constituting the primary bottlenecks.
Although weight pruning can potentially reduce both mem-
ory and computation by removing less important weights,
the low sparsity in LLM pruning limits the practical effec-
tiveness of current pruning methods on modern GPUs. This
challenge is further discussed in Section 3.2.

Figure 2. Breakdown of OPT-13B on 2 RTX4090 GPUs.

3.2 Overlooked Indexing Overheads
Existing sparse LLM inference techniques leverage sparse
computation, but introduce significant storage overheads at
low sparsity levels due to the need to store indexing infor-
mation for non-zero elements. Prior works like Flash-LLM,
SparTA, and Sputnik commonly overlook these costs. Specif-
ically, indexing overheads not only hinder storage efficiency
but also compromise computational performance. The space
needed for indices can offset pruning’s storage gains, while
accessing indices during matrix multiplication can reduce
computational efficiency, especially on GPUs, where mem-
ory bandwidth is a bottleneck.

3.2.1 Gaps in storage complexity. To quantify the im-
pact of indexing overheads on storage complexity, we define
a compression ratio (CR) metric representing the storage
efficiency of a sparse matrix format:

𝐶𝑅 =
2𝐵 ×𝑀 × 𝐾
𝑆𝑡𝑜𝑟𝐹𝑜𝑟𝑚𝑎𝑡

, (1)

where 2𝐵 ×𝑀 × 𝐾 represents the size of the original dense
matrix, and StorFormat refers to the compressed storage size
of the sparse format. We conduct a comparative analysis of
several widely-used sparse matrix formats: Tiled-CSL (used
in Flash-LLM [86]), CSR (used by Sputnik [24] and other
CUDA-core SpMM implementations), and SparTA [100].

Tiled-CSL stores non-zero elements in tiles using two ar-
rays: NonZeros, which holds 32-bit (16-bit × 2) values (weight
and location), and TileOffsets, which tracks the starting off-
set of each tile. The storage overhead for Tiled-CSL can be
calculated as:

𝑆𝑡𝑜𝑟𝑇𝑖𝑙𝑒𝑑−𝐶𝑆𝐿 = 4𝐵 × 𝑁𝑇 + 4𝐵 × 𝑁𝑁𝑍, (2)

where𝑁𝑇 is the number of tiles. With each non-zero element
requiring a 16-bit index, the indexing overhead is comparable
to the data size itself.

The CSR format is a traditional sparse representation that
stores non-zero elements along with their column indices.
The storage overhead for CSR is:

𝑆𝑡𝑜𝑟𝐶𝑆𝑅 = (2𝐵 + 4𝐵) × 𝑁𝑁𝑍 + 4𝐵 × (𝑀 + 1). (3)

In CSR, the 32-bit indices used for column storage can result
in significant overhead.

SparTA uses a composable format, dividing the matrix into
two parts: one following the 2:4 sparsity pattern and another

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 3. Compression Ratio (CR) across varying sparsity
levels for different sparse matrix formats.

using a CSR-like format. It reduces overhead by storing non-
zero elements with 2-bit indices within 2:4 blocks. For blocks
containingmore than two non-zero elements, SparTA utilizes
a CSR-like storage format for the excess non-zero elements.
As a result, the actual storage overhead of SparTA depends
on the distribution of non-zero elements within the matrix.
Assuming a uniform distribution of non-zero elements, the
expected number of non-zero elements in a block requiring
CSR storage can be expressed as:

𝐸𝐶𝑆𝑅_𝑛𝑛𝑧 =

(
𝑀 × 𝐾

4

)
× (4 × (1 − 𝑠)3 × 𝑠 + 2 × (1 − 𝑠)4). (4)

The storage overhead for SparTA can thus be written as:

𝑆𝑡𝑜𝑟𝑆𝑝𝑎𝑟𝑇𝐴 = (2𝐵 + 𝐵4) ×
𝑀 × 𝐾

2 + 𝑆𝑡𝑜𝑟𝐶𝑆𝑅 (𝐸𝐶𝑆𝑅_𝑛𝑛𝑧). (5)

Figure 3 shows the CR trends across various sparsity levels,
using a representative scale of𝑀 = 𝐾 = 4096 for LLM model
weights. CSR and Tiled-CSL have a CR below 1 at sparsities
under 50%, meaning their indexing overhead outweighs the
pruning gains. SparTA performs better, with a CR slightly
above 1 at 50%, but still falls short of the theoretical optimal
(indicated by the dotted line) due to reliance on CSR-like
indexing. In contrast, our TCA-BME format (the blue line)
consistently achieves a CR above 1, even at lower sparsity
levels. This is due to its advanced bitmap-based indexing
technique, which significantly reduces the overhead of stor-
ing non-zero element positions.The details of TCA-BME are
discussed in Section 4.2.

3.2.2 Gaps in Computation Efficiency. To analyze the
impact of indexing overhead on computational efficiency, we
employ the Roofline model [84] and focus on the Compute
Intensity (CI) of both dense matrix multiplication (GEMM)
and sparse matrix multiplication (SpMM).
Compute Intensity (CI). CI is a critical metric for under-
standing the balance between computational and memory-
bound operations in matrix calculations. It is defined as the
ratio of floating-point operations (FLOPs) to memory ac-
cesses. For GEMM, CI is calculated as:

𝐶𝐼GEMM =
𝑀 × 𝑁
𝑀 + 𝑁 . (6)

For SpMM, CI is affected by the compression ratio (CR),
reflecting the reduction in storage due to sparsity. Addition-
ally, indexing overhead can further reduce the effective CI.
To account for this, we define CI for SpMM as:

𝐶𝐼SpMM =
𝑀 × 𝑁
𝑀
CR + 𝑁

. (7)

To measure the performance gap introduced by indexing
overhead, we compare the actual compute intensities of these
sparse formats with an optimal CI, which assumes negligible
indexing overhead. The optimal CI for SpMM can be defined
as:

𝐶𝐼Optimal =
𝑀 × 𝑁

𝑀 × (1 − 𝑠) + 𝑁 , (8)

where 𝑠 denotes the sparsity level. The optimal CI represents
the theoretical upper bound on performance, reflecting the
maximum compute intensity that could be achieved if the
overhead of indexing non-zero elements were negligible.
Roofline Model Analysis. Figure 4 illustrates that both
GEMM and SpMM operations predominantly reside in the
memory-bound region of the Roofline model across varying
sparsity levels and matrix sizes. In this region, performance
scales linearly with CI. Theoretically, due to the reduction in
global memory access and the enhancement in CI brought
by sparsity, SpMM can achieve linear speedup compared to
GEMM, as indicated by the star (∗) in Figure 4. However,
the actual CI for SpMM is influenced by CR, reflecting the
reduction in memory access cost due to sparsity.

As CR increases, the global memory access cost decreases,
leading to a higher CI, which translates into improved per-
formance. Therefore, formats with higher CR values theo-
retically achieve better performance compared to formats
with lower CR. This relationship is clearly visualized in the
Roofline model, where our TCA-BME moves closer to the
compute-bound region due to its efficient bitmap-based in-
dexing, which increases the CR and, consequently, the CI.
In contrast, formats like CSR and Tiled-CSL, which have

lower CR values due to their traditional indexing schemes,
suffer from higher memory access costs. The indexing over-
head reduces their effective CI, which results in a significant
performance gapwhen compared to the optimal CI, as shown
by the star (∗) in Figure 4.

Our analysis identifies indexing overhead as a major factor
limiting the storage and performance benefits of pruning in
practical applications. By addressing this overhead, storage
requirements can be greatly reduced, bringing performance
closer to theoretical gains. This challenge serves as the key
motivation behind SpInfer’s design.

4 Design of SpInfer
4.1 Design Overview
SpInfer is a high-performance framework designed to accel-
erate LLM inference on GPUs by leveraging sparse matrix

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

Figure 4. Roofline comparison of various SpMM implemen-
tations against GEMM at varying sparsities and batch sizes.

multiplication. Figure 5 illustrates the system overview of
SpInfer. With advanced unstructured pruning algorithms,
SpInfer reduces model size without compromising accuracy.
The framework’s foundation lies in its Tensor-Core-Aware
Bitmap Encoding (TCA-BME) scheme, which efficiently com-
presses sparse weight matrices with minimal indexing over-
head. At its core, SpInfer features a highly optimized SpMM
kernel that improves efficiency through a combination of
efficient data movement, Shared Memory Bitmap Decoding
(SMDB), and a fine-grained asynchronous pipeline. These
designs enable SpInfer to significantly reduce latency and
memory consumption in large-scale LLM inference while
maintaining model accuracy, without the need for additional
fine-tuning.

