
Golgi: Performance-Aware, Resource-Efficient
Function Scheduling for Serverless Computing

Suyi Li
HKUST

slida@cse.ust.hk

Wei Wang
HKUST

weiwa@cse.ust.hk

Jun Yang
WeBank

jonyang@webank.com

Guangzhen Chen
WeBank

cgzchen@webank.com

Daohe Lu
WeBank

leslielu@webank.com

ABSTRACT

This paper introduces Golgi, a novel scheduling system de-
signed for serverless functions, with the goal of minimizing
resource provisioning costs while meeting the function la-
tency requirements. To achieve this, Golgi judiciously over-
commits functions based on their past resource usage. To
ensure overcommitment does not cause significant perfor-
mance degradation, Golgi identifies nine low-level metrics
to capture the runtime performance of functions, encom-
passing factors like request load, resource allocation, and
contention on shared resources. These metrics enable accu-
rate prediction of function performance using the Mondrian
Forest, a classification model that is continuously updated in
real-time for optimal accuracywithout extensive offline train-
ing. Golgi employs a conservative exploration-exploitation
strategy for request routing. By default, it routes requests to
non-overcommitted instances to ensure satisfactory perfor-
mance. However, it actively explores opportunities for us-
ing more resource-efficient overcommitted instances, while
maintaining the specified latency SLOs. Golgi also performs
vertical scaling to dynamically adjust the concurrency of
overcommitted instances, maximizing request throughput
and enhancing system robustness to prediction errors. We
have prototyped Golgi and evaluated it in both EC2 cluster
and a small production cluster. The results show that Golgi
can meet the SLOs while reducing the resource provisioning
cost by 42% (30%) in EC2 cluster (our production cluster).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624645

CCS CONCEPTS

• Computer systems organization → Cloud computing.

KEYWORDS

Serverless Computing; Resource Management; Scheduling

ACM Reference Format:

Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu. 2023.
Golgi: Performance-Aware, Resource-Efficient Function Schedul-
ing for Serverless Computing. In ACM Symposium on Cloud Com-
puting (SoCC ’23), October 30-November 1, 2023, Santa Cruz, CA,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3620678.3624645

1 INTRODUCTION

Serverless computing, also known as Function-as-a-Service
(FaaS), offers a compelling cloudmodel that greatly simplifies
the development and deployment of cloud applications [16,
33]. In a serverless platform, users compose applications as
a set of loosely-coupled cloud functions and let the platform
take care of their provisioning, scaling, logging, and fault
handling. Serverless computing not only relieves users of
the server management burden, but is also attractive with
its pay-per-use pricing model, under which users are only
billed when their functions are running [19].

Critical to the management of serverless platforms is func-
tion scheduling. In a serverless platform, functions are run-
ning in sandboxes, e.g., containers [7] and microVMs [1].
When invocation requests arrive, the scheduler routes them
to available function instances for execution. If no instance
is currently available, new instances are launched on some
selected servers to (horizontally) scale out the functions [7,
21, 37]. As the number of function instances changes, servers
(e.g., virtual machines (VMs)) are dynamically added to or
removed from the platform. To minimize the provisioning
cost, the scheduler should pack function instances to as few
servers as possible [7, 37]. In the meantime, this should not
be achieved at the expense of degraded function performance

https://doi.org/10.1145/3620678.3624645
https://doi.org/10.1145/3620678.3624645
https://doi.org/10.1145/3620678.3624645

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

(i.e., extended latency [7, 24, 34, 35, 46].), which is critically
determined by the scheduling quality [24, 34, 35, 37].
However, achieving these two objectives is challenging.

Recent studies reveal considerable allocation wastes in com-
mercial FaaS platforms: on average, functions only use around
25% of the requested resources [26, 30, 35, 37]. To improve
utilization, many platforms choose to overcommit functions
based on their past resource usage instead of the specified
requests [7, 37]. Yet, blindly performing overcommitment of-
ten results in severe resource contention between colocated
functions, extending their tail latency by up to 3× in our
experiments. To tackle this problem, existing scheduling sys-
tems employ a performance-aware approach that predicts the
function performance based on resource configurations [24]
or collocation profiles [37] and uses the predicted results
to guide scheduling. These systems, however, either over-
look the performance impact of function collocations (e.g.,
Orion [24]) or do not scale in complex collocation scenarios
(e.g., Owl [37] only considers collocation of two functions),
limiting their applications in large platforms.
In this paper, we present a new FaaS scheduling system,

named Golgi1, that judiciously overcommits functions for
reduced provisioning cost while still meeting their latency re-
quirements. Similar to the existing work and production prac-
tices [24, 26, 35, 37, 46], Golgi concerns the tail performance
and allows users to specify their SLO (service-level objective)
requirements as the target latency at a certain percentile, e.g.,
the P95 latency should not exceed 200 ms. For each func-
tion, Golgi maintains two kinds of instances: (1) the non-
overcommitted (non-OC) instances with resource configura-
tions following the user specifications and (2) the overcom-
mitted (OC) instances with resource configurations down-
sized based on the usage of past function executions [37].
In general, non-OC instances yield the best latency perfor-
mance but may result in significant resource underutilization,
whereas OC instances are resource-efficient yet susceptible
to performance slowdown, especially under poor scheduling
decisions. For each invocation request, Golgi dynamically
decides which OC or non-OC instance should it be routed
to (if necessary, creating a new instance on a certain server)
with the goal of minimizing the resource provisioning cost
while meeting the function’s latency SLO. Golgi uses three
techniques in achieving this goal.

Identifying low-level runtime metrics to characterize

the function performance. Unlike existing approaches
that establish a static map between the function performance
and resource configuration (or collocation), Golgi identifies
nine low-level metrics and uses them to dynamically cap-
ture the runtime performance of functions. These metrics

1Golgi apparatus is an organelle in cells. It packages proteins and sends
them to destinations. We use it as a metaphor for our routing system.

cover a variety of sources that impact the function execu-
tion, including request load within a function instance (e.g.,
inflight requests), resource allocation (e.g., CPU and mem-
ory), and contention on shared resources (e.g., network and
CPU cache). They are easy to collect in production clusters
with little overhead, and collectively indicate if the request
execution can complete within the specified latency, using
machine learning (ML) techniques as explained below.

Performance-aware scheduling. Golgi dynamically col-
lects the nine metrics for each OC function instance, and uses
a classification model to predict if its runtime performance
can meet the SLO requirement. To maintain high prediction
accuracy, Golgi continuously updates the model as requests
arrive, without collecting a large amount of training data via
offline profiling, which is usually infeasible in practice. We
choose the Mondrian Forest [18], a random forest model, as
the classification model, for it gives superior performance in
online learning. More specifically, we design an online strati-
fied sampling algorithm to maintain balanced data samples
between the two classification results in model updates.
With the model in place, Golgi schedules requests fol-

lowing a conservative exploration-exploitation approach. By
default, Golgi routes requests to non-OC instances for satis-
factory performance (exploitation). In the meantime, it ac-
tively explores opportunities of usingmore resource-efficient
OC instances for reduced provisioning cost, provided that
the resulted performance still meets the SLO. Golgi pre-
dicts the request response latency given by the candidate OC
instances and makes scheduling decisions accordingly. To
avoid the long scheduling delay caused by model inference,
Golgi lets each function periodically predict its performance
for OC instances and cache the prediction results on each
worker node. These results are returned to the scheduler
upon query, thereby taking the inference off the critical path.
The prediction occurs frequently to avoid staleness.

Vertical scaling. Golgi also performs vertical scaling to dy-
namically adjust the concurrency of each OC instance with
atomic operations, which specifies the maximum number
of requests that can be served concurrently. Vertical scal-
ing provides flexibility and scalability in accommodating
varying serverless workloads [7]. It not only maximizes the
request throughput to improve resource efficiency, but also
improves the system robustness as it can quickly react to
the scheduling mistakes caused by occasional mispredictions
given by the ML models. Our vertical scaling is specifically
designed for serverless functions as it supports frequent scal-
ing without service downtime [14]. It hence complements
scheduling by reducing the performance degradation risks,
encouraging more aggressive exploration that results in 15%
VM cost reduction in our experiments.

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

We have prototyped Golgi as a pluggable scheduler in
OpenFaaS [11] with Kubernetes. We evaluate Golgi in an
EC2 cluster with a suite of serverless applications that cover
a range of real-world business scenarios [37]. Compared to
Orion [24], the state-of-the-art serverless scheduling system,
Golgi reduces the resource provisioning cost by 42% while
still meeting the function SLOs (§8.2). We also deployed
Golgi in a small production cluster and measured 30% cost
savings (§8.7). Golgi demonstrates strong scalability, capable
of handling large load spikes (over 5100 requests per second
as reported in Azure Function traces [34]) and supporting
diverse functions with little overhead (§8.6).

2 BACKGROUND AND MOTIVATION

2.1 Serverless Computing Background

Serverless computing (a.k.a., FaaS) has emerged as a popular
cloud computing paradigm for cloud platforms and tenants.
It allows developers to write short-running, stateless func-
tions to deploy their applications that can be invoked by
various triggers [33, 34]. Serverless platforms take over the
responsibility of resource provisioning, function orchestra-
tion, auto-scaling, and quality assurance for serverless appli-
cations [37]. They maintain an inventory of servers (VMs) to
host users’ function instances as sandboxes, e.g., containers.
The instances are placed on the servers for execution. As a
result, serverless users can concentrate on the development
of their applications and products, without the need to worry
about server operation and management. Besides, serverless
computing appeals to users with a pay-as-you-go billing
model, whereby users are only charged for the resources
used to execute their functions at a millisecond granular-
ity [4, 9, 19]. Platforms bear the cost of idle resources.

