
Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning

Huangshi Tian
HKUST

htianaa@cse.ust.hk

Minchen Yu
HKUST

myuaj@cse.ust.hk

Wei Wang
HKUST

weiwa@cse.ust.hk

ABSTRACT
Many machine learning applications operate in dynamic environ-
ments that change over time, in which models must be continu-
ally updated to capture the recent trend in data. However, most
of today’s learning frameworks perform training offline, without a
system support for continual model updating.

In this paper, we design and implement Continuum, a general-
purpose platform that streamlines the implementation and deploy-
ment of continual model updating across existing learning frame-
works. In pursuit of fast data incorporation, we further propose
two update policies, cost-aware and best-effort, that judiciously de-
termine when to perform model updating, with and without ac-
counting for the training cost (machine-time), respectively. Theo-
retical analysis shows that cost-aware policy is 2-competitive. We
implement both polices in Continuum, and evaluate their perfor-
mance through EC2 deployment and trace-driven simulations.The
evaluation shows that Continuum results in reduced data incorpo-
ration latency, lower training cost, and improvedmodel quality in a
number of popular online learning applications that span multiple
application domains, programming languages, and frameworks.

CCS CONCEPTS
•Computingmethodologies→ Instance-based learning; •Com-
puter systems organization → Distributed architectures;

KEYWORDS
Continual Learning System, Online Algorithm, Competitive Anal-
ysis
ACM Reference Format:
Huangshi Tian, Minchen Yu, and Wei Wang. 2018. Continuum: A Platform
for Cost-Aware, Low-Latency Continual Learning. In Proceedings of SoCC
’18: ACM Symposium on Cloud Computing, Carlsbad, CA, USA, October 11–
13, 2018 (SoCC ’18), 15 pages.
https://doi.org/10.1145/3267809.3267817

1 INTRODUCTION
Machine learning (ML) has played a key role in a myriad of practi-
cal applications, such as recommender systems, image recognition,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267817

fraud detection, and weather forecasting. Many ML applications
operate in dynamic environments, where data patterns change over
time, often rapidly and unexpectedly. For instance, user interests
frequently shift in social networks [59]; fraud behaviors dynami-
cally adapt against the detection mechanisms [37]; climate condi-
tion keeps changing in weather forecasting [73]. In face of such
phenomenon—known as concept drift [40, 82, 90, 99]—predictive
models trained using static data quickly become obsolete, resulting
in a prominent accuracy loss [25, 49].

An effective approach to tame concept drift goes to online learn-
ing [17], where model updating happens continually with the gen-
eration of the data. Over the years, many online learning algo-
rithms have been developed, such as Latent Dirichlet Allocation
(LDA) [52] for topic models, matrix factorization [30, 66] for rec-
ommender systems, and Bayesian inference [18] for stream ana-
lytics. These algorithms have found a wide success in production
applications. Notably, Microsoft have reported its usage of online
learning in recommendation [84], contextual decision making [3],
and click-through rate prediction [44]. Twitter [61], Google [69],
and Facebook [48] also use online learning in ad click prediction.

Despite these successes, the system support for online learn-
ing remains lagging behind. In the public domain, mainstream ML
frameworks, including TensorFlow [1], MLlib [71], XGBoost [22],
scikit-learn [78], and MALLET [68], never explicitly support con-
tinualmodel updating. Instead, users have to compose custom train-
ing loops to manually retrain models, which is cumbersome and
inefficient (§2.2). Owing to this complexity, models are updated on
much slower time scales (say, daily, or in the best case hourly) than
the generation of the data, making them a poor fit for dynamic en-
vironments. Similar problems have also been found prevalent in
the private domain. In Google, many teams resort to ad-hoc scripts
or glue code to continually update models [11].

In light of these problems, our goal is to provide a system so-
lution that abstracts away the complexity associated with contin-
ual model updating (continual learning).This can be challenging in
both system and algorithm aspects. In the system aspect, as there
are diverse ML frameworks, each having its own niche market, we
require our system to be a general-purpose platform, not a point
solution limited to a particular framework. In the algorithm aspect,
we should judiciously determine when to perform updating over
new data. Common practice such as periodic update fails to adapt
to dynamic data generation, and is unable to timely update mod-
els in the presence of flash crowd [12, 56]. Moreover, model updat-
ing incurs non-trivial training cost, e.g., machine-time. Ideally, we
should keep models fresh, at low training cost.



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang

App 
#3

App 
#2

App 
#1

Continuum   XGBoost         

  TensorFlow

 scikit-learn

b
a
c
ke

n
d

b
a
c
ke

n
d

b
a
c
ke

n
d

Cost-Aware

Policy

Best-Effort

Policy

Customized

Policy

Figure 1: Overview of Continuum.

We address these challenges with Continuum, a thin layer that
facilitates continual learning across diverse ML frameworks. Fig-
ure 1 gives an overview of Continuum. Continuum exposes a com-
mon API for online learning, while encapsulating the framework-
dependent implementations in backend containers.This design ab-
stracts away the heterogeneity ofML frameworks andmodels. Con-
tinuum also provides a user-facing interface through which user
applications send new data to refine their models. Continuum de-
termines, for each application, when to update the model based on
the application-specified update policy. It then notifies the corre-
sponding backend to retrain the model over new data. Upon the
completion of updating, the model is shipped as a container to the
model serving systems such as Clipper [28], and is ready to serve
prediction requests.

While Continuum supports customizable update policies for ap-
plications, it implements two general policies for two common sce-
narios.Thefirst is best-effort, which is tailored for users seeking fast
data incorporation without concerning about the retraining cost,
e.g., those performing online learning in dedicated machines for
free. Under this policy, the model is retrained continuously (one re-
training after another) in a speculative manner. In particular, upon
the generation of the flash crowd data, the policy speculatively
aborts the ongoing update and restarts retraining to avoid delay-
ing the incorporation of the flash crowd data into the model.

The second policy, on the other hand, is cost-aware, in that it
strives to keep themodel updated at low training cost. It is hence at-
tractive to users performing online learning in shared clusters with
stringent resource allocations or in public cloud environmentswith
limited budget. We show through measurement that the training
cost is in proportion to the amount of new data over which the
model is updated. Based on this observation, we formulate an on-
line optimization problem and design an update policy that is proven
to be 2-competitive, meaning, the training cost incurred by the pol-
icy is no more than twice of the minimum under the optimal offline
policy assuming the full knowledge of future data generation.

We have implemented Continuum in 4,000 lines of C++ and
Python. Our implementation is open-sourced [87]. To evaluate Con-
tinuum, we have ported a number of popular online learning algo-
rithms to run over it, each added in tens of lines of code. These
algorithms span multiple application domains and are written in
diverse ML frameworks such as XGBoost [22], MALLET [68], and
Velox [29]. We measure their performance using real-world traces

under the two update policies. Compared with continuous update1
and periodic update—two common practices—best-effort policy and
cost-aware policy accelerate data incorporation by up to 15.2% and
28%, respectively. Furthermore, cost-aware policy can save up to
32% of the training cost.We also compare ContinuumwithVelox [29],
the only system that supports (offline)model retraining to our knowl-
edge. With the same movie recommendation app implemented in
both systems, we find that Continuum shows the recommendation
quality 6x as good as that of Velox.

In summary, our key contributions are:
• The design and implementation of a general-purpose plat-
form which, for the first time, facilitates continual learning
across existing ML frameworks;

• The design and analysis of two novel online algorithms, best-
effort and cost-aware, which judiciously determine when to
update models in the presence of dynamic data generation,
with and without accounting for the training cost, respec-
tively.

2 BACKGROUND AND MOTIVATION
In this section, we briefly introduce online learning (§2.1) and mo-
tivate the need for continual model updating through case studies
(§2.2). We then discuss the challenges of having system support for
continual learning (§2.3).

2.1 Online Learning
In many machine learning (ML) problems, the input is a training
setS = (s1, s2, . . . )where each sample si consists of a data instance
x (e.g., features) and a target labely.The objective is to find amodel,
parameterized by θ , that correctly predicts labely for each instance
x . To this end, ML algorithms iteratively update model parameter θ
over the training samples, in an online or offlinemanner, depending
on whether the entire training set is readily available.