4.2 Tensor-Core-Aware Bitmap Encoding
As the foundation of SpInfer, we develop a novel Tensor-
Core-Aware Bitmap Encoding (TCA-BME) scheme to ef-
ficiently store sparse weight matrices with low sparsity.
This format is designed to minimize memory footprint (in-
creasing compression ratio) while maintaining computa-
tional efficiency, laying the groundwork for subsequent high-
performance sparse matrix multiplication on Tensor Cores.

4.2.1 TilingDesign. TCA-BME employs amulti-level tiling
design, partitioning the weight matrix into tiles of varying
granularity to align with different levels of GPU hardware.
As shown in Figure 6, this design encompasses three key
abstraction levels: BitmapTile (BT), TCTile (TT), and Group-
Tile (GT), each corresponding to distinct computational units
within the GPU hardware.

The innermost abstraction is the BitmapTile, which serves
as the smallest granular unit in the TCA-BME format. With
dimensions of 𝐵𝑇𝐻 × 𝐵𝑇𝑊 set to 8 × 8, this design targets
the minimum computational unit of Tensor Cores, namely

an 8 × 8 matrix block. An additional advantage of aligning
the BitmapTile dimensions with this unit is the ability to
utilize CUDA’s natively supported uint64_t data type as a
64-bit bitmap, indicating the positions of non-zero elements
within the BitmapTile. Each bit in the bitmap corresponds to a
specific element in the BitmapTile, with set bits representing
non-zero values.
The intermediate level consists of TCTiles, with dimen-

sions 𝑇𝑇𝐻 × 𝑇𝑇𝑊 , comprising 2 × 2 BitmapTiles for a total
size of 16×16. This TCTiles abstraction corresponds to the
matrix shape of Tensor Core mma instructions at the PTX
level. For FP16 precision, two relevant PTX-level instruc-
tions are available: mma.m16n8k8 and mma.m16n8k16. Micro-
benchmark results indicate that mma instructions with larger
shapes offer higher throughput, leading us to opt for the
mma.m16n8k16 instruction and align the TCTiles dimensions
with its m×k completely. Within a TCTiles, the 2×2 Bitmap-
Tile are arranged in column-major format, ensuring con-
sistency with the order of the four Ra registers in the mma
instruction. Specifically, the top-left BitmapTile corresponds
to Ra0, bottom-left to Ra1, top-right to Ra2, and bottom-
right to Ra3. This column-major storage approach facilitates
subsequent decoding processes without complex coordinate
transformations, reducing online overhead.
The outermost level is the GroupTile, with dimensions

𝐺𝑇𝐻 ×𝐺𝑇𝑊 , encompassing multiple TCTiles and correspond-
ing to the thread block level. TCTiles within GroupTiles are
also stored in column-major order. Thread blocks are respon-
sible for loading and processing GroupTiles, while warps
within the thread block handle computations for TCTiles
within the GroupTile. The GroupTiles themselves are stored
in row-major order.

4.2.2 Storage. The TCA-BME format employs three arrays
to represent sparse weight matrices efficiently. The GTileOff-
set array records the starting offset positions of each Group-
Tile within the sparse matrix, enabling rapid localization
and parallel processing of different GroupTiles. The Values
array stores all non-zero elements, arranged in a nested or-
der of GroupTile, TCTiles, and BitmapTile. The Bitmap array
contains bitmap value for all BitmapTiles, with each Bitmap-
Tile represented by a 64-bit integer, where each bit indicates
whether the corresponding element is non-zero. Specifically,
we define 𝑁𝐺𝑇 = (𝑀/𝐺𝑇𝐻) × (𝐾/𝐺𝑇𝑊) as the number of
GroupTiles, 𝑁𝐵𝑇 = (𝑀/𝐵𝑇𝐻) × (𝐾/𝐵𝑇𝑊) as the number of
BitmapTiles, and 𝑁𝑁𝑍 = 𝑀 × 𝐾 × (1 − 𝑠) as the number of
non-zero elements, where s denotes the matrix sparsity. The
GTileOffset array utilizes 32-bit integers (4B) to represent
offsets, with a size of 4𝐵× (𝑁𝐺𝑇 +1), including an additional
element to mark the end of the last GroupTile. The Value
array employs half-precision floating-point numbers (FP16)
to store non-zero elements, occupying 2B per element, with a
total size of 2𝐵 ×𝑁𝑁𝑍 . In the Bitmap array, each BitmapTile
corresponds to a 64-bit integer (8B), resulting in a total size

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 5. System overview of SpInfer.

Figure 6. Tensor-Core-Aware Bitmap Encoding. BitmapTile
is actually 8×8, shown as 4×4 for illustration.

of 8𝐵 × 𝑁𝐵𝑇 . Consequently, the total storage overhead for
the TCA-BME format can be calculated as:

𝑆𝑡𝑜𝑟𝑇𝐶𝐴−𝐵𝑀𝐸 = 4𝐵×(𝑁𝐺𝑇 +1)+8𝐵×𝑁𝐵𝑇 +2𝐵×𝑁𝑁𝑍 . (9)

TCA-BME maintains an effective compression ratio (CR >
1) even at low sparsity levels and shows rapid CR growth
as sparsity increases (Figure 3). This superior performance
stems from its efficient bitmap-based indexing scheme, which
significantly reduces indexing overhead, especially at low to
moderate sparsities (30%-70%).

4.3 High-Performance SpInfer-SpMM Kernel Design
4.3.1 Workflow. The workflow of SpInfer-SpMM kernel
is illustrated in Figure 7. A detailed pseudocode represen-
tation is provided in Algorithm 1. Our kernel adopts simi-
lar tiling-based strategies to CUTLASS GEMM with splitK
parallelism [79] to efficiently distribute computation across
thread blocks, where each block processes a portion of the

Figure 7. Data movement and instruction pipeline.

K-dimension independently. During each iteration, a thread
block executes five key operations.❶GTile Loading. Threads
within a block collaboratively load a GTile (GroupTile) from
global memory into a WTile in shared memory. ❷ WTile
Decoding. TheWTile is decoded from shared memory into
registers through a crucial technique named Shared Memory
Bitmap Decoding (SBMD). This step translates the compact
bitmap representation of the sparse matrix into a correct
distribution in register file that’s ready for Tensor Core com-
putation, all within the high-speed register file.❸ XTile Load-
ing. The corresponding XTile from the dense input matrix
X𝑇 is loaded from global memory into shared memory. ❹
XTile Register Transfer. The XTile data is then transferred
from shared memory to registers and be arranged for the TC
computations. ❺ Tensor Core Computation (TCC). The Ten-
sor Cores then perform the matrix multiplication between
the decoded sparse WTile and the dense XTile , both now
residing in registers.