Function resource configuration. While deploying func-
tions, serverless users should claim a memory size to config-
ure their functions in cloud platforms [33]. Other resources,
e.g., CPU power and network bandwidth, are allocated pro-
portionally to the memory size. This billing model is widely
adopted by most FaaS providers [4, 9, 19].

FaaS scheduling workflow. While users can effortlessly
deploy and run their functions, FaaS providers are responsi-
ble for managing the virtual machines and scheduling func-
tions on them. Given a function invocation request, the FaaS
scheduler routes it to one of the available function container
instances. If multiple instances are available, the scheduler
selects one of them using a routing algorithm. The default
request routing algorithm is the most-recently-used (MRU)
algorithm [26, 37, 40]. It is a greedy algorithm that prior-
itizes the most recently used instances to serve requests.
MRU’s priority setting strategy complements FaaS’s keep-
alive mechanism, which allows a function instance to stay

idle for minutes before terminating [34]. As MRU routing
leads to a longer idle time for the least invoked function
instances, their resources can be reclaimed sooner.

If no instance is currently available for routing, the sched-
uler will create one and place it on suitable servers to scale
out the function [7, 21]. Instance placement usually follows
the First-Fit bin packing algorithm [37, 40] to minimize the
number of servers.

Scheduling objectives. Scheduling is a critical aspect of
serverless platforms, as it affects both the operation cost of
the platform and the service quality experienced by users.
The scheduling objective is twofold: (1) to meet users’ func-
tion performance requirements, such as tail latency, as sug-
gested by recent research and production practices [24, 26,
35, 37, 46], as functions are online user-facing services, and
(2) to pack function instances tightly on as few servers as
possible to reduce resource provisioning costs [7, 37].

2.2 Motivations

We describe the challenges in meeting scheduling objectives.

Under-utilized resources. Recent production traces and
workloads [30, 35, 37] show that users tend to over-claim
resources for their functions. For instance, a survey of AWS
Lambda usage reports that 54% of function instances are
configured with 512 MB or more but the average and median
amounts of used memory are actually 65 MB and 29 MB [26,
30], respectively. In the AliCloud Platform, most function
instances only use 20–60% of the allocated memory [37].

There are two main reasons for resource under-utilization.
First, users intentionally over-claim a large memory size for
the sake of more CPU resources for their functions because of
the fixed CPU-to-memory ratio [37]. Second, the keep alive
policy allows the resources allocated to function instances to
remain unused for long time intervals [26, 37]. Our analysis
of Azure Function Trace [34] shows 91.7% of the functions
are invoked once per minute or less on average. As the keep
alive periods usually last for minutes and 96% of the function
executions take at most 60s on average, the memory waste
from the keep alive policy can be prohibitively high.

Resource down-sizing can degrade performance. One
approach to eliminate resource under-utilization is to over-
commit resources by downsizing function resource configu-
rations based on their past resource usage. However, this may
degrade function performance. As function performance im-
proves monotonically with more resources allocated [24],
the expected performance baseline of a function is the re-
sult of allocating all claimed resources and ensuring their
commitment. Based on this baseline, users can customize
their performance expectations, as described in [37]. Blindly
down-sizing functions’ resource configurations to host more

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

0 600 1200
Time (Sec)

1
2
3

P9
5

La
te

nc
y

 (S
ec

) Profiling Perf. Req.

Figure 1: Get-Media-Meta performance in profiling.

function containers on a single server, i.e., resource over-
commitment, can intensify resource contention and degrade
performance. Our experiments in §8.2 show that this can
increase P95 latency by 2.8×.

Worse, resource overcommitment leads to more function
containers being collocated within a server, causing severe
collocation interferences [12, 22, 37, 41, 45]. Resources, e.g.,
network I/O and CPU cache, that are not managed by the
OS kernel cannot be isolated properly, potentially impairing
function performance due to shared resource contention. In
§3.1, we show the interferences increase P95 latency by 2.5×.
Practical constraints. In serverless platforms, it is imprac-
tical to offline profile overcommitted functions to determine
their performance. This is because users’s functions are typi-
cally stateless [44] and rely on external services, e.g., message
queues and databases, for storage and coordination [37]. In-
voking functions without users’ permission may cause data
inconsistencies or corruption, as external dependencies are
stateful. This practical constraint hinders any serverless plat-
forms from offline profiling users’ functions for resource
optimization [2, 7, 8, 10, 24, 26]. Moreover, the scheduling
process should be efficient as it is required that the sched-
uling latency should be less than 20ms in AWS Lambda [7].
Last, the design should be scalable enough to serve thousands
of functions in platforms with little overhead [33].

2.3 Existing Methods

Naive overcommitment. Resource overcommitment is a
straightforward approach to reducing resource waste, i.e.,
placing more function instances in a server. This can be
achieved by down-sizing instances’ resource requests. Sup-
pose a function instance claims 𝑐MB memory but actually
takes 𝑎MB memory in runtime. We change its memory re-
quest from 𝑐 to 𝛼 × 𝑐 + (1.0 − 𝛼) × 𝑎;𝛼 ∈ [0, 1.0]. Other
resources are adjusted proportionally. The new resource con-
figurations based on actual usage are called usage-based
overcommitment in [37], which is especially valuable for
workloads with underutilized resources [13]. The hyperpa-
rameter 𝛼 controls the size of slack memory that prevents
out-of-memory error.

Though usage-based overcommitment can significantly re-
duce resource waste, as discussed in §2.2, naive overcommit-
ment degrades function performance due to more intensive
resource contention and collocation interferences.

Profiling-driven scheduling. Users’ functions rely on ex-
ternal dependencies for storage and coordination, preventing
platforms from offline profiling them. Thus, general profiling-
and-scheduling approaches fall short [2, 7, 8, 10].We consider
approaches that can profile functions online with the user’s
invocation requests.

1) Profiling for right-sizing. Orion [24] proposes a right-
sizing design that finds the best resource configuration for a
function to meet its latency SLO at minimum cost. It strate-
gically profiles function performance with a wide range of
memory configurations to decide the right memory size.

However, such profiling methods have limitations. Firstly,
profiling functions with a wide range of memory sizes can
violate SLO because not all of them can provide satisfactory
performance. We re-implement the profiling process and
profile a get-media-meta function in Fig. 1, which is one of
the benchmark functions used in our evaluation (§8.1). The
profiling takes about 25 minutes to find the best memory con-
figuration. The solid line represents the change in functions’
tail latency throughout the profiling, much longer than the
performance requirements (dashed line). Worse, re-profiling
is needed when the workload characteristics change, which
can take up to 3.5 hours, depending on the invocation fre-
quency [24]. Second, such profiling methods overlook the
collocation interferences among function instances, mak-
ing the right-sized functions underperform. In Fig. 5, our
evaluation shows Orion hardly meets the functions’ SLOs
(§8.2). Similar results are also reported in Orion’s original
paper [24], where the right-sizing strategy increases the P95
latency by 2.32× compared to their performance objective.
2) Profiling for overcommitment. Owl [37] designs a

new data structure called collocation profile to record any
two function types that can be collocated tightly without
performance degradation. The profile records the number
of instances of each function type such that their instances
can be collocated within a single server. The profiles cap-
ture the interferences between the collocated functions and
guide the scheduler to place instances as tightly as possible
for resource overcommitment. Building a collocation profile
requires performance profiling of possible collocations.
However, Owl only considers the collocation of two dif-

ferent functions in small-size VMs (2 CPU cores and 4 GB
memory) [37]. Trivially extending the approach to consider
the collocation of multiple functions in large VMs increases
the number of performance profiling significantly. Following
their profiling procedures in [38], searching a profile that
collocates 𝑁 function instances of𝑀 different function types
requires profiling at most

∑𝑁
𝑛=1

((𝑀+𝑛−1)
(𝑀−1)

)
collocations. Con-

sider a representative profile that collocates 16 instances of
two different function types in [37]. If we use a server with
36 CPU cores and 72 GB memory that can host 288 such

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

instances, the number of collocation performance profiling
will increase by 275×. Extending the profile to 3 different
functions will increase the number of profiling by 26, 742×.

2.4 Design Requirements

In light of the scheduling objectives (§2.1) and challenges
(§2.2) in serverless computing, we have the following require-
ments in the design of a FaaS scheduling system.

Performance-aware. Schedulers should be aware of func-
tion performance to meet performance requirements.

Resource-efficient. The scheduler should pack function
instances tightly on servers to improve resource utilization.

Practically applicable. The design should meet the practi-
cal constraints, e.g, platform-initiated profiling, in §2.2.

Our solution. In the following sections, we proceed to de-
velop Golgi systematically to fulfill the requirements out-
lined. In §3, we characterize functions and show that their
performance can be predicted by nine low-level metrics. The
metrics are function-agnostic and scalable to support diverse
functions. We design Golgi’s scheduler in §4, leveraging the
metrics to make performance-aware scheduling decisions
with resource overcommitment to save resource provisioning
costs. In §5, we propose a vertical scaling design specifically
for FaaS workloads. It adapts the configurations of over-
committed instances to their performance SLOs, reducing
performance degradation risks from overcommitment.

3 CHARACTERIZING FUNCTIONS IN THE

CLOUD

Critical to performance-aware scheduling is answering what
affects function’s performance in FaaS. In this section, we
examine the characteristics of functions and determine that
low-level runtimemetrics can be utilized to forecast potential
performance degradation in function instances. To obtain
these informative metrics, the following practical require-
ments must be met in serverless platforms.

Accurate. The metrics should provide informative insights
to predict function performance, accounting for the resource
contention and collocation interferences in FaaS workloads.

Scalable. The metrics should be function agnostic to support
the diverse function types in serverless platforms[34].

