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Abstract—Graph Neural Networks (GNNs) are gaining huge
traction recently as they achieve state-of-the-art performance on
various graph-related problems. GNN training typically follows
the standard Message Passing Paradigm, in which SpMM and
SDDMM are the two essential sparse kernels. However, exist-
ing sparse GPU kernels are inefficient and may suffer from
load imbalance, dynamics in GNN computing, poor memory
efficiency, and tail effect. We propose two new kernels, Hybrid-
Parallel SpMM (HP-SpMM) and Hybrid-Parallel SDDMM (HP-
SDDMM), that efficiently perform SpMM and SDDMM on GPUs
with a unified hybrid parallel strategy of mixing nodes and
edges. In view of the emerging graph-sampling training, we
design the Dynamic Task Partition (DTP) method to minimize
the tail effect by exposing sufficient parallelism. We further
devise the Hierarchical Vectorized Memory Access scheme to
achieve aligned global memory accesses and enable vectorized
instructions for improved memory efficiency. We also propose to
enhance data locality by reordering the graphs with the Graph
Clustering method. Experiments on extensive sparse matrices
collected from real GNN applications demonstrate that our
kernels achieve significant performance improvements over state-
of-the-art implementations. We implement our sparse kernels in
popular GNN frameworks and use them to train various GNN
models, including the GCN model in full-graph mode and the
GraphSAINT model in graph-sampling mode. Evaluation results
show that our kernels can accelerate GNN training by up to
1.72×.

I. INTRODUCTION

Graph Neural Networks (GNNs) are gaining increasing
popularity as they achieve state-of-the-art performance in
many graph-related problems, such as node classification, link
prediction, graph classification [1], etc. In GNNs, data are
organized in a graph structure composed of nodes and edges.
Each node (edge) is associated with a feature vector. Compared
to traditional neural networks (NNs), GNN training is more
complex because the graph and NN operations are interleaved.

GNN training usually follows the standard Message Passing
Paradigm (MPP), which provides unifying support to various
graph operations [2]–[4]. In MPP, each node updates its feature
vector by aggregating features from its neighbors, and each
edge updates its features by aggregating features from its
source and destination nodes. More formally, let G(V,E) be
a self-looped graph1 with a node set V and an edge set E.
Let u and v be two neighboring nodes with a connecting edge
e(u, v) ∈ E. Denote by Xu ∈ RK the feature vector of node u
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and Xuv ∈ RK the feature vector of edge e(u, v), where K is
the feature dimension. MPP performs the following node-wise
and edge-wise operations:

node-wise : Hv =
⊕

u∈N (v)

fn (Xu,Xuv) , (1)

edge-wise : Huv = fe (Xu,Xv,Xuv) , (2)

whereN (v) is the neighboring set of node v, operator
⊕

is the
aggregation or reduction operation that generates a new feature
vector of v, which varies in different GNN models (e.g., max,
min, sum) [5], and fn and fe are the functions for node
message calculation and edge feature update, respectively.

As shown in Fig. 1, MPP in the entire graph can be
viewed as a general multiplication between the sparse adjacent
matrices and the dense feature matrices. If

⊕
and fe are sum,

Eqs. (1) and (2) represent Sparse Matrix-Matrix Multiplication
(SpMM) and Sampled Dense-Dense Matrix Multiplication
(SDDMM), respectively (see Fig. 1). GNN frameworks [2],
[6] implement the widely used graph convolution (GCN) layer
with an SpMM operation followed by a fully-connected layer.

GNN frameworks support two training modes, full-graph
(full-batch) and graph-sampling (mini-batch) training. In the
full-graph mode, the graph remains unchanged during multi-
ple training iterations. Compared with full-graph, the graph-
sampling mode is dynamic since it uses the newly sampled
graphs as the input in each training iteration. As GNN models
are getting larger and more complex, accelerating GNN train-
ing by GPUs becomes increasingly important. One effective
approach is to devise efficient core sparse GPU kernels,
including SpMM and SDDMM, for accelerated training [3],
[7]. However, existing sparse kernels [3], [7]–[9] are not
well optimized for GNNs and may result in the following
performance issues.

Load imbalance and poor data locality. In real-world ap-
plications, the degree of nodes in a graph varies dramatically.
Several existing sparse kernels use a node-parallel execution
strategy, which assigns the tasks of a node to a parallel
execution unit in GPU [3], [7]–[10]. As the node degree has
a large variance in a graph, node-parallel execution results in
severe load imbalance. When the graph is highly irregular, the
data locality can also be compromised [11].

Unable to handle the dynamics in GNN computing.
Some works utilize preprocessing to improve the perfor-
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Fig. 1: Message Passing Paradigm and sparse matrix multiplications on graph g. (a) MPP of node 2 and edge e(0, 2). Node 2
updates its feature vector (orange) by taking the reduction result of its neighbors’ features. Edge e(0, 2) updates its feature vector
by taking function fe with inputs of the features of the two connecting nodes. (b) An illustration of SpMM O = SA. SpMM
is performed on the adjacent matrix S of graph g and the feature matrix A. (c) An illustration of SDDMM SO = (A1A2)⊙S.
SDDMM is performed on the adjacent matrix S of graph g and the feature matrices A1 and A2. Row 2 of S is highlighted
to illustrate the relationship between the MPP of node 2 and SpMM/SDDMM.

mance of sparse kernels [8]–[11]. [8], [10], [11] notice the
load imbalance issue. They use preprocessing (i.e., sorting
or binary search) and the special Compressed Sparse Row
(CSR) format with additional arrays to achieve load balance.
These works have the following shortcomings when applied
to accelerating GNN computing. ❶ The dynamic property
of GNNs is ignored. The preprocessing overhead can only
be amortized in many rounds of execution. However, GNN
inference and graph-sampling training are dynamic, and each
round of execution is based on different graphs. Thus, it’s
hard to use these preprocess-based techniques to accelerate the
graph-sampling training [7]. ❷ These works adopt the same
granularity for different inputs and ignore the study on task
partition granularity which is crucial for performance. Sparse
matrices are all divided into tiles whose sizes are equal to the
number of launched threads in the CUDA block in [8]. [11]
separates long rows into tiles but left the tile size unstudied.