4.3.2 Efficient Data Movement. In steps ❶ and ❸, we
employ the LDGSTS.128 asynchronous vectorized memory
access instruction to improve global memory bandwidth
utilization. Introduced from the Ampere architecture [55],
LDGSTS eliminates the need for intermediate staging of data

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

Algorithm 1 SpInfer-SpMM kernel pseudo code
Input: SparseMatrix𝑊 (TCA-BME format), Matrix 𝑋 , Split_K
Output: Matrix 𝑌 in 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑠𝑝𝑎𝑐𝑒

1: BatchID = blockIdx .y/(M/TILE_M)
2: TileY = blockIdx .y%(M/TILE_M) ,TileX = blockIdx .x
3: NumIter = CalculateIterations (BatchID, Split_K) ⊲ K-dim iterations
4: __shared__ ValueBuffer[max_nnz_per_tile] ⊲ Sparse buffer
5: __shared__ XTileBuffer[2][TILE_K][TILE_N] ⊲ Double buffer
6: __shared__ BitmapBuffer[2][TILE_M][TILE_K] ⊲ Double buffer
7: // Pre-loop initialization
8: LoadBitmapAndSparse(BitmapBuffer, ValueBuffer,𝑊)
9: LoadDenseToShared(XTileBuffer, 𝑋 + 𝐵𝑎𝑡𝑐ℎ𝐼𝐷 ∗𝑇 𝐼𝐿𝐸_𝐾)
10: cp.async.commit() ⊲ Commit for dense
11: cp.async.wait_group(0)
12: 𝑊𝑓 𝑟𝑎𝑔 = SharedMemoryBitmapDecoding(ValueBuffer, BitmapBuffer)
13: // Main computation loop
14: for 𝑘 ← 0 to 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 − 2 step 1 do
15: // Start prefetch for next iteration
16: LoadBitmapAndSparse(BitmapBuffer, ValueBuffer,𝑊 + offset)
17: cp.async.commit() ⊲ Commit for bitmap/sparse
18: LoadDenseToShared(XTileBuffer, 𝑋 + offset)
19: cp.async.commit() ⊲ Commit for dense
20: // Current iteration computation
21: 𝑋𝑓 𝑟𝑎𝑔 = LoadDenseToRegisters(XTileBuffer)
22: 𝑌𝑓 𝑟𝑎𝑔 = TensorCoreCompute(𝑊𝑓 𝑟𝑎𝑔, 𝑋𝑓 𝑟𝑎𝑔 , 𝑌𝑓 𝑟𝑎𝑔)
23: // Prepare sparse data for next iteration
24: cp.async.wait_group(1) ⊲ Wait for bitmap/sparse
25: 𝑊𝑓 𝑟𝑎𝑔 = SharedMemoryBitmapDecoding(ValueBuffer, BitmapBuffer)
26: cp.async.wait_group(0) ⊲ Wait for dense
27: __syncthreads()
28: end for
29: // Epilogue: process final iteration
30: 𝑋𝑓 𝑟𝑎𝑔 = LoadDenseToRegisters(XTileBuffer)
31: 𝑌𝑓 𝑟𝑎𝑔 = TensorCoreCompute(𝑊𝑓 𝑟𝑎𝑔, 𝑋𝑓 𝑟𝑎𝑔 , 𝑌𝑓 𝑟𝑎𝑔)
32: StoreResults(𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑠𝑝𝑎𝑐𝑒,𝑌𝑓 𝑟𝑎𝑔)

through the L1 cache and register file, thereby reducing reg-
ister file bandwidth consumption. The 128 indicates that
each thread reads 128 bits of data from global memory (e.g.,
8 half-precision operands). To enable 128-bit vectorization
in step ❶, the Value array within each GTile is preprocessed
with padding, ensuring that the starting address of each
GTile is aligned to an 8-byte boundary. In step ❹, we utilize
the LDSM.M88 instruction (corresponding to ldmatrix.x4 at
the PTX level) to load the XTile from shared memory. This
instruction allows a warp to load a 16x16 matrix tile from
shared memory and automatically arranges the data in regis-
ters according to the layout required for ❺ TC computations.
For step ❷, we use generic LDS instructions to decode the
WTile from shared memory into registers.
Figure 7 illustrates the data movement path during the

fetching of the weight matrix (W) in cuBLAS-GEMM, Flash-
LLM, and SpInfer-SpMM. cuBLAS represents the ideal case,
where the use of LDGSTS allows data to bypass both the L1
cache and the register file, directly storing it in shared mem-
ory. In contrast, Flash-LLM first loads the Tiled-CSL format’s
NonZeros Array into the register file using LDG.128, and sub-
sequently unpacks it into shared memory. SpInfer-SpMM
directly loads the GTile into shared memory via LDGSTS.128,
achieving a data movement path that closely approximates
the ideal cuBLAS case. This approach also conserves SM
internal bandwidth by avoiding the roundtrip through the
register file, which incurs additional overhead in Flash-LLM.

4.3.3 Shared Memory Bitmap Decoding (SMBD). The
SMBDmechanism is an essential optimization of the SpInfer-
SpMM kernel, designed to efficiently decompress the bitmap-
compressed WTile into the register file, ensuring proper
layout for subsequent Tensor Core computations. This tech-
nique leverages bitmaps to represent the sparsity pattern of
the matrix, while the non-zero values are stored in a com-
pressed format, allowing for both efficient memory usage
and high-performance matrix operations.
Register Distribution. In warp-level Tensor Core opera-
tions, a warp (32 threads) collectively processes fragments
of operand matrices. Each thread in the warp holds part of
the operand matrix, and the distribution of these fragments
across the threads must be done carefully to ensure correct
execution of the mma instructions. For half-precision com-
putations, we employ the mma.m16n8k16 instruction, which
operates on 16 × 16 matrix fragments. Figure 8(a) illustrates
the matrix fragment distribution, where each thread holds
two half-precision values per 32-bit register (.f16x2). Four
such registers (Ra0, Ra1, Ra2, and Ra3) are needed to store
the entire fragment in each thread. These registers are popu-
lated via bitmap decoding, which extracts non-zero values
from the compressed format.
Two-PhaseDecoding Process. As described in Section 4.2,
the TCTile consists of four BitmapTiles, each corresponding
to one register (Ra0, Ra1, Ra2, and Ra3). A BitmapTile is a 64-
bit value that encodes the sparsity pattern of an 8 × 8 matrix
fragment, with each bit indicating whether a non-zero value
exists at the corresponding location.

A challenge arises from the compressed storage of the non-
zero values, which means that the exact offset for each thread
to load its values is not explicitly stored. To calculate the
correct offset, we rely on two key operations. ❶ PopCount,
which is implemented using Nvidia GPU’s integer intrinsic
__popcll, counts the number of 1 bits in a 64-bit bitmap.
This count represents the number of non-zero values in the
corresponding BitmapTile. By accumulating the result of
PopCount across BitmapTile, the correct starting offset in
the compressed Values array is determined dynamically for
each tile. This allows the warp to efficiently load non-zero
values without storing explicit offsets in global memory. ❷
MaskedPopCount. In addition to calculating the offset for
the entire BitmapTile, each thread needs to determine how
many non-zero values precede its lane within the bitmap.
The MaskedPopCount operation counts the number of 1 bits
before the current thread’s lane ID, as depicted in Figure
8(b). This operation is crucial for calculating the correct
offset within the compressed Values array for each thread
to load its non-zero values. The detailed implementation is
presented in Algorithm 2, which demonstrates this efficient
bit-counting process.

The bitmap decoding process is performed in two phases,
as shown in Figure 8 (c). ❶ Phase I (Decoding a0). In the

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 8. Shared Memory Bitmap Decoding. (a) Register distribution of Tensor Core mma instruction. (b) PopCount and
online offset calculation. (c) The two-phase bitmap decoding process.

Algorithm 2 MaskedPopCount pseudo code
Input: Bitmap 𝑏, Thread Lane ID 𝑙
Output: Count of preceding ones 𝑐𝑜𝑢𝑛𝑡
1: offset = l × 2 ⊲ Calculate base offset
2: mask = (1 ≪ offset) − 1 ⊲ Generate preceding mask
3: 𝑐𝑜𝑢𝑛𝑡 = 𝑃𝑜𝑝𝐶𝑜𝑢𝑛𝑡 (𝑏&𝑚𝑎𝑠𝑘) ⊲ Count ones before offset
4: return 𝑐𝑜𝑢𝑛𝑡

first phase, each thread decodes the first half-precision value
(a0) in its 32-bit register. The thread with ID i examines the
(2i)-th bit of the bitmap. If this bit is set to 1, the thread
uses the MaskedPopCount to calculate how many non-zero
values exist before its position and loads the correspond-
ing value from the compressed Values array. If the bit is 0,
the thread loads a zero value into its register. ❷ Phase II
(Decoding a1). In the second phase, each thread decodes
the second half-precision value (a1) from the same 32-bit
register. The thread with ID i examines the (2i+1)-th bit
of the bitmap to determine whether a non-zero value exists
at that position. However, no additional MaskedPopCount
is required in Phase II. The result from Phase I is reused.
Specifically, if the first value (a0) was non-zero, the offset is
incremented by one to load the second value (a1). This reuse
of the MaskedPopCount result from Phase I minimizes the
number of pop count operations, enhancing performance.
By using the intrinsic PopCount and MaskedPopCount

operations, we efficiently decode the compressed matrix frag-
ment in parallel across all threads, ensuring that each thread
accesses the correct non-zero values without the need for
explicit storage of offsets.