In online learning [17] (continual learning), the training samples
become available in a sequential order, and the model is updated
continually with the generation of the samples. Specifically, upon
the generation of sample si , an online learning algorithm updates
the model parameter as

θi+1 ← fo (θi , si ),
where fo (·) is an optimization function chosen by the algorithm.
As opposed to online learning, offline learning (batch learning) as-
sumes the entire batch of training set and trains the model by it-
eratively applying an optimization function fb (·) over all samples.
That is, in each iteration k , it updates the model parameter as

θk+1 ← fb (θk ,S).
Compared with offline learning, model updating in online learn-

ing is much more lightweight as it only incorporates one data sam-
ple a time.2 This allows online learning to efficiently adapt to dy-
namic environments that evolve over time, in which the model
must be frequently updated to capture the changing trend in data.
We next demonstrate this benefit through case studies.
1 Continuous update refers to consecutively retraining models, while continual learn-
ing refers to a certain type of learning, i.e., online learning.
2In practice, model updating is usually performed over a small batch of new data, as
per-sample updating can be expensive to implement.



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

2.2 Case Study in Dynamic Environments
Methodology We study three popular online learning applica-
tions based on Personalized PageRank [9], topicmodeling [53], and
classification prediction [39], respectively. For each application, we
replay real-world traces containing the time series of dynamic data
generation. We train a base model using a small portion of the
dataset at the beginning of the trace, and periodically update the
model through online learning. We evaluate how online updating
improves the model quality by incorporating new data. We also
compare online learning with offline retraining. All experiments
are conducted in Amazon EC2 [7], where we use c5.4xlarge in-
stances (16 vCPUs, 32 GB memory and 5 Gbps link).
Personalized PageRank Our first application is based on Per-
sonalized PageRank (PPR) [9, 64, 65, 106], a popular ML algorithm
that ranks the relevance of nodes in a network from the perspective
of a given node. We have implemented a friend recommendation
app in Scala using dynamic PPR [106]. We evaluate its performance
over a social network dataset [32] crawled from Twitter.

Figure 2a illustrates how the quality of the base model deteri-
orates over time compared with the updated models. Specifically,
we consider two metrics, L1 error [106] and Mean Average Preci-
sion (MAP) [8, 24]. The former measures how far the recommen-
dation given by the base model deviates from that given by the
updated model (lower is better); the latter measures the quality of
recommendation (higher is better). It is clear that without model
updating, the error accumulates over time and the quality of rec-
ommendation (MAP) given by the base model quickly decays (10%
in one hour).

We further compare online learning with offline retraining. In
particular, every 10 minutes, we retrain the PPR model in both of-
fline and online manner. Figure 2b compares the training time of
the two approaches. As offline learning retrains the model from
scratch over all available data, it is orders of magnitude slower than
online learning, making it a poor fit in dynamic environments.
Topic Modeling We next turn to topic modeling [53], a popular
data mining tool [20, 89, 96, 104] that automatically detects themes
from text corpora. We implemented a topic trend monitor in MAL-
LET [68], a natural language processing toolkit offering an efficient
implementation of Latent Dirichlet Allocation (LDA) [16] for topic
modeling. We evaluate its performance over a large dataset of real-
world tweets [102] by periodically updating the topic model every
10 minutes.

To illustrate how the incorporation of new data improves the
quality of the model, we measure its perplexity [16, 92], an indi-
cator of the generalization performance of topic models (lower is
better). Figure 3a depicts the results. As we feed more data into the
model, its perplexity decreases, meaning better performance. We
next evaluate online learning against offline retraining by measur-
ing their training time. As shown in Figure 3b, it takes orders of
magnitude longer time to retrain the model offline using all histor-
ical data than updating it online.
Classification Prediction Our final study goes to classification
prediction [42, 44, 67]. We consider an ad recommendation sys-
tem in which there are many online ads that might be of inter-
est to users. The system determines which ad should be displayed

(a) L1 error (lower is better) andMAP (higher is better) of the basemodel quickly
deteriorate over time.

(b) Online and offline training time of PPR models.

Figure 2: Results of Personalized PageRank algorithm on
Twitter dataset.

(a) Perplexity of LDA model decreases as more data are incorporated into the
model, meaning better performance.

(b) Online and offline training time of LDA models.

Figure 3: Results of LDA algorithm on Twitter dataset.

to which user by predicting the probability of user click. Based
on the user’s feedback (click), it improves the prediction. We use
real-world traffic logs from Criteo Labs [58] as the data source. We
choose as our tool Gradient-Boosted Decision Tree (GBDT) algo-
rithm [39], along with its scalable implementation, XGBoost [22].



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang

We evaluate themodel with area under an ROC curve (AUC) [46],
a metric that quantifies the overall prediction performance of a
classifier (larger is better). Figure 4a depicts the improvement of
online learning that updates the model every 5 minutes. We also
compare the training time of online learningwith offline retraining
in Figure 4b. In addition to performing offline retraining on a single
machine (OfflineSingle), we further scale out the training to five
c5.4xlarge instances (OfflineDist). Despite using more machines,
offline retraining remains lagging far behind online learning.
Complexity in Practice Our case studies have highlighted the
benefit ofmaintaining data recency [34, 49] through continual learn-
ing. However, realizing this benefit in practice can be complex. As
system support for continual learning remain lacking in many ex-
isting ML frameworks, we have to write our own training loop to
manually feed the new data to the training instance and period-
ically trigger model updates there, all in custom scripts. This in-
cludes much tedious, repetitive labor work. In our case studies, we
have repeated the implementation of the common training loop
across all the three applications, using Scala in PPR, Java in MAL-
LET [68], and C++ in XGBoost [22]. In fact, this has taken us even
more coding efforts than implementing the key logic of online
learning. As evidenced in Table 1, compared with the model up-
dating scripts, the training loop takes 5-12x lines of code in our
implementation, meaning much effort has been wasted reinvent-
ing the wheel.

Table 1: Lines of code used to implement the training loop
and model updating in our implementation.

Algorithm Training Loop Model Updating
PPR [106] 211 41
LDA [16] 377 56
GBDT [39] 558 44

The complexity manifested in our first-hand experience has also
been found prevalent in industry. Notably, Google has reported
in [11] that many of its teams need to continuously update the
models they built. Yet, owing to the lack of system support, they
turned to custom scripts or glue code as a workaround.

2.3 Challenges
Given the complexity associated with dynamic model updating,
there is a pressing need to have a system solution to streamline
this process. However, this can be challenging in two aspects, sys-
tem and algorithm.
SystemChallenge There are awide spectrumofML frameworks,
each having its own nichemarket in specific domains. For instance,
Tensorflow [1] is highly optimized for deep neural network and
dataflow processing; XGBoost [22] is tailored for decision tree algo-
rithms; MALLET [68] offers optimized implementations for statis-
tical learning and topic modeling; MLlib [71] stands out in general
machine learning at scale. As there is no single dominant player
in the market, we expect a general-purpose platform that enables

(a) AUC of GBDTmodels rises asmore data are included,meaning better overall
prediction performance.

(b) Online and offline training time of GBDTmodels. Offline settings include a
single machine (OfflineSingle) and a 5-node cluster (OfflineDist).

Figure 4: Results of GBDT algorithm on Criteo dataset.

model updating across diverse frameworks.This requires the plat-
form to provide an abstraction layer that abstracts away the hetero-
geneity of existing ML frameworks—including programming lan-
guages, APIs, deployment modes (e.g., standalone and distributed),
and model updating algorithms. Such an abstraction should be a
thin layer, imposing the minimum performance overhead to the
underlying frameworks.
Algorithm Challenge In theory, to attain the optimal data re-
cency, a model should be updated as soon as a new data sample be-
comes available (§2.1). In practice, however, model updating takes
time (§2.2) andmay not complete on arrival of new data. An update
policy is therefore needed to determine when to perform model
updating, and the goal is to minimize the latency of data incorpo-
ration. Note that the decisions of model updating must be made
online, without prior knowledge of future data generation, which
cannot be accurately predicted. This problem becomes even more
complex when the training cost (e.g., instance-hour spent onmodel
updating in public clouds) is concerned by users. Intuitively, fre-
quent updating improves data recency, at the expense of increased
training cost. Ideally, we should reduce the latency of data incor-
poration, at low training cost.

3 CONTINUUM
In this section, we provide our answer to the aforementioned sys-
tem challenge. We present Continuum, a thin layer atop existing
ML frameworks that streamlines continual model updating. We
have implemented Continuum in 4,000 lines of C++ and Python,
and released the code as open-source [87]. Continuum achieves
three desirable properties:



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Client

   

RPC

Data Storage

Runtime
Profiler 

Update 
Controller

ɢ�trigger retraining

ɤ retraining finishes

ɠ�send data information

through REST API

ɣ�fetch data information

ɡ�store data information

data flow

control flow

Backend

Figure 5:The training loop in Continuum.