Non-intrusive. To uphold the integrity of users’ functions
in the platform, the process of collecting metrics must be
non-intrusive, lightweight, and accessible online.

In §3.1, we carry out extensive controlled experiments to
show the factors that contribute to the impacts of resource
utilization and collocation interferences on function perfor-
mance. In §3.2, we quantify these factors by nine low-level

0 1
Latency (Sec)

0.0

0.5

1.0

CD
F

Detect-Object

Full
Half

(a) Resource

1 2
Latency (Sec)

0.0

0.5

1.0

CD
F

Detect-Object

1
2
3
4

(b) Concurrency

0 1
Latency (Sec)

0.0

0.5

1.0

CD
F

Get-Media-Meta

SA
CoL

(c) Collocation

Figure 2: Function characterizations.

runtime metrics that can be collected non-intrusively using
existing tools. The metrics are function-agnostic to accom-
modate diverse function types. In §3.3, we conduct validation
experiments show that the metrics are informative and ef-
fective enough in predicting performance degradation.

Our characterizations are primarily based onOpenFaaS [11]
with Kubernetes and AWS EC2 servers. The functions we
characterized are from a suite of eight benchmark serverless
applications in [37] that represent popular business domains
(Table 1). These applications are implemented in different
programming languages and have various external depen-
dencies. Among them, SP and GMI have directed acyclic
graph structures. SP has a chaining structure with two func-
tions, query-vacancy (QV) and reserve-spot (RS), while GMI
has a fan-out/fan-in pattern [6] with two functions, get-
media-meta (GMM) and get-duration (GD).

Table 1: Benchmark applications.

Application Dependency Language
GMI: GetMedia Info Object Store Python, Go
SP: Smart Parking Key-Value Store JavaScript
DA: Detect Anomaly Database Go
ID: Ingest Data Database Go
CI: Classify Image TF Serving [27] C++
DO: Detect Object TF Serving [27] C++
AL: Anonymize Log Message Queue Rust
FL: Filter Log Message Queue Rust

3.1 What determines function

performance?

Firstly, function performance is amonotonically non-decreasing
function of the resources allocated to it [24]. In addition,
intra-container resource contention resulting from concur-
rent inflight requests in a single function instance [5, 9, 42]
can exacerbate the performance. Beyond a single function in-
stance, collocation interferences between multiple instances
also impact function performance [12, 41, 45, 48]. Therefore,
we characterize these factors by setting them as control vari-
ables and validating their effectiveness.

Resource configuration.Resource configuration determines
the amount of resource allocated. Fewer resources lead to less

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

computing power and degraded performance. The CDFs of
execution latency in Fig.2a confirm this. We deploy two sets
of detect-object (DO) functions, which are CPU-intensive
to provide model serving service. The first set is configured
with 1.5 CPUs and 2.5GB Memory (blue solid line), while
the second set is configured with 0.75 CPUs and 1.25 GB
Memory (orange dotted line). We test the two sets separately
for 1000 seconds with a constant RPS of 8. Clearly, instances
with less resources result in a 212.8% P95 latency increase.

Request concurrency. Serverless platforms enable a single
function instance to serve concurrent requests, saving costs
by reusing resources [5, 9, 42]. However, higher concurrency
means intensive resource contention within a container and
degraded performance. The CDFs of execution latency in
Fig. 2b confirm this. We deploy and test four sets of DO func-
tions and set the maximum concurrency of each set to 1, 2, 3,
and 4, respectively. Fig. 2b shows the tail latency monotoni-
cally increases with higher maximum request concurrency.

Inter-container interference. Collocation interferences
between function instances in the same node impair their
performance [12, 22, 41, 45]. Fig.2c confirms this issue. We
set up two experiments by placing different sets of containers
in a node. The first one tests a set of standalone get-media-
meta (GMM) function instances with an RPS of 20 (blue
solid line). GMM accesses remote object storage, processes
files’ metadata, and returns. The second one tests a set of
collocated GMM and DO functions in a node with the same
workload (orange dashed line). In Fig.2c, we see that the
container collocation results for the increased tail latency of
GMM, with P95 latency increases by 2.5×.

3.2 Capture Performance Metrics

We quantify the above factors with a handful of runtime
metrics that can be accessed with little overhead. They are
function-agnostic and scalable to support diverse functions.
We classify the metrics into two categories: intra-container
metrics, which reflect contention within a function instance,
and collocation interference metrics, which reflect interfer-
ence among collocated instances.

Intra-container metrics. CPU utilization, memory utiliza-
tion, and the number of inflight requests are intra-container
metrics, represented by a 3-D context vector <CPU, Memo,
Inflights>. CPU and memory utilization can be obtained from
the pseudo files managed by the cgroup. To record the num-
ber of inflight requests in a function instance, we set an
atomic integer variable as a counter.

Collocation interference metrics.We consider the con-
tention on the network I/O and CPU cache because most
functions are stateless and rely on remote storage service [44].

0 100
DO: CPU Shares (%)

0

1

CD
F N

P

0 2000
DO: Memory (MB)

0 1 2 3 4
DO: Inflights

0 2e+08
DO: NodeLLCM

0

1

CD
F

0 2e+06
QV: LLCM

0.00 0.05
QV: NetRx (MB)

0.00 0.03
QV: NetTx (MB)

0

1

CD
F

0 50
QV: NodeNetRx (MB)

0 25
QV: NodeNetTx (MB)

Figure 3: Metric visualization; N: negative; P: positive

1) Network. Network I/O is shared by collocated contain-
ers within a node. We measure the network traffic within
a function container and the node it is on by the number
of bytes received and transmitted, i.e., a 4-D vector <NetRx,
NetTx, NodeNetRx, NodeNetTx>. The stats are collected from
the Linux pseudo-files under the /proc/net/ directory.
2) CPU Cache. Collocated containers within the same

node will contend the shared resources, e.g., the CPU last
level cache (LLC) [12, 22, 45]. We collect the number of LLC-
miss (LLCM) within a function container and the node it is
on by running Linux perf stat tool, i.e., <LLCM, NodeLLCM>.
As indicated in [43, 48], perf stat causes negligible overheads
and no visible latency will be incurred.

Function-agnostic context vector. We finally construct
a 9-D context vector by stacking the above metric vectors,
revealing a container’s runtime status. The fixed dimension
makes the approach function-agnostic and scalable to sup-
port diverse function types.

3.3 Validation Tests

We design validation tests to verify that our metrics contain
useful information that can be utilized to forecast potential
performance degradation in function instances.

Data validation. For each function request to overcommit-
ted instances, we record the context vector x at the moment it
arrives and its execution latency after service. Define the P95
latency achieved in non-overcommitted instances as ℎ. We
label x positive if the corresponding request’s latency > ℎ;
and negative otherwise. Therefore, a context vector x labeled
as negative indicates no potential performance degradation.

In Fig. 3, we plot the CDFs of runtime metrics of x from the
overcommitted detect-object (DO) and query-vacancy (QV)
instances. We can see distinct patterns between negative and
positive points. Overcommitted DO instances with lower
CPU utilization, fewer inflight requests, and fewer NodeLL-
CMs are more likely to offer satisfactory performances, be-
cause DO is CPU-intensive to provide model serving service.

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

CRUD
Router

watchdog

Node
Metric

Monitor

Relay Model
1 0

Requests

Server Node

ML ModuleScheduler

Safe

Label

Function Instance

Figure 4: System architecture. The CRUD module cre-

ates, reads, updates, and deletes function instances.

As models are loaded when instances launch, little difference
exists in the DO:Memory plot. Overcommitted QV instances
with lower network traffic and LLCMs tend to offer satisfac-
tory performance because QV, a network-intensive function,
interacts with remote databases frequently. Similar results
hold for other benchmark applications.

Model validation. We design a model validation test to
verify that our metrics contain useful information that can
be learned to predict function performance. We formulate
a binary classification problem for fast and accurate model-
ing [15] as we care more about whether a request’s latency
exceeds specified requirements. We deploy the benchmark
functions in Table 1 and make 1.5 million invocations. For
each function request, we collect its x and label to build train
and test datasets. Then, for each function in Table 1, we can
train an off-the-shelf random forest classifier from scikit-
learn [28], which has an ensemble of 100 decision trees. The
F1 scores of the functions range from 0.71 to 0.84. Especially,
the recalls range from 0.74 to 0.97, which means our metrics
can be learned to avoid 74%-97% of the invocations that vio-
late performance SLO. In §4.4, we describe how to use the
metrics online to assist scheduling in Golgi.

4 GOLGI’S SCHEDULER DESIGN

With themetrics , we proceed to designGolgi, a performance-
aware and resource efficient scheduler for FaaS computing.

4.1 Overview

Fig. 4 illustrates Golgi’s architecture. Upon the arrival of
requests, the router probes the status of function instances,
such as their availability, tomake routing decisions (1). Func-
tion instances run as containers to serve requests. Golgi hosts
two kinds of instance for each function. The first is the non-
overcommitted (non-OC) instance, which adheres to the
user’s resource configuration but may suffer resource under-
utilization. The second is the overcommitted (OC) instance,
which down-sizes users’ resource requests to pack more
instances tightly on a server, using the usage-based over-
commitment strategy [37] (§2.3) . To achieve the scheduling
goal, Golgi dynamically makes online scheduling decisions
between the two kinds of instances: it can exploit non-OC

function instances that satisfy SLOs or explore the oppor-
tunities of using more resource-efficient OC instances for
reduced provisioning cost, provided that the resulted perfor-
mance still meets the SLO.