Figure 9. Schematic representation of the asynchronous
pipeline design. The pipeline depth is 2.

4.3.4 Asynchronous PipelineDesign. Wedevelop a fine-
grained asynchronous pipeline to further optimize the perfor-
mance of the SpInfer-SpMM kernel. As illustrated in Figure
9, this pipeline enhances TC utilization by maximizing the
overlap between memory transfers and TC computations.
Double Buffering Mechanism. Double buffering forms
the cornerstone of the pipeline design. We implement two
separate shared memory buffers for GTiles and XTiles. This
architecture enables prefetching of data for the next itera-
tion into shared memory while computing with the current
iteration’s data, thereby hiding memory load latency and
improving overall throughput. Specifically, in each itera-
tion, the current GTile and XTile data reside in one shared
memory buffer, while the next set of data is asynchronously
prefetched (using cp.async) into the alternate buffer. As
mentioned in Section 4.3.1, our workflow design allows for

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

the use of LDGSTS asynchronous instructions for both W
and X matrices, enabling us to implement a double buffering
mechanism similar to that used in cuBLAS.
Fine-grained Asynchronous Group Management. To
further enhance efficiency, we employ two separate cp.async
groups to manage the loading of GTiles and XTiles indepen-
dently. This fine-grained control enables greater concurrency
across different pipeline stages. Our design incorporates two
key overlapping strategies. Once the GTile loading is com-
plete, the Shared Memory Bitmap Decoding (SMBD) process
begins immediately, running concurrently with the ongo-
ing XTile loading. Since XTile loading and SMBD are inde-
pendent operations, their parallel execution can effectively
hide the latency of SMBD, preventing it from becoming a
performance bottleneck. Furthermore, after issuing Tensor
Core computation instructions for the current tile, the SMBD
process for the next tile begins immediately. The bit manip-
ulation and counting operations in SMBD, which run on
CUDA cores, are independent of Tensor Core instructions.
This interleaving of SMBD with Tensor Core computations
increases Instruction Level Parallelism (ILP) and optimizes
hardware resource utilization by keeping both CUDA cores
and Tensor Cores active, reducing pipeline stalls and improv-
ing throughput.

5 Performance Evaluation
Weassess the performance of SpInfer at two levels: the SpMM
kernel level and the end-to-end framework level. The exper-
iments are run on two platforms. ❶ Intel Xeon Platinum
8352V CPU (2.10GHz) with 4 NVIDIA RTX4090 GPUs (Ada
Lovelace, Compute Capability 8.9, 24 GB memory per GPU),
connected via PCIe with a bandwidth of 30.5 GB/s. ❷ Intel
Xeon Gold 6133 CPU (2.50GHz) with 4 NVIDIA A6000 GPUs
(Ampere, Compute Capability 8.6, 48 GB memory per GPU),
connected via pairwise NVLink. The code is compiled us-
ing GCC 9.4.5 and NVCC 12.1. For kernel-level evaluation,
Nsight Compute [61] is used to measure the precise execu-
tion times. For end-to-end evaluation, the inference process
is run 100 times, and the average wall-clock time is recorded.

5.1 Kernel Performance Comparison

Datasets. We evaluate SpInfer-SpMM using a diverse set
of weight matrix sizes derived from prominent LLM models.
These include the OPT-Series (13B, 30B, 66B, and 175B) [96],
the LLaMA2-Series (7B, 13B, and 70B) [80], the LLaMA3-
Series (8B and 70B) [17], Qwen2 (7B and 72B) [90], and the
Mixtral-8×7B MoE model [35].
Baselines. SpInfer-SpMM is compared against several key
baselines, including: ❶ cuSPARSE v12.1, the widely used
vendor-provided SpMM library [53]; ❷ Sputnik [24], a state-
of-the-art CUDA-core-based SpMM optimized for sparsity

in deep learning; ❸ SparTA [100], the first approach to lever-
age sparse Tensor Cores for unstructured SpMM; ❹ Flash-
LLM [92], a state-of-the-art Tensor-Core-based SpMM de-
signed for sparse LLM inference; and ❺ Tensor-Core-based
cuBLAS, the counterpart used in dense LLM inference. Ad-
ditionally, we compare SpInfer with advanced Tensor-Core-
based SpMM for scientific workloads, including❻ SMaT [64].
The evaluation is conducted at sparsity levels between 40%
and 70%, which represent the optimal sparsity range targeted
by cutting-edge LLM pruning techniques.
Results. Figure 10 depicts the measured performance on
RTX4090 and A6000. The speedup values are normalized to
Tensor-Core-Based cuBLAS (cuBLAS_TC), represented by
the red dashed line. SpInfer consistently delivers superior
speedups against both dense and sparse implementations. On
the RTX4090, SpInfer achieves an average speedup of 1.79×
over cuBLAS, with average speedups of 18.14×, 2.55×, 1.67×,
and 1.56× against cuSPARSE, Sputnik, SparTA, and Flash-
LLM, respectively. On the A6000, similar trends are observed,
with SpInfer achieving an average speedup of 1.51× over
cuBLAS and outperforming cuSPARSE by up to 24.80×.

At lower sparsity levels (40%), SpInfer is the only method
capable of consistently outperforming cuBLAS, achieving a
1.46× average speedup and surpassing cuBLAS on 94.44% of
matrices. At the critical 50% sparsity level, SpInfer maintains
its lead with an average speedup of 1.66× over cuBLAS, out-
performing all other kernels on 96.30% of test cases. Compet-
ing methods like SparTA and Flash-LLM offer only marginal
improvements over cuBLAS, with 1.01× and 1.00× speedups,
respectively.
As sparsity increases to 70%, where SpMM typically be-

comes more advantageous, SpInfer’s performance further
excels, achieving a 1.90× speedup over cuBLAS and out-
performing it in 100% of test cases. In comparison, SparTA
and Flash-LLM achieve more modest gains (1.16× and 1.22×
speedups). These results reflect SpInfer’s ability to handle
low to moderate unstructured sparsity, which often chal-
lenges traditional sparse kernels.
Figure 11 shows the performance comparison between

SpInfer and SMaT. At 50% sparsity, SpInfer outperforms
SMaT with a 2.12× speedup. SMaT only surpasses SpInfer at
extreme sparsity levels above 99.7%, where its design opti-
mizes performance by skipping zero blocks in highly sparse
scientific matrices. However, in the low to moderate sparsity
ranges typical of LLM inference, there are few blocks that
can be skipped, limiting SMaT’s advantage.
Micro-Analysis. To further explain the performance gains
of SpInfer, we conduct a detailed micro-level analysis of the
SpMM kernels. Key indicators examined include register
allocation, DRAM bytes read, bandwidth utilization, bank
conflicts, and Tensor Core utilization. We collect these indica-
tors through Nsight Compute [61]. The results are shown in
Figure 12. SpInfer consumes the fewest registers compared to

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 10. SpMM kernel performance comparison on RTX4090 and A6000 GPUs. 𝑁 denotes the batch size.

Figure 11. Comparison with SpMM for scientific workloads.

other methods. This efficiency is achieved by directly decod-
ing sparse data in shared memory, avoiding the need for addi-
tional registers to store sparse data. The lower register usage
allows for higher GPU occupancy, enabling more threads
to run concurrently and improving overall computational
efficiency. Additionally, SpInfer significantly reduces time-
consuming DRAM access, minimizing the volume of data
transferred between global memory and compute units. This
reduction is primarily due to the efficiency of the TCA-BME
format, which optimizes data storage and access patterns.

Furthermore, SpInfer excels in minimizing shared memory
bank conflicts. In contrast, Flash-LLM requires consecutive
threads to write sparse data to specific locations in shared
memory. Due to the inherent randomness of sparse data,
this often leads to unavoidable shared memory bank con-
flicts during write operations. SpInfer’s design avoids such
conflicts.

Finally, SpInfer achieves higher Tensor Core pipeline uti-
lization than Flash-LLM, due to the efficient SMBD and asyn-
chronous pipeline design. This optimized pipeline ensures
that data transfer and computation are overlapped effectively,
allowing Tensor Cores to be better leveraged.