Inefficiency when loading sparse data. Keeping memory
access aligned and coalesced is crucial to maximizing the
global memory throughput. We evaluate and analyze the
SpMM kernel in cuSPARSE [12] on multiple graph datasets
using the Nsight Compute [13] and find that there are mis-
aligned and uncoalesced memory accesses. Besides, it is
difficult to enable vectorized memory access when fetching
sparse data.

Tail effect and insufficient parallelism. The tail effect of
GPU kernels occurs when the number of thread blocks is not
well configured, which results in low GPU utilization [14].
The tail effect is insignificant when large sparse matrices are
used (e.g., sparse kernels for scientific computing). However,
GNN training uses small sparse matrices, causing a salient
tail effect that significantly slows down the execution of
GNN algorithms, especially when graph-sampling is used.

This problem has received little attention in the literature.
To address the above issues, we design two new kernels, HP-

SpMM and HP-SDDMM, that perform SpMM and SDDMM
with a unified hybrid parallel strategy of mixing nodes and
edges2. We make the following contributions:

• We devise a unified hybrid parallel strategy for SpMM
and SDDMM. Our strategy assigns each GPU execution
unit precisely the same amount of work, thereby achiev-
ing a balanced load.

• We develop two new techniques, Dynamic Task Parti-
tion (DTP) and Hierarchical Vectorized Memory Access
(HVMA). DTP adaptively adjusts the task allocation to
minimize the tail effect. HVMA, on the other hand, en-
ables aligned, coalesced, and vectorized memory access.

• We propose Graph Clustering based Reordering (GCR),
an effective approach based on the Louvain method that
improves data locality by judiciously grouping nodes into
communities.

• We implement our optimization approaches and evaluate
their performance on extensive sparse matrices collected
from the full-graph and graph-sampling training of var-
ious GNN models. On two platforms, significant per-
formance improvement is achieved over available state-
of-the-art sparse kernels. We also embed our sparse
kernels into DGL and PyG frameworks to train popular
GNN models, including GCN in full-graph mode and
GraphSAINT [15] in graph-sampling mode and achieve
up to 1.72× end-to-end training speedup.

II. BACKGROUND AND RELATED WORK

In this section, we provide the background information. The
notations used in this paper are listed in Table I.

2https://github.com/fan1997/HP-SpMM-SDDMM.git
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TABLE I: Notations

Notation Description
S sparse input matrix of dimension M ×N
A dense input matrix for SpMM of dimension N ×K
O dense output matrix for SpMM of dimension M ×K
A1 dense input matrix for SDDMM of dimension M ×K
A2 dense input matrix for SDDMM of dimension K ×N
SO sparse output matrix for SDDMM of dimension M ×N
M number of rows in S; number of destination nodes in graph
N number of columns in S; number of source nodes in graph

K
number of columns in A,A1, A2 and O;
the dimension of the feature vector

NNZ number of non-zero elements in S; number of edges in graph

Training methods of GNN models. Current GNN frame-
works support two classes of training algorithms: full-batch
(full-graph) training and mini-batch (graph-sampling) training.
Full-batch training loads the entire graph into GPUs for
training. Limited by the GPU memory capacity, full-graph
training cannot handle massive graphs. Graph-sampling train-
ing addresses this problem. It samples a number of subgraphs
from the original graph to construct a mini-batch and use
it as the input in each iteration. Graph-sampling training is
widely supported in popular GNN frameworks. SpMM and
SDDMM are the two basic operations in the two training
modes. In the full-graph mode, both operations work with
the adjacent matrix of the original full graph, whereas in the
graph-sampling mode, they work with the adjacent matrices of
the generated subgraphs. Each training iteration’s input graphs
are different, making the graph-sampling mode more dynamic
than full-graph training.

Sparse matrix representations in GNN frameworks. In
GNNs, the sparse matrix refers to the adjacent matrix of the
graph. Sparse matrices can be stored in several formats in
the current GNN frameworks. As shown in Fig. 2(b), the
CSR format represents a graph with three arrays: RowOffset ,
ColInd, and V alue. The V alue array contains all the non-
zero elements in the sparse matrix; RowOffset [i] contains the
V alue index of the first element of the ith row; ColInd[i]
contains the column index of element i. Compared to CSR,
the COO format is simpler. As shown in Fig. 2(c), it repre-
sents a graph in three arrays: RowInd, ColInd, and V alue.
RowInd[i] and ColInd[i] contain the row and column index
of the ith non-zero element in the sparse matrix, respectively.
As shown in Fig. 2(d), GNN frameworks also support a
special hybrid CSR/COO format which decodes the CSR’s
compressed row index array into a complete one. We note
that current GNN frameworks store the sampled subgraphs in
hybrid CSR/COO format [2], [6].