Golgi incorporates ML modules that leverage the runtime
metrics discovered in §3 to identify overcommitted instances
that may violate SLO. Each ML module corresponds to a
function type and works for its instances. An ML module
comprises a relay and a model. The relay collects runtime
metrics from multiple overcommitted instances (3) at a time
and sends a batch inference request to the model (4), which
is a binary classifier(§4.4). The inference results are cached
in each instance as the Label tag (5) for the router to query.
Instances with positive Label tags, i.e., 1, are inferred to
violate SLO. The Label tags are updated frequently, taking
model inference off the scheduling critical path (§4.3).

Golgi trains ML models online with users’ requests with-
out collecting a large amount of training data via offline pro-
filing. When a request is routed to a function instance, the
instance records the runtime metrics and sends them, along
with its execution latency, to the ML module asynchronously.
This approach enables the model to collect online data for
model updates. We adopt the Mondrian Forest (MF) [18] to
develop our ML module, which excels in the online train-
ing setting and features short bootstrapping process. More
specifically, we design an online stratified sampling algorithm
to maintain balanced data samples in model updates (§4.4).

By collecting execution latencies, the MLmodule monitors
its function’s overall performance, i.e., P95 latency. When
the function’s SLO is violated, the ML module sets the Safe
tags in its instances to 0, indicating that it is unsafe to ex-
plore OC instances and that the router should exploit non-OC
instances. When the exploration will not lead to SLO viola-
tion, the Safe tag will be set to 1. The router is informed the
overall function performance by Safe tags when it queries
instances(1) to schedule requests.

Runtime metrics collection. A watchdog 2 runs light-
weight daemon threads to collect intra-container metrics.
Collocation interference metrics are reported to watchdogs
by a nodemetricmonitor, a daemon process in each server(2).

4.2 Conservative Routing

To save resource provisioning costs while meeting SLOs, we
formulate the request routing as an online decision making
problem. Basically, the router has two routing options, i.e.,
routing it to non-OC instances (exploit default options) or OC
instances (explore aggressive options). Though the Label tags
can differentiate OC instances to enable performance-aware
exploration, occasional incorrect inferences pose a risk.
2Watchdog is a built-in module in OpenFaaS [11]. It launches and monitors
functions. Any binary can become a function with a watchdog.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

We control the exploration to achieve conservative rout-
ing. To route a request, the router probes instances’ status,
including their tags, to make a scheduling decision. It only ex-
plores the opportunities of resource overcommitment when
the Safe tags are 1, meaning the exploration will not com-
promise the performance SLO. The Safe is set to 1 initially,
meaning the first request of a function is routed to an OC-
instance. For subsequent requests, the ML module monitors
requests’ latencies to set the Safe accordingly.

Performance-aware exploration. The ML module lever-
ages runtime metrics from OC instances to identify whether
they can meet the performance SLOs (§4.4). Instances with a
Label tag of 0 (negative) are classified as eligible, while those
with a Label tag of 1 (positive) are not. Our microbench-
mark experiment in §8.4 show the effectiveness of the ML
model in classifying OC instances to meet performance re-
quirements. In Golgi, we first adopt the power of two choices
approach [25] to pick up a handful of instances. Among these
instances that are eligible for performance, we further select
one that greedily reduces the provisioning costs, i.e., the
MRU algorithm (§2.1). The greedy approach is reasonable
because the resource provisioning cost is determined by sev-
eral dynamic factors, including invocation patterns, function
execution latency, functions’ configurations. It is difficult
to figure out the optimal routing decisions that minimize
the cost in the long run. When none of the instances are
available, we create new ones to scale out.

4.3 Enable Model Inference in Scheduling

Our router relies on model inference to make performance-
aware decisions. However, a single model inference can take
100ms in our measurements, and the inference latency surges
if we run inference for every incoming request. It is imprac-
tical to use model inference in the routing critical path.
To mitigate inference overhead, we decouple the model

inference (3 4 5) from the routing critical path (1). We
achieve this by using a relay that continuously collects run-
time metrics from a group of function instances(3). Upon
collection, the relay then sends a batch inference request(4)
and moves on to the next collection round without blocking.
The inference requests are cached in each function instance
as the Label tag(5). Our measurements show that the La-
bel tag is updated every 82.2ms, when the group size is 100,
comparable to the average RPS of popular functions3 in pro-
duction, i.e., 11. Frequent updates prevent staleness.

By taking model inference off critical path, the router only
queries cached tags (1) to make routing decisions. This de-
sign allows Golgi to scale across a wide range of workloads,
while maintaining an acceptable routing latency. In §8.6, we
3Functions that are invoked at least once per second. Their invocations
account for 93.3% of the total invocations in the Azure Function [34].

show Golgi can handle the maximum RPS recorded in the
Azure Function trace [34], i.e., 5139, and incur little overhead.

4.4 Leverage Runtime Metrics

Next, we dive into the model design of Golgi’s ML module.

Stratified Sampling to Enforce Data Balance. As de-
scribed in §4.1, the model in Golgi is a binary classifier,
which updates online with users’ invocations to meet the
practical profiling constraints(§2.2). However, as metric vec-
tors are labeled according to tail latency SLOs, the label dis-
tribution tends to be skewed. The negatives can be 10×more
than the positives in our collected data. A classifier trained
on imbalanced datasets commonly generalizes poorly on the
less represented classes. To tackle the label imbalance, we
design a memory efficient online stratified sampling mecha-
nism based on the reservoir sampling algorithm [39]. Specif-
ically, given a batch size 𝑁 , we randomly sample 𝑁

2 negative
data and 𝑁

2 positive data from the online data stream in a
single pass. We concatenate them to form a batch of 𝑁 data
points and update the model. The online stratified sampling
process is described in Algorithm 1. Fig.9(left) shows that a
balanced label distribution helps the classifier trained online
achieve an F1 score of 0.78, while the imbalanced one makes
classifier underperform with an F1 score of 0.26 (§8.4).

Algorithm 1: Online Stratified Sampling Algorithm
Input: A batch size: 𝑁 ; Two placeholders and two counters for

sampling positive and negative training data 𝑝𝑜𝑠 = [],
𝑛𝑒𝑔 = [], 𝑝𝑜𝑠𝐶𝑛𝑡𝑟 = 0, 𝑛𝑒𝑔𝐶𝑛𝑡𝑟 = 0;

1 while 𝑙𝑒𝑛 (𝑝𝑜𝑠) + 𝑙𝑒𝑛 (𝑛𝑒𝑔) ≠ 𝑁 do

2 A data point (𝑥𝑖 , 𝑦𝑖) arrives ;
3 if 𝑦𝑖 == 1 then

4 pos, posCntr = Sample(pos, posCntr, 𝑥𝑖 , 𝑦𝑖)
5 else

6 neg, negCntr = Sample(neg, negCntr, 𝑥𝑖 , 𝑦𝑖)
7 end

8 end

9 Function Sample(placeholder, cntr, x, y):
10 cntr += 1
11 if 𝑙𝑒𝑛 (𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟) < 𝑁

2 then

12 𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑥, 𝑦))
13 else

14 Generate a random number 𝑗 from [0, 𝑐𝑛𝑡𝑟]
15 if 𝑗 < 𝑙𝑒𝑛 (𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟) then
16 placeholder[j] = (𝑥, 𝑦)
17 end

18 end

19 return placeholder, cntr

Model selection.We build the classifier based on the ran-
dom forest model because the runtime metrics are tabular
data. Based on the runtime metrics in function instances, the
classifier helps the router track instances’ changing runtime

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

status by setting their Label tags. We also try other mod-
els, e.g., neural network classifier. However, it results in F1
scores from 0.0 to 0.73, worse than those of their random
forest counterparts, i.e., 0.71 to 0.84.
We require the classifier to update online with users’ re-

quests without explicit profiling to collect training data. This
is because invoking users’ functions without their permis-
sion may cause data inconsistencies in their external depen-
dencies, as explained in §2.2. Inspired by [18], we adopt the
Mondrian Forest (MF) to develop an online binary classifier.
It can update with online data efficiently without complex
calculations, e.g., multiple epochs of gradient descent. In con-
trast, classical random forest models adopt full batch training.
Once new data points arrive, they require re-training against
all training data, which is inefficient.
The MF is an ensemble of Mondrian Trees (MTs), which

grow incrementally in an online setting and rival the perfor-
mance of its batch training counterpart [18]. It also features
a short bootstrapping process, requiring less than 50 model
updates, as shown in Fig. 9(left). The prediction of MF is the
average of MTs’ predictions.

MT overview. MT training takes a batch of 𝑁 training data
{x, 𝑦}, where x is a 𝐷-dimensional vector, and 𝑦 is a binary
scalar label. Training a decision tree requires searching the
optimal feature dimension 𝑑𝑜𝑝𝑡 and a corresponding split
location 𝛿𝑜𝑝𝑡 to split data at each node in a tree. The optimal
split (𝑑𝑜𝑝𝑡 , 𝛿𝑜𝑝𝑡) creates child nodes to grow the tree. As the
training proceeds, the tree recursively partitions the space
into subspaces, denoted as leaf nodes. In model inference,
MT predicts labels for a new batch of data {x′}.
Build an MT. The MT model differs from the classical de-
cision trees in that it randomly samples 𝑑 and 𝛿 for a split,
which is independent of the label or the decrease in impurity.
A split at node 𝑗 in the tree associates with a split time 𝜏 𝑗 > 0.
Split times increase with depth, i.e., 𝜏 𝑗 > 𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) , and the
split time of the root node 𝜖’s parent is 𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝜖) = 0. We
use a tuple (𝑇, d, 𝛿, 𝜏) to represent a Mondrian tree 𝑇 .
At a node 𝑗 in the tree, we associate it with a block 𝐵 𝑗 ⊆

R𝐷 as the input space. The smallest block that encloses all
the training data at node 𝑗 is denoted as 𝐵x

𝑗 . Let 𝑁 (𝑗) denote
the indices of training data points at node 𝑗 , i.e., 𝑁 (𝑗) ={
𝑛 ∈ {1, . . . , 𝑁 } : x𝑛 ∈ 𝐵 𝑗

}
. Denote 𝑙𝑥

𝑗𝑑
and𝑢𝑥

𝑗𝑑
the lower and

upper bounds across the 𝑑𝑡ℎ dimension against training data
at node 𝑗 . Therefore, 𝐵x

𝑗 = (𝑙𝑥𝑗1, 𝑢𝑥𝑗1] × · · · × (𝑙𝑥
𝑗𝐷
, 𝑢𝑥

𝑗𝐷
] ∈ 𝐵 𝑗 .