Figure 12. Micro-level comparison of SpInfer against
cuBLAS_TC and Flash-LLM across key metrics.

Optimizations Duration↓
unit:ms

Max
BW(%)↑

Issue Slot
Busy(%)↑

Warp Cycles
Per Inst↓

TC Pipe
UTIL(%)↑SMBD AsyncPipe

✓ ✓ 303.1 91.5% 37.6% 9.1 19.1%
✓ 333.5 28.6% 9.1% 9.6 4.1%

✓ 309.2 89.3% 35.9% 9.5 18.7%

Table 1. Kernel-level ablation study. BW: Bandwidth.

Ablation Study. To quantify the impact of key optimiza-
tions in SpInfer, we conduct an ablation study by selectively
removing the SMBD and asynchronous pipeline (AsyncPipe)
optimizations, and analyze their effects on performance. The
results are shown in Table 1. Without SMBD, kernel execu-
tion time increases by 10.03%, with a 68.78% drop in band-
width utilization and a 75.77% reduction in issue slot activity.
Furthermore, Tensor Core utilization decreases by 78.41%,
showing that SMBD is crucial for optimizing memory access
and ensuring efficient hardware usage. When AsyncPipe
is removed, execution time increases by 1.98% and Tensor
Core utilization drops by 2.00%, indicating that this optimiza-
tion plays a key role in overlapping memory transfers with
computation, improving overall efficiency.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

Figure 13. End-to-end inference performance of OPT-13B
and OPT-30B on RTX4090 GPUs.

5.2 End-to-end LLM Inference

Baselines and settings. We compare SpInfer against state-
of-the-art frameworks, including Flash-LLM (FL), DeepSpeed
(DS) [69], and FasterTransformer (FT) [56] for sparse and
dense LLM inference. Models used include OPT-13B, OPT-
30B, and OPT-66B, providing a wide range of sizes. With
the advanced Wanda algorithm [77], the model sparsity is
set at 60%, allowing OPT-13B to maintain a perplexity of
15.9 on the WikiText dataset. The precision of SpInfer relies
on and is guaranteed by current LLM pruning algorithms.
Experiments are conducted with batch sizes of 8, 16, and
32 on 1, 2, and 4 GPU configurations to assess scalability
and efficiency across different parallel processing scenarios.
Output lengths are set to 64, 128, 256, 512, and 1024 tokens,
allowing performance analysis under varying computational
loads during inference.
Results. The end-to-end inference results for the OPTmod-
els on RTX4090 and A6000 GPUs are presented in Figures
13 and 14, respectively. SpInfer consistently outperforms the
baseline frameworks, showcasing significant improvements
in both latency and memory efficiency.

Regarding latency, SpInfer exhibits notable speedups over
the baseline frameworks. On RTX4090, SpInfer achieves av-
erage speedups of 1.35×, 1.42×, and 1.49× compared to Flash-
LLM, FT, and DS, respectively. Similar trends are observed on
A6000, where the corresponding speedups are 1.29×, 1.36×,
and 1.55×. The maximum speedup of 1.58× over Flash-LLM
on RTX4090 occurs in the 1-GPU configuration with a batch
size of 32, where SpInfer processes over 1817.02 tokens/sec-
ond, compared to Flash-LLM’s 1183.58 tokens/second. In

Figure 14. End-to-end inference performance of OPT-30B
and OPT-66B on A6000 GPUs.

the 2-GPU configuration with OPT-13B, SpInfer achieves an
average speedup of 1.34× over Flash-LLM, while in the 4-
GPU OPT-30B setup, the speedup slightly decreases to 1.28×.
Although the relative speedups tend to diminish as the num-
ber of GPUs and model size increase—primarily due to the
rising communication overhead associated with model par-
allelism—SpInfer continues to be the most efficient solution.
In terms of memory efficiency, SpInfer outperforms

other frameworks, particularly in scenarios where they en-
counter out-of-memory (OOM) issues. Leveraging the TCA-
BME format, SpInfer achieves sparsity-aligned memory re-
duction in model weights, thereby fundamentally improving
storage efficiency. For instance, when performing OPT-13B
inference with a batch size of 16 and a sequence length of
256, SpInfer’s 60%-sparsity model consumes merely 14.4 GB
memory, achieving a 47.5% reduction compared to the dense
baseline’s 27.4 GB requirement. This memory compression
becomes particularly crucial for larger batch sizes and longer
output sequences where competing frameworks exhibit lim-
itations. With OPT-13B on a single RTX4090 GPU and a
batch size of 8, SpInfer can support up to 1024 output tokens,
whereas Flash-LLM is limited to a maximum of 256 tokens.
Similarly, with OPT-30B on 2 RTX4090 GPUs, Flash-LLM
encounters OOM errors across all batch sizes and output
lengths, while SpInfer can handle up to 512 tokens with a
batch size of 16, and up to 1024 tokens with a batch size of
8. This trend is also evident when inferring the OPT-66B
model on 2 A6000 GPUs, where SpInfer demonstrates supe-
rior memory management compared to other frameworks.
The reason behind these advantages lies in SpInfer’s su-

perior SpMM performance and the high compression ratio

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 15. Breakdown of end-to-end inference time. FL:
Flash-LLM. MHA: Multi-Head Attention. COMM: Inter-GPU
Communication.

of its TCA-BME format, which effectively reduces memory
requirements almost linearly with sparsity. This combina-
tion makes SpInfer more versatile and scalable for real-world
LLM inference scenarios.
Breakdown Analysis. To further explain the performance
gains of SpInfer, we use Nsight Systems [62] to break down
the execution time, as shown in Figure 15. The primary time
consumption for both SpInfer and Flash-LLM is spent on
SpMM operations, while for FasterTransformer it’s GEMM.
Under equivalent configurations, SpInfer’s SpMM takes sig-
nificantly less time compared to Flash-LLM’s SpMM and
FasterTransformer’s GEMM.

Furthermore, due to SpInfer’s superior memory efficiency,
it can support the same configurations with fewer GPUs -
typically half the number required by Flash-LLM and Faster-
Transformer. This not only reduces hardware requirements
but also brings additional performance benefits. For instance,
with the OPT-13Bmodel, SpInfer only needs 1 RTX4090 GPU,
eliminating the inter-GPU communication time required by
FasterTransformer and Flash-LLM when using 2 GPUs. This
advantage is also evident in A6000 GPU clusters. However,
this benefit is particularly pronounced in RTX4090 GPU
clusters, where only PCIe with relatively low bandwidth is
available, and NVLink cannot be used.

6 Limitation and Discussion
Although SpInfer shows notable improvements in perfor-
mance and memory efficiency, it faces limitations during
the prefill phase when batch size and sequence length
(𝑁 = 𝐵𝑆 × 𝑆𝑒𝑞_𝑙𝑒𝑛) are large. In these cases, SpInfer can be
up to 11.8% slower than cuBLAS_TC because the operation
becomes more compute-bound, thus reducing the benefits of
our memory-access optimizations (shown in Figure 16). The
bitmap decoding overhead contributes to this performance
gap, especially in dense matrix operations where cuBLAS
leverages Tensor Cores more effectively. However, this im-
pact is mitigated by several factors. Even in the prefill phase,
SpInfer achieves substantial memory savings due to its high-
compression TCA-BME format, which is crucial for manag-
ing long sequences and large models on limited hardware.

Figure 16. Performance comparison under small and large
N settings.𝑀 = 28672 and 𝐾 = 8192.

Additionally, as inference systems increasingly adopt a de-
coupled prefill and decode phase architecture [63, 67, 68, 101],
SpInfer’s optimization for the decode phase makes it well-
suited for scalable deployment. Addressing this limitation
requires hardware-level support, such as Sparse Tensor
Cores or specialized sparse GEMM accelerators, which rep-
resent promising directions for future optimization.
Beyond weight sparsity, SpInfer does not currently sup-

port dynamic activation sparsity, where sparsity patterns
vary at runtime based on input-dependent activations [42, 47,
50, 75, 99]. Extending SpInfer to accommodate such runtime
sparsity would require adaptive sparse encoding techniques
to maintain computational efficiency. Furthermore, at ex-
treme sparsity levels (>90%), the efficiency of bitmap indexing
declines as excessive bits are used to represent zeros, result-
ing in a lower compression ratio than CSR formats [28]. In
such scenarios, alternative approaches like DTC-SpMM [19]
and SMaT [64] are more effective.

