
POSTER: Simplifying Low-Level GPU Programming
with GAS

Da Yan
HKUST

dyanab@cse.ust.hk

Wei Wang
HKUST

weiwa@cse.ust.hk

Xiaowen Chu
Hong Kong Baptist University
chxw@comp.hkbu.edu.hk

Abstract
Many low-level optimizations for NVIDIA GPU can only be
implemented in native hardware assembly (SASS). However,
programming in SASS is unproductive and not portable.

To simplify low-level GPU programming, we present GAS
(Gpu ASsembly), a PTX-like language that provides a sta-
ble instruction set across hardware architectures while giv-
ing programmers a low-level control of code execution. We
demonstrate that GAS can be used with ease for low-level
benchmarking and performance tuning in the context of
Tensor Core HGEMM.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; • Software and its engineering →
Source code generation.

Keywords: GPU, SASS, compiler

1 Introduction
CUDA programs are portable across different GPU architec-
tures, thanks to the PTX abstraction. PTX provides a stable
instruction set in spite of the changing hardware ISA. PTX
instructions are further compiled to machine assembly code
(SASS) on a target device.

The portability of PTX programs comes at a performance
cost. Prior work [3, 5] shows that the compiler-generated
SASS code is often suboptimal. Low-level optimization tech-
niques have hence been proposed [1, 5]. Important operators
in vendor libraries [2] are written in SASS.
However, SASS programming is unproductive, as it re-

quires programmers to handle low-level details manually.
Also, a SASS program is bound to a specific GPU archi-
tecture. For example, the Neon [1] deep learning frame-
work has many hand-crafted SASS kernels (e.g., convolu-
tion). Neon demonstrates high performance on Maxwell and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3441591

Pascal GPUs, but fails to work on the later Volta and Turing
devices.
This paper presents GAS 1 (Gpu ASembly), a PTX-like

language and compiler that simplify low-level GPU program-
ming. GAS allows programmers to write portable code with
ease while also giving them sufficient control of low-level ex-
ecution. GAS has three major design goals. (1) Productivity:
GAS should be as easy to program as PTX; (2) Capability:
GAS should enable SASS-level optimizations; (3)Portability:
GAS programs should be portable across architectures. GAS
employs three designs to achieve these goals: (1) hiding regis-
ter allocation and data hazard resolving from users, since they
are usually easy for algorithms but tedious for programmers;
(2) leaving instruction selection and instruction scheduling to
users, since they are critical for performance but are hard
for compilers to find the optimal solution; (3) providing a
stable virtual instruction set, which is an abstraction of the
core SASS instructions.
GAS now supports NVIDIA Volta and Turing GPUs, and

can be easily extended to the newly released Ampere GPUs.
In this paper, we evaluate the effectiveness and simplicity
of GAS through two case studies: micro-benchmarking and
HGEMM.

1.1 The GAS Compiler Architecture
The GAS compiler adopts a modular design. Fig. 1 shows an
architecture overview. The compiler takes as input a GAS
source file (.gas) and generates a CUDA binary file (.cubin).
The GAS compiler is primarily composed of the parser, the
decision making algorithms for register allocations and con-
trol information setting, and the output cubin file writer.

2 Case Studies
In this section, we present two case studies to demonstrate
how GAS makes low-level GPU programming simplified.
We compare the performance of GAS with the most recent
ptxas 11.0 and cuBLAS 11.0 on NVIDIA Volta V100 and
Turing RTX2070.

2.1 Case Study 1: GPU Micro-Benchmarking
We first show that GAS can be used for portable low-level
micro-benchmarking. We use GAS to detect the instruction’s
CPI (cycles per instruction) and occupied pipe (Table 1), and
characterize the instruction cache behavior (Fig. 2). This kind
1GAS is open-sourced at https://github.com/daadaada/gas

469

https://doi.org/10.1145/3437801.3441591
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea Da Yan, Wei Wang, and Xiaowen Chu

GAS parser

Register allocator Wait barriers setter

Stall cycles setter

Architecture-dependent
information

Encoding information
cubin writer

The GAS compiler

GAS instruction representation

GAS instructions & control
information

Input source file (.gas)

Output file (.cubin)

Figure 1. Overview of the GAS compiler architecture. The
parser, the internal data structures, and the algorithms
(e.g., register allocator) are architecture-independent. The
architecture-specific information (gray boxes) is handled sep-
arately.

of benchmarking cannot be performed at the PTX level, as
the ptxas reorders instructions and eliminates dead code.

Table 1. CPI on different GPUs.

Instruction Volta Turing pipe

ffma 2 2 FP32
imad.wide 4 4 FP32

hmma.1688.f16 N/A 8 TC/FP32/FP16
lds.32 2.10 2.13 LDST

0 200 400 600 800 1000
#nop in the loop

0

1000

2000

3000

4000

cy
cle

s

Volta GPU
Turing GPU

Figure 2. The L1 icache behavior on Volta and Turing GPUs.
The L1 icache on Volta can hold around 740 instructions,
while L1 icache on Turing can hold around 980 instructions.

GAS also helps to detect that the buffers of load/store units
can hold at most 5 lds.64s on Turing GPUs.