We start with a non-negative lifetime parameter 𝜆 and a
handful of 𝑛 training data D1:𝑛 ⊆ R𝐷 to build an MT. The
process starts from a root node 𝜖 and recurses down the tree.
At a node 𝑗 , we sample its split time 𝐸 from an exponential
distribution with the rate being the sum of ranges across
all dimensions

∑𝐷
𝑑=1 (𝑢𝑥𝑗𝑑 − 𝑙𝑥

𝑗𝑑
). If 𝐸 + 𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) ≥ 𝜆, the

current split time exceeds the defined lifetime; hence, we
assign node 𝑗 as a leaf node and stop. Otherwise, node 𝑗

is an internal node, and we sample a split (𝑑 𝑗 , 𝛿 𝑗). To be
more specific, we first sample a feature dimension 𝑑 𝑗 with a
probability proportional to the range of 𝑑 of the data at the
node 𝑗 , i.e., (𝑢𝑥

𝑗𝑑
−𝑙𝑥

𝑗𝑑
). The intuition behind such a split is that

a feature with a huge range is more likely to be important.
Next, the split location 𝛿 𝑗 is drawn uniformly from [𝑙𝑥

𝑗𝑑 𝑗
, 𝑢𝑥

𝑗𝑑 𝑗
].

The procedure recurses along the left and right children.
Algorithm 2 describes the whole process.

Algorithm 2: Build a Mondrian Tree
1 Initialize: a MT𝑇 = ∅; 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑇) = ∅; training data at the root

node 𝑁 (𝜖) = {1, 2, . . . , 𝑁 }; a non-negative 𝜆 ;
2 BuildMondrianBlock(𝜖,D𝑁 (𝜖) , 𝜆) ;
3 Function BuildMondrianBlock(𝑗 , D𝑁 (𝑗) , 𝜆):
4 Add node 𝑗 to tree𝑇 ;
5 For all dimension 𝑑 ∈ 𝐷 , 𝑙𝑥

𝑗𝑑
= min(xN(j),d) ,

𝑢𝑥
𝑗𝑑

= max(xN(j),d) ; // dimension-wise operations

6 Sample 𝐸 from an exponential distribution with rate∑
𝑑 (𝑢𝑥𝑗𝑑 − 𝑙𝑥

𝑗𝑑
) ;

7 if 𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) + 𝐸 < 𝜆 then

8 Set 𝜏 𝑗 = 𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) + 𝐸 ;
9 Sample a dimension 𝑑 𝑗 with probability proportional to

𝑢𝑥
𝑗𝑑

− 𝑙𝑥
𝑗𝑑

;
10 Sample a split location 𝛿 𝑗 uniformly from [𝑙𝑥

𝑗𝑑 𝑗
,𝑢𝑥

𝑗𝑑 𝑗
] ;

11 Set 𝑁 (𝑙𝑒 𝑓 𝑡 (𝑗)) =
{
𝑛 ∈ 𝑁 (𝑗) : x𝑛,𝑑 𝑗

≤ 𝛿 𝑗

}
;

12 Set 𝑁 (𝑟𝑖𝑔ℎ𝑡 (𝑗)) =
{
𝑛 ∈ 𝑁 (𝑗) : x𝑛,𝑑 𝑗

> 𝛿 𝑗

}
;

13 BuildMondrianBlock(𝑙𝑒 𝑓 𝑡 (𝑗),D𝑁 (𝑙𝑒 𝑓 𝑡 (𝑗)) , 𝜆) ;
14 BuildMondrianBlock(𝑟𝑖𝑔ℎ𝑡 (𝑗),D𝑁 (𝑟𝑖𝑔ℎ𝑡 (𝑗)) , 𝜆) ;
15 else

16 Set 𝜏 𝑗 = 𝜆 and add node 𝑗 to 𝑙𝑒𝑎𝑣𝑒𝑠 (𝑇) ;
17 end

We next compute a label distribution to each node 𝑗 in
the tree. Denote 𝐺 𝑗 the distribution of labels at node 𝑗 and
𝐺 𝑗𝑘 the probability that a point is labeled 𝑘 in the node
𝑗 . In [18], they adopt a hierarchical Bayesian approach for
smooth label distributions. A prior is chosen under which
the label distribution of a node is similar to that of its parents.
The prior mean of the root nodes is initialized as [0.5, 0.5]
in the binary classification problem. For each leaf node 𝑗 ,
denote 𝑐 𝑗,𝑘 the number of data with label 𝑘 at node 𝑗 , and
𝑡 𝑗,𝑘 = min(𝑐 𝑗,𝑘 , 1). For every non-leaf node 𝑗 , we set its 𝑐 𝑗,𝑘 =

𝑡𝑙𝑒 𝑓 𝑡 (𝑗),𝑘 + 𝑡𝑟𝑖𝑔ℎ𝑡 (𝑗),𝑘 and 𝑡 𝑗,𝑘 = min(𝑐 𝑗,𝑘 , 1). Denote 𝑐 𝑗,· =∑
𝑘 𝑐 𝑗,𝑘 , 𝑡 𝑗,· =

∑
𝑘 𝑡 𝑗,𝑘 and 𝑑 𝑗 = exp(−𝛾 (𝜏 𝑗 − 𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗))). The

predictive probability of labels, i.e., posterior mean, at node
𝑗 is computed recursively:

𝐺 𝑗𝑘 =

{ 𝑐 𝑗,𝑘 −𝑑 𝑗 𝑡 𝑗,𝑘
𝑐 𝑗,·

+ 𝑑 𝑗 𝑡 𝑗,·
𝑐 𝑗,·

𝐺𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗),𝑘 𝑐 𝑗,· > 0

𝐺𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗),𝑘 𝑐 𝑗,· = 0
(1)

The discount 𝑑 𝑗 interpolates between the counts 𝑐 and the
prior. If 𝑑 𝑗 is closer to 1,𝐺 𝑗 is more alike with𝐺𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) . If 𝑑 𝑗

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

is closer to 0, 𝐺 𝑗 weights the count 𝑐 more. All probabilities
can be computed in a single pass from root to leaves.

OnlineUpdate.Given a new data point (x̃, 𝑦), the procedure
starts at the root node 𝜖 and recurses down the tree. At a
node 𝑗 , we first check if the new data point lies within 𝐵x

𝑗 by
computing the additional extents across feature dimensions
incurred by the new data point, i.e., e𝑙 = max(l𝑥𝑗 − x̃, 0) and
e𝑢 = max(x̃ − u𝑥𝑗 , 0). When e𝑙 = 0 and e𝑢 = 0, the new data
point lies in 𝐵𝑥𝑗 and the procedure traverses its child nodes
recursively. Otherwise, we should extend the current node to
incorporate the new data point. To extend a node 𝑗 , we first
sample a split time 𝐸 from an exponential distribution with
the rate being the sum of the additional extent, i.e.,

∑𝐷
𝑑
(𝑒𝑙

𝑑
+

𝑒𝑢
𝑑
) and set the split time to 𝐸+𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) . If 𝐸+𝜏𝑝𝑎𝑟𝑒𝑛𝑡 (𝑗) > 𝜏 𝑗 ,

there is no split, and we extend the existing block’s bounds to
include the new data x̃. Otherwise, a new split dimension 𝑑 𝑗

is chosen with probability proportional to 𝑒𝑙
𝑑
+ 𝑒𝑢

𝑑
and a split

location is drawn from a uniform distribution [𝑢𝑥
𝑗,𝑑 𝑗

, 𝑥𝑑 𝑗
] if

𝑢𝑥
𝑗,𝑑 𝑗

< 𝑥𝑑 𝑗
, otherwise [𝑥𝑑 𝑗

, 𝑙𝑥
𝑗,𝑑 𝑗

]. The new split is consistent
with the existing tree structure.

Online Inference. Consider a new data point x′. If x′ ∈ 𝐵𝑥𝑗
for any leaf node 𝑗 , the prediction is 𝐺 𝑗𝑘 . Otherwise, we
extend the existing tree by including x′ following the online
update procedures and set the prediction probabilities to
the label distribution of the leaf node that contains x′. We
average over all possible extensions as including x′ may
generate multiple tree extensions. The integration can be
done analytically with linear complexity in the tree depth.

5 VERTICAL SCALING

Golgi incorporates a vertical scaling design that dynamically
adjusts the configurations of OC instances to meet their
performance SLO. This encourages the router to explore OC
instances by reducing performance degradation risk (§4.2).

Motivations. Deciding on optimal resource configurations
for serverless applications is hard [32]. In §2.3, we see the
existing strategy, i.e., Orion [24], requires profiling to search
the optimal configuration, causing a temporary unsatisfac-
tory performance. Vertical scaling, however, provides flexi-
bility in accommodating varying serverless workloads [7],
enabling efficient resource utilization by allocating resources
in real-time to match the performance SLOs. In Golgi, we
dynamically scale up and down function instances based on
their runtime performance, maximizing resource utilization
while strictly meeting performance SLOs.