Although SpInfer is optimized for NVIDIA Tensor Cores,
its core techniques are generalizable to other hardware archi-
tectures. The TCA-BME tiling strategy can be tailored to dif-
ferent matrix multiplication units, such as Google TPU [36],
AMD Matrix Cores [70], and Intel AMX [37], by aligning
the tile configurations with their respective specifications.
Similarly, SMBD relies on basic bitwise operations, which
are available across modern architectures [2, 3]. Future re-
search includes developing compiler optimizations to auto-
mate SpInfer’s adaptation for diverse hardware architectures,
enhancing its cross-platform efficiency.

7 Conclusion
In this paper, we have presented SpInfer, an efficient frame-
work designed to accelerate LLM inference on GPUs by lever-
aging unstructured pruning and sparse matrix multiplica-
tion. At the core of SpInfer is a novel Tensor-Core-Aware
Bitmap Encoding (TCA-BME) format, which addresses the
critical issue of indexing overhead, enabling substantial im-
provements in both memory efficiency and computational
performance, even at low sparsity levels. We have also in-
troduced a highly optimized SpInfer-SpMM kernel, which
incorporates techniques including Shared Memory Bitmap
Decoding (SMBD) and an asynchronous pipeline to maxi-
mize GPU resource utilization. Our evaluation reveals that

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

SpInfer consistently surpasses state-of-the-art SpMM ker-
nels and inference frameworks across various sparsity levels,
delivering substantial speedups alongside reduced memory
usage. SpInfer is demonstrated to be the first framework
that can effectively accelerate LLM inference at low sparsity
levels (below 50%) while maintaining both computational
efficiency and memory savings, addressing a critical gap in
current sparse inference techniques.

Acknowledgments
We extend our thanks to the anonymous EuroSys review-
ers and our shepherd, Fan Yang, for their valuable feed-
back. This work was partially supported by National Natu-
ral Science Foundation of China under Grant No. 62272122,
the Guangzhou Municipal Joint Funding Project with Uni-
versities and Enterprises under Grant No. 2024A03J0616,
GuangzhouMunicipality Big Data Intelligence Key Lab (2023
A03J0012), Hong Kong CRF grants under Grant No. C7004-
22G and C6015-23G, the NSFC/RGC Collaborative Research
Scheme under the contract of CRS_HKUST601/24, and Na-
tional Natural Science Foundation of China under Grant No.
62302126. QiangWang and Xiaowen Chu are the correspond-
ing authors.

References
[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja,

Ahmed Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree,
Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A
highly capable language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

[2] Advanced Micro Devices. AMD Instinct MI300 CDNA3 Instruction Set
Architecture Reference Guide. Advanced Micro Devices, Inc., 2024.

[3] Advanced Micro Devices. AMD RDNA3 Instruction Set Architecture.
Advanced Micro Devices, Inc., 2024.

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad
Awan, Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith,
Minjia Zhang, Jeff Rasley, and Yuxiong He. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented
scale. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’22. IEEE
Press, 2022.

[5] Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nasci-
mento, Torsten Hoefler, and James Hensman. SliceGPT: Compress
large language models by deleting rows and columns. In ICLR, 2024.

[6] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li,
Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman.
Quarot: Outlier-free 4-bit inference in rotated llms. arXiv preprint
arXiv:2404.00456, 2024.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020.
Curran Associates Inc.

[8] Roberto L Castro, Diego Andrade, and Basilio B Fraguela. Probing
the efficacy of hardware-aware weight pruning to optimize the spmm
routine on ampere gpus. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, pages 135–147,
2022.

[9] Zhaodong Chen, Zheng Qu, Liu Liu, Yufei Ding, and Yuan Xie. Ef-
ficient tensor core-based gpu kernels for structured sparsity under
reduced precision. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–14, 2021.

[10] Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui
Zhang, Yufei Ding, Yuan Xie, Huazhong Yang, and YuWang. Heuristic
adaptability to input dynamics for spmm on gpus. In Proceedings of
the 59th ACM/IEEE Design Automation Conference, pages 595–600,
2022.

[11] Tri Dao. FlashAttention-2: Faster attention with better parallelism
and work partitioning. In International Conference on Learning Repre-
sentations (ICLR), 2024.

[12] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. FlashAttention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[13] Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen. Beyond size: How
gradients shape pruning decisions in large language models. arXiv
preprint arXiv:2311.04902, 2023.

[14] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale.
Advances in Neural Information Processing Systems, 35:30318–30332,
2022.

[15] Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang
Wang, and Xiaowen Chu. Pruner-zero: Evolving symbolic pruning
metric from scratch for large language models. In Proceedings of
the 41st International Conference on Machine Learning. PMLR, 2024.
[arXiv: 2406.02924].

[16] Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen
Chu, and Ningyi Xu. Bitdistiller: Unleashing the potential of sub-4-bit
llms via self-distillation. arXiv preprint arXiv:2402.10631, 2024.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

[18] Ruibo Fan, Wei Wang, and Xiaowen Chu. Fast sparse gpu kernels
for accelerated training of graph neural networks. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 501–511. IEEE, 2023.

[19] Ruibo Fan, Wei Wang, and Xiaowen Chu. Dtc-spmm: Bridging the
gap in accelerating general sparse matrix multiplication with ten-
sor cores. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 253–267, 2024.

[20] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models
can be accurately pruned in one-shot. In ICML, 2023.

[21] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh.
Gptq: Accurate post-training quantization for generative pre-trained
transformers. arXiv preprint arXiv:2210.17323, 2022.

[22] Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan
Alistarh. Marlin: Mixed-precision auto-regressive parallel inference
on large language models. arXiv preprint arXiv:2408.11743, 2024.

[23] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia.
Megablocks: Efficient sparse training with mixture-of-experts, 2022.

[24] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse
gpu kernels for deep learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–14. IEEE, 2020.

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[25] Georgi Gerganov. llama.cpp. https://github.com/ggerganov/llama.
cpp, 2023.

[26] Scott Gray, Alec Radford, and Diederik P Kingma. Block-sparse gpu
kernels, 2017.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, pages 770–778,
2016.

[28] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. Sparsity in deep learning: Pruning and growth for
efficient inference and training in neural networks. The Journal of
Machine Learning Research, 22(1):10882–11005, 2021.

[29] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ah-
mad Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong
He. Deepspeed-fastgen: High-throughput text generation for llms
via mii and deepspeed-inference, 2024.

[30] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopad-
hyay, Jinsung Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok,
Ümit V Çatalyürek, Srinivasan Parthasarathy, and P Sadayappan.
Efficient sparse-matrix multi-vector product on gpus. In Proceedings
of the 27th International Symposium on High-Performance Parallel and
Distributed Computing, pages 66–79, 2018.

[31] ChangwanHong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,
and P Sadayappan. Adaptive sparse tiling for sparse matrix multipli-
cation. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming, pages 300–314, 2019.

[32] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu,
Kangdi Chen, Yuhan Dong, and Yu Wang. Flashdecoding++: Faster
large language model inference on gpus, 2024.

[33] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng
Zhang, Zhiru Zhang, and Yida Wang. Featgraph: A flexible and
efficient backend for graph neural network systems. In SC20: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13. IEEE, 2020.

[34] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. Ge-
spmm: General-purpose sparse matrix-matrix multiplication on gpus
for graph neural networks. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12.
IEEE, 2020.

[35] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, ArthurMensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts.
arXiv preprint arXiv:2401.04088, 2024.

[36] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international sym-
posium on computer architecture, pages 1–12, 2017.

[37] Hyungyo Kim, Gaohan Ye, Nachuan Wang, Amir Yazdanbakhsh, and
Nam Sung Kim. Exploiting intel® advanced matrix extensions (amx)
for large language model inference. IEEE Computer Architecture
Letters, 2024.

[38] Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and
Dan Alistarh. Sparse fine-tuning for inference acceleration of large
language models, 2023.

[39] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev,
John Carr, Michael Goin, William Leiserson, Sage Moore, Bill Nell, Nir
Shavit, and Dan Alistarh. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In Hal Daumé III and
Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 5533–5543, Virtual, 13–18 Jul 2020. PMLR.