• General purpose: Continuum exposes a common interface
that abstracts away the heterogeneity of ML frameworks
and learning algorithms (§3.3). It also supports pluggable up-
date policies that users can customize to their needs. (§3.4).

• Low overhead: Continuum employs a single-thread architec-
ture in each instance (§3.2), allowing it to efficiently orches-
trate model updating across multiple applications, without
synchronization overhead.

• Scalability: Continuum’s modular design enables it to easily
scale out to multiple machines (§3.2).

3.1 Architecture Overview
Continuum assists users in managing online learning applications
(Figure 1). Figure 5 gives an overview of the training loop for a
single application. Before explaining how it works, we briefly in-
troduce each component in the loop.

An application interacts with Continuum through a client. The
application is also associated with a backend container, which en-
capsulates the framework-dependent implementation of the train-
ing logic.The backend performsmodel training and communicates
the results with the Continuum kernel through RPC.

The Continuum kernel mainly consists of two modules: runtime
profiler and update controller.The runtime profiler logs and profiles
the training time for each application. Specifically, it uses linear
regression (§4.1) to predict the training time based on the amount
of the data to be incorporated into the model.The prediction result
is then used as an estimation of the training cost, with which the
update controller decides, for each application, when to perform
updating based on the application-specified policy.

Putting it altogether, the training loop in Continuum goes as
follows (Figure 5). 1⃝ Upon the generation of new data, the ap-
plication calls the client REST API to send the data information,
which contains the raw data, or—if the data is too large—its storage
locations (§6.2). 2⃝ Continuum maintains the received data infor-
mation in an external storage (e.g., Redis [80]), and then decides
whether to trigger model retraining. 3⃝ Once the decision is made,

Listing 1 Common interface for backends.
interface Backend <X, Y> {

X retrain(X prev_model , List <Y> data)
}

Continuum notifies the corresponding backend to perform retrain-
ing. 4⃝The backend fetches the data information from the storage
and retrains the model with the new data. 5⃝ Upon finishing re-
training, the backend notifies Continuum to update the training
time profile for that application. The updated model can then be
shipped to model serving system (e.g., Clipper [28]) for inference
(§6.2).

3.2 Single-Thread Architecture
When Continuum is used to manage multiple applications, run-
time profiler and update controller need to maintain application-
specific information, e.g., the amount of new data to be incorpo-
rated, last model update time, etc. A possible choice to organize
that information is multi-thread architecture, i.e., allocating one
thread for each application and managing information using that
thread dedicatedly.

However, we found that multi-threading suffers from context-
switch overhead. Instead, we adopt a single-thread approach that
maintains information of all applications in themain thread and let
other components access them asynchronously. Our design shares
similarity with the delegation approach in accessing shared mem-
ory [81].

Scalability is attainable even if we seemingly place all data to-
gether.Weminimize the coupling between applications by separat-
ing system-wide data to the database. When in need of scaling, we
launchmultiple instances of Continuum and let eachmanage infor-
mation for a set of applications. Our evaluation (§5.5) has demon-
strated the linear scalability of Continuum.

3.3 Backend Abstraction
As a general-purpose system, Continuum abstracts away the het-
erogeneity of ML frameworks and learning algorithms with a com-
mon abstraction and a lightweight RPC layer. Listing 1 presents
the interface we require our user to implement. It abstracts over
the common update process and imposes nearly no restriction to
the application. Besides, we equip our system with an RPC layer
that decouples the backends, further relaxing the restriction on
them. To demonstrate the generality Continuum and its ease of
use, we have implemented several online learning applications in
our evaluation (§5.1). While they span multiple programming lan-
guages and frameworks, each application was implemented using
only tens of lines of code.

3.4 Customizable Policy
Users are able to implement customized update policies with the
interfaces we provide. On one hand, if users want to access inter-
nal information (e.g., data amount, estimated training time) and
decide by their own, we design an abstract policy class that users
could extend with their own decision logic. On the other hand, if
users have external information source, we expose REST APIs to



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang

let them manually trigger retraining. For instance, users may have
some systems monitoring model quality or cluster status. When
model starts to underperform or the cluster gets idle, they could
call the API to update the model. Besides those customized situ-
ations, Continuum implements two general policies for two com-
mon scenarios, which is the main theme of the next section.

4 WHEN TO PERFORM UPDATING
In this section, we study when to update models for improving
data recency. We define two metrics that respectively measure the
latency of data incorporation and the training cost (§4.1). We show
through empirical study that the training cost follows a linearmodel
of the data size. We then present two online update policies, best-
effort (§4.2) and cost-aware (§4.3), for fast data incorporation, with
and without accounting for the training cost, respectively.

4.1 Model and Objective
Data Incorporation Latency Given an update policy, to quan-
tify how fast the data can be incorporated into the model, we mea-
sure, for each sample, the latency between its arrival and the mo-
ment that sample gets incorporated.

Specifically, letm data samples arrive in sequence at timea1, · · · ,am .
The system performs nmodel updates, where the i-th update starts
at si and takes τi time to complete. Let Di be the set of data sam-
ples incorporated by the i-th update, i.e., those arrived after the
(i − 1)-th update starts and before the i-th:

Di = { k | si−1 ≤ ak < si }.

Here, we assume s0 = 0. Since all samples in Di get incorporated
after the i-th update completes, the cumulative latency, denoted Li ,
is computed as

Li =
∑
k ∈Di

si + τi − ak . (1)

Summing up Li over alln updates, we obtain the data incorporation
latency, i.e.,

L =
∑
i
Li . (2)

TrainingCost Updatingmodels over new data incurs non-trivial
training cost, which is directly measured by the machine-time in
public, pay-as-you-go cloud or shared, in-house clusters. Without
loss of generality, we assume in the following discussions that the
training is performed in a single machine. In this case, the training
cost of the i-th update is equivalent to the training time τi . The
overall training cost is ∑i τi .

To characterize the training cost, we resort to empirical studies
and find that the cost is in proportion to the amount of data over
which the training is performed. More precisely, the training cost
τi of the i-th update follows a linear model f (·) against the data
amount |Di |:

τi = f (|Di |) = α |Di | + β , (3)

where α and β are algorithm-specific parameters.
We attribute the linear relationship to the fact that most of ex-

isting online learning algorithms have no nested loops but simply
scan through the data samples once or multiple times. To support

Figure 6: The relationship between runtime and data size
(both normalized to [0, 1]) is approximately linear for var-
ious algorithms and datasets. The application names are
listed in Table 2.

this claim, we have implemented a number of online learning al-
gorithms spanning multiple ML frameworks, programming lan-
guages, and application domains (Table 2). For each algorithm, we
measure the training time against varying data sizes and depict the
results in Figure 6. Regressions based on linear least squares show
that the correlation coefficient r falls within 0.995± 0.005 across all
algorithms—an indicator of strong linearity.
Objective Given the two metrics above, our goal is to determine
when to perform updating (i.e., s1, s2, . . . ) to minimize data incor-
poration latency L at low training cost ∑i τi .

4.2 Best-Effort Policy
We start with a simple scenario where users seek fast data incorpo-
ration without concerning about the training cost. This typically
applies to users who perform model updating using some dedi-
cated machines, where the training cost becomes less of a concern.

A straightforward approach to reduce data incorporation latency
is to continuously retrain the model, where the (i +1)-th update fol-
lows immediately after the i-th, i.e., si+1 = si +τi for all i . However,
this simple approach falls short in the presence of the flash crowd
data, e.g., fervent responses to celebrity posts [26], surging traffic
due to breaking news [50], and increased network usage during
natural disasters [98]. In case that the flash crowds arrive right
after an update starts, they have to wait until the next update to
get incorporated, which may take a long time. In fact, in our eval-
uation, we observed 34% longer latency using continuous update
than using the optimal policy (§5.2).

To address this problem, we propose a simple policy that reacts
to the surge of data by speculatively aborting the ongoing update
and restarting the training to timely incorporate the flash crowd
data. To determine when to abort and restart, we speculate, upon
the arrival of new data, if doing so would result in reduced data
incorporation latency.

Specifically, suppose that the i-th update is currently ongoing,
in which D data samples are being incorporated. Let δ be the time
elapsed since the start of the i-th update. Assume B data samples
arrive during this period. We could either (i) defer the incorpora-
tion of the B samples to the (i + 1)-th update, or (ii) abort the cur-
rent update and retrain the model with D + B samples. Let Ldefer



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Table 2: Summary of machine learning algorithms and datasets used in experiments.