Our vertical scaling design also encourages Golgi’s sched-
uler to explore the resource overcommitment options, saving
further resource provisioning costs. Overcommitment by
packing function instances too tightly leads to performance

degradation due to intensive resource contention and severe
collocation interferences (§2.3). In this setting, function in-
stances are overloaded, and executions are throttled. Golgi’s
router leverages runtime metrics to avoid overloaded in-
stances (§4). However, the classifier may occasionally make
incorrect inferences. Our vertical scaling mechanism, how-
ever, can automatically adapt the overcommitted instances to
their performance requirements, remedying the occasional
incorrect inferences to improve system robustness.
Existing vertical scaling approaches are not well-suited

for a serverless setting. They adjust containers’ serving capa-
bilities by changing their resource allocations [14, 32], e.g.,
adding CPU cores. Though these approaches work best with
long-running jobs, they fall short in serverless settings as
changing a container’s resource allocation usually requires
re-launching the container, leading to unavoidable service
downtime [14]. Worse, function instances require frequent
vertical scaling due to their highly dynamic resource utiliza-
tion [7]. We require frequent scaling operations that can be
performed seamlessly without any service disruption.

Monitor Performance. The objective of scaling is to max-
imize the number of requests that a function instance can
serve without any degradation in performance. To achieve
this, we create two counters within a function instance to
efficiently monitor its runtime performance in terms of tail
latency (such as P95 latency). These counters keep track of
the number of requests that exceed the tail latency require-
ment and the total number of requests served, respectively,
within a monitoring window of size𝑊 . The ratio between
these two counters indicates whether the function instance
is meeting the tail latency requirements. If the ratio exceeds
0.05, it means that the performance of the instance is not
meeting the P95 latency requirement and scaling operations
will be triggered. Additionally, speculative scaling will also
be initiated once the first counter exceeds 0.05𝑊 .

Continuous and In-place Scaling. We scale an instance’s
maximum request concurrency, which specifies the maxi-
mum number of requests that can be served concurrently in
a single function instance, according to its runtime perfor-
mance. As shown in Fig. 2b and discussed in §3.1, function
performance is impacted by the request concurrency. A low
concurrency can avoid excessive requests and mitigate re-
source contention. Suppose the performance requirement is
defined by P95 latency. Then, if the violation ratio is greater
than 0.05, we scale the concurrency down by one. Conversely,
we also consider scaling up concurrency by one if runtime
performance is too well; say, the ratio falls below 0.03. The
buffering difference of 0.02 is left for stability. After each scal-
ing operation, we reset the two counters. To be thread-safe,
the scaling up/down operates atomically.

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Effectiveness. Fig.8 presents scaling operations in a classify-
image instance in evaluation (§8.2). Its maximum request
concurrency (green solid line) adapts frequently to latency
requirement (red dotted line) without service downtime. Fig.7
(right) highlights that vertical scaling encourages exploration
by reducing 21% resource usage of non-OC instances.

6 FURTHER DESIGN CONSIDERATIONS

Scalability. Golgi is scalable to host thousands of func-
tions [34]. For each type of user function, we deploy an ML
module to help the scheduler make routing decisions. In case
a user function spawns thousands of instances, we adopt a
shared-nothing strategy that divides the instances into a set
of disjoint shards, each of size 𝑆 . Then, for each shard, we
use an ML module to manage. Our measurements show that
the tag update period is around 82.2𝑚𝑠 when 𝑆 = 100, com-
parable to the median function execution latency of 152ms
and the average RPS in production, i.e., 11 [34]. In §8.6, we
present more evaluation details of scalability.

Fault Tolerance.Modules in Golgi, including routing, func-
tion instances, and ML modules, run in stateless Kubernetes
pods. We can deploy multiple replicas to support fault tol-
erance. Explicit program errors in function instances are
returned with status codes, and developers are responsible
for handling side-effects if their functions are not idempotent,
similar to AWS Lambda and other FaaS platforms [36].

7 IMPLEMENTATION

We implement Golgi based on OpenFaaS [11] with Kuber-
netes. Fig.4 shows its architecture with three main parts.
1) Scheduler.We plug our routing policy in OpenFaaS’s

faas-netes module. Following production practices, we imple-
ment a first-fit container placement strategy [37] by adding
a customized plugin in the Kubernetes scheduler [3].

2) ML Module. The MF model is implemented in Python,
and the ML relays are implemented in Go. They interact with
other modules via the high-performance gRPC framework.

3) Function Instances. Functions are implemented based
on OpenFaaS’s templates. We implement the watchdog by
extending OpenFaaS’s of-watchdog module. The vertical
scaling design (§5) is implemented in the watchdog module.

8 EVALUATION

We prototype Golgi and evaluate its effectiveness using
scaled production traces [34]. We conducted extensive ex-
periments. Evaluation highlights include:

(1) Golgi reduces 42% memory usage and 35% server cost
while meeting performance SLOs (§8.2), outperform-
ing state-of-the-art resource efficient mechanisms.

(2) Golgi’s router design and vertical scaling mechanism
are effective in ablation studies. (§8.3 and §8.4)

(3) Golgi can explore the trade-off between function per-
formance and resource provisioning cost. (§8.5)

(4) Golgi has acceptable overhead and scalability (§8.6).
(5) Golgi is effective in a production deployment, reduc-

ing 30% memory usage under performance SLOs (§8.7).

8.1 Methodology

Cluster Setup. We set up ten AWS EC2 instances to pro-
totype and evaluate Golgi. One c5.9xlarge instance serves
as the master node and hosts the routing modules. Seven
c5.9xlarge instances serve as worker nodes for hosting func-
tion instances. Each has 36vCPUs and 72GB memory. One
c5.2xlarge instance hosts function dependencies, e.g., data-
base. Another c5.2xlarge instance sends function requests.
Each c5.2xlarge instance has 8vCPUs and 16GB memory.

Trace.Weuse the publicly releasedAzure Function Trace [34].
We randomly select traces of day 10 (weekday) and day 13
(weekend) because the production traces show diurnal and
weekly patterns [34]. We scale the original trace down, while
keeping its fluctuations, illustrated in Fig. 6. For a day-long
trace, we further scale it to an hour long proportionally,
which has about 600, 000 invocations.

Benchmark Applications. We use the benchmark applica-
tions [37] in Table 1 (§3), which reflect real-world business
scenarios. Functions’ resource configurations are set accord-
ing to [37], with an initial request concurrency limit of 4.

Baseline Methods. We compare Golgi with four baselines.
1) Non-Overcommitment (BASE). The common prac-

tices in existing serverless platforms are non-overcommitted
configurations with the MRU routing strategy (§2.1).

2)Naive Overcommitment (OC).Naive overcommitment
strategy [37] down-sizes functions’ memory requests to 0.3×
𝑐 + 0.7 × 𝑎 (§2.3). The routing strategy is MRU.

3) Profiling and Performance Modelling (Orion). Orion
uses profiling and performance modeling [24] to right size
function instances so that they can meet their SLOs at mini-
mum cost (§2.3). The routing strategy, in this case, is MRU.
4) E&E Router (E&E). We disable the vertical scaling

mechanism to show the effectiveness of router design (§4).
Memory configurations of the overcommitted instances are
set as 0.3 × 𝑐 + 0.7 × 𝑎.
5) Golgi. E&E router with vertical scaling enabled (§5).

8.2 End-to-End Comparison

Procedures.We start with the non-overcommitment base-
line (BASE). We send requests by the scaled traces and record
the P95 latency of each application as the performance SLO.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

0 0 0 0

0 0 0 0

300

400

500

P
9
5
 L

a
te

n
c
y
 (

m
s
)

34% 33%

1% -1%

get-media-info

600

800
26%

5%

-6%
0%

smart-park

5

10

183%

36%

0% 0%

detect-anomaly

10

15

20
69%

45%

0% 0%

ingest-data

1200

1400

1600

-5%

2%

-5%
-1%

classify-image-ts

1000

1200

-1%
2%

-3%
-1%

detect-object-ts

1.0

1.5

1e4

22%
29%

0% -3%

anonymize-log

1.0

1.5

1e4

26% 28%

0% -2%

filter-log

The number above the bars are the relative latency increase to those achieved by the BASE baseline.

BASE OC Orion E&E Golgi

Figure 5: Application performance in end-to-end experiments.

02:48 06:48 10:48 14:48 18:48 22:48
Time

0.8

0.9

1.0

Re
la
tiv

e
In
vo

ca
tio

ns

original scaled

Figure 6: Comparison between the original [34] and

the scaled production traces, normalized to the peak.

Next, we run other baselines with the same traces by setting
their performance objectives as the performance SLO derived
from the BASE. We repeat experiments for five times.

Metrics.We focus on the benchmark applications’ perfor-
mance and the resource provisioning costs (§2.1). The applica-
tion performance is measured by P95 latency, as suggested by
recent research and production practices [24, 26, 35, 37, 46].

We measure the resource provisioning cost by two metrics.
The first one is memory footprint, defined as MB×Sec. For
instance, the memory footprint of a 128MB function running
for 0.1 seconds is 12.8MB × Sec. As described in §2.1, most
serverless platforms charge their users according to the mem-
ory footprint [4, 9, 19]. It reflects precise resource utilization.
The second one is VM time, which is the total running time
of VMs occupied by function instances. It reflects the serving
cost borne by platforms [37, 47]. Ideally, the two metrics are
asymptotically equal in the large-scale production system, if
all servers run with full workloads. The difference between
them is due to resource fragmentation, which is not rare.

Results. Fig. 5 compares applications’ P95 latency achieved
by the baseline methods. Golgi and the E&E router base-
line substantially outperform the others with their negligible
performance loss. E&E router causes an increase in GMI’s

P95 latency by 1%. Other applications’ SLOs are well satis-
fied by Golgi and the E&E router. In contrast, the OC and
Orion baselines cause significant performance degradation.
Applications’ P95 latency from the naive OC surges up to
183% while that from the Orion increases up to 45%. Orion’s
original paper [24] also provides similar results, where its
right-sizing strategy increases the P95 latency by 35% ∼ 132%
compared to the defined performance objectives.