To store the sparse matrix S, the CSR format requires
M+1+2×NNZ elements, while COO and hybrid CSR/COO
require 3 × NNZ. It is feasible to alleviate load imbalance
based on the CSR format, but preprocessing (e.g., sorting
and binary search) makes these works hard to be utilized for
GNN computing [7]. [16] points out that the COO and hybrid
CSR/COO help achieve more direct load balancing but has a

Fig. 2: Different representations of a sparse matrix. (a) The
original sparse matrix. (b) The CSR representation. (c) The
COO representation. (d) The hybrid CSR/COO representation
decodes the CSR’s compressed row index array into a com-
plete one.

major disadvantage that prevents it from being widely adopted;
that is, it requires more memory than CSR. We implement
kernels based on the hybrid CSR/COO format due to the fol-
lowing three observations. ❶ The sampled graphs are directly
stored in this format in GNN frameworks; thus, no format
conversion is needed. ❷ Most of the memory required for
GNN training comes from each layer’s feature matrix (M×K),
and the sparse matrix only needs to be stored once. This
largely masks the disadvantages of this format (i.e., it requires
larger storage space compared to CSR). ❸ Compared with
CSR-based load-balanced methods (with preprocessing), we
are able to develop preprocessing-free kernels that are suitable
for GNN computations with high real-time requirements (the
dynamic graph-sampling and inference mode).

SpMM and SDDMM. SpMM implements the following
computation: O = SA, where S, A, and O denote the
sparse matrix, dense matrix, and output matrix, respectively.
SDDMM computes SO = (A1A2) ⊙ S, where A1 and A2

are two dense matrices, S is the input sparse matrix, SO is
the output sparse matrix, and ⊙ is the Hadamard product.
NNZ is the number of non-zero elements in S. Fig. 1 shows a
conceptual view of SpMM and SDDMM. Algo. 1 and Algo. 2
describe the computations of sequential SpMM and SDDMM
based on the hybrid CSR/COO format.

Algorithm 1 Sequential SpMM

Input: Hybrid CSR/COO S[M ][N ], A[N ][K]
Output: O[M ][K]

1: for i ← 0 to NNZ step 1 do
2: r ← S.RowInd[i], c ← S.ColInd[i], v ← S.Value[i]
3: for k ← 0 to K step 1 do
4: O[r][k] + = v × A[c][k]
5: end for
6: end for

There are many efforts to optimize the two key kernels,
SpMM and SDDMM. Nvidia cuSPARSE library [12] provides



Algorithm 2 Sequential SDDMM

Input: Hybrid CSR/COO S[M ][N ], A1[M ][K], A2[K][N ]
Output: SO[M ][N ]

1: for i ← to NNZ step 1 do
2: r ← S.RowInd[i], c ← S.ColInd[i], v ← S.Value[i]
3: for k ← to K step 1 do
4: SO[i] + = A1[r][k] × A2[k][c]
5: end for
6: SO[i] ← SO[i] × v
7: end for

high-performance SpMM and SDDMM kernels (not open-
source). It supports three storage formats (CSR, COO, and
Blocked-Ellpack) for SpMM while CSR for SDDMM. It
designs several algorithms with different performances for
SpMM and leaves the choice to the users. Yang et al. [8]
introduce row-split and merge-path algorithms to SpMM (in
GraphBLAST) based on the CSR format to hide global mem-
ory latency. Huang et al. [7] propose GE-SpMM, which targets
at GNNs and optimizes the memory efficiency of SpMM by
reusing sparse data.

Some works implement these two kernels based on special
input formats not currently supported by GNN frameworks.
Hong et al. [9] propose ASpT, which uses an adaptive tiling
technique to reorder and partition sparse matrices into dense
(CSR) and sparse parts (DCSR). Shared memory can be
utilized with the dense part. Shi et al. [17] introduce grouped
COO format to improve data reuse. We implement our kernels
with the hybrid CSR/COO format, which is widely used in
GNN frameworks.

Some efforts require preprocessing and additional arrays
to alleviate load imbalance. Merge-path in [8] utilizes binary
search as preprocessing to partition the original sparse matrices
and use an additional array to store the row indices of each
partition. Huang et al. [11] introduce neighbor grouping to
partition the long rows in the sparse matrix into several short
tiles. Gale et al. [10] propose Sputnik, which introduces 1-
dimensional tiling and reverse offset memory alignment for
SpMM and SDDMM targeted at matrices with less sparsity
in sparse deep learning. Sputnik sorts the rows in the sparse
matrix by length to alleviate load imbalance. An additional
array is used to store the sorted result. The preprocessing
time can be several or dozens of times the actual SpMM and
SDDMM execution time, which is difficult to be amortized in
dynamic GNN computing [7]. Our kernels can achieve load
balancing without preprocessing, which makes them suitable
for GNN computing. Wang [18] proposes SparseRT targeted
at sparse DNN inference. Load balancing is achieved by
partitioning the sparse weight matrix into 2D tiles. Load
balancing and autotuning are performed at compile time as the
sparse weight matrices are known at that time. However, sparse
matrices are not known at compile time due to the dynamics
in GNN computing, making these compilation techniques hard
to utilize.

Several works [19], [20] focus on optimizing distributed-

memory SpMM by reducing processor-to-processor commu-
nication. Separately, introducing Tensor Cores to low-precision
SpMM and SDDMM has received attention recently [21].
FusedMM fuses these two kernels to accelerate GNNs [22].

Load imbalance is a significant performance issue in parallel
computing. Different from SpMM, two sparse input matrices
are multiplied to output a sparse matrix in Sparse Gen-
eral Matrix-Matrix Multiplication (SpGEMM). Several works
group the rows of a similar amount of computations together to
balance the load [23]–[25]. Triangle Counting counts intersec-
tions of source and destination nodes’ neighbors for every edge
in the graph. [26] [27] introduce Logarithmic Radix Binning
(LRB) that groups edges with similar workloads into bins.
Threads are dynamically allocated according to the amount of
tasks in the bins. Although these methods are very insightful,
they can not be introduced to SpMM directly because the
computation modes are quite different.