Algorithm Abbreviation Framework Programming Language Dataset
Latent Dirichlet Allocation [76] LDA MALLET [68] Java Twitter [102]
adPredictor [44] AP TensorFlow [1] C++, Python Criteo [58]
Matrix Factorization [84] MF Infer.NET [72] C# MovieLens [47]
Gradient-Boosted Decision Tree [39] GBDT XGBoost [22] C++ Criteo
Personalized PageRank [106] PPR / Scala Higgs [32]
Logistic Regression LR Scikit-learn [78] Python Criteo

and Labort be the data incorporation latency of the two choices, re-
spectively. We speculate Ldefer and Labort and restart the training
if Labort ≤ Ldefer.

More precisely, let f (·) be the linear model used to predict the
training time. We have

Ldefer = Df (D) + B(f (D) + f (B) − δ ), (4)

where the first term accounts for the latency of the D samples cov-
ered by the i-th update, and second term accounts for the latency
of the B samples covered by the (i + 1)-th.

On the other hand, if we abort the ongoing update and restart
the training with D + B samples, we have

Labort = D(f (D + B) + δ ) + Bf (D + B), (5)

where the first term is the latency of the D samples and the second
term the latency of the B samples. Plugging Equation 3 into the
equations above, we shall abort and restart (Labort ≤ Ldefer) if the
following inequality holds:

Bβ ≥ DαB + (D + B)δ . (6)

4.3 Cost-Aware Policy
For cost-sensitive users who cannot afford unlimited retraining,
we propose a cost-aware policy for fast data incorporation at low
training cost. We model the cost sensitivity of a user with a “knob”
parameter w , meaning, for every unit of training cost it spends, it
expects the data incorporation latency to be reduced by w . In this
model, latency Li and cost τi are “exchangeable” and are hence
unified as one objective, which we call latency-cost sum, i.e.,

minimize{si }
∑
i
Li +wτi . (7)

Our goal is to make the optimal update decisions {si } online, with-
out assuming future data arrival.
Online Algorithm At each time instant t , we need to determine
if an update should be performed. A key concern in this regard is
how many new data samples can be incorporated. Figure 7 gives
a pictorial illustration of data generation over time. Assume that
D samples have become available since the last training and will
be incorporated if update is performed at time t . The colored area
(yellow in the left) illustrates the cumulative latency (Equation 1)
of these D samples.

In case that this latency turns large, we may wish we could have
performed another update earlier, say, at time t ′ < t . Figure 7

a t#
 G

e
n
e
ra

te
d

 D
a
ta

t timet’

end of training

D

1 a1

Figure 7: A pictorial illustration of dynamic data generation.
Assume that D samples could be incorporated by an update
at time t . The yellow area (left) shows the latency of these
samples. The latency could have been reduced should an-
other update perform earlier at t ′ < t (shown as the green
area in the right).

(right) illustrates how this imaginary, early update could have re-
duced the latency (green area). We search all possible t ′ and com-
pute the maximum latency reduction due to an imaginary update,
which we call the regret. Our algorithm keeps track of the regret at
every time instant t , and triggers updating once the regret exceeds
wβ (Algorithm 1).

We explain the intuition of this threshold-based update policy
as follows. While having an imaginary update earlier could have
reduced the latency, the price paid is an increased training cost
by β . Referring back to Figure 7, as the training cost follows a lin-
ear model of data size (Equation 3), the cost incurred in the left and
right figures are αD+β and αD+2β , respectively. To justify this ad-
ditional cost β , the latency reduction due to the imaginary update
(i.e., regret) must be greater than wβ (see Equation 7). Therefore,
whenever the regret exceeds wβ , we should have performed an
update earlier. Realizing this mistake, we now trigger an update as
a late compensation. We note that similar algorithmic behaviors of
late compensation have also been studied in the online algorithm
literature [6, 57].
2-Competitiveness The cost-aware policy (Algorithm 1) is more
than a simple heuristic. We show through competitive analysis [6]
that even compared with the optimal offline policy assuming full
knowledge of future data arrivals, the latency-cost sum (Eq. 7) in-
curred by our algorithm is no more than twice of the optimum.

More precisely, given any data generation sequence, let Li and
τi respectively denote the data incorporation latency and the train-
ing cost incurred by the i-th update of Algorithm 1. Let L∗i and
τ ∗i be similarly defined for the optimal offline algorithm. We have



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang

Algorithm 1 Cost-Aware Policy
– a[1 · · ·n]: arrival time of untrained data
– α, β : parameters in runtime model (Equation 3)
– w : weight in minimization objective (Equation 7)

1: function CalcLat(i, j ) ◃ calculate latency
2: τ ← α (j − i + 1) + β ◃ estimate runtime
3: e ← τ + a[j] ◃ end time of training
4: return ∑j

k=i e − a[k ]
5: function DecideUpdate
6: l ← CalcLat(1, n)
7: for all k ∈ {2, · · · , n − 1} do ◃ iterate over possible t ′
8: l ′ ← CalcLat(1, k ) + CalcLat(k + 1, n)
9: if l − l ′ > wβ then ◃ estimate regret
10: return true
11: return false

the following theorem, whose proof is deferred to our technical
report [88] due to space constraint.

Theorem 4.1. Algorithm 1 is 2-competitive, i.e.,∑
i
Li +wτi ≤ 2

∑
i
L∗i +wτ

∗
i . (8)

5 EVALUATION
We evaluate our implementation of Continuum and the two pro-
posed algorithms through trace-driven simulations and EC2 de-
ployment.The highlights are summarized as follows:

• Best-effort policy can achieve up to 15.2% reduction of la-
tency compared with continuous update;

• Cost-aware policy saves hardware cost by up to 32% or re-
duces latency by up to 28% compared with periodic update;

• Continuum achieves 6x better model quality than the state-
of-the-art system, Velox [29], in a representative online learn-
ing application.

5.1 Settings
Testbed We conduct all experiments in Amazon EC2 [7] with
c5.4xlarge instance, each equipped with 16 vCPUs (Intel Xeon
Platinum processors, 3.0 GHz), 32GBmemory and 5 Gbps Ethernet
links.
Workloads We choose three representative applications in Ta-
ble 2: LDA, PPR and GBDT.They cover different learning types (su-
pervised and unsupervised), multiple data formats (unstructured
text, sparse graph, dense features, etc.) and ML frameworks. For
each application, we randomly extract two 15-minute-long data
traces from the datasets, and respectively use the two traces as
input, e.g., LDA1 (PPR2) refers to LDA (PPR) against trace-1 (trace-
2).
Methodology Our experiments are based on the scenario where
data is continuously generated and fed to the system for model
updating. To emulate real data generation, we send data accord-
ing to their timestamps in the traces. Upon the receipt of the data,
the system determines whether to trigger retraining based on the
specified policy.

Figure 8: [simulation] Latencies of optimal offline policy,
continuous update and best-effort policy. We normalize the
latency for each workload against its optimal one.

We also conduct simulation studies, in which the optimal offline
algorithms are used as a baseline.These algorithms assume future
data arrival and cannot be implemented in practice.The simulation
follows a similar setting as the deployment except that, instead of
performing real training, we simulate the training time with the
linear model (Equation 3) using parameters profiled from the ex-
periments.

5.2 Effectiveness of Algorithms
Metrics Throughout the evaluation, we use three metrics: (i) data
incorporation latency defined in Equation 1, (ii) training cost, and
(iii) latency-cost sum defined in Equation 7.
Best-Effort Policy Weevaluate best-effort policy (BestEffort) against
continuous update (Continuous) and offline optimal policy (Opt).
Continuous performs updates continuously, one after another. Opt
is a dynamic programming algorithm.The detail is deferred to our
technical report [88].

Figure 8 compares three algorithms in simulation. Due to the
super-linear complexity of Opt, we randomly extract several 100-
sample data traces from the datasets and use them as input. We
observe that the latency incurred by Continuous is on average 23%
(up to 34% in LDA2) longer than that of Opt, a result of delayed in-
corporation of the flash crowd data. BestEffort effectively addresses
this problem and comes closer to Opt, resulting in 11% shorter la-
tency than Continuous on average.

We further evaluate Continuous and BestEffort in real deploy-
ment, and depict the results in Figure 9. Compared with Continu-
ous, BestEffort reduces latency by 9.5% on average (up to 15.2% in
PPR1).

While these improvements seem relatively insignificant in num-
bers, we still consider them practically valuable in that shorter data
latencymeans that users could enjoy improvedmodel earlier (§2.2).
Given that machine learning has been widely deployed in many
billion-dollar applications (e.g., massive online advertising), it is
broadly accepted that even a marginal quality improvement can
turn in significant revenue [63, 95].
Cost-AwarePolicy Wenext evaluate cost-aware policy (CostAware)
against two baselines, Opt and periodic update (Periodic). Periodic
triggers retraining at intervals of a predefined period. We carefully
choose two periods, one (PeriLat) resulting in the same latency as
CostAware, and the other (PeriCost) leading to an equal training
cost.