2.2 Case Study 2: Tensor Core HGEMM
We use Tensor Core HGEMM as an example to demonstrate
GAS’s ability to optimize performance by tuning the instruc-
tion order. Our implementation follows the practice in [4].
Fig. 3 presents the code snippet of Tensor Core HGEMM in
GAS.

// smem pre -fetching
hmma .1688. f16 c[0:1], a0[0:1], b0[0], c[0:1];
lds.32 a1[0], [loadAs +16];
hmma .1688. f16 c[2:3], a0[2:3], b0[0], c[2:3];
lds.32 a1[1], [loadAs +592];

Figure 3. Code snippet of Tensor Core HGEMM in GAS.

Fig. 4 shows the evaluation results on a Turing RTX2070.
Our GAS implementation achieves on average 1.23× speedup
over the equivalent PTX implementation, and achieves on
average 1.45× speedup over cuBLAS 11.0.

2048 4096 8192 16384
M=N=K

0

10

20

30

40

50

TF
LO

PS

cuBLAS 11.0
PTX 11.0
GAS
GAS w/PTX order

Figure 4. Tensor Core HGEMM’s throughput on RTX2070.

The performance advantage of GAS comes from its opti-
mized instruction order. To see this, we implemented a GAS
HGEMMwith the same instruction order as that of the ptxas
generated code (GAS w/PTX order). As shown in Fig. 4, this
implementation only achieves a comparable performance as
ptxas (0.98× speedup on average).

References
[1] NervanaSystems. 2016. Neon. Retrieved Jan 12, 2020 from https:

//github.com/NervanaSystems/neon
[2] NVIDIA. 2020. cuBLAS. Retrieved Aug 12, 2020 from https://docs.

nvidia.com/cuda/cublas/index.html
[3] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam,

Louis-Noël Pouchet, Atanas Rountev, and P Sadayappan. 2018. Register
optimizations for stencils on GPUs. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’18). ACM, Vienna, Austria, 168–182.

[4] Da Yan, WeiWang, and Xiaowen Chu. 2020. Demystifying Tensor Cores
to Optimize Half-Precision Matrix Multiply. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS’2020). IEEE, New
Orleans, LA, USA, 634–643.

[5] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,
and Mingyu Chen. 2017. Understanding the GPU Microarchitecture
to Achieve Bare-Metal Performance Tuning. In Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’17). ACM, Austin, TX, USA, 31–43.

470

https://github.com/NervanaSystems/neon
https://github.com/NervanaSystems/neon
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html

POSTER: Simplifying Low-Level GPU Programming with GAS PPoPP ’21, February 27–March 3, 2021, Virtual Event, Republic of Korea

A Artifact Appendix
A.1 Abstract
The artifact contains the code for the GAS compiler and ex-
amples including micro-benchamarking, SGEMM, and Ten-
sor Core HGEMM. GAS targets at NVIDIA Volta and Turing
GPUs. Building and running the examples will result in plots
similar to the ones in Table 1, Fig. 2, and Fig. 4.

A.2 Artifact check-list (meta-information)
• Algorithm: The artifact includes linear scan register
allocation algorithm, and the algorithms for control
logic setting.

• Compilation: The experiments in the paper used g++
version 9.3.0, which support c++17. The experiments
requires nvcc version 11.0, which supports mma Tensor
Core instructions.

• Run-time environment: A Linux operating system
should be used. The experiments in the paper used
Ubuntu 18.04.

• Hardware: An NVIDIA Volta or Turing GPU should
be used. The experiments in the paper used a V100
GPU and an RTX2070 GPU.

• Output: Throughput for each execution is written to
text files.

• Experiment workflow: Clone the repository and
use the provided scripts to run the experiments.

• How much disk space required (approximately)?:
100 MB

• How much time is needed to prepare workflow
(approximately)?: 30 minutes

• How much time is needed to complete experi-
ments (approximately)?: 30 minutes

• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/
zenodo.4314598

A.3 Description

A.3.1 How to access The artifact is available on Github
at https://github.com/daadaada/gas

A.3.2 Hardware dependencies An NVIDIA Volta or Tur-
ing GPU.

A.3.3 Software dependencies A Linux operating system
with CUDA toolkit 11.0 should be used to run the experi-
ments. The artifact requires g++ version 9.3.0.

A.4 Installation
The source code can be built using the cmake command.
Detailed guidelines can be found in the README.md file in
the repository.

A.5 Evaluation and expected results
The results of instruction CPI experiments correspond to the
numbers reported in Table 1. The results of the L1 instruction
cache benchmarking corresponds to the number reported in
Fig. 2. The results of the HGEMM experiments correspond
to the numbers reported in Fig.4.

A.6 Experiment customization
The CPI of other instructions can be detected by changing
the instructions in the experiment.

471

https://doi.org/10.5281/zenodo.4314598
https://doi.org/10.5281/zenodo.4314598
https://github.com/daadaada/gas

	Abstract
	1 Introduction
	1.1 The GAS Compiler Architecture

	2 Case Studies
	2.1 Case Study 1: GPU Micro-Benchmarking
	2.2 Case Study 2: Tensor Core HGEMM

	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Experiment customization