III. METHODOLOGY

In this section, we present the design of HP-SpMM and HP-
SDDMM. To address the load imbalance issue, we propose
a hybrid-parallel strategy based on the hybrid CSR/COO
format. We also propose optimization techniques to load data
efficiently and improve the data locality.

A. Hybrid-Parallel Strategy

There are two parallel strategies to perform the MPP of
the entire graph. The first is node-parallelism. As shown in
Fig. 3(a), it assigns the MPP of a node to a specific execution
unit. An alternative strategy is edge-parallelism. From the
perspective of graph operations, one execution unit is used
to complete the acquisition and computation of one adjacent
node feature, as shown in Fig. 3(b). The two parallel strategies
have different advantages and drawbacks.

Node-parallel strategy is coarse-grained and often not load-
balanced. According to the previous analysis, the main reason
is that the node degree in the graph is unevenly distributed,
creating highly imbalanced loads on the execution units. Also,
for those graphs with a small number of nodes but a large
number of edges, the node-parallel strategy leads to fewer
allocated execution units, making it difficult to fully utilize
the GPU’s parallelization capability. In contrast, the edge-
parallel strategy is fine-grained and load-balanced. However,
the memory efficiency of both reading and writing can be
relatively low. As each execution unit loads an edge separately,
more memory transactions are required to load the entire
graph. Besides, the reduction of neighboring nodes’ features
can only be completed in writing the output feature matrix
in global memory. Compared with node-parallel, this brings
more global memory write conflicts.

To address the drawbacks of the two parallel strategies, we
propose a new hybrid-parallel strategy for our sparse kernels.
As illustrated in Fig. 3(c), with hybrid parallelism, the one-to-
one mapping between nodes and execution units is not needed.
Instead, the computing tasks of a node are dispatched to and
completed by different execution units. Referring to Fig. 3(c),



Fig. 3: Overview of node-parallel, edge-parallel, and our pro-
posed hybrid-parallel strategy from the perspective of graphs.
The blue arrow represents a calculation (feature aggregation).
Nodes 3 and 4’s computations are assigned to two CUDA
warps with node-parallelism. With edge-parallelism, feature
aggregation of each edge is assigned to a CUDA warp.
With hybrid-parallelism, we assign part of nodes 3 and 4’s
computations to a CUDA warp.

a CUDA warp is responsible for all the computing tasks of
node 3 and part of node 4. Each execution unit’s tasks are set to
be almost the same, leading to more balanced loads. Memory
transactions and conflicts are also reduced compared to the
edge-parallel strategy. Following this idea, we next describe
how to apply the hybrid-parallel strategy efficiently from the
perspective of matrices and sparse kernels.

Fig. 4: HP-SpMM: Hybrid-parallel SpMM. We assign the
same amount (5) of nonzero elements in S to five warps.
Warp 2 with four threads first reads and accumulates rows 4,
5, and 6 from A and writes the accumulations to row 3 in O.
Warp 2 then clears the accumulations and changes to read and
accumulates row 1 and 2 from A and write the accumulations
to row 4 in O. Other warps perform similar computations.

1) The design of HP-SpMM (Hybrid-Parallel SpMM): Fig. 4
shows the design of HP-SpMM. The pseudo-code of our
method is given in Algo. 3. We assign the same amount
(NnzPerWarp) of non-zero elements from sparse matrix S
to CUDA warps. In each iteration, the threads in a warp
cooperatively load a tile of data from RowInd, ColInd, and
Value of S in hybrid CSR/COO format to shared memory tile
(line 7). The threads in a warp read the tile one by one to
get the indices that need to be accessed in matrix A (line
9). After they get one index, all the threads in a warp get
and access the corresponding offset in matrix A (line 10)
and accumulate into the register res (line 19), which stores
the partial result. The tile-loading and accumulating processes
continue until the row for which the warp is responsible
changes. A row-switch procedure is crucial in our design. Each
thread maintains a variable, RowSwitchFlag, to track the status
of row switching. When the row processed by the warp does
not change, the RowSwitchFlag remains false, and the thread
continues to write the accumulation result into register res.
When the row changes, each thread writes the partial sum
res into the corresponding offset of the matrix O in global
memory (line 15). Res is cleared and set to zero to prepare
for the accumulation of the new row (line 16).

Algorithm 3 HP-SpMM Algorithm

Input: Hybrid CSR/COO S, A[], NnzPerWarp, K
Output: O[]

1: Initialize: warpid, Soffset , Aoffset , Ooffset , res← 0;
2: warpstart ← warpid × NnzPerWarp;
3: warpend ← warpstart +NnzPerWarp;
4: shared S tile[3][32]; ▷ row, column id, and value.
5: A tile[32];
6: for i ← warpstart to warpend step 32 do
7: S tile ← LoadSparse(Soffset + i);
8: for j ← 0 to 32 step 1 do
9: col id ← S tile[1][j];

10: A tile[j] ← Load(Aoffset + col id× K);
11: end for
12: for j ← 0 to 32 step 1 do
13: ▷ row-switch procedure.
14: if RowSwitchF lag == true then
15: AtomicStore(Ooffset + S tile[0][j] × K, res);
16: res← 0;
17: RowSwitchF lag ← false;
18: end if
19: res + = S tile[2][j] × A tile[j];
20: end for
21: end for
22: AtomicStore(Ooffset + S tile[0][31] × K, res);