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 9: [deployment] Latencies of continuous update and
best-effort policy.

Figure 10: [simulation] Latency-cost sum of cost-aware pol-
icy, normalized by the minimum given by the optimal of-
fline policy.

We start with simulations, inwhichwe evaluateCostAware against
Opt. Owing to the super-linear complexity of Opt [88], we ran two
algorithms on 100-, 300- and 500-sample data traces randomly ex-
tracted from the datasets. Figure 10 depicts the latency-cost sum of
CostAware, normalized by theminimum given byOpt. While in the-
ory, CostAware can be 2x worse than the optimum (Theorem 4.1),
it comes much closer to Opt in practice (≤ 1.26x on average).

We next compare Periodic and CostAware in EC2 deployment.
Figure 11a plots the training cost ofCostAware and PeriLat.CostAware
incurs 19% less training cost and the maximum saving reaches 32%
(GBDT2). We attribute such cost efficiency to our algorithm adapt-
ing to dynamic data generation: few updates were performed in
face of infrequent data arrival. Figure 11b compares the latencies
incurred by CostAware and PeriCost. CostAware speeds up data in-
corporation by 20% on average (up to 28% for LDA2)—a result of
its quick response to the flash crowd data.

5.3 Impact on ModelQuality
Though our algorithms mainly optimize the latency of data incor-
poration, it is the model quality that ultimately determines how
well the prediction could be served. Now that we have shown the
effectiveness in latency reduction, we further examine how model
quality behaves under different policies. Specifically, we choose
the LDA application and compare its quality under BestEffort and
Continuous policies. The quality is measured by perplexity as in
the case studies (§2.2). Figure 12 presents the results, where each
point marks the end of one retraining occurrence. As the benefit of
continual learning, the perplexity drops with the incorporation of
new data. BestEffort has fewer data points thanContinuous because
some retraining instances are aborted and merged into others. As

(a)The cost incurred by cost-aware policy and periodic update under the condi-
tion of same latency.

(b) The latency incurred by cost-aware policy and periodic update under the
condition of same cost.

Figure 11: [deployment] Cost and latency of periodic update
and cost-aware policy.

Figure 12:Quality of LDAmodels under (1) best-effort policy
and (2) continuous update. Lower perplexity means better
performance.

a result, each retraining typically covers more data and leads to
larger quality improvement. However, we want to emphasize that
the quality is not solely controlled by our algorithms, because it is
a combined result of learning algorithm, training data, updating
policy, etc. We will further elaborate on how to maintain model
quality in §6.1.

5.4 Micro-benchmark
We evaluate our algorithms in a more controllable manner, where
we feed synthetic data traces to Continuum and examine the be-
haviors of BestEffort (CostAware) against Continuous (Periodic). Fig-
ure 13 depicts the data arrival (blue lines) over time and the trig-
gering of model updates by different algorithms (orange arrows).



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang
D

a
ta

 A
m

o
u
n
t ��

�

�

�
��

��

Time �VHF�

�

��
�

�

�
��

��

�� �� ��

Data Arrival Triggered Update

�� �� ���

(a) Best-Effort Policy

(b) Continuous Update

(c) Cost-Aware Policy

(d) Periodic Update

Figure 13: Micro-benchmark of algorithm behaviors. We
compare (a) best-effort with (b) continuous update, and (c)
cost-aware with (d) periodic update.

We refer to Figures 13a and 13b to illustrate how BestEffort re-
acts to the flash crowds as opposed to Continuous. While both algo-
rithms trigger update upon the arrival of the first data batch, Best-
Effort restarts the training to quickly incorporate the flash crowds
coming hot on heels. In contrast, Continuous defers the incorpora-
tion of that data to the next update, resulting in longer latency.

We next compare CostAware with Periodic in Figures 13c and
13d, respectively, where we send data in three batches of increas-
ing size.We observe increasingly faster incorporation of three data
batches under CostAware (Figures 13c), suggesting that the regret
reaches the threshold more quickly as more data arrives. On the
contrary, Periodic triggers update at fixed intervals, regardless of
data size or the training cost.

5.5 System Efficiency and Scalability
Methodology We stress-test Continuum in both single-instance
and cluster environments with a large number of pseudo appli-
cations that emulate the training time based on the linear model
(Equation 3 and Figure 6). We send data batches to each applica-
tion every second, with batch size randomly sampled between 1
and 30.
Metrics We consider two metrics, (i) the response time, which
measures how long it takes to process a request of data sending,
and (ii) the decision time, which measures the time spent in making
an update decision.

Figure 14a shows the performance measured in single-instance
deployment.The response time grows linearly with the number of
applications. The decision time proves the efficiency of our imple-
mentation, as well as the lock-free and asynchronous architecture.
Figure 14b illustrates the performance measured in a 20-node clus-
ter. We observe similar response time and decision time to that of
a single instance, an indicator of linear scalability in cluster envi-
ronments.

(a) Single-instance deployment.

(b) Cluster deployment on a 20-node cluster.

Figure 14: System performance measured by: (1) response
time of data sending; (2) decision time using best-effort (BE)
policy and cost-aware (CA) policy respectively.

Figure 15: A standalone backend and Continuum yield ap-
proximately the same training speeds, meaning little over-
head on the backend.

5.6 System Overhead
We now evaluate the overhead Continuum imposes on the back-
end, which encapsulates the user’s implementation of the learning
algorithm in existing ML frameworks. We compare the training
speed (samples per second) of a backend running in a standalone
mode and in Continuum. We configured Continuum to use best-
effort policy and continuously fed data to the standalone backend.
Figure 15 shows the the measured training speed. Across all three
workloads, Continuum results in only 2% slowdown on average.

5.7 Comparison with Status Quo
Finally, we compare Continuum with Velox [29], a model serv-
ing system closely integrated with Spark MLlib [71]. To our best
knowledge, Velox is the only learning system that explicitly sup-
ports (offline) model updating.
Methodology We consider the scenario of movie recommenda-
tion with MovieLens dataset [47]. In both Velox and Continuum,
we train the base model using 95% of data and dynamically feed



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 16: Results of comparison with Velox in movie rec-
ommendation.

the remaining 5% to the two systems in a 20-minute window. We
deploy both systems on 5-node clusters. In Velox, we use ALS algo-
rithm shipped with Spark MLlib. We set its algorithm parameters
according to its recommendations. We keep it retraining to sim-
ulate the best-effort policy. In Continuum, we have implemented
element-wise ALS algorithm3 (an online version of ALS) proposed
in [49], set parameters as mentioned therein, and configured the
best-effort policy.
Metrics Following [49], wemeasure the recommendation quality
using three metrics, hit ratio (HR), Normalized Discounted Cumu-
lative Gain (NDCG) and precision (PREC).The first checks whether
the user’s interested movie appears in the recommendation list,
and the last two quantify the relevance of the recommendation.

Figure 16 shows the comparison results, where Continuum out-
performs Velox in all metrics. Such a performance gap is mainly
attributed to Velox’s Spark lock-in, which restricts its choice to the
ML algorithms shipped with Spark. As opposed to Velox, Contin-
uum comes as a general-purpose system without such a limitation,
allowing it to take a full advantage of an improved algorithm. Fur-
thermore, we observe that all three metrics improves faster in Con-
tinuum than in Velox (e.g., linear regression of HR curves yields
slopes of 1.2× 10−3 in Continuum, as compared with 4.8× 10−4 in
Velox). This validates the benefit of online learning, which incor-
porates new data more quickly and improves data recency.

6 DISCUSSION
6.1 Quality-Aware Updating
Previous sections primarily focus on shortening the latency of data
incorporation, with the metrics defined to quantify it and the poli-
cies proposed to optimize it. Such approach possesses the merit of
3Though we are using two algorithms, the comparison is fair in a sense that the
problem domain is the same. We choose a different algorithm because ALS algo-
rithm, the only available choice for Velox, is an offline algorithm and not the target
of Continuum.

general applicability to all online learning algorithms, be it super-
vised or unsupervised, classification or regression. However, solely
optimizing data incorporation latency has certain limitations. As
it is indirectly related to model quality, users may find it hard to
control the quality of prediction output. Furthermore, it possibly
will incur overfitting to blindly accelerate data incorporation.