Fig.7 (left) compares the resource provision costs incurred
by each baseline method. The values are normalized by those
from the BASE, and we report the relative costs. Note that the
BASE takes about 742 TB×Sec memory footprint and 18,000
second VM time on average. Compared to BASE, Golgi
achieves a 42% reduction in memory footprint and a 35%
reduction in VM time. The naive OC baseline achieves a
57% reduction in memory footprint and a 56% reduction in
VM time, but it fails to meet the performance requirements
shown in Fig. 5. Our E&E router achieves a 34% reduction in
memory footprint and a 20% reduction in VM time.

Fig.7 (right) presents a memory footprint breakdown and
highlights the effectiveness of the vertical scaling design. We
measure the resource provisioning costs in terms of memory
footprint to reflect precise resource usage. With the vertical
scaling enabled, Golgi saves an addition of 8% memory foot-
print. The additional savings is due to the reduced resource
utilization of non-OC instances, indicating that the vertical
scaling mechanism encourages exploration.

8.3 Vertical Scaling

The vertical scaling design adapts overcommitted function
instances to their performance requirements. We illustrate
the scaling operations in a classify-image instance in Fig. 8.
We sample 300 seconds out of its 1800 second lifetime.We can
see that the instance’s maximum request concurrency (green

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

OC Orion E&E Golgi
0.0

0.5

1.0

R
e
la

ti
v
e
 C

o
s
ts

.44

.61

.80

.65

.43

.66 .66
.58

Memo VM

BASE OC E&E Golgi
0.0

0.5

1.0

R
e
la

ti
v
e
 C

o
s
ts

1.00

0.43

0.33

0.66

0.12

0.58

NOC-I OC-I

Figure 7: Left: Cost Comparison (Memo: memory foot-

print; VM: VM time). Right: Memory Footprint Break-

down (NOC-I/OC-I: resource usage of non-OC/OC in-

stances). Numbers indicate bar heights.

4
5

M
ax

 C
on

cu
rre

nc
y

45 95 145 195 245 295
Time (Sec)

1

2

La
te

nc
y

 (S
ec

)

Conn. Tail Latency Latency Req.

Figure 8: Vertical scaling illustration. Blue solid line

represents the monitored P95 latency of requests in a

CI instance. The red dotted line is the P95 latency re-

quirement. The max concurrency (green solid line) au-

tomatically scales according to runtime performance.

0 100 200 300
Number of updates

0.0

0.3

0.8

F1
 S

co
re imbalance

balance
batch

0 200 400
Time (second)

0

200

Oc
cu

rre
nc

e Overloaded
Low load

Figure 9: Left: F1 score of the MF classifier under differ-

ent settings; the balance line also illustrates model

bootstrapping process in Golgi; Right: Occurrence

times of positive instances.

solid line) is adjusted frequently according to its runtime P95
latency (blue solid line). Every time the runtime P95 latency
is higher than the requirements (red dotted line), the max-
imum concurrency decreases by 1. When the requirement
is well satisfied, the maximum concurrency increases by 1.
Fig.7 (right) highlights that vertical scaling encourages the
scheduler to explore overcommitted instances by reducing
21% resource usage of non-overcommitted instances.

8.4 Router Evaluation

Ablation Study. To highlight the effectiveness of our router,
we run Golgi by replacing its router with the MRU one
and enabling the vertical scaling mechanism. Experimental
results show that MRU and vertical scaling can help save

60% of resource provision costs. However, applications’ per-
formances degrade, with P95 latency increasing from 3% to
71.5% because MRU is not performance-aware.

Classifier Performance.We evaluate the MF performances
for each function in Table 1 and report F1 scores, the har-
monic average of precision and recall. Across all functions,
the F1 scores range from 0.70 to 0.84, rivaling the perfor-
mance of its batch counterpart from sklearn[28]: 0.71 to 0.84.

Label Imbalance. We evaluate the performance of the MT
classifier w/ and w/o label balance enforced to highlight the
importance of our stratified sampling mechanism(§4.3). We
simulate the online learning setting and set the batch size to
16. The function considered in this case is get-media-meta.

In Fig.9 (left), we can see that a balanced label distribution
improves the classifier’s performance significantly, achieving
an F1 score of 0.78. Label imbalance, however, causes the
classifier to underperform with an F1 score of 0.26.

Microbenchmark.We further dive into the routing process
and show the effectiveness of a classifier in a microbench-
mark experiment. We set a tiny testbed with two worker
nodes and consider three functions: get-media-meta (GMM),
classify-image (CI), and detect-object (DO). The first node is
set as an overloaded environment and instances of the three
functions collocate within it. The second node is set to be
a contention free environment. For each function, we send
requests at a constant speed of 30 RPS for 500 seconds.

We focus on the GMM and place 40 GMM instances with
half in the overloaded environment and half in the contention
free environment. We train a classifier from scratch and
record the occurrence times of positive GMM instances in
each node every second, see Fig.9(right). We see that no
positive instances occur in the contention free environment
(orange dash-dot line), while GMM instances in the over-
loaded environment are classified as positive from time to
time (blue solid line), indicating that the classifier can help
our router avoid overloaded server nodes. GMM’s P95 la-
tency in the overloaded node is 1.5× longer than that in the
contention free node. Throughout the experiment, the over-
loaded node has an average LLCMs of 192,369,792, while the
average LLCMs in the contention free node is 2,332,726.

8.5 Explore performance-cost trade-off

A slack in performance SLO can help Golgi save more re-
source provisioning costs. Denote a function’s P95 latency
from the BASE as ℎ; we set two customized objectives as
"P95 latency ≤ 1.2ℎ" and "P95 latency ≤ 1.4ℎ" [37]. We run
Golgi with the customized SLOs and find that the cost sav-
ings increase with more slacks in performance requirements.
Golgi meets applications’ SLOs in all settings. With 1.2h
and 1.4h, Golgi saves 50% and 55% memory footprint.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

10

20

L
a
te

n
c
y
 (

m
s
)

10.1 11.7 13.3

17.6
13.9 15.0

17.7

24.4

15.2 15.9
18.4

24.9Routing

Execution

Others

10 100 1000 6000
RPS

0

Figure 10: Scalability evaluation with various RPSs.

8.6 Scalability and Overhead

We evaluate Golgi’s scalability under a set of RPSs according
to the Azure trace [34], which has a maximum RPS of 5139.
We consider the get-duration function. We deploy enough
function instances to serve requests. Define routing latency
as time elapsed to make a routing decision. In Fig. 10, we
show the end-to-end latency and the breakdown results.
Golgi can scale with different workloads. During a request
spike of 6000 RPS, Golgi can make a routing decision within
20ms, which is considered acceptable by AWS Lambda [7].

We next evaluate the tag update latency with a large size
of 1,200 function instances in our system. Note that AWS
lambda has a default regional quota of 1,000 instances [21].
We find the update latency is 82.2ms when the group size is
100, comparable to the average RPS of popular functions in
production, i.e., 11[34], and median execution latency 152ms.
Besides, frequent tag updates incur negligible overheads on
network bandwidth, transmitting 80K bytes per second.
We next consider the resource overhead of hosting ML

modules. Take Azure Function as an example [34]. The most
popular functions that are invoked at least once per second
account for 1.2% of total functions but their invocations ac-
count for 93.3% of the total invocations in the platform. The
total number of their instances is 12,912 [20], and the aver-
age runtime memory utilization is 136 MB. According to the
recent analysis [26, 30, 35, 37], each function instance should
be configured with 512MB on average. As each ML module
requires 200MB and one module manages 100 instances, the
overall overhead is 3.2% in terms of memory footprint. This
is acceptable compared to the 42% saving by Golgi.

8.7 Golgi in Action

We finally evaluated Golgi in an internal production cluster,
where function instances coexist with other data analytics
tasks, e.g. keyword filter and log statistic calculation. Nodes
in the cluster have heterogeneous configurations, with the
number of available CPU cores ranging from 4 to 16. We de-
ployed Golgi and BASE separately. For a fair comparison, we
replayed the production trace to invoke two serverless appli-
cations. The first is an executor monitor and the second is for
log processing. Fig. 11 depicts the experimental results. The
latency distribution (Fig. 11 left and center) shows that Golgi
protects applications’ performance while saving the cost by

30% (Fig. 11 right). Besides, no performance degradation is
reported from the coexisting analytic tasks.

0 1 2
Executor monitor

latency (s)

0.00

0.50

0.95

CD
F

Golgi
BASE

0 1 2
Log processing

latency (s)

0.00

0.50

0.95

CD
F

BASE Golgi
Baselines; Numbers
indicate bar heights.

0

5

10

M
em

or
y

Co
st

s
(T

B
* S

ec
)

12.2
8.6

Figure 11: Evaluation in production cluster. Left and

center: CDFs of latencies. Right: memory costs.

9 RELATEDWORK

Optimizing scheduling in serverless computing is the target
of recent studies. In §2.3, we present Owl [37] and Orion [24]
that solve the similar problem as Golgi. Besides, OFC [26]
collects under-utilized memory to build caches that optimize
inter-function communication. Atoll [35] targets meeting
the latency requirements for serverless applications. It uses
a hierarchical design to reduce scheduling overheads and
proactively launch instances to mitigate the cold start. How-
ever, they do not consider reducing the serverless platforms’
provisioning cost. Fireplace [7] targets packing function in-
stances tightly to reduce provisioning costs. Their scheduling
goal is to place function instances tightly so that the resource
utilization of each server does not exceed its capacity. They
do not strive to meet function SLOs in scheduling.