With a proper NnzPerWarp, the computing load of HP-
SpMM is relatively balanced. However, since HP-SpMM
breaks the task dependency of the same row, it inevitably
brings more global memory writes. Thus, we implement our
kernel based on the hybrid CSR/COO format. It can ensure
that the non-zero elements that each warp is responsible for



Fig. 5: HP-SDDMM: hybrid-parallel SDDMM. Warp 2 with
four threads first reads row 3 in A1 and maintains it in
registers. Warp 2 then reads column 4 in A2. Warp-level
reduction is performed, and the result is written to SO(3, 4).
After processing the other two blue elements in row 3, warp
2 switches to row 4 and performs similar computations.

belong to the same row as far as possible while achieving load
balancing to reduce the number of global memory accesses.
Due to the irregularity of the sparse matrix, different warps
may perform a different number of row-switch procedures.
The slight difference in the number of global memory writes
is well hidden in many computations.

2) The design of HP-SDDMM (Hybrid-Parallel SDDMM):
The diagram of HP-SDDMM is shown in Fig. 5. The warp
computes each non-zero output element in its task in turn.
However, to improve the efficiency of loading sparse data,
threads in the warp load a tile of the sparse matrix S to the
shared memory tile cooperatively (line 4) and read them one
by one from the shared memory instead of the global memory
(line 6). Different from HP-SpMM, each thread calculates two
corresponding offsets and accesses both matrices A1 and A2 to
load two elements into its registers (lines 6 and 9). Then, each
thread multiplies the two elements, and warp-level reduction
is performed to sum all values of the threads in the warp (line
12). In HP-SpMM, we track the status of row switching to
avoid redundant global memory writes as much as possible.
However, for HP-SDDMM, we track to reduce global memory
reads. If RowSwitchFlag remains false, the warp keeps the
value accessed from matrix A1 in registers and reuses them.
Only if the RowSwitchFlag turns to be true, the warp loads a
new row from matrix A1. Through the row-switch procedure,
the data in matrix A1 is well reused, and redundant data
transactions are saved.

B. Dynamic Task Partition and Hierarchical Vectorized Mem-
ory Access

With the basic implementations of HP-SpMM and HP-
SDDMM, we achieve more balanced loads while competitive
memory efficiency is maintained. However, there are still two
challenges: 1) Our sparse kernels may still suffer from tail
effects and insufficient parallelism due to the lack of careful

Algorithm 4 HP-SDDMM Algorithm

Input: Hybrid CSR/COO S, A1[], A2
T[], NnzPerWarp, K

Output: SO.Value[]
1: Initialize: laneid, Soffset , A1offset , A2offset ;
2: Define variables; ▷ lines 2-4 of Algorithm 3.
3: for i← warpstart to warpend step 32 do
4: S tile ← LoadSparse(Soffset + i);
5: for j ← 0 to 32 step 1 do
6: v2 ← Load(A2offset + S tile[1][j] × K);
7: ▷ row-switch procedure.
8: if RowSwitchF lag == true then
9: v1 ← Load(A1offset + S tile[0][j] × K);

10: RowSwitchF lag ← false;
11: end if
12: res ← WarpReduce(v1 × v2);
13: if laneid == 0 then
14: AtomicStore(SO.Value[i+ j], res × S tile[2][j]);
15: end if
16: end for
17: end for

consideration of task division. More specifically, we need
to control the granularity of tasks scientifically. 2) We are
not approaching the limit of GPU memory performance. Our
hybrid-parallel strategy is very flexible and provides a new way
to solve these problems. We can optimize the key parameter
NnzPerWarp to control the task granularity and achieve better
memory efficiency. We propose two techniques, Dynamic Task
Partition (DTP) and Hierarchical Vectorized Memory Access
(HVMA), to further improve the performance of our sparse
kernel cooperatively.

1) Dynamic Task Partition: The smaller the value of NnzPer-
Warp, the closer it is to edge-parallel. If NnzPerWarp is set too
large, there will be few active warps, and the parallelism is low.
The allocated thread blocks are divided into waves and sched-
uled to SMs. The size of a wave equals the number of SMs
multiplied by the number of active blocks of an SM. However,
as shown in Fig. 6, the sparse kernels in GNN frameworks
work on plenty of small graphs. Because the number of thread
blocks is always related to the graph scale, existing sparse
kernels cannot generate enough full waves of blocks. The last
wave is commonly smaller and under-utilizes the GPU, as
is shown in the left part of Fig. 6. Generally, NnzPerWarp
is calculated using equation NnzPerWarp = NNZ/M .
However, this method makes our sparse kernels fall into the
same pitfall as CSR-based kernels. With DTP, we can adjust
the value of NnzPerWarp. If the number of nodes in the graph
is significantly less than the number of edges, we reduce the
value of NnzPerWarp to ensure sufficient active warps. To
better quantitatively determine the value of NnzPerWarp, we
give a preliminary range constraint of NnzPerWarp through
calculation. We first calculate the number of active blocks of



Fig. 6: Dynamic Task Partition technique for minimizing tail
effect and exposing sufficient parallelism.

each SM, ActiveblocksPerSM can be computed as:

ActiveblocksPerSM = min{
MaxWarpsPerSM

WarpsPerBlock
,

RegistersRerSM

RegistersPerBlock
,

SharedMemPerSM

SharedMemPerBlock
}

(3)

Then, the number of blocks of a full wave, FullWaveSize can
be computed as:

FullWaveSize = NumSM ×ActiveblocksPerSM (4)

We can obtain the preliminary numerical constraint of NnzPer-
Warp, as is shown in the following inequality:

α× FullWaveSize ≤
NNZ

NnzPerWarp×WarpsPerBlock
×

K

WarpSize× V ectorWidth

(5)

where α is the scale factor and V ectorWidth is the vector
width when loading the feature matrix. With the constraints
in inEq. (5), our HP-SpMM and HP-SDDMM can generate
sufficient waves to improve the utilization of GPU and avoid
the tail effect, as shown in the right side of Fig. 6.