To complement the latency-oriented approach, we also provide
support for quality-aware updating, which helps maintaining the
model quality at a high level and preventing unexpected deteriora-
tion. For instance, for applications with instant feedback (e.g., user
click after seeing the ads recommended by the model), Continuum
would collect the feedback and calculate the user-specified met-
ric (e.g., prediction accuracy). Only when the metric drops below
certain threshold will the model be retrained. For mission-critical
applications with stringent requirement on model quality, users
could set aside a portion of data as the test set. Every time Contin-
uum retrains the model, it will test the new model first and deploy
it only when the performance is desirable. All such scenarios can
be implemented with the customizable policies we provide (§3.4).

A potential issue accompanying frequent updating is data skew.
Sometimes, themodels, whose data sources are heterogeneous, will
show fluctuating performance because the data have distinct dis-
tributions and continuously incorporating them destabilizes the
model [13, 100, 103]. As a concrete example, an e-commerce web-
site may have traffic coming from one timezone in the morning,
and from another timezone, where people behave differently, in
the afternoon. To mitigate data skew, we advise our users to con-
sider preprocessing data or modifying the learning pipeline. If it
is possible to classify data according to their sources (e.g., differ-
ent geographic areas), users could deploy dedicated models for ev-
ery type of data. Each model can then be managed as a separate
application in Continuum. However, when such classification is
infeasible, some data- or algorithm-level adjustment is required.
If the root cause lies in tilted label distribution (a.k.a. class imbal-
ance [54]), users could choose the algorithms that are immune or
adaptable to imbalance [51, 85], or leverage over-sampling to ad-
just data distribution [2, 38, 94]. On the contrary, if the culprit is
non-stationary feature distribution (a.k.a. concept drift [90]), users
could apply some machine learning techniques, e.g., model ensem-
bling [19, 35, 93].

6.2 System Deployment
Auto Scaling Though in §5.5 we have shown the scalability of
Continuum, the scaling process could further be automated. Due to
the loosely-coupled architecture, it only requires users to replicate
the system on multiple instances to achieve scalability. Therefore,
they could directly leverage existing auto scaling solutions, be it
cloud-based (e.g., AWS Auto Scaling, GCP Autoscaling Group) or
in-house (e.g., Openstack Heat), together with any load balancing
service (e.g., AWS Elastic Load Balancing, Google Cloud Load Bal-
ancing, Openstack Load Balancer).
Fault Tolerance There are two types of failures, system failures
that involve the Continuum itself, and backend failures. To handle
system failure and achieve high availability, we could deploy Con-
tinuum in cluster mode. We further utilize process manager (e.g.,
supervisord, systemd) to enable auto restart after failure, then the



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang

load balancing service will gloss over the failure from users’ per-
ception. The backend failure will be detected and handled by the
system as wemaintain a perioidc heartbeat with backends through
RPC. Once a failed backend gets detected, we start a new one to
replace it.
Workflow Integration Continuum facilitates the process ofmodel
retraining, but only after deploying can those updated models ex-
ert their influence. We take Clipper [28] as an example to illustrate
how to integrate Continuumwith model serving systems. After re-
training themodel, we export the updatedmodel with the template
provided by Clipper and deploy it as a serving container. Clipper
will then detect it and route further prediction requests to the new
model, thus completing the workflow. Furthermore, other deploy-
ment procedures can also be included. For instance, they could val-
idate the model quality before deploying (as described in [11]) to
ensure the prediction quality.
Distributed Training Continuum also supports backends that
conduct distributed trainingwhich typically involves amaster node
and several slave nodes. Users could wrap the master in the back-
end abstraction, then let it programmtically spawn slaves to per-
form training. The master will be responsible for communicating
with Continuum and managing the data.
Data Management Continuum accepts multiple types of data
information when users need to inform Continuum of recent data
arrival.They can either send raw data to the system, or merely the
information about data. For large-sized data (e.g., image, audio),
users could store the raw data in some dedicated and optimized
storage system, only sending the data location and size to Contin-
uum. For small-sized data (e.g., user click), they could skip the in-
termediate storage and directly send raw data for better efficiency.

7 RELATEDWORK
StreamProcessing Systems Stream processing has been widely
studied, both in single-machine [10, 21] and distributed settings [5,
79]. Several systems [75, 91, 105] and computation models [36, 70]
have been proposed. Continuum can be broadly viewed as a stream
processing system in a sense that it process continuously arriv-
ing data. Similar to [31] that studies the throughput and latency
in stream processing, our algorithms can help streaming systems
strike a balance between processing cost and latency.
Machine Learning Systems Machine learning systems have been
a hot topic in both academia and industry. For traditional machine
learning, Vowpal Wabbit [60] and Scikit-learn [78] are representa-
tive systems of the kind. In the era of deep learning, people have
developed frameworks with special support for neural network op-
erators, e.g., Caffe [55], Theano [86], Torch [27], TensorFlow [1],
etc. An emerging trend is to distribute learning with the Parameter
Server [62] architecture.The poster-child systems includeMXNet [23]
and Bosën [97]. However, none of previous systems have provided
explicit support for online learning. Therefore Continuum is or-
thogonal to them and complements them.
StreamMining Systems Besidesmachine learning, data streams
also attract attention from data mining community. A bunch of
data mining algorithms have been adapted to data streams, e.g.,
decision trees [33, 43], pattern discovery [41, 83], clustering [4, 45].

Various systems have been built to carry out stream mining, e.g.,
MOA [14], SAMOA [74] and StreamDM [15]. However, they also
focus on implementing algorithms, neglecting the updating and
deployment of the models. Therefore, our system is applicable to
them by extending their functionality.
Model Serving Systems As the final step of machine leaning
workflow, model serving has not received adequate attention until
recently. Researchers have been built various systems to unify and
optimize the process of model serving, e.g., Velox [29], Clipper [28],
TensorFlow Serving [77] and SERF [101]. Continuum can be in-
tegrated with those systems to continuously improve the model
quality by incorporating fresh data.

8 CONCLUSION
In this paper, we have presented Continuum, thefirst general-purpose
platform for continual learning, which automates the updating pro-
cess and judiciously decides when to retrain with different policies.
To enable fast data incorporation, we have proposed best-effort pol-
icy that achieves low latency by speculatively restarting update
in face of flash crowd. For users concerning about training cost,
we have further designed cost-aware policy, an online algorithm
jointlyminimizing latency-cost sumwith proven 2-competitiveness.
Evaluations show that Continuum outperforms existing systems
with significantly improved model quality.

ACKNOWLEDGEMENT
We would like to thank our shepherd, Asim Kadav, and the anony-
mous reviewers for their valuable feedback that helps improve the
quality of this work.This research is supported by the Hong Kong
ITF Award ITS/391/15FX. Huangshi was supported in part by the
Hong Kong PhD Fellowship Scheme, and Minchen was supported
in part by the Huawei PhD Fellowship Scheme.

REFERENCES
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon
Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zhang. 2016. TensorFlow: A system for
large-scale machine learning. In OSDI.

[2] Lida Abdi and Sattar Hashemi. 2016. To combat multi-class imbalanced prob-
lems by means of over-sampling techniques. IEEE Transactions on Knowledge
& Data Engineering 1 (2016), 1–1.

[3] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Lang-
ford, Stephen Lee, Jiaji Li, Dan Melamed, Gal Oshri, Oswaldo Ribas, et al.
2016. Making Contextual Decisions with Low Technical Debt. arXiv preprint
arXiv:1606.03966 (2016).

[4] Charu C Aggarwal, Jiawei Han, JianyongWang, and Philip S Yu. 2003. A frame-
work for clustering evolving data streams. In Proceedings of the 29th interna-
tional conference on Very large data bases-Volume 29. VLDB Endowment, 81–92.

[5] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.
2013. MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proc. VLDB
Endow. 6, 11 (Aug. 2013), 1033–1044. https://doi.org/10.14778/2536222.2536229

[6] Susanne Albers. 2003. Online algorithms: a survey. Mathematical Programming
97, 1 (01 Jul 2003), 3–26. https://doi.org/10.1007/s10107-003-0436-0

[7] Amazon AWS. 2018. Amazon EC2. (2018). https://aws.amazon.com/ec2/
[8] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information

retrieval. Vol. 463. ACM press New York.
[9] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast Incremental

and Personalized PageRank. Proc. VLDB Endow. 4, 3 (Dec. 2010), 173–184. https:
//doi.org/10.14778/1929861.1929864

[10] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, andMichael Stone-
braker. 2005. Fault-tolerance in the Borealis Distributed Stream Processing



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

System. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’05). ACM, New York, NY, USA, 13–24. https:
//doi.org/10.1145/1066157.1066160

[11] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz,
Xin Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-
ScaleMachine Learning Platform. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM,
New York, NY, USA, 1387–1395. https://doi.org/10.1145/3097983.3098021

[12] Sunny Behal, Krishan Kumar, and Monika Sachdeva. 2017. Characterizing
DDoS attacks and flash events: Review, research gaps and future directions.
Computer Science Review (2017).