A series of works optimize the intermediate data transfer
between functions to improve serverless application perfor-
mance [17, 23, 29, 31, 44]. Their works are orthogonal to
ours. Golgi targets cost-efficient and performance-aware
scheduling and can integrate their designs seamlessly.

10 CONCLUSION

Wepresent Golgi, a performance-aware and resource-efficient
FaaS scheduling system. Driven by the characteristics of func-
tions, Golgi achieves performance-aware resource overcom-
mitment and scheduling, reducing operational costs while
meeting function SLOs. It also supports an automatic vertical
scaling mechanism that adapts overcommitted instances to
their performance requirements. Compared with existing
production scheduling methods, Golgi yields significant cost
reduction by 42% with negligible performance loss.

ACKNOWLEDGEMENT

We would like to thank our shepherd, Sadjad Fouladi, and
the anonymous reviewers for their valuable feedback that
helps improve the quality of this work. This research was
supported in part by the WeBank Faculty Fellowship and
RGCGRF grants under the contracts 16202121 and 16210822.

Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

REFERENCES

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20).

[2] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A.
Gibson, Elisabeth Baseman, and Nathan DeBardeleben. 2018. On the
diversity of cluster workloads and its impact on research results. In
Proceedings of the 2018 USENIX Annual Technical Conference (USENIX
ATC 18).

[3] The Kubernetes Authors. 2023. Kubernetes Scheduling Frame-
work. https://kubernetes.io/docs/concepts/scheduling-eviction/
scheduling-framework/.

[4] Microsoft Azure. 2022. Azure Functions Pricing. https://azure.
microsoft.com/en-us/pricing/details/functions/.

[5] Microsoft Azure. 2022. Concurrency in Azure Functions. https://docs.
microsoft.com/en-us/azure/azure-functions/functions-concurrency.

[6] Microsoft Azure. 2022. What are Durable Functions? https:
//learn.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-overview?tabs=csharp.

[7] Bharathan Balaji, Christopher Kakovitch, and Balakrishnan (Murali)
Narayanaswamy. 2020. FirePlace: Placing FireCracker virtual machines
with hindsight imitation. In Proceedings of the MLSys 2021, NeurIPS
2020 Workshop on Machine Learning for Systems.

[8] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,
and Rohit Jnagal. 2021. Take It to the Limit: Peak Prediction-Driven Re-
source Overcommitment in Datacenters. In Proceedings of the Sixteenth
European Conference on Computer Systems (EuroSys 21).

[9] Alibaba Cloud. 2022. Aliyun Function Compute Pricing. https://www.
alibabacloud.com/help/en/doc-detail/54301.html.

[10] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management
in Large Cloud Platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP 17).

[11] Alex Ellis. 2022. OpenFaaS : Server Functions, Made Simple. https:
//www.openfaas.com/.

[12] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun
Suresh, and Sriram Rao. 2018. Medea: Scheduling of Long Running
Applications in Shared Production Clusters. In Proceedings of the Thir-
teenth EuroSys Conference (EuroSys 18).

[13] Google. 2022. Overcommitting CPUs on sole-tenant VMs.
https://cloud.google.com/compute/docs/nodes/overcommitting-
cpus-sole-tenant-vms.

[14] Google. 2022. Vertical Pod autoscaling. https://cloud.google.com/
kubernetes-engine/docs/concepts/verticalpodautoscaler.

[15] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S. Gunawi. 2020. LinnOS: Predictabil-
ity on Unpredictable Flash Storage with a Light Neural Network. In
Proceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation.

[16] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[17] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI

18).
[18] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. 2014.

Mondrian Forests: Efficient Online Random Forests. In Proceedings of
the Advances in Neural Information Processing Systems (NeurIPS 14).

[19] AWS Lambda. 2022. AWS Lambda Pricing. https://aws.amazon.com/
lambda/pricing/.

[20] AWS Lambda. 2022. How do I request a concurrency limit increase
for my Lambda function? https://aws.amazon.com/premiumsupport/
knowledge-center/lambda-concurrency-limit-increase/.

[21] AWS Lambda. 2022. Lambda function scaling. https://docs.aws.amazon.
com/lambda/latest/dg/invocation-scaling.html.

[22] Suyi Li, LupingWang, Wei Wang, Yinghao Yu, and Bo Li. 2021. George:
Learning to Place Long-Lived Containers in Large Clusters with Op-
eration Constraints. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC 21).

[23] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. 2021. SONIC: Application-aware
Data Passing for Chained Serverless Applications. In Proceedings of
the 2021 USENIX Annual Technical Conference (ATC 21).

[24] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh El-
nikety, Somali Chaterji, and Saurabh Bagchi. 2022. ORION and the
Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs.
In Proceedings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22).

[25] Michael Mitzenmacher. 2001. The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and Distributed Systems
(2001).

[26] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui,
and Alain Tchana. 2021. OFC: An Opportunistic Caching System for
FaaS Platforms. In Proceedings of the Sixteenth European Conference on
Computer Systems (EuroSys 21).

[27] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. 2017. Tensorflow-serving: Flexible, high-performance ml serv-
ing. arXiv preprint arXiv:1712.06139 (2017).

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research (2011).

[29] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In Pro-
ceedings of the 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19).

[30] Ran Ribenzaft. 2019. What AWS Lambda’s Performance Stats Reveal.
https://epsagon.com/observability/what-aws-lambda-performance-
stats-reveal-key-metrics/.

[31] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Chris-
tos Kozyrakis, and Ricardo Bianchini. 2021. Faa$T: A Transparent
Auto-Scaling Cache for Serverless Applications. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC 21).

[32] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych,
Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack,
Piotr Witusowski, Steven Hand, and John Wilkes. 2020. Autopilot:
Workload Autoscaling at Google. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems (EuroSys 20).

[33] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J Yadwadkar, Raluca Ada Popa, Joseph E Gonzalez,
Ion Stoica, and David A Patterson. 2021. What serverless computing

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-concurrency
https://docs.microsoft.com/en-us/azure/azure-functions/functions-concurrency
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://www.alibabacloud.com/help/en/doc-detail/54301.html
https://www.alibabacloud.com/help/en/doc-detail/54301.html
https://www.openfaas.com/
https://www.openfaas.com/
https://cloud.google.com/compute/docs/nodes/overcommitting-cpus-sole-tenant-vms
https://cloud.google.com/compute/docs/nodes/overcommitting-cpus-sole-tenant-vms
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://epsagon.com/observability/what-aws-lambda-performance-stats-reveal-key-metrics/
https://epsagon.com/observability/what-aws-lambda-performance-stats-reveal-key-metrics/

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu

is and should become: The next phase of cloud computing. Commun.
ACM (2021).

[34] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC 20).

[35] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2021. Atoll: A Scalable Low-Latency Serverless Platform. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC 21).

[36] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. In Proc.
VLDB Endow. (2020).

[37] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Hao-
ran Yang. 2022. Owl: Performance-Aware Scheduling for Resource-
Efficient Function-as-a-Service Cloud. In Proceedings of the ACM Sym-
posium on Cloud Computing (SoCC 22).

[38] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and
Haoran Yang. 2022. Owl: Performance-Aware Scheduling for
Resource-Efficient Function-as-a-Service Cloud. https://www.cse.ust.
hk/~weiwa/papers/owl-techreport.pdf.

[39] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software (TOMS) (1985).

[40] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC 18).

[41] Luping Wang, Qizhen Weng, Wei Wang, Chen Chen, and Bo Li. 2020.
Metis: Learning to schedule long-running applications in shared con-
tainer clusters at scale. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis.

[42] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: SLO-
Aware Dynamic Resource Configuration for Serverless FunctionWork-
flows. In IEEE INFOCOM 2022-IEEE Conference on Computer Communi-
cations.

[43] Renyu Yang, Chunming Hu, Xiaoyang Sun, Peter Garraghan, Tianyu
Wo, Zhenyu Wen, Hao Peng, Jie Xu, and Chao Li. 2020. Performance-
Aware Speculative Resource Oversubscription for Large-Scale Clusters.
IEEE Transactions on Parallel and Distributed Systems (2020).

[44] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-
lowing the Data, Not the Function: Rethinking Function Orchestration
in Serverless Computing. In Proceedings of the 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23).

[45] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
Serverless Platforms with Serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing (SoCC 20).

[46] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In Proceedings of the 2019 USENIX Annual
Technical Conference (ATC 19).

[47] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and
Ion Stoica. 2021. Caerus: NIMBLE Task Scheduling for Serverless
Analytics. In Proceedings of the 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21).

[48] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. 2013. 𝐶𝑃𝐼 2: CPU performance isolation for shared
compute clusters. In Proceedings of the SIGOPS European Conference
on Computer Systems (EuroSys 13).

https://www.cse.ust.hk/~weiwa/papers/owl-techreport.pdf
https://www.cse.ust.hk/~weiwa/papers/owl-techreport.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Computing Background
	2.2 Motivations
	2.3 Existing Methods
	2.4 Design Requirements

	3 Characterizing Functions in the Cloud
	3.1 What determines function performance?
	3.2 Capture Performance Metrics
	3.3 Validation Tests

	4 Golgi's Scheduler Design
	4.1 Overview
	4.2 Conservative Routing
	4.3 Enable Model Inference in Scheduling
	4.4 Leverage Runtime Metrics

	5 Vertical Scaling
	6 Further Design Considerations
	7 Implementation
	8 Evaluation
	8.1 Methodology
	8.2 End-to-End Comparison
	8.3 Vertical Scaling
	8.4 Router Evaluation
	8.5 Explore performance-cost trade-off
	8.6 Scalability and Overhead
	8.7 Golgi in Action

	9 Related Work
	10 Conclusion
	References