2) Hierarchical Vectorized Memory Access: DTP gives a
preliminary quantitative constraint on NnzPerWarp from the
perspective of tail effect and parallelism to improve the GPU
utilization of HP-SpMM and HP-SDDMM. However, the value
of NnzPerWarp cannot be finally determined, and memory
efficiency is not taken into account.

Aligned and coalesced memory accesses provide the best
global memory throughput. However, achieving both of them
in loading sparse data is challenging. Coalesced accesses
require all threads in a warp to access a contiguous chunk
of memory. In our sparse kernels, threads in each warp coop-
eratively load a contiguous tile of sparse data; thus, coalesced
accesses are achieved naturally. However, achieving aligned
accesses is more complicated. When we load the sparse data

Fig. 7: Hierarchical Vectorization Memory Access approach
for achieving aligned and vectorized memory accesses.

in global memory to registers, the data go through caches.
Aligned accesses require the first addresses of global memory
transactions to be multiples of the cache granularity (32 bytes
for L2 cache and 128 bytes for L1 cache). Besides, vectorized
memory instructions are essential for mitigating bandwidth
bottlenecks and decreasing the number of instructions. How-
ever, it is also non-trivial to use these instructions in sparse
kernels. Vectorized memory accesses require that the target
values be aligned to the vector width (2 for float2 or 4 for
float4). Both aligned and vectorized memory accesses require
the alignment of the first addresses. As shown in the left side
of Fig. 7, accesses within a CUDA warp begin at the start of
a row in the sparse matrix. Due to the irregularity, these initial
addresses have no alignment guarantees.

This issue still exists in our sparse kernels. By setting the
proper value for NnzPerWarp, we can ensure alignment. We set
up a candidate set for NnzPerWarp, {8, 32, 64, 128, 256, 512}.
Combined with DTP, within the range specified in InEq.
(5), we take the maximum value from the candidate and
assign it to NnzPerWarp. If the optimal NnzPerWarp is 64,
the implementation using int2 and float2 instructions will be
called. If it is 128 or above, the int4 and float4 load instructions
will be used instead, as shown on the right side of Fig. 7.

C. Graph Clustering based Reordering

The irregularity of graphs leads to poor data locality. The
warps in a thread block may load features of the very different
neighbor nodes from the global memory. The original layout
of the sparse matrix may lead to a low L2 cache hit rate. A
number of reordering methods for handling poor locality in
sparse computation have been proposed [11] [28]. Locality-
Sensitive Hashing (LSH) with Jaccard Similarity and Pair
merging can cluster similar rows together. However, such
algorithms are very time-consuming on larger graphs, and pair
merging is difficult to execute in parallel on GPU.

We propose Graph Clustering based Reordering (GCR)
method. We use GPU-based Louvain [29] [30] method to
cluster similar nodes together before executing sparse kernels.
We convert the origin format to reordered hybrid CSR/COO
format according to the clustering result, as shown in Fig. 8.
It is worth noting that we do not use the GCR technique in
graph-sampling training. The runtime overhead accounts for a
large proportion even though the efficiency is relatively high.



Fig. 8: Graph Clustering Based Reordering approach for
enhancing data locality.

IV. EXPERIMENTAL EVALUATION

In this section, we compare the performance with various
implementations on extensive sparse matrices collected from
popular GNN applications. End-to-end performance compar-
isons are carried out on several representative GNN models.

A. Experiment Setup

1) Datasets: To better evaluate the performance of our
sparse kernels, we build and test on the following two datasets.

• Full-graph dataset. We select 19 representative graphs
from DGL, OGB [31], GNN-benchmark [32] and Graph-
SAINT, which cover a wide range of scales. Table II
shows the information.

TABLE II: The graphs in the full-graph dataset.

Source Graph #Nodes #Edges

GraphSAINT
Flickr 89,250 989,006
Yelp 716,847 13,954,819

Amazon 1,598,960 264,339,468

DGL

CoraFull 19,793 146,635
AIFB 7,262 44,298

MUTAG 27,163 173,037
BGS 94,806 656,226
AM 881,680 7,141,524

Reddit 232,965 114,848,857

OGB

arxiv 169,343 2.484.941
proteins 132,534 79,255,038
products 2,449,029 126,167,053

collab 235,868 2,171,132
ddi 4,267 2,140,089
ppa 576,289 43,040,151

gnnbench

CoauthorCS 18,333 163,788
AmazonCoBuyPhoto 7,650 245,812

AmazonCoBuyComputer 13,752 505,474
CoauthorPhysics 34,493 530,417

• Graph-sampling dataset. With the graph-sampling train-
ing mode, we train ten representative GNN models,
including GraphSAGE, GraphSAINT, Care-gnn, etc. We
collect 838 subgraphs to form graph-sampling dataset.

2) Baselines:
• Vendor-provided cuSPARSE Library (not open-

source). We compare with the CSR-based SpMM (Algo
2 and 3), COO-based SpMM (Algo 4), and CSR-based
SDDMM from cuSPARSE v11.8. We store the dense ma-
trix in row-major and use FP32 precision. We use Nsight
System [33] to profile the “cusparseSpMM” interface and
find a partition kernel that helps CSR-based SpMM to
achieve load balancing. We cannot exclude its time as
it is an integral part of the “cusparseSpMM”. Thus, we
directly use cudaEventRecord to record the time before
and after the API call and calculate the time difference
to record the kernel execution time to the convention.