[40] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica.

Efficient memory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[41] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In
NeurIPS, volume 2, 1989.

[42] Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Tiwari, and Azalia
Mirhoseini. Cats: Contextually-aware thresholding for sparsity in
large language models. arXiv preprint arXiv:2404.08763, 2024.

[43] Shigang Li, Kazuki Osawa, and Torsten Hoefler. Efficient quantized
sparse matrix operations on tensor cores. In SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15. IEEE, 2022.

[44] Bin Lin, Ningxin Zheng, Lei Wang, Shijie Cao, Lingxiao Ma, Quanlu
Zhang, Yi Zhu, Ting Cao, Jilong Xue, Yuqing Yang, and Fan Yang.
Efficient gpu kernels for n:m-sparse weights in deep learning. In
D. Song, M. Carbin, and T. Chen, editors, Proceedings of Machine
Learning and Systems, volume 5, pages 513–525. Curan, 2023.

[45] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen,
Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and
Song Han. Awq: Activation-aware weight quantization for on-device
llm compression and acceleration. Proceedings of Machine Learning
and Systems, 6:87–100, 2024.

[46] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan
Xiao, Chuang Gan, and Song Han. Qserve: W4a8kv4 quantiza-
tion and system co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024.

[47] James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim,
and Ben Athiwaratkun. Training-free activation sparsity in large
language models, 2024.

[48] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre
Stock, Yashar Mehdad, Yangyang Shi, Raghuraman Krishnamoorthi,
and Vikas Chandra. Llm-qat: Data-free quantization aware training
for large language models. arXiv preprint arXiv:2305.17888, 2023.

[49] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv
Choudhary, Raghuraman Krishnamoorthi, Vikas Chandra, Yuandong
Tian, and Tijmen Blankevoort. Spinquant–llm quantization with
learned rotations. arXiv preprint arXiv:2405.16406, 2024.

[50] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao
Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher
Re, et al. Deja vu: Contextual sparsity for efficient llms at inference
time. In International Conference on Machine Learning, pages 22137–
22176. PMLR, 2023.

[51] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xi-
aowen Chu. Benchmarking and dissecting the nvidia hopper gpu
architecture. arXiv preprint arXiv:2402.13499, 2024.

[52] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the
structural pruning of large language models. Advances in neural
information processing systems, 36:21702–21720, 2023.

[53] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi.
Cusparse library. In GPU Technology Conference, 2010.

[54] NVIDIA. NVIDIA volta gpu architecture whitepaper.
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf, 2017.

[55] NVIDIA. Nvidia a100 tensor core gpu architecture, 2020.
[56] NVIDIA. Fastertransformer. https://github.com/NVIDIA/

FasterTransformer, 2023.
[57] NVIDIA. NVIDIA CUDA C Programming Guide. https://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html, 2023.
[58] NVIDIA. PTX ISA: CUDA Toolkit documentation. https://docs.nvidia.

com/cuda/parallel-thread-execution/index.html, 2023.
[59] NVIDIA. cublas docs. https://docs.nvidia.com/cuda/cublas/index.

html, 2024.
[60] NVIDIA. cusparse library. https://docs.nvidia.com/cuda/cusparse/

index.html, 2024.

https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

[61] NVIDIA. Nsight compute. https://developer.nvidia.com/nsight-
compute, 2024.

[62] NVIDIA. Nsight systems. https://developer.nvidia.com/nsight-
systems, 2024.

[63] Hyungjun Oh, Kihong Kim, Jaemin Kim, Sungkyun Kim, Junyeol Lee,
Du-seong Chang, and Jiwon Seo. Exegpt: Constraint-aware resource
scheduling for llm inference. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’24, page 369–384, New
York, NY, USA, 2024. Association for Computing Machinery.

[64] Patrik Okanovic, Grzegorz Kwasniewski, Paolo Sylos Labini, Ma-
ciej Besta, Flavio Vella, and Torsten Hoefler. High performance
unstructured spmm computation using tensor cores. arXiv preprint
arXiv:2408.11551, 2024.

[65] OpenAI. Gpt-4 technical report, 2023.
[66] Meng Pang, Xiang Fei, Peng Qu, Youhui Zhang, and Zhaolin Li. A

row decomposition-based approach for sparse matrix multiplication
on gpus. In Proceedings of the 29th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, pages 377–389,
2024.

[67] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. Splitwise: Efficient gen-
erative llm inference using phase splitting. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA),
pages 118–132. IEEE, 2024.

[68] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu,
Weimin Zheng, and Xinran Xu. Mooncake: Kimi’s kvcache-centric
architecture for llm serving. arXiv preprint arXiv:2407.00079, 2024.

[69] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong
He. Deepspeed: System optimizations enable training deep learning
models with over 100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[70] Gabin Schieffer, Daniel Araújo De Medeiros, Jennifer Faj, Aniruddha
Marathe, and Ivy Peng. On the rise of amd matrix cores: Performance,
power efficiency, and programmability. In 2024 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 132–143. IEEE, 2024.

[71] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep
Ramani, and Tri Dao. Flashattention-3: Fast and accurate attention
with asynchrony and low-precision, 2024.

[72] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li,
Danyang Zhuo, Joseph E. Gonzalez, and Ion Stoica. Fairness in serv-
ing large language models. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pages 965–988, Santa
Clara, CA, July 2024. USENIX Association.

[73] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max
Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett,
Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and
Ce Zhang. Flexgen: High-throughput generative inference of large
language models with a single gpu, 2023.

[74] Jinliang Shi, Shigang Li, Youxuan Xu, Rongtian Fu, Xueying Wang,
and Tong Wu. Flashsparse: Minimizing computation redundancy
for fast sparse matrix multiplications on tensor cores. arXiv preprint
arXiv:2412.11007, 2024.

[75] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer:
Fast large language model serving with a consumer-grade gpu. arXiv
preprint arXiv:2312.12456, 2023.

[76] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and
effective pruning approach for large language models. InWorkshop
on Efficient Systems for Foundation Models @ ICML2023, 2023.

[77] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and
effective pruning approach for large language models. In ICLR, 2024.

[78] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal.
Dissecting tensor cores via microbenchmarks: Latency, throughput
and numeric behaviors. IEEE Transactions on Parallel and Distributed
Systems, 34(1):246–261, 2022.

[79] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao
Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen, Haicheng Wu, Andrew
Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr
Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish
Gupta. CUTLASS, January 2023.

[80] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[81] A Vaswani. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[82] Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining
Shi, Ningxin Zheng, Ziming Miao, Fan Yang, Ting Cao, et al. Ladder:
Enabling efficient low-precision deep learning computing through
hardware-aware tensor transformation. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), pages
307–323, 2024.

[83] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei
Ding. TC-GNN: Bridging sparse GNN computation and dense tensor
cores on GPUs. In 2023 USENIX Annual Technical Conference (USENIX
ATC 23), pages 149–164, 2023.

[84] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

[85] Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue
Liu, Yuanhang Sun, Gang Huang, Xuanzhe Liu, and Xin Jin. Fast
distributed inference serving for large language models, 2024.

[86] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu
Zhou, Xiafei Qiu, Yong Li, Wei Lin, and Shuaiwen Leon Song. Flash-
llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. Proc. VLDB Endow.,
17(2):211–224, October 2023.

[87] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth,
and Song Han. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR, 2023.

[88] Kaixin Xu, Zhe Wang, Chunyun Chen, Xue Geng, Jie Lin, Xulei Yang,
Min Wu, Xiaoli Li, and Weisi Lin. Lpvit: Low-power semi-structured
pruning for vision transformers. arXiv preprint arXiv:2407.02068,
2024.

[89] Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang,
Peng Gao, Fengwei An, Yu Qiao, and Ping Luo. BESA: Pruning
large language models with blockwise parameter-efficient sparsity
allocation. In ICLR, 2024.

[90] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al.
Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

[91] Carl Yang, Aydın Buluç, and John D Owens. Design principles for
sparse matrix multiplication on the gpu. In European Conference on
Parallel Processing, pages 672–687. Springer, 2018.