[13] Bin Bi, Milad Shokouhi, Michal Kosinski, andThore Graepel. 2013. Inferring the
demographics of search users: Social data meets search queries. In Proceedings
of the 22nd international conference on World Wide Web. ACM, 131–140.

[14] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010.
MOA:Massive Online Analysis. Journal of Machine Learning Research 11 (2010),
1601–1604.

[15] Albert Bifet, Silviu Maniu, Jianfeng Qian, Guangjian Tian, Cheng He, and Wei
Fan. 2015. StreamDM: Advanced DataMining in Spark Streaming. 2015 IEEE In-
ternational Conference on Data Mining Workshop (ICDMW) (2015), 1608–1611.

[16] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allo-
cation. Journal of machine Learning research 3, Jan (2003), 993–1022.

[17] Léon Bottou and Yann L Cun. 2004. Large scale online learning. In Advances in
neural information processing systems. 217–224.

[18] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and
Michael I. Jordan. 2013. Streaming Variational Bayes. In NIPS.

[19] Dariusz Brzezinski and Jerzy Stefanowski. 2014. Reacting to different types of
concept drift:The accuracy updated ensemble algorithm. IEEE Transactions on
Neural Networks and Learning Systems 25, 1 (2014), 81–94.

[20] Michael Cafarella, Edward Chang, Andrew Fikes, Alon Halevy, Wilson Hsieh,
Alberto Lerner, Jayant Madhavan, and S Muthukrishnan. 2008. Data manage-
ment projects at Google. ACM SIGMOD Record 37, 1 (2008), 34–38.

[21] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden,
Fred Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow
Processing. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’03). ACM, New York, NY, USA, 668–668.
https://doi.org/10.1145/872757.872857

[22] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In KDD.

[23] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[24] Wei Chen, Tie yan Liu, Yanyan Lan, Zhi ming Ma, and Hang Li.
2009. Ranking Measures and Loss Functions in Learning to Rank.
In Advances in Neural Information Processing Systems 22, Y. Ben-
gio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta
(Eds.). Curran Associates, Inc., 315–323. http://papers.nips.cc/paper/
3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf

[25] Wei Chu, Martin Zinkevich, Lihong Li, Achint Thomas, and Belle Tseng. 2011.
Unbiased online active learning in data streams. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and datamining. ACM,
195–203.

[26] David Cohen. 2012. When George Takei Speaks, Facebook Listens. (2012).
https://www.adweek.com/digital/george-takei-complaint/

[27] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS Workshop.

[28] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System.. In NSDI. 613–627.

[29] Joseph E. Gonzalez Haoyuan Li Zhao Zhang Michael J. Franklin Ali Ghodsi
Michael I. Jordan Daniel Crankshaw, Peter Bailis. 2015. The Missing Piece in
Complex Analytics: Low Latency, Scalable Model Management and Serving
with Velox. In Proceedings of the 7th Biennial Conference on Innovative Data
Systems Research.

[30] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google News Personalization: Scalable Online Collaborative Filtering. In Pro-
ceedings of the 16th International Conference on World Wide Web (WWW ’07).
ACM, New York, NY, USA, 271–280. https://doi.org/10.1145/1242572.1242610

[31] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive
Stream Processing UsingDynamic Batch Sizing. In Proceedings of the ACM Sym-
posium on Cloud Computing (SOCC ’14). ACM, New York, NY, USA, Article 16,
13 pages. https://doi.org/10.1145/2670979.2670995

[32] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. 2013.
The anatomy of a scientific rumor. Scientific reports 3 (2013), 2980.

[33] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In
Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 71–80.

[34] Anlei Dong, Ruiqiang Zhang, PranamKolari, Jing Bai, FernandoDiaz, Yi Chang,
Zhaohui Zheng, and Hongyuan Zha. 2010. Time is of the Essence: Improving
Recency Ranking Using Twitter Data. In Proceedings of the 19th International
Conference onWorldWideWeb (WWW ’10). ACM, New York, NY, USA, 331–340.
https://doi.org/10.1145/1772690.1772725

[35] Ryan Elwell and Robi Polikar. 2011. Incremental learning of concept drift in
nonstationary environments. IEEE Transactions on Neural Networks 22, 10
(2011), 1517–1531.

[36] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. 2012.
Spinning Fast Iterative Data Flows. Proc. VLDB Endow. 5, 11 (July 2012), 1268–
1279. https://doi.org/10.14778/2350229.2350245

[37] Tom Fawcett and Foster Provost. 1997. Adaptive fraud detection. Data mining
and knowledge discovery 1, 3 (1997), 291–316.

[38] Francisco Fernández-Navarro, César Hervás-Martı́nez, and Pedro Antonio
Gutiérrez. 2011. A dynamic over-sampling procedure based on sensitivity for
multi-class problems. Pattern Recognition 44, 8 (2011), 1821–1833.

[39] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[40] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM Comput. Surv.
46, 4, Article 44 (March 2014), 37 pages. https://doi.org/10.1145/2523813

[41] Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and Philip S Yu. 2003. Mining
frequent patterns in data streams atmultiple time granularities. Next generation
data mining 212 (2003), 191–212.

[42] Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle
Gaasenbeek, Jill P Mesirov, Hilary Coller, Mignon L Loh, James R Downing,
Mark A Caligiuri, et al. 1999. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. science 286, 5439 (1999),
531–537.

[43] Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrı́cio
Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. 2017.
Adaptive random forests for evolving data stream classification.Machine Learn-
ing 106 (2017), 1469–1495.

[44] Thore Graepel, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich. 2010.
Web-scale bayesian click-through rate prediction for sponsored search adver-
tising in microsoft’s bing search engine. In Proceedings of the 27th international
conference on machine learning (ICML-10). 13–20.

[45] Michael Hahsler and Matthew Bolaños. 2016. Clustering Data Streams Based
on Shared Density between Micro-Clusters. IEEE Transactions on Knowledge
and Data Engineering 28 (2016), 1449–1461.

[46] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982),
29–36.

[47] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: His-
tory and context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4
(2016), 19.

[48] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, An-
toine Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from
predicting clicks on ads at facebook. In Proceedings of the Eighth International
Workshop on Data Mining for Online Advertising. ACM, 1–9.

[49] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
Matrix Factorization for Online Recommendation with Implicit Feedback. In
Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, USA,
549–558. https://doi.org/10.1145/2911451.2911489

[50] The Hindu. 2016. Freedom 251 website down for second day.
(2016). https://www.thehindu.com/sci-tech/technology/gadgets/
freedom-251-website-down-for-second-day/article8257501.ece

[51] T Ryan Hoens, Qi Qian, Nitesh V Chawla, and Zhi-Hua Zhou. 2012. Building
decision trees for the multi-class imbalance problem. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 122–134.

[52] Matthew Hoffman, Francis R Bach, and David M Blei. 2010. Online learning for
latent dirichlet allocation. In advances in neural information processing systems.
856–864.

[53] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings
of the 22nd annual international ACM SIGIR conference on Research and develop-
ment in information retrieval. ACM, 50–57.

[54] Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A
systematic study. Intelligent data analysis 6, 5 (2002), 429–449.

[55] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Huangshi Tian, Minchen Yu, and Wei Wang

international conference on Multimedia. ACM, 675–678.
[56] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich. 2002.

Flash crowds and denial of service attacks: Characterization and implications
for CDNs and web sites. In Proceedings of the 11th international conference on
World Wide Web. ACM, 293–304.

[57] Anna R. Karlin, Claire Kenyon, and Dana Randall. 2001. Dynamic TCP Ac-
knowledgement and Other Stories About e/(e-1). In Proceedings of the Thirty-
third Annual ACM Symposium on Theory of Computing (STOC ’01). ACM, New
York, NY, USA, 502–509. https://doi.org/10.1145/380752.380845

[58] Criteo Labs. 2018. Search Conversion Log Dataset. (2018). http://research.
criteo.com/criteo-sponsored-search-conversion-log-dataset/

[59] Wai Lam and JavedMostafa. 2001. Modeling user interest shift using a bayesian
approach. JASIST 52 (2001), 416–429.