• Open-source implementations. GE-SpMM [7] is a
state-of-art SpMM implementation targeted at GNNs.
Row-split [8] is a classic SpMM implementation from
GraphBLAST. Merge-path [8] achieves load balance
by binary search preprocessing that partitions the sparse
matrix into tiles. ASpT [9] partitions sparse matrices into
dense and sparse parts to better utilize shared memory.
Sputnik [10] introduces row-sorting to alleviate load
imbalance. Neighbor grouping is used to partition long
rows into small tiles to alleviate load imbalance in
Huang’s method [11]. DGL-SDDMM [2] is based on
edge parallelism and shows competitive performance.

3) Environments: The experiments are mainly performed
with two platforms: (1) NVIDIA Tesla V100 (16G, Compute
Capability 7.0) and Intel Xeon E5-2643 V4; (2) NVIDIA Tesla
A30 (24G, Compute Capability 8.0) and Intel(R) Xeon(R)
Gold 6348.

We use NVCC 11.8 and GCC 8.5.0 with the -O3 flag to
compile the codes. We run each experiment by 200 times and
report the average results. All operations are performed with
FP32. For a fair comparison3, we directly record the actual
kernel execution time and do not include format conversion
time like CSRtoCOO or COOtoCSR for all kernels.

B. Kernel Benchmarks

1) Benchmarks in Full-graph dataset: We evaluate our
sparse kernels’ performance by benchmarking the 19 popular
graphs. We set K to be 32, 64, and 128. The results on Tesla
V100 are shown in Fig. 9. Table III summarizes the average
speedups we achieved over the state-of-art methods. With the
benefits of hybrid-parallel strategy and other optimization tech-
niques, our kernels show significant advantages over different
algorithms in cuSPARSE and other open-source kernels.

2) Benchmarks in Graph-sampling dataset: The perfor-
mance comparison of our kernels and baselines on 838 col-
lected subgraphs with V100 is shown in Fig. 10. We set K to
be 64. To summarize, we list the average performance gain in
Table III. Our implementations are more stable and outperform
the baselines on most of the tests. To be noticed, we test

3In GNN frameworks, no runtime format conversion to our hybrid
CSR/COO format is needed. Thus, excluding the format conversion time for
all kernels is fair and appropriate.



Fig. 9: Overall performance of sparse kernels in the full-graph dataset on Tesla V100 (K = 64).

Fig. 10: Overall performance of sparse kernels in the graph-
sampling dataset on Tesla V100 (K = 64).

without the GCR technique because the subgraphs are sampled
at runtime in the graph-sampling training mode. The results
show that our kernels can still benefit from DTP and HVMA
techniques without reordering.

C. Comparison with preprocess-based and low-precision ker-
nels

Some works require preprocessing to enhance data reuse
[9] or achieve balanced loads [8], [10], [11]. We select three
graphs of different scales and test their preprocessing and
execution time with Tesla A30. We do not use GCR for our
kernel in the test. Table IV shows the results. Preprocessing
can take up to 43 times of the execution time, which indi-
cates that they can not be applied well to graph-sampling
training or inference. Our kernel can achieve competitive
or better performance compared to these methods (without
preprocessing time). We also compare with TC-GNN [21],
which introduces TF32 Tensor Cores (TCs) to low-precision
SpMM. We use the same RTX3090 GPU as in [21] to ensure
that the computing power of TCs is consistent. For Yelp
dataset, 8.28ms and 17.40ms are reported for HP-SpMM and
TC-GNN, respectively. Nevertheless, introducing TCs is still
promising. Low-level optimization techniques from [34] can
potentially help to reach the limit of TCs.

D. Comparision with reordering techniques

Although reordering techniques can be used as offline pro-
cessing in GNN computation, their efficiency is also important.
Compared with the methods in [35] and [11], our proposed
GCR can effectively improve efficiency. For the large dataset
protein, 4.6s, 15.56s and over 120 minutes are reported for
GCR, [35] and [11], respectively.

E. Ablation Study

We conduct an ablation study to understand the impact of
different optimization techniques. We select four representa-
tive graphs and test the performance gain of each technique
and their combinations. Fig. 11 shows the results. We find
that the DTP and HVMA techniques are robust to various
graphs. With DTP and HVMA, our kernels can outperform
the baselines on most of the graphs. With only the GCR
technique, our kernel can not gain significant performance
benefits. Combined with DTP and HVMA, GCR can bring
benefits to all graphs. However, the acceleration effect is
sensitive to the characteristics of the graphs. For AM and DDI,
GCR brings less than 10% performance improvement, while
for Yelp and PPA, it brings about 40% benefits.

Fig. 11: Effects of proposed techniques on Tesla V100.

F. Sensitivity Analysis

We first study our kernels’ sensitivity to node degree vari-
ance by comparing with GE-SpMM on some graphs with
similar average node degrees but different variances. We



TABLE III: Summary of kernel benchmark results in the two datasets. The percentage is the ratio of graphs we can speed up
to the total number (838 subgraphs).