[92] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze.
Sparsetir: Composable abstractions for sparse compilation in deep
learning. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, ASPLOS 2023, page 660–678, New York, NY, USA,
2023. Association for Computing Machinery.

[93] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim,
and Byung-Gon Chun. Orca: A distributed serving system for
Transformer-Based generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems

SpInfer: Efficient Sparse LLM Inference on GPUs EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

521–538, Carlsbad, CA, July 2022. USENIX Association.
[94] Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Chenhao

Xue, Bingzhe Wu, Zhikai Li, Qingyi Gu, Yong Jae Lee, Yan Yan, et al.
Llm inference unveiled: Survey and roofline model insights. arXiv
preprint arXiv:2402.16363, 2024.

[95] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang
Zhang, Zizhong Chen, Xin Liu, and Yibo Zhu. Bytetransformer: A
high-performance transformer boosted for variable-length inputs. In
2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 344–355, 2023.

[96] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya
Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[97] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and
Carlo Vittorio Cannistraci. Plug-and-play: An efficient post-training
pruning method for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

[98] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size
Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, and Baris
Kasikci. Atom: Low-bit quantization for efficient and accurate llm
serving. Proceedings of Machine Learning and Systems, 6:196–209,
2024.

[99] Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingx-
iao Ma, Yuqing Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao
Yang, et al. Pit: Optimization of dynamic sparse deep learning models
via permutation invariant transformation. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages 331–347, 2023.

[100] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuqing Yang,
Fan Yang, Yang Wang, Mao Yang, and Lidong Zhou. SparTA: Deep-
Learning model sparsity via Tensor-with-Sparsity-Attribute. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), pages 213–232, 2022.

[101] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. DistServe: Disaggregating prefill
and decoding for goodput-optimized large language model serving.
In 18th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 24), pages 193–210, Santa Clara, CA, July 2024.
USENIX Association.

[102] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao
Li, Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, Shengen
Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang. A
survey on efficient inference for large languagemodels. arXiv preprint
arXiv:2404.14294, 2024.

A Artifact Appendix
SpInfer is a high-performance sparse LLM inference frame-
work on GPUs. At the kernel level, SpInfer introduces the
Tensor-Core-Aware Bitmap Encoding (TCA-BME) format for
sparse matrix storage and implements a specialized SpMM
kernel. At the framework level, SpInfer integrates with the
popular FasterTransformer framework to reduce learning
overhead and enhance user productivity and code portability.

A.1 Artifact Check-list
• Program: SpInfer-kernel, SpInfer-integrated Faster-
Transformer
• Compilation: gcc (≥7.3), cmake (≥3.30.3), CUDA (≥12.2),
nvcc (≥12.0)
• Hardware: NVIDIA RTX4090 or A6000 GPUs

• Execution time: ∼9 hours for kernel benchmarks,
model-dependent for end-to-end evaluation
• Publicly available: Yes, via GitHub and Zenodo

A.2 Description
A.2.1 How to Access.
• GitHub repository: https://github.com/HPMLL/SpInfer_
EuroSys25.git
• Zenodo artifact: https://doi.org/10.5281/zenodo.14946485

Listing 2. Repository setup commands
1 git clone https :// github.com/HPMLL/SpInfer_EuroSys25.

git
2 cd SpInfer
3 git submodule update --init --recursive
4 source Init_SpInfer.sh

A.2.2 Hardware Dependencies.
• NVIDIA RTX4090 or A6000 GPUs
• System memory ≥ 128GB (for model loading)

A.2.3 Software Dependencies.
• Operating System: Ubuntu 18.04 or higher
• Compiler: gcc ≥ 7.3
• CUDA Toolkit: CUDA ≥ 12.2, nvcc ≥ 12.0
• Python Environment Manager: Miniconda/Anaconda

A.3 Installation
A.3.1 Environment Setup. After installing Miniconda on
the system, create the required environment:

Listing 3. Environment setup commands
1 cd $SpInfer_HOME
2 conda env create -f spinfer.yml
3 conda activate spinfer

A.3.2 Building SpInfer. Compile the core library:

Listing 4. Build command
1 cd $SpInfer_HOME/build && make -j

A.4 Kernel-level Benchmarking (Figure 10)
A.4.1 Build dependencies: Execute the following in-
struction to build Sputnik and SparTA.

Listing 5. Dependency build commands
1 cd $SpInfer_HOME/third_party/
2 source build_sputnik.sh
3 source prepare_cusparselt.sh

A.4.2 Execute benchmarks: Run kernel-level benchmarks
and check the output Figure10.png.

Listing 6. Benchmark execution commands
1 cd $SpInfer_HOME/kernel_benchmark
2 source test_env
3 make -j
4 source benchmark.sh

https://github.com/HPMLL/SpInfer_EuroSys25.git
https://github.com/HPMLL/SpInfer_EuroSys25.git
https://doi.org/10.5281/zenodo.14946485

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ruibo Fan, et al.

A.5 End-to-End Model Evaluation
Follow the detailed SpInfer/docs/LLMInferenceExample
for:
• Building Faster-Transformer with SpInfer, Flash-llm
or Standard integration
• Downloading & Converting OPT models

Configuration Note: Model_dir differs for SpInfer, Flash-
llm and Faster-Transformer.

SpInfer Inference:

Listing 7. SpInfer evaluation commands
1 # Single -GPU evaluation
2 cd $SpInfer_HOME/third_party/
3 bash run_1gpu_loop.sh
4 # Results in $SpInfer_HOME/third_party/

FasterTransformer/Result_13B /1-gpu/
5
6 # Multi -GPU evaluation
7 bash run_2gpu_loop.sh # For tensor_para_size =2
8 bash run_4gpu_loop.sh # For tensor_para_size =4

Flash-llm Inference:

Listing 8. Flash-llm evaluation commands
1 # You need to download Flash -llm and write

run_gpu_loop like SpInfer
2 cd /mnt/flash -llm/
3 source Init_FlashLLM.sh
4 cd $FlashLLM_HOME/third_party/
5 bash run_1gpu_loop.sh # For tensor_para_size =1
6 # Results in $FlashLLM_HOME/third_party/

FasterTransformer/Result_13B /1-gpu/
7
8 # Multi -GPU evaluation
9 bash run_2gpu_loop.sh # For tensor_para_size =2
10 bash run_4gpu_loop.sh # For tensor_para_size =4

Faster-transformer Inference:

Listing 9. Faster-transformer evaluation commands
1 # You need to download FT
2 cd /mnt/faster -transformer/
3 export FT_HOME=$pwd
4 cd $FT_HOME/third_party/
5 bash run_2gpu_loop.sh # For tensor_para_size =2
6 # Results in $FT_HOME/FasterTransformer/Result_13B/2-

gpu/
7 bash run_4gpu_loop.sh # For tensor_para_size =4

DeepSpeed Inference:

Listing 10. DeepSpeed evaluation commands
1 cd $SpInfer_HOME/end2end_inference/ds_scripts
2 pip install -r requirements.txt
3 bash run_ds_loop.sh
4 # Results in $SpInfer_HOME/end2end_inference/

ds_scripts/ds_result/

Drawing plot:

Listing 11. Draw plot commands
1 cd $SpInfer_HOME/end2end_inference
2 python draw_plot.py

A.6 Notes
• All experiments should be conducted with CUDA 12.2
or higher to ensure reproducibility
• Memory requirements may vary based on the selected
model size and batch configuration
• Ensure experiments are conducted on NVIDIA RTX
4090 or NVIDIA A6000 GPUs to precisely replicate the
reported results

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LLM Architecture and Inference Process
	2.2 NVIDIA GPU and Tensor Core
	2.3 Related work

	3 Gaps and Opportunities
	3.1 Bottleneck of LLM Inference
	3.2 Overlooked Indexing Overheads

	4 Design of SpInfer
	4.1 Design Overview
	4.2 Tensor-Core-Aware Bitmap Encoding
	4.3 High-Performance SpInfer-SpMM Kernel Design

	5 Performance Evaluation
	5.1 Kernel Performance Comparison
	5.2 End-to-end LLM Inference

	6 Limitation and Discussion
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Artifact Check-list
	A.2 Description
	A.3 Installation
	A.4 Kernel-level Benchmarking (Figure 10)
	A.5 End-to-End Model Evaluation
	A.6 Notes