[60] John Langford, Lihong Li, and Alex Strehl. 2007. Vowpal wabbit online learning
project. (2007).

[61] Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey. 2015. Click-
through prediction for advertising in twitter timeline. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM, 1959–1968.

[62] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server.. In OSDI, Vol. 1. 3.

[63] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, Feng Sun,
and Hucheng Zhou. 2017. Model Ensemble for Click Prediction in Bing
Search Ads. ACM. https://www.microsoft.com/en-us/research/publication/
model-ensemble-click-prediction-bing-search-ads/

[64] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized
PageRank Estimation and Search: A Bidirectional Approach. In Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining
(WSDM ’16). ACM, New York, NY, USA, 163–172. https://doi.org/10.1145/
2835776.2835823

[65] Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Seshadhri. 2014.
FAST-PPR: Scaling Personalized Pagerank Estimation for Large Graphs. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD ’14). ACM, New York, NY, USA, 1436–1445.
https://doi.org/10.1145/2623330.2623745

[66] Julien Mairal, Francis R. Bach, Jean Ponce, and Guillermo Sapiro. 2010. On-
line Learning for Matrix Factorization and Sparse Coding. Journal of Machine
Learning Research 11 (2010), 19–60.

[67] Christopher D Manning and Hinrich Schütze. 1999. Foundations of statistical
natural language processing. MIT press.

[68] Andrew Kachites McCallum. 2002. Mallet: A machine learning for language
toolkit. (2002).

[69] H BrendanMcMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.
2013. Ad click prediction: a view from the trenches. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 1222–1230.

[70] FrankMcSherry, DerekMurray, Rebecca Isaacs, andMichael Isard. 2013. Differ-
ential dataflow. In Proceedings of CIDR 2013. https://www.microsoft.com/en-us/
research/publication/differential-dataflow/

[71] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Bosagh Zadeh, Matei
Zaharia, and Ameet S. Talwalkar. 2016. MLlib: Machine Learning in Apache
Spark. Journal of Machine Learning Research 17 (2016), 34:1–34:7.

[72] T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. 2018.
Infer.NET 2.7. (2018). http://research.microsoft.com/infernet

[73] C Monteiro, R Bessa, V Miranda, A Botterud, J Wang, G Conzelmann, et al.
2009. Wind power forecasting: state-of-the-art 2009. Technical Report. Argonne
National Laboratory (ANL).

[74] Gianmarco De Francisci Morales and Albert Bifet. 2015. SAMOA: scalable ad-
vanced massive online analysis. Journal of Machine Learning Research 16, 1
(2015), 149–153.

[75] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martı́n Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
ACM, New York, NY, USA, 439–455. https://doi.org/10.1145/2517349.2522738

[76] David Newman, Arthur Asuncion, Padhraic Smyth, andMaxWelling. 2009. Dis-
tributed Algorithms for Topic Models. J. Mach. Learn. Res. 10 (Dec. 2009), 1801–
1828. http://dl.acm.org/citation.cfm?id=1577069.1755845

[77] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar. 2017.
TensorFlow-Serving: Flexible, High-Performance ML Serving. In Workshop on
ML Systems at NIPS 2017.

[78] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jacob VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research 12
(2011), 2825–2830.

[79] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi
Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013. TimeStream: Reliable
Stream Computation in the Cloud. In Proceedings of the 8th ACM European Con-
ference on Computer Systems (EuroSys ’13). ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/2465351.2465353

[80] RedisLab. 2018. Redis. https://redis.io. (2018).
[81] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. Ffwd: Delega-

tion is (Much) FasterThan YouThink. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 342–358.
https://doi.org/10.1145/3132747.3132771

[82] Jeffrey C. Schlimmer and Richard Granger. 1986. Beyond Incremental Process-
ing: Tracking Concept Drift. In AAAI.

[83] Andreia Silva and Cláudia Antunes. 2015. Multi-relational pattern mining over
data streams. Data Mining and Knowledge Discovery 29, 6 (2015), 1783–1814.

[84] David H Stern, Ralf Herbrich, and Thore Graepel. 2009. Matchbox: large scale
online bayesian recommendations. In Proceedings of the 18th international con-
ference on World wide web. ACM, 111–120.

[85] Yanmin Sun, Mohamed S Kamel, and Yang Wang. 2006. Boosting for learning
multiple classes with imbalanced class distribution. In null. IEEE, 592–602.

[86] TheanoDevelopment Team. 2016.Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

[87] Huangshi Tian, Minchen Yu, and Wei Wang. 2018. Continuum. (2018). https:
//github.com/All-less/continuum

[88] Huangshi Tian, Minchen Yu, and Wei Wang. 2018. Continuum: A Platform for
Cost-Aware, Low-Latency Continual Learning. (May 2018). https://www.cse.
ust.hk/∼weiwa/papers/continuum-socc18.pdf

[89] Ivan Titov and Ryan McDonald. 2008. Modeling online reviews with multi-
grain topic models. In Proceedings of the 17th international conference on World
Wide Web. ACM, 111–120.

[90] Alexey Tsymbal. 2004. The problem of concept drift: definitions and related
work. Computer Science Department, Trinity College Dublin 106, 2 (2004).

[91] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust,
Ali Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle:
Fast and Adaptable Stream Processing at Scale. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
374–389. https://doi.org/10.1145/3132747.3132750

[92] Hanna MWallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. 2009.
Evaluation methods for topic models. In Proceedings of the 26th annual interna-
tional conference on machine learning. ACM, 1105–1112.

[93] Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han. 2003. Mining concept-
drifting data streams using ensemble classifiers. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining. AcM,
226–235.

[94] JingWang andMin-Ling Zhang. 2018. TowardsMitigating the Class-Imbalance
Problem for Partial Label Learning. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &#38; Data Mining (KDD ’18).
ACM,NewYork, NY, USA, 2427–2436. https://doi.org/10.1145/3219819.3220008

[95] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Net-
work for Ad Click Predictions. CoRR abs/1708.05123 (2017). arXiv:1708.05123
http://arxiv.org/abs/1708.05123

[96] Yi Wang, Xuemin Zhao, Zhenlong Sun, Hao Yan, Lifeng Wang, Zhihui Jin, Liu-
bin Wang, Yang Gao, Ching Law, and Jia Zeng. 2015. Peacock: Learning long-
tail topic features for industrial applications. ACM Transactions on Intelligent
Systems and Technology (TIST) 6, 4 (2015), 47.

[97] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R
Ganger, Phillip B Gibbons, Garth A Gibson, and Eric P Xing. 2015. Managed
communication and consistency for fast data-parallel iterative analytics. In Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing. ACM, 381–394.

[98] Zack Whittaker. 2012. Internet usage rocketed on the East Coast
during Sandy: report. (2012). https://www.zdnet.com/article/
internet-usage-rocketed-on-the-east-coast-during-sandy-report/

[99] GerhardWidmer andMiroslav Kubat. 1996. Learning in the presence of concept
drift and hidden contexts. Machine Learning 23 (1996), 69–101.

[100] Zach Wood-Doughty, Michael Smith, David Broniatowski, and Mark Dredze.
2017. How Does Twitter User Behavior Vary Across Demographic Groups?. In
Proceedings of the Second Workshop on NLP and Computational Social Science.
83–89.

[101] Feng Yan, Yuxiong He, Olatunji Ruwase, and Evgenia Smirni. 2016. SERF: Ef-
ficient Scheduling for Fast Deep Neural Network Serving via Judicious Paral-
lelism. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’16). IEEE Press, Piscataway, NJ,
USA, Article 26, 12 pages. http://dl.acm.org/citation.cfm?id=3014904.3014939



Continuum: A Platform for Cost-Aware, Low-Latency
Continual Learning SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[102] Jaewon Yang and Jure Leskovec. 2011. Patterns of temporal variation in online
media. In Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 177–186.

[103] Chun-Chao Yeh, Yan-Shao Lin, and Ting-Hsiang Lin. 2012. Demographics of
social network users-a case study on Plurk. In Advanced Communication Tech-
nology (ICACT), 2012 14th International Conference on. IEEE, 1184–1188.

[104] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei, Xun Zheng, Eric Po
Xing, Tie-Yan Liu, andWei-YingMa. 2015. Lightlda: Big topicmodels onmodest
computer clusters. In Proceedings of the 24th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
1351–1361.

[105] Matei Zaharia, Tathagata Das, Haoyuan Li, TimothyHunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at
scale. In SOSP.

[106] Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate Person-
alized PageRank on Dynamic Graphs. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’16).
ACM,NewYork, NY, USA, 1315–1324. https://doi.org/10.1145/2939672.2939804