Tesla V100 Tesla A30
Full-graph Graph-sampling Full-graph Graph-sampling

Baseline Average speedup Average speedup Percentage Average speedup Average speedup Percentage

SpMM

cuSPARSE(CSR, ALG2) 1.90× 2.06× 100% 2.53× 2.05× 100%
cuSPARSE(CSR, ALG3) 2.75× 3.33× 98% 3.52× 3.40× 100%
cuSPARSE(COO, ALG4) 1.82× 1.68× 100% 2.29× 1.65× 100%
GE-SpMM 6.50× 8.71× 97.38% 8.45× 8.61× 98.93%
Row-split 10.85× 10.09× 100% 13.33× 8.75× 100%

SDDMM DGL-SDDMM 1.81× 1.31× 88.66% 2.08× 1.54× 99.17%
cuSPARSE(CSR,DEFAULT) 10.90× 7.87× 100% 11.17× 10.49× 100%

TABLE IV: Comparision with preprocess-based kernels on
Tesla A30. Pre. is the preprocessing time. Exe. is the kernel
execution time. The time unit is milliseconds.

AsPT Sputnik Merge-path Huang’s
method Ours

Pre. Exe. Pre. Exe. Pre. Exe. Pre. Exe. Exe.
CoraFull 0.82 0.06 0.94 0.04 0.05 0.04 1.11 0.03 0.02
AM 16.47 3.35 37.98 14.44 0.59 2.82 73.00 2.57 1.48
Amazon 160.81 29.26 74.1 19.65 38.00 45.00 1058.84 24.84 22.35

choose GE-SpMM because it is open source and explicitly
adopts the node-parallel strategy. Fig. 12 shows the result. Our
kernels achieve higher speedups over GE-SpMM when the
standard deviation of node degree gets larger. The Pearson’s
r is 0.90, indicating that our kernels are sensitive to node
degree variances and our hybrid-parallel strategy is effective
in dealing with the load imbalance issue.

Fig. 12: Relationship between speedups and standard deviation
of node degree. We select 10 graphs from the graph-sampling
dataset with an average node degree between 21 and 25. We
arrange them in ascending order according to the standard
deviation of their node degrees. The larger the standard
deviation, the more load imbalance.

We then use the Flickr dataset to test the kernels’ sensitivity
to K (i.e., the dimension of the feature vector) and show the
results in Fig. 13. Although the throughput achieved by our
kernels is basically unchanged with the increase of K, the
performance of cuSPARSE and GE-SpMM is gradually in-
creasing, which leads to the reduction of the relative speedups
we have achieved. GE-SpMM proposes a data reuse technique
to assign more elements from the dense matrices to each
thread and reduce the reads of sparse data. We have tried to
adopt this method in our kernels and found no improvements.
This is mainly because the threads in our kernel consume

more registers than GE-SpMM. If the data reuse method is
introduced, we need to consume nearly twice as many registers
as before, which makes the register file size a bottleneck. How
to reduce the use of registers and improve performance when
K gets very large is worthy of our further study.

Fig. 13: Sensitivity of performance to K on Tesla V100.

G. End-To-End GNN Training

We embed our kernels into DGL and PyG with the version,
0.9.1 and 2.1.0, respectively. We evaluate the performance
in end-to-end GNN training on several GNN models with
different hidden sizes and numbers of layers. For DGL, we
train two models: an 8-layer GCN model on the arxiv dataset
with full-graph mode and a 4-layer GraphSAINT model on
the amazon dataset with graph-sampling mode. For PyG, we
train a 4-layer GCN model on the Flickr dataset and a 3-
layer GraphSAINT model on the Yelp dataset. For PyG with
a version over 1.6.0, there are two modes to implement MPP,
“Gather and Scatter” and “SparseTensor”. The “SparseTensor”
mode utilizes the kernels from the torch-sparse library and
outperforms the other one, so we choose to compare our
implementations with the “SparseTensor” mode. We utilize
NSys [33] to profile the entire training process and record the
total CUDA computation time from the report.

As shown in Table V, our kernels speed up the training
of all the models. With our implementations integrated, DGL
achieves up to 1.68× speedup over the original one with the
cuSPARSE library. For PyG, our kernels bring up to 1.68×
and 1.72× speedup for full-graph and graph-sampling training
modes, respectively. However, with the increase in hidden
sizes, the speedup ratio is getting lower. As discussed in



Section IV-F, the benefit of our kernel decreases as K gets
larger due to the scarcity of registers.

TABLE V: Speedups of end-to-end GNN training brought by
integrating our sparse kernels on Tesla V100.

Model/
Dataset/

Training mode

Hidden
size

w/o
HP-SpMM
(unit: sec)

w/
HP-SpMM
(unit: sec)

Speedup

DGL

GCN/
arxiv/

full-graph

32 3.23 1.92 1.68×
128 7.95 6.25 1.27×
256 16.65 13.86 1.20×

GraphSAINT/
Amazon/

graph-sampling

32 28.27 22.55 1.25×
128 44.17 39.62 1.12×
256 74.83 70.16 1.07×

PyG

GCN/
Flickr/

full-graph

32 2.34 1.40 1.68×
128 4.66 3.21 1.45×
256 8.64 6.634 1.30×

GraphSAINT/
Yelp/

graph-sampling

32 0.70 0.40 1.72×
128 1.30 0.87 1.49×
256 2.15 1.64 1.31×

V. CONCLUSION

In this paper, we devised two sparse GPU kernels, HP-
SpMM and HP-SDDMM, for accelerating GNN training. Our
kernels perform SpMM and SDDMM with a unified hybrid
parallel strategy that mixes nodes and edges. We also proposed
Dynamic Task Partition and Hierarchical Vectorized Memory
Access to minimize the tail effect and improve the efficiency
of global memory accesses, respectively. We further proposed
Graph Clustering-based Reordering to efficiently group similar
nodes together for improved data locality. Extensive experi-
ments on various collected sparse matrices and popular GNN
models, trained in full and sampled graphs, demonstrate the
effectiveness of our design. Our sparse kernels can be easily
integrated into the existing GNN frameworks.
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